第五章

系統模擬結果與討論

為了評估 MPIC 及 MCIC 接收機架構在 WCDMA 系統下的效能 與比較,我們以電腦模擬接收機的性能(位元錯誤率),最後並針對結 果作討論。

5.1 模擬參數與環境

● WCDMA 系統

調變(modulation)	QPSK
載波頻率(carrier frequency)	2GHz
頻寬(total bandwidth)	5MHz
資料速率(data rate)	2.4Mbps
符元週期(chip duration)	8.32 µs
護衛間隔(guard interval)	2.08 µs(8chips)
展頻因數(spreading factor)	16, 32, 64
碼數(code number)	10, 20, 40
車速(vehicle speed)	10km/hr, 30 km/hr, 90 km/hr
都普勒頻率(Doppler frequency)	18.52Hz, 55.56 Hz, 166.68 Hz
路徑個數(path number)	2
切片速率(chip rate)	3.84Mcps
最大延遲擴散(max delay spread)	2.08 μs (8chips)

表 5.1 WCDMA 系統模擬參數表

表 5.1 為系統模擬參數, 在發送展頻訊號的部分, 使用兩層的展 頻碼, 第一層為使用華氏碼的頻道碼, 第二層為使用金氏碼的攪亂 碼, 為達到兩層展頻碼的數目一致, 所以金氏碼需在末端添加一個 0。 在模擬之中, 基頻接收機的取樣頻率為展頻碼的切片速率(chip rate), 同時, 取樣時脈完全正確, 恰於切片能量最高的時間點上。

● 電腦模擬的通道模型為

AWGN 通道及等能量之雙路徑瑞雷衰減通道(Rayleigh fading channel),其衰減模型由傑克衰便通道模型(fading pattern)產生。

- 假設接收機已知展頻碼
- 為使取樣精準,我們將取樣區間取樣在最佳化區間使取樣區間可

圖 5.1 取樣示意圖

5.2 模擬結果與討論

首先,將先探討有無加入護衛區間的影響,分別有三種狀況如下: a. 無護衛區間,如圖 5.2 所示。

b. 有護衛區間,如圖 5.3 所示。

c. 有護衛區間,但為 Silent。如圖 5.4 所示。

圖 5.2 無護衛區間示意圖

圖 5.4 護衛區間示意圖

由圖 5.5 模擬結果可知,在沒有護衛區間的狀況下,其相互干擾 最為嚴重,表現也最差,而靜止護衛區間其表現仍較有護衛區間略 差,原因是因為護衛區間有 Cyclic prefix 的保護,因此效能更加卓越。

圖 5.5 理想通道估計下雙路徑瑞雷衰減通道之 MPIC 接收機護衛區間效能比較圖

依據以上結論,為使結果最佳化,我們將取樣區間取樣在最佳化 區間使取樣區間可藉由 CP 的特性降低誤碼率如圖 5.1,以下我們將 針對在雙路徑瑞雷衰減通道情形下進行模擬,內容將包含在 WCDMA 的系統之中,MPIC 與 MCIC 接收機架構的效能比較、通道估計效應 評估以及軟硬決定的差異性等。圖 5.6 至圖 5.11 為模擬結果。

圖 5.6 理想通道估計下雙路徑瑞雷衰減通道之 MPIC 接收機層級的影響關係圖

BER Performance of MPIC soft vs.hard decision

圖 5.7 理想通道估計下雙路徑瑞雷衰減通道之 MPIC 接收機層級分析與軟硬決定的影響關係圖

圖 5.8 雙路徑瑞雷衰減通道之 MPIC 接收機理想通道估 計與估測通道的效能分析圖

圖 5.9 雙路徑瑞雷衰減通道之 MPIC 接收機在理想通道 估測軟決定下與多重碼數目不同的效能分析圖

圖 5.10 雙路徑瑞雷衰減通道之 MPIC 與 MCIC

圖 5.11 雙路徑瑞雷衰減通道之 MPIC 與 MCIC 接收機 在估測通道軟決定下與速度的效能分析圖

圖 5.6 為 WCDMA 系統使用單一接收天線在理想通道估計下雙路 徑瑞雷衰減通道下 MPIC 接收機的效應評估,並佐以理論值做為輔助 分析[1,19],我們在使用 MRC 做為通道匹配、硬決定、展頻因數為 32、多重碼數為 20、訊號能量與領航訊號能量比為 1:1,在第一級 並不做任何干擾消除時,彼此之間的干擾較嚴重,之後進入了多路徑 的干擾消除機制後,其效果顯而易見,但隨著層級數增加,第三層級 系統的效能已漸漸趨近飽和,可能原因為無法完全消除的 MAI,因 此,之後將以第三層級做為最佳化的模擬去比較。

圖 5.7 的假設與圖 5.6 相同,為多路徑干擾消除的機制下,硬決 定與軟決定在不同層級的比較圖,圖中我們可以觀察出,雖然軟決定 理論上應較硬決定有更佳的效能,圖中雖未有太大的差異,但已使軟 決定的結果逼近理論值。

圖 5.8 的假設與圖 5.6 假設相同,但運用軟決定,為 MPIC 接收 機在理想通道估計與估測通道的效能分析,我們應用前一章所使用的 通道估測,每一組多重碼使用金氏碼展頻,利用金氏碼的自相關特性 在接收端針對每組多重碼進行解展頻可估出個別的通道脈衝響應,但 通道的估計值包含了雜訊、通道衰減等因素造成的誤差,因此,之後 再使用兩個 IIR 濾波器提高通道估計之準確度。IIR 濾波器的衰減因 子β值大小和濾波器頻寬及平均長度相關,我們必須根據不同的使用 目的,找出合適的β值,以下我們就電腦模擬中 IIR 濾波器的衰減因 子β的選定做一解釋。

第一個 IIR 濾波器為平均雜訊之用,濾波器的平均長度應設計在 通道產生變化的時間範圍之內,又車子行進的速度代表通道變化的快 慢,一般而言,在行進距離為0.5λ (λ:波長)的範圍內假設通道大小 不變,通道的相位變化在行進距離為0.02λ的範圍內假設可忽略,綜 合以上所述,我們假設車子行進距離小於0.02λ時,其通道(包含大小 與相位)沒有變化。因此,IIR 濾波器的時間常數τ(Time constant)必須 限制在行進距離0.02λ所經之行進時間內,根據上述之原則推導車速 與 IIR 濾波器衰減因子β的關係式如下:

$$\lambda = \frac{c}{f}$$

$$\begin{cases} \text{criterion} : \tau \le \frac{0.02\lambda}{\nu} \\ \beta^{\tau_1} = e^{-1} \Rightarrow \beta = e^{-\frac{1}{\tau}} \\ \Rightarrow \beta \le e^{-\frac{\nu}{0.02\lambda}} \end{cases}$$
(5.1)

其中

c(m/s):光速(=3×10⁸m/s)
 f(Hz):載波頻率
 λ(m):波長
 v(m/s):車速

 $\tau(s)$: IIR 濾波器的時間常數

在車速v=10km/hr、v=30km/hr、v=90km/hr 時分別計算β的大 小,得β(10km/hr)=0.9、β(30km/hr)=0.75、β(100km/hr)=0.45。考量第 二個 IIR 濾波器的目的在平均通道衰減的影響,需要較長的平均長 度,因此選定β為 0.999。接收機的效能下降,歸咎於不正確的通道 估計結果,多路徑干擾消除的機制一旦通道估計不甚準確,重建的訊 號有誤,扣除錯誤之重建干擾訊號除了造成之後各層級無法有效消除 來自其他用戶的干擾訊號與領航訊號外,亦對本身訊號造成不可回復 的破壞,如此惡性循環之下,系統容量的提升有限,在第一級與理想 通道約有 3dB 以上的差距,但隨著 MPIC 機制的啟動,通道估計與理 想通道估計的差距在第二三層級獲得縮小。

圖 5.9 為 MPIC 接收機在理想通道估測及軟決定的狀況下改變展 頻因數與多重碼數目的相對分析,我們可以自模擬結果觀察出,在展 頻因數與多重碼在同個比例下,其結果幾乎如出一轍,而改變比例的 情況下,如固定展頻因數將多重碼數減少一半,其效能也將增加一 倍,效能的增加原因是 Chip rate 固定為 3.84Mcps,所以展頻因數的 加增勢必造成 Data rate 的降低。

圖 5.10 的假設為理想通道估計、MPIC 與 MCIC 接收機在軟決定 下與層級的關係圖,由於 MPIC 接收機與 MCIC 接收機在運作原理上相 當接近,使其整體模擬效應也相當接近,為求更審慎觀察其差異,在 圖 5.11 探討接收機移動速度之影響與通道估計效應。接收機的效能 下降,都普勒頻率偏移和接收機的移動速度成正比,和通道的同調時 間(Coherence time)成反比,即接收機移動速度愈快,通道變化愈快。 模擬的結果顯示,通道估計之後,通道估計誤差導致無法確實重建干 擾訊號的部分,因此多路徑干擾消除技術對系統效能的改善較小,尤 以接收機在高速的移動速度(v=90km/hr)時,系統容量大幅降低的情 況更為嚴重。由於隨著速度加增,接收機的性能也隨之下降,因此推 論造成通道估計誤差的可能原因在於通道估計結果無法及時反應通 道衰減變化。

