

 1

Chapter 1

Introduction

1.1 Introduction to Cryptography

In recent years the fast development of the communication and network, brings

the people to are quick and make a convenience of life, but the data its safety is very

important while delivering not burglarize to take the exploitation, and use

cryptography to protect the data is the most familiar method.

Recently, public key cryptography (PKC) have received more and more attention.

It is more and more important in digital communication and some data transfer

systems such as home banking, internet, electronic commerce, E-mail that are needed

to be kept secret from insecure channel. According to the difficult mathematical

problem on which they are based, there are three types of systems classified and are

thought secure [8]：

1. Integer factorization systems (RSA).

2. Discrete logarithm systems (U.S. Government’s DSA).

3. Elliptic curve discrete logarithm systems (Elliptic Curve cryptography).

In 1976 Diffie and Hellman [1] introduced a concept of a public key

cryptography and described a public key distribution scheme. The security of this

proposed concept is based on the difficult and intractable discrete logarithm problem

 2

in the multiplicative group of a large prime finite field. In 1977 the complete

cryptography was firstly proposed by three researchers at MIT, Rivest, Shamir and

Adleman [3]. The famous system is called RSA cryptography and is believed that its

security is based on factoring in a large integer. In 1985, ElGamal [2] proposed a

practical public key cryptography based on discrete exponentiation problem in a finite

field.

Some compromises are required between system response time and security. For

current cryptography, they are up to required security standards but computational

speed is always compromised due to increased key size. As we have seen, the bit

length for secure RSA use has increased over recent years, and this has put a heavier

processing load on applications using RSA. Recently, a competing system has begun

to challenge RSA：elliptic curve cryptography (ECC).

Elliptic curves have been studied for over one hundred fifty years. However,

until 1985 elliptic curve public key cryptography was first proposed by Victor Miller

[4] and Neal Koblitz [5]. Already, ECC is showing up in standardization efforts,

including the IEEE P1363 Standard for Public-Key Cryptography.

 There are some applications such as smart cards and mobile phones which are

portable and small device used in many ways like identification, and health care

needed cryptographic service. But there are some restrictions on using these devices：

limited computing power bandwidth and constrained memory. To handle these

problems, we can choose the advantages of ECC which has smaller key size and high

security. Hence, ECC permits reductions in key and delivers the highest strength per

bit of any known public-key system because of the elliptic curve discrete logarithm

problem (ECDLP). We can compare the key length between ECC and RSA system on

 3

the same security level and then get a result showing that the smaller key size of ECC

yield equivalent levels of security of RSA system. Therefore, the elliptic curve

cryptography can be thought as one of the best public key cryptography in the world

today.

Many hardware architectures have been proposed [6],[7], [8], [9], [10], [11], [12],

[13], [14], [15], [16], [17], [18] for elliptic curve cryptography (ECC) [19], [20].

Binary field GF(2m) arithmetic is suitable for fast and compact hardware compared

with a prime field GF(p) because there is no discrimination between positive and

negative numbers and, thus, no carry is propagated. However, conventional

implementations for GF(2m) ECC cannot support EC-DSA [22] over GF(2m), which is

one of the most important ECC standard functions because modular arithmetic in

GF(p) is also required. On the other hand, conventional ECC hardware designs in

GF(p) [17], [18] supported only the specific prime modulus p=2192-264-1. Therefore,

we proposed a scalable architecture for dual-field GF(p) and GF(2m) based on

Montgomery Modular Multiplication.

1.2 Organization of this thesis

 In Chapter 2, we will introduce some mathematical background：finite fields,

Fermat’s theorem and Euclid’s Algorithm. In Chapter 3, we will discuss the ECC and

mathematical fundamentals of elliptic curve. In Chapter 4, some protocols such as

analog of ElGamal Public Key Cryptosystem, ECDH, ECDSA, and some standards

are presented. In Chapter 5, we will present our modified architecture and simulation

results. Finally, conclusions will be given in Chapter 6.

 4

Chapter 2

Mathematical Background

This chapter introduces some mathematical background for Elliptic Curve. In

Section 2.1, we introduce the Galois Field. And we will introduce Fermat’s Theorem

and Euclid’s Algorithm which are usually used to find the multiplicative inversion in

Section 2.2.

2.1 Introduction to Galois Field

 Finite field is also called Galois fields in honor of its discoverer and all

arithmetic operations over this field are interesting in most computer engineering

domain included cryptography. A finite field in an algebraic field that has a finite

number of elements, otherwise called Infinite Field.

 Due to there are finite numbers of elements on Galois Field, any operation on an

element of the field will result in another one in this field. Because of this useful

property, algorithm using finite field arithmetic does not need to cope with over or

under flow problem.

2.1.1 Finite field GF(p)

 The set {0,1,2,..., 1}p − is a field of order p under modulo-p addition and

 5

multiplication. Since this field is constructed from a prime p , it is called a prime field

and is denoted by ()GF p . For any prime p , there exists a finite field of p elements.

In fact, for any positive integer m, it is possible to extend the prime field ()GF p to a

field of mp elements which is called an extension field of ()GF p and is demoted by

()mGF p . Furthermore, is has been proved that the order of any finite field is a power

of a prime.

 In Table 2.1 and Table 2.2, we show the addition and multiplication operation in

GF(7), respectively.

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

Table 2.1 Modulo 7 addition.

x 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Table 2.2 Modulo 7 multiplication.

 6

2.1.2 Finite field GF(2m)

 Arithmetic on (2)mGF is less complexity than traditional binary. On the other

hand, (2)mGF arithmetic is suited to hardware implementation. Addition and

subtraction is simply an XOR operation. Multiplication is more difficult, but can be

implemented by using pure combinational logic. This makes (2)mGF arithmetic can

be easily implemented by ASICs or FPGAs.

 To construct the (2)mGF , we need to know what is irreducible polynomial and

primitive polynomial.

 For a polynomial ()f X over (2)GF , if it has an even number of terms, it is

divisible by 1X + . A polynomial ()p X over (2)GF of degree of m is said to be

irreducible over (2)GF if ()p X is not divisible by any polynomial over (2)GF

of degree less than m but greater than zero. For example, polynomials of degree of 2,

2 2 2, 1 and X X X X+ + are not irreducible because they are either divisible X or X+1.

For 2 1X X+ + as an example, this polynomial does not have “0” or “1” as a root

and so is not divisible by any polynomial of degree 1.

 A irreducible polynomial ()p X of degree m is said to be primitive if the

smallest positive integer n for which ()p X divides 1 is 2 1n mX n+ = − . For

instance, 4 15() 1 divides 1p X X X X= + + + but does not divide any 1nX + for

1 15n≤ ≤ . Therefore, 4 1X X+ + is a primitive polynomial.

 An example is given below to show how to construct the (2)mGF .

Example：

 To construct the finite field 4(2)GF , firstly we choose a primitive polynomial

 7

4() 1p X X X= + + which is over (2)GF . Secondly, set 4() 1 0p α α α= + + =

which implies that 4 1α α= + . Using that, we can construct 4(2)GF , and elements

on which are given in Table 2-3. The identity 4 1α α= + is also used repeatedly to

produce the polynomial representations for the elements of 4(2)GF . For example,

5 4 2

6 5 2 2 3

7 6 2 3 3 4

3 3

(1) ,
() ,
()

 1 1

α α α α α α α

α α α α α α α α

α α α α α α α α

α α α α

= ⋅ = + = +

= ⋅ = + = +

= ⋅ = + = +

= + + = + +

 To multiply two elements jα and iα , we simply add their exponents and use

the fact that 15 1α = .For example, 5 6 11 8 14 22 7 15 7 and α α α α α α α α α⋅ = ⋅ = = ⋅ = . To

divide jα by iα , we simply multiply iα by multiplicative inverse 15 iα − of iα .

For example,
5

5 7
14

α
α α α

α
= ⋅ = . To add jα and iα , we simply use their polynomial

representations in Table 2.3. For example,

9 7 3 3

3 11 3 2 3 2 10

() (1) 1
1 1 () 1
α α α α α α

α α α α α α α α α

+ = + + + + =

+ + = + + + + = + + =

There is another representation called m-tuple representation for (2)mGF . The

components of the m-tuple representation are the coefficients of the polynomial

representation. All three representations are given in Table 2.3.

Power
representation

Polynomial
representation

4-Tuple or binary
representation

0 0 (0 0 0 0)
1 1 (1 0 0 0)
α α (0 1 0 0)

2α 2α (0 0 1 0)
3α 3α (0 0 0 1)

 8

4α 1+α (1 1 0 0)
5α α + 2α (0 1 1 0)
6α 2α + 3α (0 0 1 1)
7α 1+α + 3α (1 1 0 1)
8α 1 + 2α (1 0 1 0)
9α α + 3α (0 1 0 1)
10α 1+α + 2α (1 1 1 0)
11α α + 2α + 3α (0 1 1 1)
12α 1+α + 2α + 3α (1 1 1 1)
13α 1 + 2α + 3α (1 0 1 1)
14α 1 + 3α (1 0 0 1)

Table 2.3 Three representations for the elements of GF(24) generated by

p(x)=X4+X+1 [29].

2.2 Fermat’s Theorem and Euclid’s Algorithm

 When we want to find a multiplicative inverse modulo p, we can use Fermat’s

theorem or Euclid’s Algorithm. Finding a multiplicative inverse is an important step

in public-key cryptography, especially in elliptic curve cryptography. Therefore, in

this section, we will introduce these two usefully methods.

2.2.1 Fermat’s theorem

Fermat’s theorem states the following：

 If p is prime and a is a positive integer not divisible by p, then

 1 1modpa p− ≡ (2.1)

Proof：

 We know that if all the elements of pZ are multiplied by , modulo ,a p the

 9

result consists of the elements of pZ in some order. Furthermore, 0 0moda p× ≡ .

Therefore, the (1)p − numbers { mod , 2 mod ,..., (1) mod }a p a p p a p− are just the

numbers {1, 2,..., (1)}p − in some order. Multiply these numbers together：

2 ... (1) [(mod) (2 mod) ... (1) mod]mod
 (1)!mod
a a p a a p a p p a p p

p p
× × × − ≡ × × × −

≡ −
 (2.2)

But

12 ... ((1)) (1)! pa a p a p a −× × × − ≡ − (2.3)

We can cancel the (1)!p − term both in (7.2) and (7.3) because it is relatively prime

to p. This yields Equation (2.1).

 From Equation (2.1), we can easily derive the Equation

1 2 modpa a p− −≡ . (2.4)

So, the multiplicative inverse of modulo a p can been find from Fermat’s theorem.

2.2.2 Euclid’s algorithm

 One of the basic techniques of number theory is Euclid’s algorithm, which is a

simple procedure for determining the greatest common divisor of two positive

integers. An extended form of Euclid’s algorithm determines the greatest common

divisor of two positive integers and, if those numbers are relatively prime, the

multiplicative inverse of one with respect to the other.

 Euclid’s algorithm is based on the following theorem：For any nonnegative

integer a and any positive integer b,

gcd(,) gcd(, mod)a b b a b= (2.5)

Euclid’s algorithm makes repeated use of Equation (2.5) to determine the

 10

greatest common divisor, as follows：

Assume 0f d> > . It is acceptable to restrict the algorithm to positive integers

because gcd(,) gcd(| |,| |)a b a b= .

EUCLID (,)
1. ;
2. if 0 return gcd(,)
3. mod
4.
5.
6. goto 2

d f
X d Y f

Y X d f
R X Y
X Y
Y R

← ←
= =

=
←
←

If gcd(,) 1d f = , then d has a multiplicative inverse modulo f. That is for

positive integer d f< , there exists a 1 1 such that 1modd f dd f− −< = . Euclid’s

algorithm can be extended so that, in addition to finding gcd(,)d f , if the gcd is 1,

the algorithm returns the multiplicative inverse of d.

-1

 EXTENDED EUCLID (d.f)
1. (1, 2, 3) (1,0,); (1, 2, 3) (0,1,)
2. if 3 0 return 3 gcd(,); no inverse
3. if 3 1 return 3 gcd(,); 2 mod

34.
3

5. (1, 2, 3) (1 1, 2

X X X f Y Y Y d
Y X d f
Y Y d f Y d f

XQ
Y

T T T X QY X

← ←
= =

= = =

 =   
← − − 2, 3 3)

6. (1, 2, 3) (1, 2, 3)
7. (1, 2, 3) (1, 2, 3)
8. goto 2

QY X QY
X X X Y Y Y
Y Y Y T T T

−
←

←

Throughout the computation, the following relationship hold：

1 2 3 1 2 3 1 2 3fT dT T fX dX X fY dY Y+ = + = + =

Note that if gcd(,) 1d f = , then on the final step we would have 3 0Y = and

3 1X = . Therefore, on the preceding step, 3 1Y = . But if 3 1Y = , then we can say the

following：

 11

1 2 3
1 2 1
2 1 (1)
2 1mod

fY dY Y
fY dY
dY Y f
dY f

+ =
+ =
= + − ×
≡

And 2Y is the multiplicative inverse of d, modulo f.

 Table 2.4 is an example of the execution of the algorithm. It shows that

gcd (550, 1769) = 1 and that the multiplicative inverse of 550 is itself; that is,

550 550 1mod1769× = .

Q X1 X2 X3 Y1 Y2 Y3
 1 0 1769 0 1 550
3 0 1 550 1 -3 119
4 1 -3 119 -4 13 74
1 -4 13 74 5 -16 45
1 5 -16 45 -9 29 29
1 -9 29 29 14 -45 16
1 14 -45 16 -23 74 13
1 -23 74 13 37 -119 3
4 37 -119 3 -171 550 1

Table 2.4 An example of Extended Euclid (550, 1769).

 12

Chapter 3

Overview of Elliptic Curves

We introduce an overview of Elliptic curve Cryptography in this chapter. There

are a large amount of papers proposed on this subject. In Section 3.1, we introduce the

history of ECC. Basic theories used in ECC are introduced in Section 3.2. Arithmetic

of ECC is discussed in Section 3.3. In Section 3.4, we will discuss the Hasse’s

theorem. Then, we discuss the elliptic curve discrete logarithm problem (ECDLP) in

Section 3.5. Finally, we discuss the order of a point in Section 3.6.

3.1 History

Elliptic curves have been studied intensively for the past 150 years and there are

a large amount of papers proposed on this subject. Elliptic curves have appeared a

rich and deep theory. Moreover, the discrete logarithm problem (DLP) is believed to

be very difficult. Elliptic curve systems where first suggested in 1985 independently

by Neal Koblitz [5] at the University of Washington, Victor Miller [4], and Yorktown

Heights for implementing public key cryptosystem.

ECC offers a solution for those public-key systems which need most constrain

environments such as smaller size, faster computing. This is the reason that ECC is a

good scheme for low memory, low bandwidth, and low power consumption

 13

applications such as smart cards and mobile communication.

The difficulty of the elliptic curve discrete logarithm problem (ECDLP) means

that smaller key sizes provide equivalent levels of security. Table 3.1 shows that

equivalent strength comparison between RSA/DSA and ECC.

Time to break
In MIPS years

RSA/DSA
key size (bits)

ECC
key size (bits)

RSA/ECC
Key size ratio

10^4 512 106 5：1
10^8 768 132 6：1
10^11 1,024 160 7：1
10^20 2,048 210 10：1
10^78 21,000 600 35：1

Table 3.1 Equivalent strength comparison.

3.2 Basic theorems

3.2.1 Theorems used in Elliptic Curves

 Let qF denote the finite field containing q elements, where q is a prime

power. If qK F= , let k denote its algebraic closure, i.e., 1
m

m qk u F≥= . A projective

plane over K is the set of an equivalent class where if and only if there exists

*Kλ ∈ satisfying 1 1 1 2 2 2(, ,) (, ,)x y z x y zλ λ λ= . Let the projective plane 2 ()P K over

K be the set of (: :) \{(0 : 0 : 0)}x y z in 3K . We denote projective points (, ,)x y z

on 2 ()P K by (, ,)x y z . We will describe a special equation called Weierstrass

equation which is a homogeneous equation of degree 3 of the form：

2 2 3 2 2 3
1 3 2 4 6Y Z a XYZ a YZ X a X Z a XZ a Z+ + = + + +

 14

where 1 2 3 4 6, , , ,a a a a a K∈ . An elliptic curve E is the set of points satisfying a

nonsingular Weierstrass equation with a special point O . There is a special point

called the point at infinity has Z-coordinate equal to 0 denoted by O , namely (0,1,0).

The Weierstrass equation is said to be non-singular if for all projective points

2(: :) ()Q x y z P K= ∈ satisfying

2 2 3 2 2 3
1 3 2 4 6(, ,) 0F X Y Z Y Z a XYZ a YZ X a X Z a XZ a Z= + + − − − − = ,

and at least one of the three partial derivatives , ,F F F
X Y Z

∂ ∂ ∂
∂ ∂ ∂

 is not zero at Q .

 By using affine coordinates / , /x X Z y Y Z= = , we can derive the Weierstrass

equation for an elliptic curve：

 2 3 2
1 3 2 4 6:E y a xy a y x a x a x a+ + = + + + (3-1)

and then an elliptic curve E is the set of solutions of above equation in the affine

plane 2K , together with the point at infinity O . If 1 2 3 4 6, , , ,a a a a a K∈ , E is said

to be defined over K denoted by /E K , and the set of points both of whose

coordinates lie in K , together with the point O is called rationalK − points of E,

denoted ()E K .

Theorem 3.1 [26,p16] Two elliptic curves 1 /E K and 2 /E K given by the

equations

2 3 2

1 1 3 2 4 6

2 3 2
2 1 3 2 4 6

:

:

E y a xy a y x a x a x a

E y a xy a y x a x a x a

+ + = + + +

+ + = + + +

are isomorphic over K , denoted 1 2/ /E K E K≅ , If and only if there exists

, , , , 0u r s t K u∈ ≠ , such that the change of variables

2 3 2(,) (,)x y u x r u y u sx t→ + + +

 15

transforms equation 1E to equation 2E . The relationship of isomorphism is an

equivalence relation.

Theorem 3.2 [26,p17] Two elliptic curves 1 /E K and 2 /E K are isomorphic over

K if and only if there exist , , , , 0u r s t K u∈ ≠ satisfying

1 1

2 2
2 2 1

3
3 3 1

4 2
4 4 3 2 1

6 2 3 2
6 6 4 2 3 1

2

3

2

2 () 3 2

ua a s

u a a sa r s

u a a ra t

u a a sa ra t rs a r st

u a a ra r a r ta t rta

 = +


= − + −


= + +
 = − + − + + −
 = + + + − − −

The Discriminant and i-Invariant

 Let us define the quantities of elliptic curve given by affine Weierstrass equation.

2
2 1 2

4 4 1 3
2

6 3 6

2 2 2
8 1 6 2 6 1 3 4 2 3 4

2
4 2 4

2 3 2
2 8 4 6 2 4 6

3
4

4
2

4

4

24
8 27 9

() /

d a a
d a a a
d a a
d a a a a a a a a a a
c d d

d d d d d d d
j E c

 = +


= +
 = +
 = + − + −
 = −
∆ = − − − +


= ∆

 (3-2)

The quantity ∆ defined above is called the discriminant of the Weierstrass

equation. We call () invariantj E j − of E if 0∆ ≠ . Significance of these quantities

is described in the following two theorems.

Theorem 3.2 [26,p17] E is an elliptic curve, i.e., the Weierstrass equation is

non-singular, if and only if 0∆ ≠ .

Theorem 3.2 [26,p17] If two elliptic curves 1 /E K and 2 /E K are isomorphic over

K , then 1 2() ()j E j E= . The converse is also true if K is an algebraically closed

field.

 16

3.2.2 Group Law

 Let E be an elliptic curve given by the Weierstrass equation. For all points on

an elliptic curve, we define a certain addition, denote “+”, the operation of the abelian

group /E K . The addition rules are given below：

For all ,P Q E∈

1 and O P P P O P+ = + =
2 O O− =
3 If 1 1(,)P x y O= ≠ , then 1 1 1 1 3(,)P x y a x a− = − − −
4 If , then Q P P Q O= − + =
5 If , , P O Q O Q P≠ ≠ ≠ − ,then the point –R is the intersection of the curve with

either the line PQ if P Q≠ , or the tangent line to the curve at if P P Q= .

We define P Q R+ = . If P Q≠ , we call the operation point addition. If P Q= ,
the operation is called point doubling.

Figure 3.1 is an example of point addition.

Figure 3-1 Point addition.

 17

Curves over K of characteristic ≠ 2, 3

 Let /E K be an elliptic curve given by equation (3-1). If () 2char K ≠ , then we

can transform /E K to the curve

2 3 2
2 4 6/ :E K y x b x b x b= + + +

by using the admissible change of variables

31(,) ,
2 2

aax y x y x → − −  
.

Notice that ' over E E K≅ .

.

If () 2,3char K ≠ , we can further transform E’ to

2 3
4 6''/ :E K y x b x b= + +

by using the following admissible change of variables,

12 ,
36 216

x b y− 
  

.

Hence ' '' over E E K≅ .

By specializing equation (3-2), we can find the associated quantities that are

3 216(4 27)a b∆ = − +

and

3() 1728(4) /j E a= − ∆ .

Because E is assumed to be non-singular, we can get 0∆ ≠ . Thus, we can get

theorem 3.5 as follow by specializing theorem 3.2.

Theorem 3.5 [26, p21] The elliptic curves 2 3
1 / :E K y x ax b= + + and

2 3
2 / :E K y x ax b= + + are isomorphic over K if and only if there exists a *u K∈ ,

such that 4 6 and u a a u b b= = .

 18

Assuming that R P Q= + , if 1 1 2 2 3 3(,), (,), and (,)P x y Q x y R x y= = = , then the

addition formulas of elliptic curves over K are given below if () 2,3char K ≠ .

3 2 1 2

3 1 3 1

2 1

2 1
2
1

1

()

3
2

x x x
y x x y

y y if P Q
x x

where
x a if P Q

y

λ

λ

λ

= − −

= − −

− ≠ −= 
+ =



We can also fine that 1 1(,)P x y− = − .

There are two examples showing addition operation (Example 3-1) and doubling

operation of two points in the elliptic curve (Example 3-2), respectively.

Example 3-1：Given 2 3
23(6,10) and (14, 20) () : 9 14P Q E F y x x= = ∈ = + + , then

calculating the point (,), where R RR x y R P Q= = + . There are 19 solutions and one

infinity point O . These points on E are

{ , (1,1), (1, 22), (5,0), (6,10), (6,13), (7,11), (7,12), (8,0), (10,0),

 (11,8), (11,15), (14,3), (14, 20), (19,11), (19,12), (20,11), (20,12),
 (22, 2), (22,21)}

E O=

Answer：

At first, calculating the slope λ of PQ , where

1

-1

-1

() () mod

 10 (8) mod 23
 13 15 mod 23
 13 20 mod 23
 7

P Q P Qy y x x Pλ −= − × −

= − × −

= ×
= ×
=

and then calculating the x-coordinate and y-coordinate of R respectively.

 19

 mod
 49 6 14 mod 23
 6

R P Qx x x Pλ= − −

= − −
=

 () mod
 10 7 (6 6) mod 23
 13 7 0 mod 23
 13

R P P Ry y x x Pλ= − + × −
= − + × −
= + ×
=

So, the answer of is (6,13)R Q R+ = .

Example 3-2：Given 2 3
23(6,10) () : 9 14,P E F y x x= ∈ = + + then calculating the

point (,), where 2R RR x y R P= = .

Answer：

Similarly, at first, calculating the slope λ of PQ , where

2 1

1

(3) (2) mod
 117 20 mod 23
 2 15 mod 23
 7

P Px a y Pλ −

−

= + ×

= ×
= ×
=

and then calculating the x-coordinate and y-coordinate of R respectively.

 () mod
 10 7 (6 14) mod 23
 13 7 15 mod 23
 13 13 mod 23
 3

R P P Ry y x x Pλ= − + × −
= − + × −
= + ×
= +
=

Curves over K of characteristic 2

 Now, we will discuss the elliptic curves over K of characteristic 2. We denoted

()char K as characteristic of the field K . We can find that 12
1() /j E a ∆ by

specializing equation (3-2). If () 0j E ≠ , then from Theorem 3.1, we can find the

admissible change of variables

 20

2 2
2 33 1 3
1 1 3

1 1

4(,) ,a a a ax y a x a y
a a

 +
→ + + 

 

transforming E to the curve

2 3 2
1 2 6/ :E K y xy x a x a+ = + + .

For 1 6 1 6, and () 1/E a j E a∆ = = .

If 1() 0j E = , then the admissible change of variables

2(,) (,)x y x a y→ +

transforming E to the curve

2 3 2
2 3 4 6/ :E K y a y x a x a+ = + +

For 4
2 3 2, and () 0E a j E∆ = = .

 If 1 1 1 1 1 2 2 3 3(,); then (,). If (,), and (,)P x y P x y x Q x y R x y= − = + = = where

P P Q= + , then the addition formulas of elliptic curves over K are given below if

() 2char K = .

 If () 0j E ≠ ,

2

2 1 2 1
1 2 2

2 1 2 1
3

2 6
1 2

1

 ,

 ,

y y y y x x a P Q
x x x xx

aa P Q
x

 + +
 + + + + ≠ + + = 
 + =


2 1
1 3 3 1

2 1
3

2 1
1 1 3 3

1

() ,

x +x ,

y y x x x y P Q
x x

y
yx x P Q
x

 +
+ + + ≠ + = 

  + + =   

 21

If () 0j E = ,

2

2 1
1 2

2 1
3 4 2

1 4
2
3

 ,

 ,

y y x x P Q
x xx

x a P Q
a

 +
 + + ≠ + = 

+ =


2 1
1 3 1 3

2 1
3 2

1 4
1 3 1 3

3

() ,

x () ,

y y x x y a P Q
x x

y
a x x y a P Q

a

 +
+ + + ≠ + = 

 + + + + =  

Let us take the elliptic curve 4
2 3 2 2 8

2
() :E F y xy x g x g+ = + + for example, there

are 15 solutions and one infinity point O . These points on E are

2 2 8 4 5 4 8 6 8 6

7 3 7 4 12 4 12 6 13 2 13 4 4

{ , (1,1), (1,0), (,1), (,), (,), (,), (,), (, 10),
 (,), (,), (,), (,), (,), (,), (0,)}
E O g g g g g g g g g g g

g g g g g g g g g g g g g
=

and the polynomial representation used are shown in Table 2.3.

There are two examples showing the addition operation (Example 3-3) and the

doubling operation (Example 3-4), respectively below.

Example 3-3：Given 4
4 5 6 10 2 3 2 2 8

2
(,) and (,) () :P g g Q g g E F y xy x g x g= = ∈ + = + + ,

then calculating the point (,), where R RR x y R P Q= = + .

Answer：

At first, calculating the slope λ of PQ , where

1

5 10 4 6 1

12

3

() ()

 () ()
 1

P Q P Qy y x x

g g g g
g

g

λ −

−

−

= + × +

= + × +

= ×

=

and then calculating the x-coordinate and y-coordinate of R respectively.

 22

2
2

6 3 4 6 2

4

R P Qx x x a

g g g g g
g

λ λ= + + + +

= + + + +

=

3 4 12 12 5

3 6 12 5

4

()
 ()

R P R R Py x x x y
g g g g g
g g g g
g

λ= × + + +

= × + + +

= × + +

=

So, the answer of 12 4 is (,)P Q R g g+ = .

Example 3-4：Given 4
7 4 2 3 2 2 8

2
(,) () :P g g E F y xy x g x g= ∈ + = + + then calculating

the point (,), where 2R RR x y R P= = .

Answer：

At first, calculating the slope λ of PQ , where

1

7 4 7

7 12

2

P P Px y x
g g g
g g
g

λ −

−

= + ×

= + ×

= ×

=

and then calculating the x-coordinate and y-coordinate of R respectively.
2

2
4 2 2

4

Rx a
g g g
g

λ λ= + +

= + +

=

2

14 2 4

14 8 4

5

(1)
 (1)

R P Ry x x
g g g
g g g
g

λ= + + ×

= + + ×

= + ×

=

So, the answer of 4 52 is (,)P R g g= .

 23

3.3 Projective Space

 In affine coordinate system, we can see that adding two distinct points P and Q,

where P Q≠ , for example, on a non-singular curve over
2mK F= , takes two field

multiplications, one square and one inversion for the addition formula. There are two

field multiplication, two squares and one inversion for the doubling formula. However

there are special techniques for computing inverses in
2mF , a field inversion is still

far more expansive than a field multiplication. There are other kinds of coordinate

systems such as projective coordinate system using field multiplications instead of

field inversion to speed up the operation.

3.3.1 Adding two point on elliptic curve over F2

m

 A non-supersingular elliptic curve E defined over
2mF is an equation：

2 3 2
2 6y xy x a x a+ = + +

where 2 6 62
, and 0ma a F a∈ ≠ . Assume 1 1 1 2 2 2 1 2(,), (,), and P x y P x y P P= = ≠ − . The

sum 3 3 3 1 2(,)P x y P P= = + is computed as follows：

1 2

2 1

2 1
2

3 1 2 2

3 1 3 3 1

1 2

1
1

1
2

3 2

3 1 3 3 1

If ,

 ,

 ,
 () .
If ,

 ,

 ,
 () .

P P
y y
x x

x x x a
y x x x y

P P
y x
x

x a
y x x x y

λ

λ λ
λ

λ

λ λ
λ

≠
+

=
+

= + + + +
= + + +

=

= +

= + +
= + + +

 24

In either case, the computation requires two general multiplications, a squaring,

and a field inversion, denoted by 2 1 1M S I+ + . Actual implementation of the elliptic

curves indicates that the field addition is much faster than the field multiplication,

while field inversion is more expensive than the multiplication. Therefore, the

projective coordinates have been suggested to replace the inverse operation by

multiplications, where a projective point (, ,), 0X Y Z Z ≠ , maps to the affine point

2(/ , /)X Z Y Z [27]：

Let 2 2
1 1 1 1 1 2 2 2 2 2(/ , /) and (/ , /)P X Z Y Z P X Z Y Z= = be two points on the elliptic

curve E. 1If 1Z = , then the addition formula is 2
1 2 3 3 3 3(/ , /), whereP P X Z Y Z+ =

2
2 1 2 2 1 2 2
2

3 3 1 1 1
2 2

3 2

2
3 3 3 3

, ,

, , ()
()

()()

U Z Y Y S Z X X T Z S
Z T V Z X C X Y
X U T U S Ta
Y V X TU Z Z C

= + = + =

= = = +

= + + +

= + + +

Proof：

2 2 2
3 2

22 2 2
3 2 2 2

2 2 2
1 2 2 1 2 2 2

1 22
1 2 2 1 2 2 2

21 2 1 2
2 1 2 3

1 2 1 2

()

(/) (/)
(/) (/)

 () ()

X U T U S Ta U U S a
Z T Z S Z S Z

Y Y Z Y Y Z X X a
X X Z X X Z Z
y y y y x x a x
x x x x

+ + +
= = + + +

+ +
= + + + +

+ +
+ +

= + + + + =
+ +

2
3 3 3 3 1 1
2 4
3

3 1 3 3 3 1 3
4

2
2 1 2 3 1 3 3

13 2

2
31 2 2

1 3 3 1
1 2 2 3

1 2
1 3 3 1 3

1 2

()() ()

() ()

()()

(/) (/)
(/)

 ()()

Y V X TU Z Z Y X
Z T

UT Z X X Z Z Y X
T

Z Y Y Z X X X Y
T T

XY Y Z X X Z Y
X X Z Z
y y x x x y y
x x

+ + + +
=

+ + +
=

+ +
= + +

+
= + + +

+

+
= + + + =

+

 25

The number of field multiplications is 9 and the number of squarings is 5. If

2 0a = or 1, then eight general field multiplications are required.

1 2
2 2

3 1 1

4 4
3 1 6 1

4 2 4
3 6 1 3 3 2 3 1 6 1

()

If P P
Z Z X
X X a Z
Y a Z Z X a Z Y a Z

=

=

= +

= + + +

3.3.2 Adding two point on elliptic curve over Fq

A elliptic curve E defined over qF is an equation：

2 3
4 6y x a x a= + +

where 4 6, qa a F∈ . Assume 1 1 1 2 2 2 1 2(,), (,), and P x y P x y P P= = ≠ − . The sum

3 3 3 1 2(,)P x y P P= = + is computed as follows：

2
3 1 2

3 1 3 1

2 1

2 1
2
1 4

1

 (mod)
() (mod)

where

 if

3 if
2

x x x p
y x x y p

y y P Q
x x
x a P Q

y

λ
λ

λ

≡ − −
≡ − −

− ≠ −= 
+ =



Similar to Subsection 3.3.1, the projective coordinates have been suggested to

replace the inverse operation by multiplications, where a projective point

(, ,), 0X Y Z Z ≠ , maps to the affine point 2(/ , /)X Z Y Z .

Let 2 2
1 1 1 1 1 2 2 2 2 2(/ , /) and (/ , /)P X Z Y Z P X Z Y Z= = be two points on the elliptic

curve E. 1If 1Z = , then the addition formula is 2
1 2 3 3 3 3(/ , /), whereP P X Z Y Z+ =

 26

2
1 2 2 2 2

2 2 2
2 1 3 2 3

2
3 2 1 3 3 1 3

, , , ,

, , ,
()

A X Z B Z D X A E X A
F Y Y B X F Z DE Z BE
Y FZ E X Z X Y Z

= = = + = −

= − = − =

= − −

1 2
2 2 2

1 1 4 1

1 3 3 1 3 1

2
3 1 1

2
3 1 1

, , 3 , ,

, 4 ,

8 ,

2 16

If P P
A Z B X C B a A D Y
E X Z X Z Z Z D
X Z C X D
Y Y CE D Y

=

= = = + =
= − =

= −

= −

Proof (case 1 2P P=)：

2 2 2 2
3 1 1 4 1 1 1

2
3 1 1

22 2
1 4 1 1

1 1

22
1

42
1 1

1 1
2
1

2

1 4
1

1

(3) 8
4

3 2
2

3
 2

2

3 2
2

X Z X a Z X Y
Z Z Y

X a Z X
Y Z

X a
Z X

Y Z
Z

x a x
y

+ −
=

 +
= − 

 

 
+ 

 = −
 
 
 

 +
= − 

 

2 2 5

3 1 1 4 1 1 3 3 1 1
2 2
3 3 1 1

1
3 32 2 5

1 4 1 1 1
2 4

1 3 1 1

2
1

42
31 1 1

2
1 1 3 1
2

1

2
1 4

1 3 1
1

2 (3)() 16
(4)

3 16
2 16

3
 ()

2

3 ()
2

Y Y X a Z X Z X Z Y
Z Z Z Y

X Z X
X a Z Z Y

Y Z Z Y

X a
XZ X Y

Y Z Z Z
Z

x a x x y
y

+ − −
=

−
+

= ⋅ −

 
+ 

 = − −
 
 
 
 +

= − − 
 

 27

3.3.3 Summary

There are several kinds of projective coordinates. In this section, we propose

some kinds and compare them with affine coordinates. In the following Table 3.2, I

denotes the field inversion, M denotes the field multiplication and S denotes the field

square.

 Coordinates

Field/Operation

Affine
Coordinate

Projective
Coordinate

(/ , /)X Z Y Z

Projective
Coordinate

2(/ , /)X Z Y Z

Projective
Coordinate

2 3(/ , /)X Z Y Z
Adding 1I+3M 15M 14M 16M

qF
Doubling 1I+4M 12M 14M 10M
Adding 1I+2M+1S 13M+1S 9M+5S 15M+5S

2mF
Doubling 1I+2M+1S 7M+5S 5M+5S 5M+5S

Table 3.2 Comparison of different coordinates.

3.4 The Elliptic Curve Group Structure

 In this section, we will discuss the Hasse’s theorem which can let us pick points

P randomly and uniformly on an elliptic curve ()qE F in probabilistic polynomial

time.

 Let mq p= , where p (a prime) is the characteristic of qF and then let E be

an elliptic curve defined over qF . We denote # ()qE F as the number of points in

()qE F .

 Because for each choice of qx F∈ having at most two solutions in Weierstrass

equation, we know that # () 2 1qE F q< + . For each choice of qx F∈ , if the

 28

probability of having a solution of this equation in qF is 1/2, and we would expect

()qE F q≈ . The following Hasse’s theorem confirms above assumption.

Theorem 3.6 [26, p23] (Hasse) Let # () 1 . Then | | 2qE F q t t q= + − ≤ .

 In the next result, the possible values for # ()qE F are determined as E varies

over all elliptic curves defined over qF , where mq p= .

Lemma 3.7 [26, p24] (Waterhouse) There exists an elliptic curve / qE F such that

()qE F has order 1q t+ − over qF if and only if one of the following conditions

holds：

i. 20(mod) and 4t p t q≠ ≤ .

ii. m is odd and one of the following holds：

(1). . 0t = .

(2). 2 2 and 2t q p= = .

(3). 2 3 and 3t q p= =

iii. m is even and one of the following holds：

(1). 2 4t q= .

(2). 2 and 1 (mod 3)t q p= ≠ .

(3). 0 and 1 (mod 4)t p= ≠ .

 Lemma 3.7 was provided by Waterhouse. When q is prime, the values

() 1qE F q t= + − will be uniformly distributed in the interval of

[1 , 1]q q q q+ − + + which is centered at 1p + when E varies over all elliptic

 29

curves over qF .

 If p divides t then the elliptic curve E is called supersingular, where

() 1qE F q t= + − . Otherwise, it is said to be non-supersingular. It is well-known that

if 2 or if 3p p= = , then E is supersingular curve is determined by the next two

theorems.

Theorem 3.8 [26, 925] ()qE F is an abelian group of rank 1 or 2. The type of the

group is
1 21 2(,), . ., () ,q n nn n i e E F Z Z≅ ⊕ where 2 1|n n , and furthermore 2 | 1n q − .

Lemma 3.9 [26, p25] Let # () 1qE F q t= + − .

i. If 2 , 2 , or 3 , then () is cyclicqt q q q E F= .

ii. If 2 4t q= , then either 1 1()q q qE F Z Z
− −

≅ ⊕ or 1 1()q q qE F Z Z
+ +

≅ ⊕ ,

depending on whether 2 or 2t q t q= = − respectively.

iii. If 0 and 3 (mod 4)t q= ≠ , then ()qE F is cyclic. If 0t = and

3 (mod 4)q ≡ , then either ()qE F is cyclic, or (1) / 2 2()q qE F Z Z+≅ ⊕ .

3.5 The Elliptic Curve Discrete Logarithm Problem

 There are many public key cryptosystems whose security rely on the basis of the

presumed intractability of the discrete logarithm problem in some group G.

 30

 The discrete logarithm problem in the multiplicative group *P
Z is that given

elements q and r of the group, and a prime p , find a number k such that

 mod r qk p= . If E is an elliptic curve over qF , and P is the point of the elliptic

curve E , then the elliptic curve discrete logarithm problem (ECDLP) is that given a

point Q E∈ finding an integer k such that kP Q= where k is called the

discrete logarithm of Q to the base point P if such an integer k exists.

Example 3-5： Let the elliptic curve 23()E F ： 2 3 9 14y x x= + + , what is the discrete

logarithm k of (11,8)Q = to the generator point (7,11)G = ？

Answer：

There is one way to find k that is to compute multiples of G until Q is found.

The first eight multiples of G are shown in Table 3.3.

(7,11)G = 5 (8,0)G =
2 (11,15)G = 6 (14, 20)G =
3 (6,13)G = 7 (6,10)G =
4 (14,3)G = 8 (11,8)G Q= =

Table 3.3 The first eight multiples of generator point P.

From Table 3.3, we can see that 8 (11,8)G Q= = , so the discrete logarithm of

Q to the generator G is 8k = . It seems easy to find k , but it is important that in a

real application, k would be large enough such that it would be very hard to

determine k in this method.

 31

3.6 The order of a point

 Besides the elliptic curve discrete logarithm problem, the order of a point in an

elliptic curve is also important especially the generator point. For each point G E∈ ,

there is a positive integer k such that kG O∈ . The smallest positive integer is

called the order of G .

 If all the factors of # ()qE F are smaller than 2β where β is a security

parameter, then the elliptic curve is considered to be weak. Otherwise, when # ()qE F

has an prime factor larger than β bits, the probability of a generator point chosen at

random yield a small subgroup which would weaken the scheme is proven to be

negligible [28].

 32

Chapter 4

Elliptic Curve Cryptography (ECC)

Now, we will describe some protocols or algorithms used in cryptography based

on elliptic curve. Therefore, we need to construct an elliptic curve if we want to use

EC-based cryptosystem. There are some parameters that we need to find first such as

the finite field (Fq or F2
m), the coefficients (a or b) of elliptic curve equation derived

in chapter three, the order of E(Fq) (#E(Fq) or n), and the base point of E(Fq)

(P=(x,y)).

There were three steps proposed in [23] to select an elliptic curve.

1. Let us select a curve at random, computer its order directly, and repeat the

process until an appropriate order is fount [24].

2. If q = 2m where m is divisible by a “small” integer, we can find curve via

subfield of F2
m [23].

3. Let us search for appropriate order, and construct a curve of the order. The

approach is implemented using the complex multiplication method. Over a prime

order field Fq, the complex multiplication method is also called the Atkin-Morain

method.

4.1 Analog of ElGamal Public Key Cryptosystem

 33

The analog of ElGamal public key cryptography as shown in Table 4.1 is one of

the popular cryptography, because the elliptic curve can be changed periodically to

provide much security and this is no patent protected.

As other ECCs, at first, it has to select finite Fq, an elliptic curve E define over

that field and a generator point G E∈ . Every user chooses a random integer a

(or
s es sd d), which is kept a secret key by users, and computes the point

(or)
s ep px aG d d= where x is the public key.

Protocol：
 Alice insecure channel Bob

Key Generation Key Generation
1. Get private secret key

ssd

2. Public key calculates

s sp sd d G= ⋅

1. Get private secret key
esd

2. Public key calculates

e ep sd d G= ⋅

Encryption Encryption

1. Choose randomly k

2. Calculates following points:
 2 2(,)

epx y k d= ⋅

 1 1(,)x y k G= ⋅

3. Encodes message pair

 1 2 2 2(,) with (,) :m m x y

Encode message 1 2(,)c c

Decryption Decryption

epd

1 1 1 2(, , ,)x y c c

1. Calculates following points:
 2 2 1 1(,) (,)

esx y d x y= ⋅

2. 1 2 1 2(,) divided by (,)c c x y

 finds 1 2(,):m m

 decoded message 1 2(,).m m

Table 4.1 Analog of the ElGamal cryptosystem.

 34

To send a message pair 1 2(,)m m to Bob, Alice choose a random integer k and

calculates k B⋅ and
epk d⋅ (where

epd is Bob’s public key). To read the message,

Bob multiplies 1 1(,)x y by
esd and divides 1 2(,)c c by 2 2(,)x y .

4.2 Elliptic curve Diffie-Hellman key exchange (ECDH)

 When we want to communicate in an insecure channel between two parties, a

secret key in needed to achieve a safe communication. The protocol [1] of

Diffie-Hellman key exchange was first proposed to allow the agreement on a secret

key between two parties communicating over an insure channel. If two

communication parties, Alice and Bob, want to agree upon a key which will be later

used for encrypted communication in conjunction with a symmetric key cryptosystem

such as DES, Triple DES, etc…, and they first choose an elliptic curve E over a finite

field publicly and a generator point G E∈ . The important criterion in selecting G is

that the smallest value on n for which nG O= be a very large prime number (high

order).

 A key exchange between users Alice and Bob can be accomplished as follows：

1. Alice select an integer An less than n . This is Alice’s private key. Alice then

generates a public key A AP n G= × ; the public key is a point in E.

2. Bob similarly selects a private key Bn and computes a public key BP .

3. Alice generates the secret key A BK n P= × . Bob generates the secret key

B AK n P= × .

The two calculations in step 3 produce the same result because

 35

() ()A B A B B A B An P n n G n n G n P× = × × = × × = × .

4.3 Elliptic Curve Digital Signature Algorithm (ECDSA)

 A digital signature is a number which is generated by the secret key being kept

private by the signer and by the contents of the message being signed. A signature has

to be verifiable without using the signer’s private key. Signatures should not be able to

forge under chosen-message attacks. The ECDSA is generally used and is one of the

important signature schemes today. The ECDSA which was first proposed in 1992 by

Vanstone [25] is the elliptic curve analog of the DSA.

 If Alice wants to send a digitally signed message to Bob, then at first, they

choose a finite field Fq, an elliptic curve E, defined over that field and a generator

point G (with order n). Alice’s key pair is (d,Q), where d is her private key and Q is

her public key.

Protocol：
ECDSA Key Generation

1. Select a random integer [2, 2]d n∈ − .

2. Compute *Q d G= .

3. The public key of the user A is (, , ,)E G n Q and the private key is d.

Table 4.2 ECDSA key generation.

ECDSA Signature Generation
1. Select a random integer [2, 2]k n∈ − .

2. Compute 1(1, 1) and mod nkG x y r x= = .

 36

If then go to step 1.

3. Compute 1 mod nk − .

4. Compute 1()e SHA m= − .

5. Compute 1() mod ns k e d r−= + ⋅ . If s = 0 then go to step 1.

Here SHA-1 is the secure hash algorithm of FIPS PUB 180-1.
6. Alice’s signature for the message m is the pair of integer (r, s).

Table 4.3 ECDSA signature generation.

 When Bob verifies Alice’s signature (r, s) on the message m, he obtains an

authentic copy of Alice’s parameters and public key. Bob then does the following：

ECDSA Signature Verification
1. Compute 1()e SHA M= − .

2. Compute 1 mod nw s−= .

3. Compute 1 2 mod n and mod nu ew u rw= = .

4. Compute 1 2 . If X u G u Q X O= + = then reject the signature.

5. Otherwise compute 1 1 1 mod n where (,)v x X x y= = .

6. Accept the signature if and only if v = r.

Table 4.4 ECDSA signature verification.

 From Table 4.3 we know that 1() mod ns k e d r−= + ⋅ , so we can derive

Equation (4-1) as follows：

1 1 1
1 2() mod nk s e d r s e s rd we wrd u u d− − −≡ + ⋅ ≡ + ≡ + ≡ + (4-1)

From Table 4.2 we see *Q d G= , thus 1 2 1 2()u G u Q u u d G kG+ = + = and so

v = r as require.

 37

 If the signature pair (r, s) on the message m was really generated by Alice, then

Bob can accept the signature if and only if v = r.

4.4 Standards of Elliptic Curve Cryptography

 There several organizations which develop standards such as International

Standards Organization (ISO), Institute of Electrical and Electronics Engineers (IEEE)

and Federal Information Processing Standards (FIPS). The organizations mentioned

above are the most important for security in information technology.

IEEE P1363 [14]

IEEE P1363 was approved as an IEEE standard in February 2000. This document

includes comprehensive coverage of well-known, widely marketed public key

cryptography such as ECC, DL, and RSA based on ECDLP, DLP, and IF. ECC

digital signatures and ECC key agreement schemes are documented in P1363. (ECC

encryption and ECC key transport schemes will be specified in P1363a.) The latest

draft is available at http://grouper.ieee.org/groups/1363/index.html.

FIPS (Federal Information Processing Standard) 186-2：[12]

National Institute of Standards and Technology (NIST) announced FIPS 186-2 in

February 2000. The standard is the extension of its Digital Signature Standard (DSS)

and the ECDSA specified in ANSI X9.62 is included.

http://grouper.ieee.org/groups/1363/index.html

 38

ANSI X9F

ECC is being incorporated into two American National Standards Institute (ANSI)

Accredited Standards Committee (ASC) X9F (Financial Services) drafts.

l ANSI X9.62 [17] – “Elliptic Curve Digital Signature Algorithm

(ECDSA).”

 ECDSA is the elliptic curve analogue of the Digital Signature

Algorithm (DSA). The standard was published as an ANSI

standard in January 1999.

l ANSI X9.63 – “elliptic Curve Key Agreement and Key Management.”

X9.62 and X9.63 are both used to apply in the financial services industry.

ISO/IEC

ECC is being incorporated into several ISO/IEC drafts such as ISO/IEC 14888,

ISO/IEC 9796-4 and ISO/IEC 14946.

l ISO/IEC 14888 specifies digital signature with certificate-based

mechanisms and provides an overview if various digital signature

mechanisms.

l ISO/IEC 9796-4 specifies digital signature with message recovery and

discrete logarithm-based mechanisms.

l ISO/IEC 14946 specifies cryptographic techniques based on elliptic

curves.

Table 4.5 Standards of ECC.

 39

Chapter 5

Implementation of Arithmetic Processor for

ECC and Simulation Results

 We introduce the original architecture for GF(p) in Section 5.1. In Section 5.2,

we present our modified architecture for dual-field GF(p) and GF(2m). Finally, we

show our simulation results in Section 5.3.

5.1 Architecture

We adopt the architecture which is introduced in [30], and will modify it from

GF(p) to support dual-field GF(p) and GF(2m).

Their Elliptic Curve processor (ECP) can be divided into 5 levels hierarchically

as shown in Figure 5.1.

The operation blocks on each level from top to bottom are as follows：

l Level 1：Main Controller (MC)

l Level 2：

1. Affine to projective coordinates converter (A to P)

2. Normal to Montgomery representation converter (N to M)

3. EC point multiplier (EPM)

4. Projective to affine coordinates converter (P to A)

 40

5. Montgomery to normal representation converter (M to N)

l Level 3：

1. EC Point doubling, addition circuit (EPDA)

2. Modular Multiplicative Inverter (MMI)

l Level 4：

1. Montgomery Modular Multiplication Circuit (MMMC)

2. Modular Addition, Subtraction circuit (MASC)

l Level5：Addition, Subtraction circuit (ASC)

Figure 5.1 EC point multiplier circuit block diagram.

5.1.1 MC, NtoM, EPM, PtoA and MtoN

l Main Controller (MC)

 The START signal is the instruction signal from host. MC instructs, NtoM to

start conversion from normal to Montgomery representation, EPM to start point

 41

multiplication, PtoA to start conversion from projective to affine coordinates and

MtoN to start a conversion from Montgomery representation one after another by

setting START-NtoM, START-PM, START-PtoA and START-MtoN signals,

respectively. The DONE-NtoM, DONE-PM, DONE-PtoA and DONE-MtoN signals

indicate that the related operations are finished. The DONE signal indicates to the

host that a complete point multiplication operation is finished and the results are ready

on output ports.

l Normal to Montgomery representation converter (NtoM)

 The conversion of an integer x from the normal representation to the

Montgomery representation is done as 2 2 1(,) modMM x R xR R M−= . Multiplication

by MMMC of two numbers that are in Montgomery representation will produce the

Montgomery representation of product as 1(,) modMM xR yR xRyRR M−= =

modxyR M . Modular addition and subtraction of two numbers that are in

Montgomery representation will produce the Montgomery representation of the sum

or difference as mod mod () mod .xR M yR M x y R M± = ± Because of these

relations; the Montgomery representation of the coordinates of P, the coefficient a

and number 1 will be calculated in the beginning of point multiplication by the NtoM

circuit and all the operations during the EC point multiplication will be done in

Montgomery representation.

 NtoM makes MMMC to execute 4 MMMs, 2(1,) mod ,MM R R M=

2(,) modMM x R xR M= , 2(,) modMM y R yR M= , 2(,) modMM a R aR M= .

l EC Point Multiplier (EPM)

 EPM controls the execution of the Elliptic Curve Point Multiplication Algorithm.

The circuit stays in IDLE state until the START-PM signal from the MC is set.

 42

DONE-PM signal indicates that the scanning of the bits of k is finished, so the result

of the operation can be read from the output ports. EPM instructs EPDA to start a

point double operation by setting START-PAD signal and resetting ADD-DOUBLE

signal and a point addition operation by setting START-PAD and ADD-DOUBLE

signals. DONE-PAD from EPDA indicates the a point double or addition operation is

finished.

 Elliptic Curve Point Multiplication Algorithm is shown below：

-1 0 2

Algorithm 1 : Elliptic Curve Point Multiplication

Input: EC point (,), integer (,...,)
Output: (', ')

nP x y k k k
Q x y

= =

=

1.
 2. for from - 2 downto 0 do
 3. 2
 4. if k =1 then
 5.
 6. end if
 7.end for

i

Q P
i n
Q Q

Q Q P

←

←

← +

l Projective to affine coordinates converter (PtoA)

 After finishing the EC point multiplication the result point Q must be converted

from mJ coordinates to affine coordinates. This is done as 4(, , ,) (,)X Y Z aZ x y→

such that 2 3 and x XZ y YZ− −= = [31].

 PtoA waits in IDLE state until the signal START-PtoA from MC is set. After it

is set, PtoA visits the other five states in the following order and after DONE-MMM

signal from MMM circuit is set in (PtoA-S5) state, PtoA sets DONE-PtoA signal and

goes back to IDLE state.

1. PtoA-S1：Z-1R = Modular Multiplicative Inversion of Z

2. PtoA-S2：Z-2R = MM(Z-1R, Z-1R)

 43

3. PtoA-S3：xR = XZ-2R = MM(XR, Z-2R)

4. PtoA-S4：Z-3R = MM(Z-1R, Z-2R)

5. PtoA-S5：yR = YZ-3R = MM(YR, Z-3R)

l Montgomery to Normal representation converter (MtoN)

Because the coordinates of the product point must be in normal representation, as

a last action a conversion from Montgomery representation to normal representation

is needed. This conversion requires two additional execution of the MMM operation

with the inputs xR and 1, then yR and 1, as x = MM(xR, 1) = xRR-1, y = MM(yR, 1) =

yRR-1.

5.1.2 EPDA , MMI and MASC

l EC Point doubling, addition (EPDA)

When converting the input point P from affine coordinates to projective

coordinates we take Z as 1. The Jm representation of P(x, y) is (x, y, 1, a). During the

execution of point multiplication one of the points to be added is always P.

4
1 2 2 2 2 2 1 1 1

Algorithm 2 : EC point addition and doubling

Input : (, ,1,), (, , ,) Input : (,P x y a P X Y Z aZ P X Y= = = 4
1 1

4 4
3 1 2 3 3 3 3 3 1 3 3 3 3

2
1 2

, ,)
Output : (, , ,) Output : 2 (, , ,)

 1. 1

Z aZ
P P P X Y Z aZ P P X Y Z aZ

T Z

= + = = =

← 2
1 1 2 1

2
2 1 3 1 2 2

1 1 2

. 2

 2. 2. 2
 3.

T Y T X
T xT T T T T
T T Z

← ←

← ← ←
← 3 2 2 1 2 1 3 3

2
1 1 2 1 3

 3. 2

 4. 4.

T X T T T T T T
T yT T X T

← − ← ←

← ← ← 3

2
4 3 5 2 1 4 1 1 3 3

2 2 4

2

 5. 5. 2

 6. 6

T
T T T Y T T Y Z T T
T T T

← ← − ← ←

← 4
5 3 1 6 2

4 4 3 6 2 2 6 2

3 2 3 6 4 6 2 2

. () 2
 7. 2 7.

 (a) 8. Z (b) 8. (

T T aZ T T
T T T T T T T T

Z T T T T T T

← ←
← ← ← +

← ← + ← + 4
1

2 2
3 5 6 2 3 4

1 1 4 3 3 6

)

 9. 9. Z
 10. 10

aZ

T T T T T
T TT X T T

← ← ←
← ← − 4 1

4 2
3 3 2 2 3 3 6 4

3 5 2 1 1 3

. 2

 11. 11.
 12. 12.

T T
aZ Z T T X X T T
T T T T T X

←

← ← − ← −
← ← −
4 4 2 4
3 3 3 3 1 2 2 1 3 5

4 4
3 3 3 2 3

 13. () 13. 2

 14. () 14.

aZ aZ Y T T T T T aZ T
aZ a aZ Y T T

← ← − ← ←

← ← −

 44

According to these properties we can take Z1 = 1 for EC point addition. Because

there are both MMMC and MAS circuits available, these operations can be executed

in parallel. EC point addition and doubling can be realized by Algorithm 2 (a) and (b),

respectively.

l Modular Multiplicative Inverter (MMI)

 Modular multiplicative inversion is done according to Fermat’s theorem which is

introduced in Section 2.2, 1 2 modpa a p− −≡ , if gcd(,) 1d f = . Because the order n of

the generator point used in the ECDSA operation is limited to a prime number, a

multiplicative inversion is executed by using Equation (2.4).

l Modular Addition, Subtraction Circuit (MASC)

 Modular addition and subtraction are executed according to Algorithm 3 [21].

Algorithm 3 : Modular addition and subtraction

Input : M,0 A<M,0 B<M Input : M,0 A<M,0 B<M
Output : C=A+B mod M

≤ ≤ ≤ ≤
 Output : C=A B mod M

 1. ' 1. '
 2. '' ' 2. '' '

C A B C A B
C C M C C M

−

= + = −
= − = +

 3. if '' 0 then 3. if ' 0 then
 4. ' 4. ''
 5. else

C C
C C C C

< <
= =

 5. else
 6. '' 6. '
 7. end if 7.

C C C C= =
 end if

5.1.3 MMMC

 Because we want to propose a scalable Montgomery modular multiplication

circuit, we replace the MMMC in [30] with the scalable MMMC in [32]. In this

section, we will introduce the scalable MMMC [32] roughly.

 45

 The original Montgomery Algorithm is shown below：

1 1 0

Algorithm 4 : The original Radix-2 Montgomery multiplication

Input : m-bit operands (,... ,), and ,0 ,
Output :

m

m

X x x x Y M X Y M
S

−= ≤ <

1

1

initial 0
for 0 to 1
 if () is even
 then () / 2
 else () / 2
if then

i i

i i i

i i i

m m m

S
i m

S x Y
S S x Y
S S x Y M

S M S S M

+

+

=
= −

+
= +

= + +

≥ = −

 They propose an algorithm in which the operand Y (multiplicand) is scanned

word-by-word, and the operand X (multiplier) is scanned bit-by-bit. This decision

enables them to obtain an efficient hardware implementation. They call it Multiple

Word Radix-2 Montgomery Multiplication algorithm (MWR2MM).They make use of

the following vectors：

(1) (1) (0)

(1) (1) (0)

(1) (1) (0)

1 1 0

(,..., ,),
 (,..., ,),
 (,..., ,),

(,... ,),

e

e

e

m

M M M M
S S S S
Y Y Y Y
X x x x

−

−

−

−

=

=

=
=

where the words are marked with superscripts and the bits are marked with subscripts.

The concatenation of vectors a and b is represented as (a; b). A particular range of

bits in a vector a from position i to position j, j > i is represented as ...j ia . The bit

position i of the thk word of a is represented as ()k
ia . The details of the MWR2MM

algorithm are given below：

 46

(0) (0) (0)

(0)
0

(0) (0) (0)

Algorithm 5 : The MWR2MM

1. 0
2.for 0 to 1
3. (,)

4. if 1 then
5. (,) (,)
6. for 1 to 1

7.

i

S
i m
C S x Y S

S
C S C S M

j e

=
= −

= +

=

= +
= −

() ()

() ()

() ()

(1) () (1)
0 1,...,1

(1) (1)
1,...,1

()

 (,)

8. (,)

9. (,)
10. else
11. for 1 to 1

12. (,)
13.

j j

j j

j j
i

j j j
w

e e
w

j
i

C S C S x Y M
S S S

S C S

j e

C S C S x Y

− −
−

− −
−

= + + +

=

=

= −

= + +
(1) () (1)

0 1,...,1

(1) (1)
1,...,1

 (,)

14. (,)
15. If then

j j j
w

e e
w

S S S

S C S
S M S S M

− −
−

− −
−

=

=

≥ = −

The dependency graph for the MWR2MM algorithm is shown in Figure 5.2. Each

circle in the graph represents an atomic computation and is labeled according to the

type of action performed. Task A corresponds to three steps：(1) test the least

significant bit of S to determine if M should be added to S during this and next steps,

(2) addition of words from S, xiY , and M (depending on the test performed), and (3)

one-bit right shift of a S word. Task B corresponds to steps (2) and (3). We observe

from this graph that the degree of parallelism and pipelining can be very high. Each

column in the graph may be computed by a separate processing element (PE), and the

data generated from one PE may be passed to another PE in a pipelined fashion.

A pipelined organization for the system is shown in Figure 5.3. The pipeline

itself was named kernel in the figure and it is composed of p PEs. The other blocks

represent memory, data conversion, and control unit. Each processing element in the

 47

Figure 5.2 The dependency graph for the MWR2MM Algorithm.

Figure 5.3 Pipelined organization for the multiplier.

pipeline relays the received words to the next downstream unit. All paths are w-bits

wide, except for the xi inputs (only 1 bit). The kernel itself does not limit the final

computation precision. If more precision is required, it is only necessary to feed more

 48

words. The final and intermediate results are stored in the queue. Gray boxes indicate

registers.

The control block function can be inferred from the algorithm description that

was provided, combined with other data manipulation tasks that must be done to

transfer data between the multiplier and the host system.

The data path design for the case w = 3 is shown in Figure 5.4(b). It has a more

complicated shift and alignment section to generate the next S word. When computing

the bits of word j (step j), the circuit generates w-1 bits of S(j), and the most significant

bit of S(j-1). The bits of S(j-1) computed at step j-1 must be delayed and concatenated

with the most significant bit generated at step j (alignment).

Figure 5.4 PE data path (a) block diagram and (b) logic diagram for w = 3 bits.

Finally, Figure 5.5 illustrates what happens in last stage of the pipeline. A pair of

redundant words (() (),i i
j jTC TS) are generated each cycle for e clock cycles. The word

adder can be used to add these pairs in order to obtain the result words ()iC . Note that

 49

only one extra cycle is needed to convert the result from the Carry-Save form to the

nonredundant form.

Figure 5.5 Converting the result from the Carry-Save form to the nonredundant

form in the last stage of the pipeline.

An example of the computation for 7-bit operands is shown in Figure 5.6 for the

word size w = 1 provided that there are sufficient numbers of PEs preventing the

pipeline to stall. Note that there is a delay of 2 clock cycles between the stage for xi

and the stage for xi+1. The total execution time for the computation takes 20 clock

cycles in this example.

If there are at least 1/ 2e +   PEs in the pipeline organization the pipeline stalls

do not take place. For the example in Figure 5.7 ,less than 7 1/ 2 4+ =   PEs cause

the pipeline to stall. Figure 5.7 shows what happens if there are only three PEs

available for the same example.

 50

Figure 5.6 An example of pipeline computation for 7-bit operands, where w = 1.

Figure 5.7 An example of pipeline computation for 7-bit operands,

illustrating the situation of pipeline stalls, where w = 1.

5.2 Modified Architecture for Dual-field

 We modify the architecture introduced in Section 5.1. Thus, the architecture can

support dual-field GF(p) and GF(2m).

5.2.1 Modified NtoM, EPDA, PtoA and MMI

l Normal to Montgomery (NtoM)

 NtoM makes MMMC to execute 3 MMMs, 2(1,) mod ,MM R R M=

2(,) modMM x R xR M= , 2(,) modMM y R yR M= .

 51

l EC Point doubling, addition (EPDA)

 Because we want to make our architecture to support dual-field, the select of

projective coordination is very important. From the comparison in Table 3.2, we

choose the projective coordinate 2(/ , /)X Z Y Z . That is,

2 2
1 1 1 1 1 2 2 2 2 2

1 2 1
2

1 2 2 2 2
2

2 1 3 2

For ()
Let (/ , /) and (/ , /) be two points on the elliptic
curve . , then the addition formula is :

 , Z 1 (addition)

, , , ,
,

GF p
P X Z Y Z P X Z Y Z

E

If P P
A X Z B Z D X A E X A
F Y Y B X F Z D

= =

≠ =

= = = + = −

= − = − 2 2
3

2
3 2 1 3 3 1 3

1 2
2 2 2

1 1 1

1 3 3 1 3 1

2
3 1 1

2
3 1 1

, ,

()

 (doubling)
, , 3 , ,

, 4 ,
8 ,

2 16

E Z BE
Y FZ E X Z X Y Z

If P P
A Z B X C B aA D Y
E X Z X Z Z Z D
X Z C X D
Y Y CE D Y

=

= − −

=

= = = + =

= − =

= −

= −

2 2
1 1 1 1 1 2 2 2 2 2

1 2 1
2
2 1 2 2 1 2 2
2

3 3 1 1 1

For (2)
Let (/ , /) and (/ , /) be two points on the elliptic
curve . , then the addition formula is :

 , Z 1 (addition)
, ,

, , ()

mGF
P X Z Y Z P X Z Y Z

E

If P P
U Z Y Y S Z X X T Z S
Z T V Z X C X Y

= =

≠ =

= + = + =

= = = +
2 2

3 2

2
3 3 3 3

1 2
2 2

3 1 1
4 4

3 1 6 1
4 2 4

3 6 1 3 3 2 3 1 6 1

()

()()

 (doubling)

()

X U T U S Ta
Y V X TU Z Z C

If P P
Z Z X
X X a Z
Y a Z Z X a Z Y a Z

= + + +

= + + +

=

=

= +

= + + +

 52

Therefore, in GF(p), addition operation needs 14M and doubling operation needs

14M. In GF(2m), addition operation needs 9M+5S and doubling operation needs

5M+5S. Similar to Algorithm 2, in EPDA, we can get modified Algorithm 6 and 7

shown below：

1 2 2 2 2 1 1 1 1

Algorithm 6 : EC point addition and doubling in ()

Input : (, ,1), (, ,) Input : (, ,

GF p

P x y P X Y Z P X Y Z= = =

3 1 2 3 3 3 3 1 3 3 3

1 1 2 1

)
Output : (, ,) Output : 2 (, ,)

 1. 1.

P P P X Y Z P P X Y Z

T X Z T

= + = = =

← ← 2
1

2 2
2 2 3 2 1 2 1 1 1

5 1 2 4 2 1

 2. 2. 2

 3.

Y
T Z T X T T Z T T
T YT T X T

← ← + ← ←

← ← − 2
3 1 1 1

2
3 2 3 5 2 5 2 1 4 3

2
1 4

 3. 2
 4. 4. 2

 5.

T X T T
T Z T T Y T T X T T
T T

← ←

← ← ← ←

← 3 1 1 3 3 4

3 2 1 4 1 3

 5.
 6. 6.

Z Z T T T T
Z T T T X Z

← ← +
← ← 2 2 3

2
2 1 3 3 2 5 1

2
3 5

 7. 7. 2
 (a) 8.

T T T
T TT T T T T
T T

← +

← ← ←

← 3 1 3

1 2 5 3 3 2 5 1 5

2 1 4

 (b) 8.
 9. 9.
 10.

T Z T
T Z T X T T T X T
T TT

←
← ← − ←

← 2
1 1 3 3 5

3 1 3 5 3 1 2 2

2
4 3

 10.
 11. 11. 2

 12.

T T X T T
T X Z T X Z T T
T Z

← ← −
← ← ←

← 2 2 3 1 1 1 4 4 5

1 2 5 2 2 4 3 1

 12.
 13. 13. 2

T T X T YT T T T
T T T T T T T T

← − ← ← −
← ← ←

2 1 4 4 2 3

3 1 2 3 4 1

 14. 14.
 15. Y 15.

T YT T T T
T T Y T T

← ←
← − ← −

1 2 2 2 2 1 1 1 1

Algorithm 7 : EC point addition and doubling in (2)

Input : (, ,1), (, ,) Input : (, ,

mGF

P x y P X Y Z P X Y Z= = =

3 1 2 3 3 3 3 1 3 3 3

2
1 2

)
Output : (, ,) Output : 2 (, ,)

 1. 1.

P P P X Y Z P P X Y Z

T Z

= + = = =

← 2
1 1

2
2 1 2 2 1

3 1 1 2 2 2

 2. 2.
 3.

T Z
T X Z T X
T YT T X T

←

← ←

← ← + 3 1 2
2 2

4 2 1 2 3 3 2

5 2 2 4 1 4

 3.

 4. 4.

 5.

Z T T
T T T Y T T T
T Z T T T T

←

← ← + ←

← ← + 2
4 1

3 2 5 5 6 4
2

3 1 4

 5.
 6. 6.

 7.

T T
T a T T a T
T T T T

←

← ←

← ← 2
4 5 1 1 3 3 5

4 4 5 2 2 3 3 1 5

 7.
 (a) 8. (b) 8.

T T Y X T T
T T T T a Z T T T

+ ← ← +

← ← ← +
2

3 5 3 3 4 1 3 5 3 2 3

5 1 5

 9. 9.
 10.

Z T X T T T Z T T T T
T T T

← ← + ← ← +

← 2 3 3

2 1 3 1 5 3 5 1 2
2

3 3 2 2 3

 10.
 11. 11.

 12.

T X T
T X Z T T Z Y T T
T Z T T X

←

← ← + ← +

← ← +

4 1 2 5 1 1

3 3 5

3 3 4

 13.
 14.
 15. Y

T T T T X Y
T T T

T T

← ← +

←

← +

 53

l Projective to affine coordinates converter (PtoA)

 After finishing the EC point multiplication the result point Q must be converted

from projective coordinates to affine coordinates. This is done as (, ,) (,)X Y Z x y→

such that 1 2 and x XZ y YZ− −= = .

 PtoA waits in IDLE state until the signal START-PtoA from MC is set. After it

is set, PtoA visits the other five states in the following order and after DONE-MMM

signal from MMM circuit is set in (PtoA-S5) state, PtoA sets DONE-PtoA signal and

goes back to IDLE state.

1. PtoA-S1： Z-1R = Modular Multiplicative Inversion of Z

2. PtoA-S2： xR = XZ-1R = MM(XR, Z-1R)

3. PtoA-S3： Z-2R = MM(Z-1R, Z-1R)

4. PtoA-S4： yR = YZ-2R = MM(YR, Z-2R)

l Modular Multiplicative Inverter (MMI)

Because the order n of the generator point used in the ECDSA operation is

limited to a prime number, a multiplicative inversion is executed by using Equation

(2.4) 1 2 modpa a p− −≡ , if gcd(,) 1a p = . So, multiplicative inversion can be done by

modular exponentiation of a by p−2. By the way, because we only use one MMMC,

we must adopt sequential modular exponentiation shown below：

-1 1 0

E

-1

Algorithm 8 : Sequential Modular Exponentiation

Input: T, M, E=(,..., ,)
Output: T mod M

 initial R=1
 1.if = =1 then R=T;
 2.for

k

k

e e e

e
i k= − 2 downto 0

 3. R=R R mod M
 4. if = =1 then R=R T mod M;
 return R;

ie
×

×

 54

Using Fermat’s theorem and sequential modular exponentiation, the inverse

requires about 21.5log p multiplications. That is, if the prime p = (pN-1,…,p1,p0), the

inverse requires about 1.5N multiplications.

5.2.2 Modified MMMC

 From [30], it can be easily proved that MM(S, 1) ≤ M, if 0 ≤ S < 2M. We can

rewrite Algorithm 4 as Algorithm 9 without final subtraction.

1 0 2 1 0 2 1 1 0 2

Algorithm 9 : Radix-2 Montgomery multiplication without final subtraction

Input : (0, ,..., ,) , (0, ,..., ,) , (,..., ,)
 with , [0, 2 1], gcd(, 2) 1
Output :

m m m

m

X x x x Y y y y M m m m
X Y M M

S

−

+

= = =

∈ − =
(2)

2

1

1

2 mod 2

initial 0
for 0 to 1
 if () is even
 then () / 2
 else () / 2

m

i i

i i i

i i i

XY M

S
i m

S x Y
S S x Y
S S x Y M

− +

+

+

=

=
= +

+

= +
= + +

The (m+1)-bits operands are split into w-bit words. For now, suppose that e

words are used. Word and bit vectors are represented as M = (0, M(e-1),…, M(1), M(0)),

(1) (1) (0) (1) (1) (0)(0, ,..., ,), (0, ,..., ,),e eY Y Y Y S S S S− −= = 1 0(0, ,..., ,)mX x x x= . M, Y and S

are extended to e+1 words by a mostsignificant zero word. Then, from Algorithm 9,

we can derive the Algorithm 10：MWR2MM for dual-field.

 55

Algorithm 10 : The MWR2MM for Dual-Field

() GF p G

(0) (0) (0)

(2)
1. 0, 0 1. 0
2.for 0 to 1 2.for 0 to 1
3. (,)

m

i

F
S C S

i m i m
C S xY S

= = =
= + = −

= + (0) (0) (0)

(0) (0)
0 0

(0) (0) (0)

 3.
4. if 1 then 4. if 1 then

5. (,) (,)

iS xY S
S S

C S C S M

= +

= =

= +

() ()

(0) (0) (0)

() ()

 5.
6. for 1 to 6. for 1 to 1

7. (,) j jj j
i

S S M
j e j e

C S C S xY M

= +
= = −

= + + + () ()() ()

(1) () (1) (1) () (1)
0 1,...,1 0 1,...,1

() ()
1,...,1

 7.
8. (,) 8. (,)

9. (,)

j jj j
i

j j j j j j
w w

e e
w

S S xY M
S S S S S S

S C S

− − − −
− −

−

= + +

= =

= (1) (1)
1,...,1 9. (0,)

10. else 10. else
11. for 1 to

e e
wS S

j e

− −
−=

=
() () () ()() ()

(1) ()
0 1,..

 11. for 1 to 1

12. (,) 12.

13. (,

j j j jj j
i i

j j
w

j e

C S C S x Y S S x Y
S S S−

−

= −

= + + = +

= (1) (1) () (1)
.,1 0 1,...,1

() () (1) (1
1,...,1 1,...,1

) 13. (,)

14. (,) 14. (0,

j j j j
w

e e e e
w w

S S S

S C S S S

− − −
−

− −
− −

=

= =))

 Observing Algorithm 10, there is one difference between GF(p) and GF(2m).That

is, it needs to consider carry out over GF(p) but it does not need over GF(2m).

Therefore, we can replace Full adders (FA) in Figure 5.3 with our proposed Dual-field

adder (DFA).

Figure 5.8 Standard full adder.

Figure 5.9 Dual-field adder.

 56

DFA has one more input called Fselect (field selector) that enables this

functionality. When Fselect = 1, the DFA performs the bitwise addition with carry

which enables the multiplier to do operations in the field GF(p). On the other hand,

when Fselect = 0, the output Cout is forced to 0 regardless of the values of the inputs and

enables the multiplier to do operations in the field GF(2m).

In Figure 5.9, the two XOR gates are dominant in terms of both area and

propagation time. As in the standard full-adder circuit, the dual-field adder has two

XOR gates connected serially. Thus, propagation time of the dual-field adder is not

larger than that of full adder. Their areas differ slightly, but this does not cause a

major change in the whole circuit.

Thus, the modified block diagram of a processing element (PE) for w = 3 is

shown in Figure 5.10 by replacing FA in Figure 5.3 by DFA.

Figure 5.10 Modified Processing Element (PE) for w = 3 bits.

 57

5.3 Simulation Results

In this section, we will discuss the synthesis result of our design. We use TSMC

0.25μm process technology and Synopsys Design Analyzer to synthesize our RTL

code. The gate count of our design is the physical cell size reported by Synopsys

Design Analyzer divided by the size of two input NAND gate (it has 4 transistors),

NAND2X1. Our architecture uses 8PEs with wordsize = 8bits to perform 192 bits

input. According to implementation results, the gate count is 26,774 (divided 12,949

gates for the core and 13,825 gates for the memory) and Minimum clock period is

3.5ns (Maximum clock rate 285.7MHz). We show the comparison of ECC hardware

performance in Table 5.1 and Table 5.2 for GF(p) and GF(2m), respectively. In Table

5.3, we compare the circuit size of our designed with [33] and [30]. Finally, the

latency of the operations according to the clock frequency of the implemented circuit

is given in Table 5.4 for GF(p) and Table 5.5 for GF(2m).

Reference Field

size
(bits)

Platform # of
cycles

Max.
freq.

(MHz)

Operation
time (ms)

Notes

Our work 192 0.25-μm COMS
ASIC

691 285.7 0.00242 8PEs with
w=8bits

[33] 192 0.13-μm COMS
ASIC

1345 363.6 0.0037 8x8-bits
multiplier

[30] 160 FPGA 484 91.308 0.0053 Systolic
array

Table 5.1 GF(p) ECC hardware performance comparison.

 58

Reference Field
size

(bits)

Platform # of
cycles

Max.
freq.

(MHz)

Operation
time (ms)

Notes

Our work 192 0.25-μm COMS
ASIC

591 285.7 0.00207 8PEs with
w=8bits

[33] 192 0.13-μm COMS
ASIC

1269 763.4 0.0017 8x8-bits
multiplier

Table 5.2 GF(2m) ECC hardware performance comparison.

Reference Field

size
(bits)

Platform Core
size

(gates)

Memory
size

(gates)

Total
size

(gates)

Notes

Our work 192 0.25-μm COMS
ASIC

12,949 13825 26,774 8PEs with
w=8bits

[33] 192 0.13-μm COMS
ASIC

19,935 9,720 29,655 8x8-bits
multiplier

[30] 160 FPGA 115,520 Systolic
array

Table 5.3 Circuit size comparison.

Operations Sub-operations
Execution time*

ms
NtoM 3MMM 0.00726

EPM
n EC point doubling+

n/2 EC point addition
9.75188

PtoA MMI+3MMM 0.70382
MtoN 2MMM 0.00484

EC point doubling 14 MMM 0.03386
EC point addition 14 MMM 0.03386

MMI 1.5N MMM 0.69656
MMM 0.00242

*For N=n=192 at 285.7 MHZ.
Table 5.4 GF(p) latency of the operations executed in ECP.

 59

Operations Sub-operations
Execution time*

ms
NtoM 3MMM 0.00621

EPM
n EC point doubling+

n/2 EC point addition
6.75192

PtoA MMI+3MMM 0.60196
MtoN 2MMM 0.00414

EC point doubling 10 MMM 0.02069
EC point addition 14 MMM 0.02896

MMI 1.5N MMM 0.59576
MMM 0.00207

*For N=n=192 at 285.7 MHZ.

Table 5.5 GF(2m) latency of the operations executed in ECP.

 60

Chapter 6

Conclusions

 We have described an efficient and scalable implementation of an elliptic curve

cryptosystem over dual-fields GF(p) and GF(2m). The processor can be programmed

to execute a modular multiplication, addition/subtraction, multiplicative inversion, EC

point addition/doubling and multiplication. We use the method of Montgomery for

modular multiplication. Besides, we can find that addition and doubling formula need

inverse operations in affine coordinate system. As a field inversion is still far more

expensive than a field multiplication, we use a method that changes the affine

coordinate system to projective coordinate system. We only need filed multiplications

in projective coordinate system and finally need only one inversion operation when

PtoA. By the coordinate system changing, we save much time to implement the ECC

hardware. In other words, this speeds up the cryptosystem computation. Compare

with others paper, our ECC design has relative smaller area and can provide better

performance. Our design also provides scalability and can used for various

applications.

 61

Bibliography

[1] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans.

Inform. Theory, vol. IT-22, pp. 644-654, 1976.

[2] T.ElGamal, “A public key cryptosystem and a signature scheme based on

discrete logarithms,” IEEE Transactions on Information Theory, vol. 31, pp.
473-481, 1985.

[3] R. Rivest, A. Shamir and L.M. Adleman, “A Method for Obtaining Digital

Signatures and Public Key Cryptosystems,” Communications of the ACM, vol.
21, pp. 120-126, 1978.

[4] Victor S. Miller, “Use of Elliptic Curves in Cryptography,” Advances in

Cryptology – CRYPTO ’85 Proceedings, Lecture Notes in Computer Science,
(1986) Springer-Verlag, Pg. 417-426.

[5] Neal Koblitz, “Elliptic Curves Cryptosystems,” Mathematics of Computation,

48n.177 (1987), Pg. 203-209.

[6] G. Agnew, R. Mullin, I. Onyszchuk, and S. Vanstone, “An Implementation of

Elliptic Curve Cryptosystems over F2
155 ,” IEEE J. Selected Areas Comm., vol.

11, pp. 804-813, June 1993.

[7] S. Sutikno, A. Surya, and R. Effendi, “An Implementation of ElGamal Elliptic

Curves Cryptosystems,” Proc. 1998 IEEE Asia-Pacific Conf. Circuits and
Systems (APCCAS ’98), pp. 483-486, Nov. 1998.

[8] S. Sutikno, R. Effendi, and A. Surya, “Design and Implementation of Arithmetic

Processor F2
155 for Elliptic Curve Cryptosystems,” Proc. 1998 IEEE Asia-Pacific

Conf. Circuits and Systems (APCCAS ’98), pp. 647-650, Nov. 1998.

 62

[9] K.H. Leung, K.W. Ma, W.K. Wong, and P.H.W. Leong, “FPGA Implementation
of a Microcoded Elliptic Curve Cryptographic Processor,” Proc. 2000 IEEE
Symp. Field Programmable Custom Computing Machines (FCCM ’99), pp.
68-76, Apr. 2000.

[10] M. Ernst, S. Klupsch, O. Hauck, and S.A. Huss, “Rapid Prototyping for

Hardware Accelerated Elliptic Curve Public-Key Cryptosystems,” Proc. 12th
Int’l Workshop Rapid System Prototyping (RSP 2001), pp. 24-29, June 2001.

[11] L. Gao, S. Shrivastava, and G. Sobelman, “Elliptic Curve Scalar Multiplier

Design Using FPGAs,” Proc. Cryptographic Hardware and Embedded Systems
(CHES ’99), pp. 257-268, Aug. 1999.

[12] M.C. Rosner, “Elliptic Curve Cryptosystems on Reconfigurable Hardware,”

master’s thesis, Worcester Polytechnic Inst., May 1998,
http://www.ece.wpi.edu/research/crypt/publications/documents/ms_mrosner.pdf

[13] G. Orlando and C. Paar, “A High-Performance Reconfigurable Elliptic Curve

Processor for GF(2m),” Proc. Cryptographic Hardware and Embedded Systems
(CHES 2000), pp. 41-56, Aug. 2000.

[14] N.P. Smart, “The Hessian Form of an Elliptic Curve,” Proc. Cryptographic

Hardware and Embedded Systems (CHES 2001), pp. 118-125, May 2001.

[15] S. Okada, N. Torii, K. Itoh, and M. Takenaka, “Implementation of Elliptic Curve

Cryptographic Coprocessor over GF(2m) on an FPGA,” Proc. Cryptographic
Hardware and Embedded Systems (CHES 2000), pp. 25-40, Aug. 2000.

[16] J. Goodman and A. Chandrakasan, “An Energy Efficient Reconfigurable

Public-Key Cryptography Processor Architecture,” Proc. Cryptographic
Hardware and Embedded Systems (CHES 2000), pp. 175-190, Aug. 2000.

[17] G. Orlando and C. Paar, “A Scalable GF.p. Elliptic Curve Processor Architecture

for Programmable Hardware,” Proc. Cryptographic Hardware and Embedded
Systems (CHES 2001), pp. 349-363, May 2001.

http://www.ece.wpi.edu/research/crypt/publications/documents/ms_mrosner.pdf

 63

[18] S. Xu and L. Batina, “Efficient Implementation of Elliptic Curve Cryptosystems
on an ARM7 with Hardware Accelerator,” Proc. Information Security (ISC
2001), pp. 266-3279, Oct. 2001.

[19] V.S. Miller, “Use of Elliptic Curve in Cryptography,” Proc. Advances in

Cryptology (Crypto ’85), pp. 417-426, 1986.

[20] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. Computing, vol. 48, pp.

203-209, 1987.

[21] N. Koblitz, “A Course in Number Theory and Cryptography,” volume 144 of

Graduate text in mathematics., Springer-Verlag, Berlin, Germany, second
edition, 1994.

[22] “Digital Signature Standard (DSS),” FIPS PUB 186-2, Nat’l Inst. of Standard

Technology, http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf, Jan.
2000.

[23] IEEE P1363. Standard Specifications for Public-Key Cryptography, Draft. 13,

IEEE Working Group, November 1999. http://grouper.ieee.org/groups/1363/

[24] ANSI X9.62-1998, Public Key Cryptography for the Financial Services Industry:

The Elliptic Curve Digital Signature Algorithm (ECDSA), American Bankers
Association, 1999.

[25] S. Vanstone, “Responses to NIST’s Proposal,” Communications of the ACM, 35,

July 1992, 50-52 (communicated by John Anderson).

[26] A. Menezes, “ELLIPTIC CURVE PUBLIC KEY CRYPTOSYSTEMS,” Kluwer

Academic Publishers, Boston, 1993.

[27] Essame Al-Daoud, Ramlan Mahmod, Mohammad Rushdan, and Adem Kilicman,

“A New Addition Formula for Elliptic Curve over GF(2n),” IEEE Transactions
on Computers, vol. 51, No. 8, AUGUST 2002.

[28] J.S. Coron, H. handschuh, and D. Naccache, “ECC： Do We Need to Count？,”
Advances in Cryptology-ASIACRYPT’99,LNCS 1716, Springer, pp. 122-134,
1999.

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf
http://grouper.ieee.org/groups/1363/

 64

[29] Shu Lin and Daniel J. Costello, JR., “ERROR CONTROL CODING
Fundamentals and Applications ”.

[30] Siddika Berna Ors, Lejla Batina, Bart Preneel, Joos Vandewlle, “Hardware

Implementation of an Elliptic Curve Processor over GF(p),” Proc.
Application-Specific Systems, Architectures, and Processors (ASAP 2003).

[31] H. Cohen, A. Miyaji, and T. Ono, “Efficient elliptic curve exponentiation using

mixed coordinates,” Proc. of ASIACRYPT 1998, number 1514 in Lecture Notes
in Computer Science, pp. 51-65, Springer-Verlag, 1998.

[32] Alexandre F. Tenca and Cetin K. Koc, “A Scalable Architecture for Montgomery

Multiplication,” Proc. First Int’l Workshop Cryptographic Hardware and
Embedded Systems—CHES ’99, C. K. Koc¸ and C. Paar, eds., pp. 94-108, Aug.
1999.

[33] Akashi Satoh and Kohji Takano, “A Scalable Dual-Field Elliptic Curve
Cryptographic Processor,” IEEE Transactions on Computers, vol. 52, NO. 4,
April 2003.

