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Chapter 1 
 

Introduction 
                                                                      
 
 
 

1.1  Introduction to Cryptography 
 

In recent years the fast development of the communication and network, brings 

the people to are quick and make a convenience of life, but the data its safety is very 

important while delivering not burglarize to take the exploitation, and use 

cryptography to protect the data is the most familiar method.  

 

Recently, public key cryptography (PKC) have received more and more attention. 

It is more and more important in digital communication and some data transfer 

systems such as home banking, internet, electronic commerce, E-mail that are needed 

to be kept secret from insecure channel. According to the difficult mathematical 

problem on which they are based, there are three types of systems classified and are 

thought secure [8]： 

1. Integer factorization systems (RSA). 

2. Discrete logarithm systems (U.S. Government’s DSA). 

3. Elliptic curve discrete logarithm systems (Elliptic Curve cryptography). 

 

In 1976 Diffie and Hellman [1] introduced a concept of a public key 

cryptography and described a public key distribution scheme. The security of this 

proposed concept is based on the difficult and intractable discrete logarithm problem 
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in the multiplicative group of a large prime finite field. In 1977 the complete 

cryptography was firstly proposed by three researchers at MIT, Rivest, Shamir and 

Adleman [3]. The famous system is called RSA cryptography and is believed that its 

security is based on factoring in a large integer. In 1985, ElGamal [2] proposed a 

practical public key cryptography based on discrete exponentiation problem in a finite 

field. 

 

Some compromises are required between system response time and security. For 

current cryptography, they are up to required security standards but computational 

speed is always compromised due to increased key size. As we have seen, the bit 

length for secure RSA use has increased over recent years, and this has put a heavier 

processing load on applications using RSA. Recently, a competing system has begun 

to challenge RSA：elliptic curve cryptography (ECC). 

 

Elliptic curves have been studied for over one hundred fifty years. However, 

until 1985 elliptic curve public key cryptography was first proposed by Victor Miller 

[4] and Neal Koblitz [5]. Already, ECC is showing up in standardization efforts, 

including the IEEE P1363 Standard for Public-Key Cryptography. 

    

    There are some applications such as smart cards and mobile phones which are 

portable and small device used in many ways like identification, and health care 

needed cryptographic service. But there are some restrictions on using these devices： 

limited computing power bandwidth and constrained memory. To handle these 

problems, we can choose the advantages of ECC which has smaller key size and high 

security. Hence, ECC permits reductions in key and delivers the highest strength per 

bit of any known public-key system because of the elliptic curve discrete logarithm 

problem (ECDLP). We can compare the key length between ECC and RSA system on 
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the same security level and then get a result showing that the smaller key size of ECC 

yield equivalent levels of security of RSA system. Therefore, the elliptic curve 

cryptography can be thought as one of the best public key cryptography in the world 

today.  

 

Many hardware architectures have been proposed [6],[7], [8], [9], [10], [11], [12], 

[13], [14], [15], [16], [17], [18] for elliptic curve cryptography (ECC) [19], [20]. 

Binary field GF(2m) arithmetic is suitable for fast and compact hardware compared 

with a prime field GF(p) because there is no discrimination between positive and 

negative numbers and, thus, no carry is propagated. However, conventional 

implementations for GF(2m) ECC cannot support EC-DSA [22] over GF(2m), which is 

one of the most important ECC standard functions because modular arithmetic in 

GF(p) is also required. On the other hand, conventional ECC hardware designs in 

GF(p) [17], [18] supported only the specific prime modulus p=2192-264-1. Therefore, 

we proposed a scalable architecture for dual-field GF(p) and GF(2m) based on 

Montgomery Modular Multiplication. 

 
 
 

1.2 Organization of this thesis 
 

    In Chapter 2, we will introduce some mathematical background：finite fields, 

Fermat’s theorem and Euclid’s Algorithm. In Chapter 3, we will discuss the ECC and 

mathematical fundamentals of elliptic curve. In Chapter 4, some protocols such as 

analog of ElGamal Public Key Cryptosystem, ECDH, ECDSA, and some standards 

are presented. In Chapter 5, we will present our modified architecture and simulation 

results. Finally, conclusions will be given in Chapter 6. 
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Chapter 2 
 

Mathematical Background 
                                                                      
 
 

This chapter introduces some mathematical background for Elliptic Curve. In 

Section 2.1, we introduce the Galois Field. And we will introduce Fermat’s Theorem 

and Euclid’s Algorithm which are usually used to find the multiplicative inversion in 

Section 2.2. 

 
 
 

2.1  Introduction to Galois Field 
 

    Finite field is also called Galois fields in honor of its discoverer and all 

arithmetic operations over this field are interesting in most computer engineering 

domain included cryptography. A finite field in an algebraic field that has a finite 

number of elements, otherwise called Infinite Field. 

 

    Due to there are finite numbers of elements on Galois Field, any operation on an 

element of the field will result in another one in this field. Because of this useful 

property, algorithm using finite field arithmetic does not need to cope with over or 

under flow problem. 

 
2.1.1 Finite field GF(p) 
 

    The set {0,1,2,..., 1}p − is a field of order p under modulo-p addition and 
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multiplication. Since this field is constructed from a prime p , it is called a prime field 

and is denoted by ( )GF p . For any prime p , there exists a finite field of p elements. 

In fact, for any positive integer m, it is possible to extend the prime field ( )GF p to a 

field of mp elements which is called an extension field of ( )GF p and is demoted by 

( )mGF p . Furthermore, is has been proved that the order of any finite field is a power 

of a prime. 

 

    In Table 2.1 and Table 2.2, we show the addition and multiplication operation in 

GF(7), respectively.  

 
+ 0 1 2 3 4 5 6 
0 0 1 2 3 4 5 6 
1 1 2 3 4 5 6 0 
2 2 3 4 5 6 0 1 
3 3 4 5 6 0 1 2 
4 4 5 6 0 1 2 3 
5 5 6 0 1 2 3 4 
6 6 0 1 2 3 4 5 

 
Table 2.1 Modulo 7 addition. 

 
x 0 1 2 3 4 5 6 
0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 
2 0 2 4 6 1 3 5 
3 0 3 6 2 5 1 4 
4 0 4 1 5 2 6 3 
5 0 5 3 1 6 4 2 
6 0 6 5 4 3 2 1 

 
Table 2.2 Modulo 7 multiplication. 
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2.1.2 Finite field GF(2m) 
 

    Arithmetic on (2 )mGF  is less complexity than traditional binary. On the other 

hand, (2 )mGF  arithmetic is suited to hardware implementation. Addition and 

subtraction is simply an XOR operation. Multiplication is more difficult, but can be 

implemented by using pure combinational logic. This makes (2 )mGF  arithmetic can 

be easily implemented by ASICs or FPGAs. 

 

    To construct the (2 )mGF , we need to know what is irreducible polynomial and 

primitive polynomial. 

 

    For a polynomial ( )f X over (2)GF , if it has an even number of terms, it is 

divisible by 1X + . A polynomial ( )p X  over (2)GF  of degree of m is said to be 

irreducible over (2)GF  if ( )p X  is not divisible by any polynomial over (2)GF  

of degree less than m but greater than zero. For example, polynomials of degree of 2, 

2 2 2, 1 and X X X X+ +  are not irreducible because they are either divisible X or X+1. 

For 2 1X X+ +  as an example, this polynomial does not have “0” or “1” as a root 

and so is not divisible by any polynomial of degree 1. 

 

    A irreducible polynomial ( )p X  of degree m is said to be primitive if the 

smallest positive integer n for which ( )p X  divides 1 is 2 1n mX n+ = − . For 

instance, 4 15( ) 1 divides 1p X X X X= + + +  but does not divide any 1nX +  for 

1 15n≤ ≤ . Therefore, 4 1X X+ +  is a primitive polynomial. 

 
    An example is given below to show how to construct the (2 )mGF . 
 
Example： 
 

    To construct the finite field 4(2 )GF , firstly we choose a primitive polynomial  
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4( ) 1p X X X= + +  which is over (2)GF . Secondly, set 4( ) 1 0p α α α= + + =  

which implies that 4 1α α= + . Using that, we can construct 4(2 )GF , and elements 

on which are given in Table 2-3. The identity 4 1α α= +  is also used repeatedly to 

produce the polynomial representations for the elements of 4(2 )GF . For example, 

 

5 4 2

6 5 2 2 3

7 6 2 3 3 4

3 3

(1 ) ,
( ) ,
( )

    1 1

α α α α α α α

α α α α α α α α

α α α α α α α α

α α α α

= ⋅ = + = +

= ⋅ = + = +

= ⋅ = + = +

= + + = + +

 

 

    To multiply two elements jα  and iα , we simply add their exponents and use 

the fact that 15 1α = .For example, 5 6 11 8 14 22 7 15 7 and α α α α α α α α α⋅ = ⋅ = = ⋅ = . To 

divide jα  by iα , we simply multiply iα  by multiplicative inverse 15 iα −  of iα . 

For example, 
5

5 7
14

α
α α α

α
= ⋅ = . To add jα  and iα , we simply use their polynomial 

representations in Table 2.3. For example, 

9 7 3 3

3 11 3 2 3 2 10

( ) (1 ) 1
1 1 ( ) 1
α α α α α α

α α α α α α α α α

+ = + + + + =

+ + = + + + + = + + =
 

 

There is another representation called m-tuple representation for (2 )mGF . The 

components of the m-tuple representation are the coefficients of the polynomial 

representation. All three representations are given in Table 2.3. 

 

Power 
representation 

Polynomial 
representation 

4-Tuple or binary 
representation 

0 0 (0  0  0  0) 
1 1 (1  0  0  0) 
α  α  (0  1  0  0) 

2α  2α  (0  0  1  0) 
3α  3α  (0  0  0  1) 
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4α  1+α  (1  1  0  0) 
5α  α + 2α  (0  1  1  0) 
6α  2α + 3α  (0  0  1  1) 
7α  1+α     + 3α  (1  1  0  1) 
8α  1   + 2α  (1  0  1  0) 
9α  α     + 3α  (0  1  0  1) 
10α  1+α + 2α  (1  1  1  0) 
11α  α + 2α + 3α  (0  1  1  1) 
12α  1+α + 2α + 3α  (1  1  1  1) 
13α  1   + 2α + 3α  (1  0  1  1) 
14α  1       + 3α  (1  0  0  1) 

 
Table 2.3 Three representations for the elements of GF(24) generated by 

p(x)=X4+X+1 [29]. 
 
 
 

2.2 Fermat’s Theorem and Euclid’s Algorithm 
 

    When we want to find a multiplicative inverse modulo p, we can use Fermat’s 

theorem or Euclid’s Algorithm. Finding a multiplicative inverse is an important step 

in public-key cryptography, especially in elliptic curve cryptography. Therefore, in 

this section, we will introduce these two usefully methods. 

 
2.2.1 Fermat’s theorem 
 

Fermat’s theorem states the following： 

    If p is prime and a is a positive integer not divisible by p, then 

 
                       1 1modpa p− ≡                               (2.1) 
 
Proof： 

    We know that if all the elements of pZ  are multiplied by , modulo ,a p  the 
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result consists of the elements of pZ  in some order. Furthermore, 0 0moda p× ≡ . 

Therefore, the ( 1)p −  numbers { mod , 2 mod ,..., ( 1) mod }a p a p p a p−  are just the 

numbers {1, 2,..., ( 1)}p −  in some order. Multiply these numbers together： 

2 ... ( 1) [( mod ) (2 mod ) ... ( 1) mod ]mod
                              ( 1)!mod                                                   
a a p a a p a p p a p p

p p
× × × − ≡ × × × −

≡ −
   (2.2) 

But 
 

12 ... (( 1) ) ( 1)! pa a p a p a −× × × − ≡ −                  (2.3) 
 

We can cancel the ( 1)!p −  term both in (7.2) and (7.3) because it is relatively prime 

to p. This yields Equation (2.1). 

 
    From Equation (2.1), we can easily derive the Equation  
 

1 2 modpa a p− −≡ .                               (2.4) 
 
So, the multiplicative inverse of  modulo a p  can been find from Fermat’s theorem. 
 
2.2.2 Euclid’s algorithm 
 

    One of the basic techniques of number theory is Euclid’s algorithm, which is a 

simple procedure for determining the greatest common divisor of two positive 

integers. An extended form of Euclid’s algorithm determines the greatest common 

divisor of two positive integers and, if those numbers are relatively prime, the 

multiplicative inverse of one with respect to the other. 

 

    Euclid’s algorithm is based on the following theorem：For any nonnegative 

integer a and any positive integer b, 

 
gcd( , ) gcd( , mod )a b b a b=                        (2.5) 
 

Euclid’s algorithm makes repeated use of Equation (2.5) to determine the 
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greatest common divisor, as follows： 

Assume 0f d> > . It is acceptable to restrict the algorithm to positive integers 

because gcd( , ) gcd(| |,| |)a b a b= . 

EUCLID ( , )
1.   ;
2.   if 0 return gcd( , )
3.   mod
4.   
5.   
6.   goto 2

d f
X d Y f

Y X d f
R X Y
X Y
Y R

← ←
= =

=
←
←

 

 

If gcd( , ) 1d f = , then d has a multiplicative inverse modulo f. That is for 

positive integer d f< , there exists a 1 1 such that 1modd f dd f− −< = . Euclid’s 

algorithm can be extended so that, in addition to finding gcd( , )d f , if the gcd is 1, 

the algorithm returns the multiplicative inverse of d. 

 

-1

       EXTENDED EUCLID (d.f)
1. ( 1, 2, 3) (1,0, );  ( 1, 2, 3) (0,1, )
2. if 3 0     return 3 gcd( , );  no inverse
3. if 3 1      return 3 gcd( , );  2 mod

34. 
3

5. ( 1, 2, 3) ( 1 1, 2

X X X f Y Y Y d
Y X d f
Y Y d f Y d f

XQ
Y

T T T X QY X

← ←
= =

= = =

 =   
← − − 2, 3 3)

6. ( 1, 2, 3) ( 1, 2, 3)
7. ( 1, 2, 3) ( 1, 2, 3)
8. goto 2

QY X QY
X X X Y Y Y
Y Y Y T T T

−
←

←

 

 
Throughout the computation, the following relationship hold： 
 

1 2 3    1 2 3    1 2 3fT dT T fX dX X fY dY Y+ = + = + =  
 

Note that if gcd( , ) 1d f = , then on the final step we would have 3 0Y =  and 

3 1X = . Therefore, on the preceding step, 3 1Y = . But if 3 1Y = , then we can say the 

following： 
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1 2 3
1 2 1
2 1 ( 1)
2 1mod

fY dY Y
fY dY
dY Y f
dY f

+ =
+ =
= + − ×
≡

 

 
And 2Y  is the multiplicative inverse of d, modulo f. 
 

    Table 2.4 is an example of the execution of the algorithm. It shows that      

gcd (550, 1769) = 1 and that the multiplicative inverse of 550 is itself; that is, 

550 550 1mod1769× = . 

  
Q X1 X2 X3 Y1 Y2 Y3 
 1 0 1769 0 1 550 
3 0 1 550 1 -3 119 
4 1 -3 119 -4 13 74 
1 -4 13 74 5 -16 45 
1 5 -16 45 -9 29 29 
1 -9 29 29 14 -45 16 
1 14 -45 16 -23 74 13 
1 -23 74 13 37 -119 3 
4 37 -119 3 -171 550 1 

  
Table 2.4 An example of Extended Euclid (550, 1769). 
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Chapter 3 
 

Overview of Elliptic Curves 
                                                                      
 
 

We introduce an overview of Elliptic curve Cryptography in this chapter. There 

are a large amount of papers proposed on this subject. In Section 3.1, we introduce the 

history of ECC. Basic theories used in ECC are introduced in Section 3.2. Arithmetic 

of ECC is discussed in Section 3.3. In Section 3.4, we will discuss the Hasse’s 

theorem. Then, we discuss the elliptic curve discrete logarithm problem (ECDLP) in 

Section 3.5. Finally, we discuss the order of a point in Section 3.6. 

 
 
 

3.1  History 
 

Elliptic curves have been studied intensively for the past 150 years and there are 

a large amount of papers proposed on this subject. Elliptic curves have appeared a 

rich and deep theory. Moreover, the discrete logarithm problem (DLP) is believed to 

be very difficult. Elliptic curve systems where first suggested in 1985 independently 

by Neal Koblitz [5] at the University of Washington, Victor Miller [4], and Yorktown 

Heights for implementing public key cryptosystem. 

 

ECC offers a solution for those public-key systems which need most constrain 

environments such as smaller size, faster computing. This is the reason that ECC is a 

good scheme for low memory, low bandwidth, and low power consumption 
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applications such as smart cards and mobile communication. 

 

The difficulty of the elliptic curve discrete logarithm problem (ECDLP) means 

that smaller key sizes provide equivalent levels of security. Table 3.1 shows that 

equivalent strength comparison between RSA/DSA and ECC. 

 
Time to break 
In MIPS years 

RSA/DSA 
key size (bits) 

ECC 
key size (bits) 

RSA/ECC 
Key size ratio 

10^4 512 106 5：1 
10^8 768 132 6：1 
10^11 1,024 160 7：1 
10^20 2,048 210 10：1 
10^78 21,000 600 35：1 

 
Table 3.1 Equivalent strength comparison. 

 
 
 

3.2  Basic theorems 
 
3.2.1 Theorems used in Elliptic Curves 
 

    Let qF  denote the finite field containing q  elements, where q  is a prime 

power. If qK F= , let k  denote its algebraic closure, i.e., 1
m

m qk u F≥= . A projective 

plane over K  is the set of an equivalent class where if and only if there exists 

*Kλ ∈  satisfying 1 1 1 2 2 2( , , ) ( , , )x y z x y zλ λ λ= . Let the projective plane 2 ( )P K  over 

K  be the set of ( : : ) \{(0 : 0 : 0)}x y z  in 3K . We denote projective points ( , , )x y z  

on 2 ( )P K  by ( , , )x y z . We will describe a special equation called Weierstrass 

equation which is a homogeneous equation of degree 3 of the form： 

2 2 3 2 2 3
1 3 2 4 6Y Z a XYZ a YZ X a X Z a XZ a Z+ + = + + +  
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where 1 2 3 4 6, , , ,a a a a a K∈ . An elliptic curve E  is the set of points satisfying a 

nonsingular Weierstrass equation with a special point O . There is a special point 

called the point at infinity has Z-coordinate equal to 0 denoted by O , namely (0,1,0). 

The Weierstrass equation is said to be non-singular if for all projective points 

2( : : ) ( )Q x y z P K= ∈  satisfying 

2 2 3 2 2 3
1 3 2 4 6( , , ) 0F X Y Z Y Z a XYZ a YZ X a X Z a XZ a Z= + + − − − − = , 

and at least one of the three partial derivatives , ,F F F
X Y Z

∂ ∂ ∂
∂ ∂ ∂

 is not zero at Q .  

 

    By using affine coordinates / ,  /x X Z y Y Z= = , we can derive the Weierstrass 

equation for an elliptic curve： 

       2 3 2
1 3 2 4 6:E y a xy a y x a x a x a+ + = + + +                    (3-1) 

and then an elliptic curve E  is the set of solutions of above equation in the affine 

plane 2K , together with the point at infinity O . If 1 2 3 4 6, , , ,a a a a a K∈ , E  is said 

to be defined over K  denoted by /E K , and the set of points both of whose 

coordinates lie in K , together with the point O  is called rationalK −  points of E, 

denoted ( )E K . 

 

Theorem 3.1 [26,p16] Two elliptic curves 1 /E K  and 2 /E K  given by the 

equations 

                
2 3 2

1 1 3 2 4 6

2 3 2
2 1 3 2 4 6

:

:

E y a xy a y x a x a x a

E y a xy a y x a x a x a

+ + = + + +

+ + = + + +
 

are isomorphic over K , denoted 1 2/ /E K E K≅ , If and only if there exists 

, , , ,  0u r s t K u∈ ≠ , such that the change of variables 

2 3 2( , ) ( , )x y u x r u y u sx t→ + + +  
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transforms equation 1E  to equation 2E . The relationship of isomorphism is an 

equivalence relation. 

 

Theorem 3.2 [26,p17] Two elliptic curves 1 /E K  and 2 /E K  are isomorphic over 

K  if and only if there exist , , , ,  0u r s t K u∈ ≠  satisfying 

1 1

2 2
2 2 1

3
3 3 1

4 2
4 4 3 2 1

6 2 3 2
6 6 4 2 3 1

2

3

2

2 ( ) 3 2

ua a s

u a a sa r s

u a a ra t

u a a sa ra t rs a r st

u a a ra r a r ta t rta

 = +


= − + −


= + +
 = − + − + + −
 = + + + − − −

 

 
The Discriminant and i-Invariant  
 
    Let us define the quantities of elliptic curve given by affine Weierstrass equation. 

2
2 1 2

4 4 1 3
2

6 3 6

2 2 2
8 1 6 2 6 1 3 4 2 3 4

2
4 2 4

2 3 2
2 8 4 6 2 4 6

3
4

4
2

4

4

24
8 27 9

( ) /

d a a
d a a a
d a a
d a a a a a a a a a a
c d d

d d d d d d d
j E c

 = +


= +
 = +
 = + − + −
 = −
∆ = − − − +


= ∆

                 (3-2) 

The quantity ∆  defined above is called the discriminant of the Weierstrass 

equation. We call ( ) invariantj E j −  of E  if 0∆ ≠ . Significance of these quantities 

is described in the following two theorems. 

 

Theorem 3.2 [26,p17] E  is an elliptic curve, i.e., the Weierstrass equation is 

non-singular, if and only if 0∆ ≠ . 

 

Theorem 3.2 [26,p17] If two elliptic curves 1 /E K  and 2 /E K  are isomorphic over 

K , then 1 2( ) ( )j E j E= . The converse is also true if K  is an algebraically closed 

field. 
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3.2.2 Group Law 
 

    Let E  be an elliptic curve given by the Weierstrass equation. For all points on 

an elliptic curve, we define a certain addition, denote “+”, the operation of the abelian 

group /E K . The addition rules are given below： 

 
For all ,P Q E∈  

1  and O P P P O P+ = + =  
2 O O− =  
3 If 1 1( , )P x y O= ≠ , then 1 1 1 1 3( , )P x y a x a− = − − −  
4 If , then Q P P Q O= − + =  
5 If ,  ,  P O Q O Q P≠ ≠ ≠ − ,then the point –R is the intersection of the curve with 

either the line PQ  if P Q≠ , or the tangent line to the curve at  if P P Q= . 

We define P Q R+ = . If P Q≠ , we call the operation point addition. If P Q= , 
the operation is called point doubling. 

 
Figure 3.1 is an example of point addition. 

 
 

Figure 3-1 Point addition. 
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Curves over K of characteristic ≠  2, 3 
 

    Let /E K  be an elliptic curve given by equation (3-1). If ( ) 2char K ≠ , then we 

can transform /E K  to the curve 

2 3 2
2 4 6/ :E K y x b x b x b= + + +  

by using the admissible change of variables 

31( , ) ,
2 2

aax y x y x → − −  
. 

Notice that '  over E E K≅ . 

. 

If ( ) 2,3char K ≠ , we can further transform E’ to 

2 3
4 6''/ :E K y x b x b= + +  

by using the following admissible change of variables, 

12 ,
36 216

x b y− 
  

. 

Hence ' ''  over E E K≅ . 

 

By specializing equation (3-2), we can find the associated quantities that are 

3 216(4 27 )a b∆ = − +  

and                  

3( ) 1728(4 ) /j E a= − ∆ . 

 

Because E  is assumed to be non-singular, we can get 0∆ ≠ . Thus, we can get 

theorem 3.5 as follow by specializing theorem 3.2. 

 

Theorem 3.5 [26, p21] The elliptic curves 2 3
1 / :E K y x ax b= + +  and 

2 3
2 / :E K y x ax b= + +  are isomorphic over K  if and only if there exists a *u K∈ , 

such that 4 6 and u a a u b b= = . 
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Assuming that R P Q= + , if 1 1 2 2 3 3( , ),  ( , ),  and ( , )P x y Q x y R x y= = = , then the 

addition formulas of elliptic curves over K  are given below if ( ) 2,3char K ≠ . 

3 2 1 2

3 1 3 1

2 1

2 1
2
1

1

( )

              
 

3               
2

x x x
y x x y

y y if P Q
x x

where
x a if P Q

y

λ

λ

λ

= − −

= − −

− ≠ −= 
+ =



 

We can also fine that 1 1( , )P x y− = − . 
 

There are two examples showing addition operation (Example 3-1) and doubling 

operation of two points in the elliptic curve (Example 3-2), respectively. 

 

Example 3-1：Given 2 3
23(6,10) and (14, 20) ( ) : 9 14P Q E F y x x= = ∈ = + + , then 

calculating the point ( , ),  where R RR x y R P Q= = + . There are 19 solutions and one 

infinity point O . These points on E  are 

 

       
{ ,  (1,1),  (1, 22),  (5,0),  (6,10),  (6,13),  (7,11),  (7,12),  (8,0),  (10,0),

        (11,8),  (11,15),  (14,3),  (14, 20),  (19,11),  (19,12),  (20,11),  (20,12),
        (22, 2),  (22,21)}

E O=
 

 

Answer： 

At first, calculating the slope λ  of PQ , where 

1

-1

-1

( ) ( )  mod  

    10 ( 8)  mod  23
    13 15  mod  23
    13 20 mod  23
    7

P Q P Qy y x x Pλ −= − × −

= − × −

= ×
= ×
=

 

and then calculating the x-coordinate and y-coordinate of R  respectively. 
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  mod  
     49 6 14 mod  23
     6

R P Qx x x Pλ= − −

= − −
=

 

 ( ) mod  
     10 7 (6 6) mod  23
     13 7 0 mod 23
     13

R P P Ry y x x Pλ= − + × −
= − + × −
= + ×
=

 

 
So, the answer of  is (6,13)R Q R+ = . 
 

Example 3-2：Given 2 3
23(6,10) ( ) : 9 14,P E F y x x= ∈ = + +  then calculating the 

point ( , ),  where 2R RR x y R P= = . 

 

Answer： 

Similarly, at first, calculating the slope λ  of PQ , where 

2 1

1

(3 ) (2 ) mod
  117 20  mod 23
  2 15 mod 23
  7

P Px a y Pλ −

−

= + ×

= ×
= ×
=

 

 

and then calculating the x-coordinate and y-coordinate of R  respectively. 

 ( ) mod  
     10 7 (6 14) mod  23
     13 7 15 mod 23
     13 13 mod 23
    3

R P P Ry y x x Pλ= − + × −
= − + × −
= + ×
= +
=

 

 
Curves over K of characteristic 2 
 

    Now, we will discuss the elliptic curves over K  of characteristic 2. We denoted 

( )char K  as characteristic of the field K . We can find that 12
1( ) /j E a ∆  by 

specializing equation (3-2). If ( ) 0j E ≠ , then from Theorem 3.1, we can find the 

admissible change of variables 
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2 2
2 33 1 3
1 1 3

1 1

4( , ) ,a a a ax y a x a y
a a

 +
→ + + 

 
 

transforming E  to the curve 
 

2 3 2
1 2 6/ :E K y xy x a x a+ = + + . 

 

For 1 6 1 6,   and ( ) 1/E a j E a∆ = = . 

If 1( ) 0j E = , then the admissible change of variables 

2( , ) ( , )x y x a y→ +  

transforming E  to the curve 

2 3 2
2 3 4 6/ :E K y a y x a x a+ = + +  

For 4
2 3 2,   and ( ) 0E a j E∆ = = . 

 

    If 1 1 1 1 1 2 2 3 3( , );  then ( , ). If ( , ),  and ( , )P x y P x y x Q x y R x y= − = + = =  where 

P P Q= + , then the addition formulas of elliptic curves over K  are given below if 

( ) 2char K = . 

 
    If ( ) 0j E ≠ , 

2

2 1 2 1
1 2 2

2 1 2 1
3

2 6
1 2

1

            ,

                                                    ,

y y y y x x a P Q
x x x xx

aa P Q
x

 + +
 + + + + ≠ + + = 
 + =


 

 

2 1
1 3 3 1

2 1
3

2 1
1 1 3 3

1

( )                       ,

x +x                                  ,

y y x x x y P Q
x x

y
yx x P Q
x

 +
+ + + ≠ + = 

  + + =   
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If ( ) 0j E = , 

2

2 1
1 2

2 1
3 4 2

1 4
2
3

                                    ,

                                                       ,

y y x x P Q
x xx

x a P Q
a

 +
 + + ≠ + = 

+ =


 

 

2 1
1 3 1 3

2 1
3 2

1 4
1 3 1 3

3

( )                          ,

x ( )                          ,

y y x x y a P Q
x x

y
a x x y a P Q

a

 +
+ + + ≠ + = 

 + + + + =  

 

 

Let us take the elliptic curve 4
2 3 2 2 8

2
( ) :E F y xy x g x g+ = + +  for example, there 

are 15 solutions and one infinity point O . These points on E  are 

2 2 8 4 5 4 8 6 8 6

7 3 7 4 12 4 12 6 13 2 13 4 4

{ ,  (1,1),  (1,0),  ( ,1),  ( , ),  ( , ),  ( , ),  ( , ),  ( , 10),
        ( , ),  ( , ),  ( , ),  ( , ),  ( , ),  ( , ),  (0, )}
E O g g g g g g g g g g g

g g g g g g g g g g g g g
=

 

and the polynomial representation used are shown in Table 2.3. 
 

There are two examples showing the addition operation (Example 3-3) and the 

doubling operation (Example 3-4), respectively below. 

Example 3-3：Given 4
4 5 6 10 2 3 2 2 8

2
( , ) and ( , ) ( ) :P g g Q g g E F y xy x g x g= = ∈ + = + + , 

then calculating the point ( , ),  where R RR x y R P Q= = + . 
 
Answer： 

At first, calculating the slope λ  of PQ , where 

1

5 10 4 6 1

12

3

( ) ( )

  ( ) ( )
  1
  

P Q P Qy y x x

g g g g
g

g

λ −

−

−

= + × +

= + × +

= ×

=

 

and then calculating the x-coordinate and y-coordinate of R  respectively. 
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2
2

6 3 4 6 2

4

    
    

R P Qx x x a

g g g g g
g

λ λ= + + + +

= + + + +

=

 

3 4 12 12 5

3 6 12 5

4

( )
    ( )
    
    

R P R R Py x x x y
g g g g g
g g g g
g

λ= × + + +

= × + + +

= × + +

=

 

 
So, the answer of 12 4 is ( , )P Q R g g+ = . 
 

Example 3-4：Given 4
7 4 2 3 2 2 8

2
( , ) ( ) :P g g E F y xy x g x g= ∈ + = + +  then calculating 

the point ( , ),  where 2R RR x y R P= = . 

 

Answer： 

At first, calculating the slope λ  of PQ , where 

1

7 4 7

7 12

2

  
  
  

P P Px y x
g g g
g g
g

λ −

−

= + ×

= + ×

= ×

=

 

and then calculating the x-coordinate and y-coordinate of R  respectively. 
2

2
4 2 2

4

    
    

Rx a
g g g
g

λ λ= + +

= + +

=

 

2

14 2 4

14 8 4

5

( 1)
    ( 1)
    
    

R P Ry x x
g g g
g g g
g

λ= + + ×

= + + ×

= + ×

=

 

So, the answer of 4 52  is ( , )P R g g= . 
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3.3  Projective Space 
 

    In affine coordinate system, we can see that adding two distinct points P and Q, 

where P Q≠ , for example, on a non-singular curve over 
2mK F= , takes two field 

multiplications, one square and one inversion for the addition formula. There are two 

field multiplication, two squares and one inversion for the doubling formula. However 

there are special techniques for computing inverses in 
2mF , a field inversion is still 

far more expansive than a field multiplication. There are other kinds of coordinate 

systems such as projective coordinate system using field multiplications instead of 

field inversion to speed up the operation. 

 
 
3.3.1 Adding two point on elliptic curve over F2

m 
 

    A non-supersingular elliptic curve E defined over 
2mF  is an equation： 

2 3 2
2 6y xy x a x a+ = + +  

where 2 6 62
,  and 0ma a F a∈ ≠ . Assume 1 1 1 2 2 2 1 2( , ),  ( , ),  and P x y P x y P P= = ≠ − . The 

sum 3 3 3 1 2( , )P x y P P= = +  is computed as follows： 

1 2

2 1

2 1
2

3 1 2 2

3 1 3 3 1

1 2

1
1

1
2

3 2

3 1 3 3 1

If ,

            ,

             ,
             ( ) .
If ,

            ,

             ,
             ( ) .

P P
y y
x x

x x x a
y x x x y

P P
y x
x

x a
y x x x y

λ

λ λ
λ

λ

λ λ
λ

≠
+

=
+

= + + + +
= + + +

=

= +

= + +
= + + +
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In either case, the computation requires two general multiplications, a squaring, 

and a field inversion, denoted by 2 1 1M S I+ + . Actual implementation of the elliptic 

curves indicates that the field addition is much faster than the field multiplication, 

while field inversion is more expensive than the multiplication. Therefore, the 

projective coordinates have been suggested to replace the inverse operation by 

multiplications, where a projective point ( , , ),  0X Y Z Z ≠ , maps to the affine point 

2( / , / )X Z Y Z [27]： 

Let 2 2
1 1 1 1 1 2 2 2 2 2( / , / ) and ( / , / )P X Z Y Z P X Z Y Z= =  be two points on the elliptic 

curve E. 1If 1Z = , then the addition formula is 2
1 2 3 3 3 3( / , / ), whereP P X Z Y Z+ =  

2
2 1 2 2 1 2 2
2

3 3 1 1 1
2 2

3 2

2
3 3 3 3

, ,

, , ( )
( )

( )( )

U Z Y Y S Z X X T Z S
Z T V Z X C X Y
X U T U S Ta
Y V X TU Z Z C

= + = + =

= = = +

= + + +

= + + +

 

 
Proof： 

2 2 2
3 2

22 2 2
3 2 2 2

2 2 2
1 2 2 1 2 2 2

1 22
1 2 2 1 2 2 2

21 2 1 2
2 1 2 3

1 2 1 2

( )

( / ) ( / )     
( / ) ( / )

     ( ) ( )

X U T U S Ta U U S a
Z T Z S Z S Z

Y Y Z Y Y Z X X a
X X Z X X Z Z
y y y y x x a x
x x x x

+ + +
= = + + +

+ +
= + + + +

+ +
+ +

= + + + + =
+ +

 

2
3 3 3 3 1 1
2 4
3

3 1 3 3 3 1 3
4

2
2 1 2 3 1 3 3

13 2

2
31 2 2

1 3 3 1
1 2 2 3

1 2
1 3 3 1 3

1 2

( )( ) ( )

( ) ( )     

( )( )     

( / )     ( / )
( / )

     ( )( )

Y V X TU Z Z Y X
Z T

UT Z X X Z Z Y X
T

Z Y Y Z X X X Y
T T

XY Y Z X X Z Y
X X Z Z
y y x x x y y
x x

+ + + +
=

+ + +
=

+ +
= + +

+
= + + +

+

+
= + + + =

+
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The number of field multiplications is 9 and the number of squarings is 5. If 

2 0a =  or 1, then eight general field multiplications are required.  

1 2
2 2

3 1 1

4 4
3 1 6 1

4 2 4
3 6 1 3 3 2 3 1 6 1

 

( )

If P P
Z Z X
X X a Z
Y a Z Z X a Z Y a Z

=

=

= +

= + + +

 

 
 
3.3.2 Adding two point on elliptic curve over Fq 
 

A elliptic curve E defined over qF  is an equation： 

2 3
4 6y x a x a= + +  

where 4 6, qa a F∈ . Assume 1 1 1 2 2 2 1 2( , ),  ( , ),  and P x y P x y P P= = ≠ − . The sum 

3 3 3 1 2( , )P x y P P= = +  is computed as follows： 

2
3 1 2

3 1 3 1

2 1

2 1
2
1 4

1

 (mod  )
( )  (mod  )

where

     if 

3      if 
2

x x x p
y x x y p

y y P Q
x x
x a P Q

y

λ
λ

λ

≡ − −
≡ − −

− ≠ −= 
+ =



 

 

Similar to Subsection 3.3.1, the projective coordinates have been suggested to 

replace the inverse operation by multiplications, where a projective point 

( , , ),  0X Y Z Z ≠ , maps to the affine point 2( / , / )X Z Y Z . 

 

Let 2 2
1 1 1 1 1 2 2 2 2 2( / , / ) and ( / , / )P X Z Y Z P X Z Y Z= =  be two points on the elliptic 

curve E. 1If 1Z = , then the addition formula is 2
1 2 3 3 3 3( / , / ), whereP P X Z Y Z+ =  
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2
1 2 2 2 2

2 2 2
2 1 3 2 3

2
3 2 1 3 3 1 3

,  ,  ,  ,  

, ,  ,  
( )

A X Z B Z D X A E X A
F Y Y B X F Z DE Z BE
Y FZ E X Z X Y Z

= = = + = −

= − = − =

= − −

 

1 2
2 2 2

1 1 4 1

1 3 3 1 3 1

2
3 1 1

2
3 1 1

 
,  ,  3 ,  ,

,  4 ,

8 ,

2 16

If P P
A Z B X C B a A D Y
E X Z X Z Z Z D
X Z C X D
Y Y CE D Y

=

= = = + =
= − =

= −

= −

 

 
Proof ( case 1 2P P= )： 

2 2 2 2
3 1 1 4 1 1 1

2
3 1 1

22 2
1 4 1 1

1 1

22
1

42
1 1

1 1
2
1

2

1 4
1

1

(3 ) 8
4

3     2
2

3
     2

2

3     2
2

X Z X a Z X Y
Z Z Y

X a Z X
Y Z

X a
Z X

Y Z
Z

x a x
y

+ −
=

 +
= − 

 

 
+ 

 = −
 
 
 

 +
= − 

 

 

 
2 2 5

3 1 1 4 1 1 3 3 1 1
2 2
3 3 1 1

1
3 32 2 5

1 4 1 1 1
2 4

1 3 1 1

2
1

42
31 1 1

2
1 1 3 1
2

1

2
1 4

1 3 1
1

2 (3 )( ) 16
(4 )

3 16     
2 16

3
     ( )

2

3     ( )
2

Y Y X a Z X Z X Z Y
Z Z Z Y

X Z X
X a Z Z Y

Y Z Z Y

X a
XZ X Y

Y Z Z Z
Z

x a x x y
y

+ − −
=

−
+

= ⋅ −

 
+ 

 = − −
 
 
 
 +

= − − 
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3.3.3 Summary 
 

There are several kinds of projective coordinates. In this section, we propose 

some kinds and compare them with affine coordinates. In the following Table 3.2, I 

denotes the field inversion, M denotes the field multiplication and S denotes the field 

square. 

 
    Coordinates 
 
Field/Operation 

Affine 
Coordinate 

Projective 
Coordinate 

( / , / )X Z Y Z  

Projective 
Coordinate

2( / , / )X Z Y Z  

Projective 
Coordinate 

2 3( / , / )X Z Y Z  
Adding 1I+3M 15M 14M 16M 

qF  
Doubling 1I+4M 12M 14M 10M 
Adding 1I+2M+1S 13M+1S 9M+5S 15M+5S 

2mF  
Doubling 1I+2M+1S 7M+5S 5M+5S 5M+5S 

Table 3.2 Comparison of different coordinates. 
 
 
 

3.4  The Elliptic Curve Group Structure 
 
    In this section, we will discuss the Hasse’s theorem which can let us pick points 

P randomly and uniformly on an elliptic curve ( )qE F  in probabilistic polynomial 

time. 
 

    Let mq p= , where p  (a prime) is the characteristic of qF  and then let E  be 

an elliptic curve defined over qF . We denote # ( )qE F  as the number of points in 

( )qE F . 

 

    Because for each choice of qx F∈  having at most two solutions in Weierstrass 

equation, we know that # ( ) 2 1qE F q< + . For each choice of qx F∈ , if the 
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probability of having a solution of this equation in qF  is 1/2, and we would expect 

# ( )qE F q≈ . The following Hasse’s theorem confirms above assumption. 

 

Theorem 3.6 [26, p23] (Hasse) Let # ( ) 1 . Then | | 2qE F q t t q= + − ≤ . 

    In the next result, the possible values for # ( )qE F  are determined as E varies 

over all elliptic curves defined over qF , where mq p= . 

 

Lemma 3.7 [26, p24] (Waterhouse) There exists an elliptic curve / qE F  such that 

( )qE F  has order 1q t+ −  over qF  if and only if one of the following conditions 

holds： 

i. 20( mod ) and 4t p t q≠ ≤ . 

ii. m is odd and one of the following holds： 

(1). . 0t = . 

(2). 2 2  and 2t q p= = . 

(3). 2 3  and 3t q p= =  

iii. m is even and one of the following holds： 

(1). 2 4t q= . 

(2). 2  and 1 (mod  3)t q p= ≠ . 

(3). 0 and 1 (mod  4)t p= ≠ . 

 

    Lemma 3.7 was provided by Waterhouse. When q  is prime, the values 

# ( ) 1qE F q t= + −  will be uniformly distributed in the interval of 

[ 1 ,  1 ]q q q q+ − + +  which is centered at 1p +  when E  varies over all elliptic 
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curves over qF . 

 

    If p  divides t  then the elliptic curve E  is called supersingular, where 

# ( ) 1qE F q t= + − . Otherwise, it is said to be non-supersingular. It is well-known that 

if 2 or if 3p p= = , then E  is supersingular curve is determined by the next two 

theorems. 

 

Theorem 3.8 [26, 925] ( )qE F  is an abelian group of rank 1 or 2. The type of the 

group is 
1 21 2( , ),  . .,  ( ) ,q n nn n i e E F Z Z≅ ⊕  where 2 1|n n , and furthermore 2 | 1n q − . 

 

Lemma 3.9 [26, p25] Let # ( ) 1qE F q t= + − . 

i. If 2 ,  2 ,  or 3 , then ( ) is cyclicqt q q q E F= . 

ii. If 2 4t q= , then either 1 1( )q q qE F Z Z
− −

≅ ⊕  or 1 1( )q q qE F Z Z
+ +

≅ ⊕ , 

depending on whether 2  or 2t q t q= = −  respectively. 

iii. If 0 and 3 (mod  4)t q= ≠ , then ( )qE F  is cyclic. If 0t =  and 

3 (mod  4)q ≡ , then either ( )qE F  is cyclic, or ( 1) / 2 2( )q qE F Z Z+≅ ⊕ . 

 
 
 

3.5  The Elliptic Curve Discrete Logarithm Problem  
 

    There are many public key cryptosystems whose security rely on the basis of the 

presumed intractability of the discrete logarithm problem in some group G. 
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    The discrete logarithm problem in the multiplicative group *P
Z  is that given 

elements q  and r  of the group, and a prime p , find a number k  such that 

 mod r qk p= . If E  is an elliptic curve over qF , and P  is the point of the elliptic  

curve E , then the elliptic curve discrete logarithm problem (ECDLP) is that given a 

point Q E∈  finding an integer k  such that kP Q=  where k  is called the 

discrete logarithm of Q  to the base point P  if such an integer k  exists. 

 

Example 3-5： Let the elliptic curve 23( )E F ： 2 3 9 14y x x= + + , what is the discrete 

logarithm k  of (11,8)Q =  to the generator point (7,11)G = ？ 

 

Answer： 

There is one way to find k  that is to compute multiples of G  until Q  is found. 

The first eight multiples of G  are shown in Table 3.3. 

 

(7,11)G =  5 (8,0)G =  
2 (11,15)G =  6 (14, 20)G =  
3 (6,13)G =  7 (6,10)G =  
4 (14,3)G =  8 (11,8)G Q= =  

Table 3.3 The first eight multiples of generator point P. 
 

From Table 3.3, we can see that 8 (11,8)G Q= = , so the discrete logarithm of 

Q  to the generator G  is 8k = . It seems easy to find k , but it is important that in a 

real application, k  would be large enough such that it would be very hard to 

determine k  in this method. 
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3.6 The order of a point 
 

    Besides the elliptic curve discrete logarithm problem, the order of a point in an 

elliptic curve is also important especially the generator point. For each point G E∈ , 

there is a positive integer k  such that kG O∈ . The smallest positive integer is 

called the order of G . 

 

    If all the factors of # ( )qE F  are smaller than 2β  where β  is a security 

parameter, then the elliptic curve is considered to be weak. Otherwise, when # ( )qE F  

has an prime factor larger than β  bits, the probability of a generator point chosen at 

random yield a small subgroup which would weaken the scheme is proven to be 

negligible [28]. 
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Chapter 4 
 

Elliptic Curve Cryptography (ECC) 
                                                                      
 
 

Now, we will describe some protocols or algorithms used in cryptography based 

on elliptic curve. Therefore, we need to construct an elliptic curve if we want to use 

EC-based cryptosystem. There are some parameters that we need to find first such as 

the finite field (Fq or F2
m), the coefficients (a or b) of elliptic curve equation derived 

in chapter three, the order of E(Fq) (#E(Fq) or n), and the base point of E(Fq) 

(P=(x,y)). 

 
There were three steps proposed in [23] to select an elliptic curve. 
 

1. Let us select a curve at random, computer its order directly, and repeat the 

process until an appropriate order is fount [24]. 

2. If q = 2m where m is divisible by a “small” integer, we can find curve via 

subfield of F2
m [23]. 

3. Let us search for appropriate order, and construct a curve of the order. The 

approach is implemented using the complex multiplication method. Over a prime 

order field Fq, the complex multiplication method is also called the Atkin-Morain 

method. 

 
 
 

4.1 Analog of ElGamal Public Key Cryptosystem 
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The analog of ElGamal public key cryptography as shown in Table 4.1 is one of 

the popular cryptography, because the elliptic curve can be changed periodically to 

provide much security and this is no patent protected. 

 

As other ECCs, at first, it has to select finite Fq, an elliptic curve E define over 

that field and a generator point G E∈ . Every user chooses a random integer a 

(  or 
s es sd d ), which is kept a secret key by users, and computes the point 

(  or )
s ep px aG d d=  where x  is the public key.  

 
Protocol： 
          Alice              insecure channel              Bob 

Key Generation Key Generation 
1. Get private secret key 

ssd  

2. Public key calculates 
   

s sp sd d G= ⋅  

1. Get private secret key 
esd  

2. Public key calculates 
   

e ep sd d G= ⋅  

Encryption Encryption 
 
1. Choose randomly k 

2. Calculates following points: 
   2 2( , )

epx y k d= ⋅  

   1 1( , )x y k G= ⋅  

3. Encodes message pair 

   1 2 2 2( , ) with ( , ) :m m x y  

Encode message 1 2( , )c c  

 

 

Decryption Decryption 
 

  
 
 
 

epd  

 
 
    
 
 
 
 

1 1 1 2( , , , )x y c c  

 
 
 
 
 
     

1. Calculates following points: 
   2 2 1 1( , ) ( , )

esx y d x y= ⋅  

2.  1 2 1 2( , ) divided by ( , )c c x y  

    finds 1 2( , ):m m  

    decoded message 1 2( , ).m m  

Table 4.1 Analog of the ElGamal cryptosystem. 
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To send a message pair 1 2( , )m m  to Bob, Alice choose a random integer k and 

calculates k B⋅  and 
epk d⋅  (where 

epd  is Bob’s public key). To read the message, 

Bob multiplies 1 1( , )x y  by 
esd  and divides 1 2( , )c c  by 2 2( , )x y . 

 
 
 

4.2  Elliptic curve Diffie-Hellman key exchange (ECDH) 
 

    When we want to communicate in an insecure channel between two parties, a 

secret key in needed to achieve a safe communication. The protocol [1] of 

Diffie-Hellman key exchange was first proposed to allow the agreement on a secret 

key between two parties communicating over an insure channel. If two 

communication parties, Alice and Bob, want to agree upon a key which will be later 

used for encrypted communication in conjunction with a symmetric key cryptosystem 

such as DES, Triple DES, etc…, and they first choose an elliptic curve E over a finite 

field publicly and a generator point G E∈ . The important criterion in selecting G is 

that the smallest value on n for which nG O=  be a very large prime number (high 

order).  

  

    A key exchange between users Alice and Bob can be accomplished as follows： 

1. Alice select an integer An  less than n . This is Alice’s private key. Alice then 

generates a public key A AP n G= × ; the public key is a point in E. 

2. Bob similarly selects a private key Bn  and computes a public key BP . 

3. Alice generates the secret key A BK n P= × . Bob generates the secret key 

B AK n P= × . 

 
The two calculations in step 3 produce the same result because 
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( ) ( )A B A B B A B An P n n G n n G n P× = × × = × × = × . 
 
 
 

4.3  Elliptic Curve Digital Signature Algorithm (ECDSA) 
 

    A digital signature is a number which is generated by the secret key being kept 

private by the signer and by the contents of the message being signed. A signature has 

to be verifiable without using the signer’s private key. Signatures should not be able to 

forge under chosen-message attacks. The ECDSA is generally used and is one of the 

important signature schemes today. The ECDSA which was first proposed in 1992 by 

Vanstone [25] is the elliptic curve analog of the DSA. 

 

    If Alice wants to send a digitally signed message to Bob, then at first, they 

choose a finite field Fq, an elliptic curve E, defined over that field and a generator 

point G (with order n). Alice’s key pair is (d,Q), where d is her private key and Q is 

her public key. 

 

Protocol： 
ECDSA Key Generation 

1. Select a random integer [2, 2]d n∈ − . 
 
2. Compute *Q d G= . 
 
3. The public key of the user A is ( , , , )E G n Q  and the private key is d. 

Table 4.2 ECDSA key generation. 
 
 

ECDSA Signature Generation 
1. Select a random integer [2, 2]k n∈ − . 
 
2. Compute 1( 1, 1) and  mod nkG x y r x= = . 
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If then go to step 1. 
 
3. Compute 1  mod  nk − . 
 
4. Compute 1( )e SHA m= − . 
 
5. Compute 1( ) mod ns k e d r−= + ⋅ . If s = 0 then go to step 1. 

Here SHA-1 is the secure hash algorithm of FIPS PUB 180-1. 
6. Alice’s signature for the message m is the pair of integer (r, s). 

Table 4.3 ECDSA signature generation. 
 
 

    When Bob verifies Alice’s signature (r, s) on the message m, he obtains an 

authentic copy of Alice’s parameters and public key. Bob then does the following： 

ECDSA Signature Verification 
1. Compute 1( )e SHA M= − . 
 
2. Compute 1  mod nw s−= . 
 
3. Compute 1 2 mod n and  mod nu ew u rw= = . 
 
4. Compute 1 2 . If X u G u Q X O= + = then reject the signature. 
 
5. Otherwise compute 1 1 1 mod n where ( , )v x X x y= = . 
 
6. Accept the signature if and only if v = r. 

Table 4.4 ECDSA signature verification. 
 
 

    From Table 4.3 we know that 1( ) mod ns k e d r−= + ⋅ , so we can derive 

Equation (4-1) as follows： 

1 1 1
1 2( )  mod nk s e d r s e s rd we wrd u u d− − −≡ + ⋅ ≡ + ≡ + ≡ +              (4-1) 

 

From Table 4.2 we see *Q d G= , thus 1 2 1 2( )u G u Q u u d G kG+ = + =  and so  

v = r as require. 
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    If the signature pair (r, s) on the message m was really generated by Alice, then 

Bob can accept the signature if and only if v = r. 

 
 
 

4.4  Standards of Elliptic Curve Cryptography 
 

    There several organizations which develop standards such as International 

Standards Organization (ISO), Institute of Electrical and Electronics Engineers (IEEE) 

and Federal Information Processing Standards (FIPS). The organizations mentioned 

above are the most important for security in information technology. 

 
IEEE P1363 [14] 
 

IEEE P1363 was approved as an IEEE standard in February 2000. This document 

includes comprehensive coverage of well-known, widely marketed public key 

cryptography such as ECC, DL, and RSA based on ECDLP, DLP, and IF. ECC 

digital signatures and ECC key agreement schemes are documented in P1363. (ECC 

encryption and ECC key transport schemes will be specified in P1363a.) The latest 

draft is available at http://grouper.ieee.org/groups/1363/index.html. 

 
FIPS (Federal Information Processing Standard) 186-2：[12] 
 

National Institute of Standards and Technology (NIST) announced FIPS 186-2 in 

February 2000. The standard is the extension of its Digital Signature Standard (DSS) 

and the ECDSA specified in ANSI X9.62 is included. 

http://grouper.ieee.org/groups/1363/index.html
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ANSI X9F 
 

ECC is being incorporated into two American National Standards Institute (ANSI) 

Accredited Standards Committee (ASC) X9F (Financial Services) drafts. 

 

l ANSI X9.62 [17] – “Elliptic Curve Digital Signature Algorithm 

(ECDSA).” 

                

               ECDSA is the elliptic curve analogue of the Digital Signature 

Algorithm (DSA). The standard was published as an ANSI 

standard in January 1999. 

 

l ANSI X9.63 – “elliptic Curve Key Agreement and Key Management.” 

X9.62 and X9.63 are both used to apply in the financial services industry. 

 
ISO/IEC 
 

ECC is being incorporated into several ISO/IEC drafts such as ISO/IEC 14888, 

ISO/IEC 9796-4 and ISO/IEC 14946. 

 

l ISO/IEC 14888 specifies digital signature with certificate-based 

mechanisms and provides an overview if various digital signature 

mechanisms. 

l ISO/IEC 9796-4 specifies digital signature with message recovery and 

discrete logarithm-based mechanisms. 

l ISO/IEC 14946 specifies cryptographic techniques based on elliptic 

curves. 

 
Table 4.5 Standards of ECC. 
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Chapter 5 
 

Implementation of Arithmetic Processor for 

ECC and Simulation Results 
                                                                      
 
 

    We introduce the original architecture for GF(p) in Section 5.1. In Section 5.2, 

we present our modified architecture for dual-field GF(p) and GF(2m). Finally, we 

show our simulation results in Section 5.3.  

 

5.1  Architecture 
 

We adopt the architecture which is introduced in [30], and will modify it from 

GF(p) to support dual-field GF(p) and GF(2m).  

 

Their Elliptic Curve processor (ECP) can be divided into 5 levels hierarchically 

as shown in Figure 5.1. 

 

The operation blocks on each level from top to bottom are as follows： 

l Level 1：Main Controller (MC) 

l Level 2： 

1. Affine to projective coordinates converter (A to P) 

2. Normal to Montgomery representation converter (N to M) 

3. EC point multiplier (EPM) 

4. Projective to affine coordinates converter (P to A) 
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5. Montgomery to normal representation converter (M to N) 

l Level 3： 

1. EC Point doubling, addition circuit (EPDA) 

2. Modular Multiplicative Inverter (MMI) 

l Level 4： 

1. Montgomery Modular Multiplication Circuit (MMMC) 

2. Modular Addition, Subtraction circuit (MASC) 

l Level5：Addition, Subtraction circuit (ASC) 

 
Figure 5.1 EC point multiplier circuit block diagram. 

 
 

5.1.1 MC, NtoM, EPM, PtoA and MtoN 
 

l Main Controller (MC) 

    The START signal is the instruction signal from host. MC instructs, NtoM to 

start conversion from normal to Montgomery representation, EPM to start point 
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multiplication, PtoA to start conversion from projective to affine coordinates and 

MtoN to start a conversion from Montgomery representation one after another by 

setting START-NtoM, START-PM, START-PtoA and START-MtoN signals, 

respectively. The DONE-NtoM, DONE-PM, DONE-PtoA and DONE-MtoN signals 

indicate that the related operations are finished. The DONE signal indicates to the 

host that a complete point multiplication operation is finished and the results are ready 

on output ports. 

 

l Normal to Montgomery representation converter (NtoM) 

    The conversion of an integer x from the normal representation to the 

Montgomery representation is done as 2 2 1( , ) modMM x R xR R M−= . Multiplication 

by MMMC of two numbers that are in Montgomery representation will produce the 

Montgomery representation of product as 1( , ) modMM xR yR xRyRR M−= = 

modxyR M . Modular addition and subtraction of two numbers that are in 

Montgomery representation will produce the Montgomery representation of the sum 

or difference as  mod     mod    ( )  mod  .xR M yR M x y R M± = ±  Because of these 

relations; the Montgomery representation of the coordinates of P, the coefficient a 

and number 1 will be calculated in the beginning of point multiplication by the NtoM 

circuit and all the operations during the EC point multiplication will be done in 

Montgomery representation. 

 

    NtoM makes MMMC to execute 4 MMMs, 2(1, )  mod ,MM R R M=  

2( , ) modMM x R xR M= , 2( , ) modMM y R yR M= , 2( , )  modMM a R aR M= . 

 

l EC Point Multiplier (EPM) 

    EPM controls the execution of the Elliptic Curve Point Multiplication Algorithm. 

The circuit stays in IDLE state until the START-PM signal from the MC is set. 
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DONE-PM signal indicates that the scanning of the bits of k is finished, so the result 

of the operation can be read from the output ports. EPM instructs EPDA to start a 

point double operation by setting START-PAD signal and resetting ADD-DOUBLE 

signal and a point addition operation by setting START-PAD and ADD-DOUBLE 

signals. DONE-PAD from EPDA indicates the a point double or addition operation is 

finished. 

 

    Elliptic Curve Point Multiplication Algorithm is shown below： 

-1 0 2

Algorithm 1 : Elliptic Curve Point Multiplication          

Input:     EC point ( , ), integer ( ,..., )
Output:  ( ', ')                                                        

              

nP x y k k k
Q x y

= =

=

1. 
              2. for  from - 2 downto 0 do
              3.      2
              4.      if k =1 then
              5.          
              6.      end if
              7.end for

i

Q P
i n
Q Q

Q Q P

←

←

← +

 

 

l Projective to affine coordinates converter (PtoA) 

    After finishing the EC point multiplication the result point Q must be converted 

from mJ  coordinates to affine coordinates. This is done as 4( , , , ) ( , )X Y Z aZ x y→   

such that 2 3 and x XZ y YZ− −= =  [31]. 

     

    PtoA waits in IDLE state until the signal START-PtoA from MC is set. After it 

is set, PtoA visits the other five states in the following order and after DONE-MMM 

signal from MMM circuit is set in (PtoA-S5) state, PtoA sets DONE-PtoA signal and 

goes back to IDLE state. 

1. PtoA-S1：Z-1R = Modular Multiplicative Inversion of Z 

2. PtoA-S2：Z-2R = MM(Z-1R, Z-1R) 
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3. PtoA-S3：xR = XZ-2R = MM(XR, Z-2R) 

4. PtoA-S4：Z-3R = MM(Z-1R, Z-2R) 

5. PtoA-S5：yR = YZ-3R = MM(YR, Z-3R) 

 

l Montgomery to Normal representation converter (MtoN) 

Because the coordinates of the product point must be in normal representation, as 

a last action a conversion from Montgomery representation to normal representation 

is needed. This conversion requires two additional execution of the MMM operation 

with the inputs xR and 1, then yR and 1, as x = MM(xR, 1) = xRR-1, y = MM(yR, 1) = 

yRR-1. 

 
5.1.2 EPDA , MMI and MASC 
 

l EC Point doubling, addition (EPDA) 

When converting the input point P from affine coordinates to projective 

coordinates we take Z as 1. The Jm representation of P(x, y) is (x, y, 1, a). During the 

execution of point multiplication one of the points to be added is always P.  

4
1 2 2 2 2 2 1 1 1

Algorithm 2 : EC point addition and doubling                                                                                    

Input :    ( , ,1, ),  ( , , , )         Input :    ( ,P x y a P X Y Z aZ P X Y= = = 4
1 1

4 4
3 1 2 3 3 3 3 3 1 3 3 3 3

2
1 2

, , )
Output : ( , , , )                    Output : 2 ( , , , )                   

             1.                                                                  1

Z aZ
P P P X Y Z aZ P P X Y Z aZ

T Z

= + = = =

← 2
1 1 2 1

2
2 1 3 1 2 2

1 1 2

.                   2

             2.                                                                 2.                   2                
             3.            

T Y T X
T xT T T T T
T T Z

← ←

← ← ←
← 3 2 2 1 2 1 3 3

2
1 1 2 1 3

                               3.                 2               

             4.                                                                 4.                  

T X T T T T T T
T yT T X T

← − ← ←

← ← ← 3

2
4 3 5 2 1 4 1 1 3 3

2 2 4

2

             5.                                               5.                 2   

             6.                                                                6

T
T T T Y T T Y Z T T
T T T

← ← − ← ←

← 4
5 3 1 6 2

4 4 3 6 2 2 6 2

3 2 3 6 4 6 2 2

.  ( )         2
             7.                 2                                 7.  

 (a)        8. Z                                 (b)      8.  (

T T aZ T T
T T T T T T T T

Z T T T T T T

← ←
← ← ← +

← ← + ← + 4
1

2 2
3 5 6 2 3 4

1 1 4 3 3 6

)

             9.                                                                   9.                   Z
            10.                                           10

aZ

T T T T T
T TT X T T

← ← ←
← ← − 4 1

4 2
3 3 2 2 3 3 6 4

3 5 2 1 1 3

.  2  

            11.                                         11.  
            12.                                                               12.  

       

T T
aZ Z T T X X T T
T T T T T X

←

← ← − ← −
← ← −
4 4 2 4
3 3 3 3 1 2 2 1 3 5

4 4
3 3 3 2 3

     13. ( )                                     13.               2

            14. ( )                                                       14.  

aZ aZ Y T T T T T aZ T
aZ a aZ Y T T

← ← − ← ←

← ← −
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According to these properties we can take Z1 = 1 for EC point addition. Because 

there are both MMMC and MAS circuits available, these operations can be executed 

in parallel. EC point addition and doubling can be realized by Algorithm 2 (a) and (b), 

respectively. 

 

l Modular Multiplicative Inverter (MMI) 

    Modular multiplicative inversion is done according to Fermat’s theorem which is 

introduced in Section 2.2, 1 2 modpa a p− −≡ , if gcd( , ) 1d f = . Because the order n of 

the generator point used in the ECDSA operation is limited to a prime number, a 

multiplicative inversion is executed by using Equation (2.4).  

 

l Modular Addition, Subtraction Circuit (MASC) 

    Modular addition and subtraction are executed according to Algorithm 3 [21]. 

Algorithm  3 : Modular addition and subtraction                                          

Input :    M,0 A<M,0 B<M                Input :    M,0 A<M,0 B<M  
Output : C=A+B mod M                         

≤ ≤ ≤ ≤
 Output : C=A B mod M             

              1. '                                             1. '
              2. '' '                                          2. '' '
             

C A B C A B
C C M C C M

−

= + = −
= − = +

 3. if '' 0 then                                        3. if ' 0 then
              4.     '                                               4.     ''
              5. else                        

C C
C C C C

< <
= =

                                5. else
              6.     ''                                               6.     '
              7. end if                                                     7.

C C C C= =
 end if

 

 
 
5.1.3 MMMC 
 

    Because we want to propose a scalable Montgomery modular multiplication 

circuit, we replace the MMMC in [30] with the scalable MMMC in [32]. In this 

section, we will introduce the scalable MMMC [32] roughly. 
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    The original Montgomery Algorithm is shown below： 

1 1 0

Algorithm 4 : The original Radix-2 Montgomery multiplication      

Input :    m-bit operands ( ,... , ),  and ,0 ,
Output :                                                                 

m

m

X x x x Y M X Y M
S

−= ≤ <

1

1

                        

initial 0
for 0 to 1
     if ( ) is even
         then ( ) / 2
         else ( ) / 2
if   then  

i i

i i i

i i i

m m m

S
i m

S x Y
S S x Y
S S x Y M

S M S S M

+

+

=
= −

+
= +

= + +

≥ = −

 

 

    They propose an algorithm in which the operand Y (multiplicand) is scanned 

word-by-word, and the operand X (multiplier) is scanned bit-by-bit. This decision 

enables them to obtain an efficient hardware implementation. They call it Multiple 

Word Radix-2 Montgomery Multiplication algorithm (MWR2MM).They make use of 

the following vectors： 

( 1) (1) (0)

( 1) (1) (0)

( 1) (1) (0)

1 1 0

( ,..., , ),
 ( ,..., , ),
 ( ,..., , ),

( ,... , ),

e

e

e

m

M M M M
S S S S
Y Y Y Y
X x x x

−

−

−

−

=

=

=
=

 

 

where the words are marked with superscripts and the bits are marked with subscripts. 

The concatenation of vectors a and b is represented as (a; b). A particular range of 

bits in a vector a from position i to position j, j > i is represented as ...j ia . The bit 

position i of the thk word of a is represented as ( )k
ia . The details of the MWR2MM 

algorithm are given below： 
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(0) (0) (0)

(0)
0

(0) (0) (0)

Algorithm 5 : The MWR2MM                                              

1. 0 
2.for 0 to 1
3.     ( , )

4.     if 1 then
5.     ( , ) ( , )
6.        for 1  to  1

7.  

i

S
i m
C S x Y S

S
C S C S M

j e

=
= −

= +

=

= +
= −

( ) ( )

( ) ( )

( ) ( )

( 1) ( ) ( 1)
0 1,...,1

( 1) ( 1)
1,...,1

( )

         ( , ) 

8.           ( , )

9.        ( , )
10.     else
11.       for 1 to 1

12.            ( , ) 
13.       

j j

j j

j j
i

j j j
w

e e
w

j
i

C S C S x Y M
S S S

S C S

j e

C S C S x Y

− −
−

− −
−

= + + +

=

=

= −

= + +
( 1) ( ) ( 1)

0 1,...,1

( 1) ( 1)
1,...,1

     ( , )

14.       ( , )
15. If  then 

j j j
w

e e
w

S S S

S C S
S M S S M

− −
−

− −
−

=

=

≥ = −

 

 

The dependency graph for the MWR2MM algorithm is shown in Figure 5.2. Each 

circle in the graph represents an atomic computation and is labeled according to the 

type of action performed. Task A corresponds to three steps：(1) test the least 

significant bit of S to determine if M should be added to S during this and next steps, 

(2) addition of words from S, xiY , and M (depending on the test performed), and (3) 

one-bit right shift of a S word. Task B corresponds to steps (2) and (3). We observe 

from this graph that the degree of parallelism and pipelining can be very high. Each 

column in the graph may be computed by a separate processing element (PE), and the 

data generated from one PE may be passed to another PE in a pipelined fashion. 

 

A pipelined organization for the system is shown in Figure 5.3. The pipeline 

itself was named kernel in the figure and it is composed of p PEs. The other blocks 

represent memory, data conversion, and control unit. Each processing element in the  
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Figure 5.2 The dependency graph for the MWR2MM Algorithm. 

 
 

 
Figure 5.3 Pipelined organization for the multiplier. 

 

pipeline relays the received words to the next downstream unit. All paths are w-bits 

wide, except for the xi inputs (only 1 bit). The kernel itself does not limit the final 

computation precision. If more precision is required, it is only necessary to feed more 
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words. The final and intermediate results are stored in the queue. Gray boxes indicate 

registers.  

 

The control block function can be inferred from the algorithm description that 

was provided, combined with other data manipulation tasks that must be done to 

transfer data between the multiplier and the host system. 

 

The data path design for the case w = 3 is shown in Figure 5.4(b). It has a more 

complicated shift and alignment section to generate the next S word. When computing 

the bits of word j (step j), the circuit generates w-1 bits of S(j), and the most significant 

bit of S(j-1). The bits of S(j-1) computed at step j-1 must be delayed and concatenated 

with the most significant bit generated at step j (alignment). 

 
Figure 5.4 PE data path (a) block diagram and (b) logic diagram for w = 3 bits. 

 

Finally, Figure 5.5 illustrates what happens in last stage of the pipeline. A pair of 

redundant words ( ( ) ( ),i i
j jTC TS ) are generated each cycle for e clock cycles. The word 

adder can be used to add these pairs in order to obtain the result words ( )iC . Note that 
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only one extra cycle is needed to convert the result from the Carry-Save form to the 

nonredundant form. 

 

 
Figure 5.5 Converting the result from the Carry-Save form to the nonredundant 

form in the last stage of the pipeline. 
 

An example of the computation for 7-bit operands is shown in Figure 5.6 for the 

word size w = 1 provided that there are sufficient numbers of PEs preventing the 

pipeline to stall. Note that there is a delay of 2 clock cycles between the stage for xi 

and the stage for xi+1. The total execution time for the computation takes 20 clock 

cycles in this example. 

 

If there are at least 1/ 2e +    PEs in the pipeline organization the pipeline stalls 

do not take place. For the example in Figure 5.7 ,less than 7 1/ 2 4+ =    PEs cause 

the pipeline to stall. Figure 5.7 shows what happens if there are only three PEs 

available for the same example. 
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Figure 5.6 An example of pipeline computation for 7-bit operands, where w = 1. 

 
Figure 5.7 An example of pipeline computation for 7-bit operands, 

illustrating the situation of pipeline stalls, where w = 1. 
 
 
 

5.2  Modified Architecture for Dual-field 
 

    We modify the architecture introduced in Section 5.1. Thus, the architecture can 

support dual-field GF(p) and GF(2m). 

 
5.2.1 Modified NtoM, EPDA, PtoA and MMI 
 

l Normal to Montgomery (NtoM) 

    NtoM makes MMMC to execute 3 MMMs, 2(1, )  mod ,MM R R M=  

2( , ) modMM x R xR M= , 2( , ) modMM y R yR M= . 
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l EC Point doubling, addition (EPDA) 

    Because we want to make our architecture to support dual-field, the select of 

projective coordination is very important. From the comparison in Table 3.2, we 

choose the projective coordinate 2( / , / )X Z Y Z . That is,  

2 2
1 1 1 1 1 2 2 2 2 2

1 2 1
2

1 2 2 2 2
2

2 1 3 2

For ( )
Let  ( / , / ) and ( / , / ) be two points on the elliptic
curve .  , then the addition formula is :

 , Z 1 (addition)

,  ,  ,  ,  
, 

GF p
P X Z Y Z P X Z Y Z

E

If P P
A X Z B Z D X A E X A
F Y Y B X F Z D

= =

≠ =

= = = + = −

= − = − 2 2
3

2
3 2 1 3 3 1 3

1 2
2 2 2

1 1 1

1 3 3 1 3 1

2
3 1 1

2
3 1 1

,  ,  

( )

  (doubling)
,  ,  3 ,  ,

,  4 ,
8 ,

2 16

E Z BE
Y FZ E X Z X Y Z

If P P
A Z B X C B aA D Y
E X Z X Z Z Z D
X Z C X D
Y Y CE D Y

=

= − −

=

= = = + =

= − =

= −

= −  
 

2 2
1 1 1 1 1 2 2 2 2 2

1 2 1
2
2 1 2 2 1 2 2
2

3 3 1 1 1

For (2 )
Let  ( / , / ) and ( / , / ) be two points on the elliptic
curve .  , then the addition formula is :

 , Z 1 (addition) 
, ,

, , ( )

mGF
P X Z Y Z P X Z Y Z

E

If P P
U Z Y Y S Z X X T Z S
Z T V Z X C X Y

= =

≠ =

= + = + =

= = = +
2 2

3 2

2
3 3 3 3

1 2
2 2

3 1 1
4 4

3 1 6 1
4 2 4

3 6 1 3 3 2 3 1 6 1

( )

( )( )

  (doubling)

( )

X U T U S Ta
Y V X TU Z Z C

If P P
Z Z X
X X a Z
Y a Z Z X a Z Y a Z

= + + +

= + + +

=

=

= +

= + + +  
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Therefore, in GF(p), addition operation needs 14M and doubling operation needs 

14M. In GF(2m), addition operation needs 9M+5S and doubling operation needs 

5M+5S. Similar to Algorithm 2, in EPDA, we can get modified Algorithm 6 and 7 

shown below： 

1 2 2 2 2 1 1 1 1

Algorithm 6 : EC point addition and doubling in ( )                                                                   

Input :    ( , ,1),  ( , , )                     Input :    ( , ,

GF p

P x y P X Y Z P X Y Z= = =

3 1 2 3 3 3 3 1 3 3 3

1 1 2 1

)
Output : ( , , )                             Output : 2 ( , , )                         

             1.                                                              1.  

P P P X Y Z P P X Y Z

T X Z T

= + = = =

← ← 2
1

2 2
2 2 3 2 1 2 1 1 1

5 1 2 4 2 1

            
             2.                                            2.                     2                

             3.                                

Y
T Z T X T T Z T T
T YT T X T

← ← + ← ←

← ← − 2
3 1 1 1

2
3 2 3 5 2 5 2 1 4 3

2
1 4

           3.                    2               
             4.                                               4.                    2

             5.          

T X T T
T Z T T Y T T X T T
T T

← ←

← ← ← ←

← 3 1 1 3 3 4

3 2 1 4 1 3

                                                        5.                  
             6.                                                               6.               

Z Z T T T T
Z T T T X Z

← ← +
← ← 2 2 3

2
2 1 3 3 2 5 1

2
3 5

  

             7.                                                                7.                     2
 (a)        8.                                                 

T T T
T TT T T T T
T T

← +

← ← ←

← 3 1 3

1 2 5 3 3 2 5 1 5

2 1 4

      (b)       8.  
             9.                                            9.                 
            10.                                                   

T Z T
T Z T X T T T X T
T TT

←
← ← − ←

← 2
1 1 3 3 5

3 1 3 5 3 1 2 2

2
4 3

            10.                    
            11.                                                             11.                 2  

            12.             

T T X T T
T X Z T X Z T T
T Z

← ← −
← ← ←

← 2 2 3 1 1 1 4 4 5

1 2 5 2 2 4 3 1

                               12.                   
            13.                                                               13.                   2
    

T T X T YT T T T
T T T T T T T T

← − ← ← −
← ← ←

2 1 4 4 2 3

3 1 2 3 4 1

        14.                                                               14.  
            15. Y                                                           15.  

T YT T T T
T T Y T T

← ←
← − ← −

 

1 2 2 2 2 1 1 1 1

Algorithm 7 : EC point addition and doubling in (2 )                                                                 

Input :    ( , ,1),  ( , , )                      Input :    ( , ,

mGF

P x y P X Y Z P X Y Z= = =

3 1 2 3 3 3 3 1 3 3 3

2
1 2

)
Output : ( , , )                             Output : 2 ( , , )                         

             1.                                                                   1. 

P P P X Y Z P P X Y Z

T Z

= + = = =

← 2
1 1

2
2 1 2 2 1

3 1 1 2 2 2

             

             2.                                                              2.                              
             3.                             

T Z
T X Z T X
T YT T X T

←

← ←

← ← + 3 1 2
2 2

4 2 1 2 3 3 2

5 2 2 4 1 4

               3.                          

             4.                                               4.                  

             5.                  

Z T T
T T T Y T T T
T Z T T T T

←

← ← + ←

← ← + 2
4 1

3 2 5 5 6 4
2

3 1 4

                          5.               
             6.                                                                6.             

             7.                  

T T
T a T T a T
T T T T

←

← ←

← ← 2
4 5 1 1 3 3 5

4 4 5 2 2 3 3 1 5

                             7.                      
 (a)        8.                                                     (b)       8.                   

         

T T Y X T T
T T T T a Z T T T

+ ← ← +

← ← ← +
2

3 5 3 3 4 1 3 5 3 2 3

5 1 5

    9.                                              9.                                   
            10.                                                            

Z T X T T T Z T T T T
T T T

← ← + ← ← +

← 2 3 3

2 1 3 1 5 3 5 1 2
2

3 3 2 2 3

   10.               
            11.                                         11.              

            12.                                               

T X T
T X Z T T Z Y T T
T Z T T X

←

← ← + ← +

← ← +

4 1 2 5 1 1

3 3 5

3 3 4

      
            13.                                                
            14.                                                              
            15. Y         

T T T T X Y
T T T

T T

← ← +

←

← +                                                  
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l  Projective to affine coordinates converter (PtoA) 

    After finishing the EC point multiplication the result point Q must be converted 

from projective coordinates to affine coordinates. This is done as ( , , ) ( , )X Y Z x y→   

such that 1 2 and x XZ y YZ− −= = . 

     

    PtoA waits in IDLE state until the signal START-PtoA from MC is set. After it 

is set, PtoA visits the other five states in the following order and after DONE-MMM 

signal from MMM circuit is set in (PtoA-S5) state, PtoA sets DONE-PtoA signal and 

goes back to IDLE state. 

1. PtoA-S1： Z-1R = Modular Multiplicative Inversion of Z 

2. PtoA-S2： xR = XZ-1R = MM(XR, Z-1R) 

3. PtoA-S3： Z-2R = MM(Z-1R, Z-1R) 

4. PtoA-S4： yR = YZ-2R = MM(YR, Z-2R) 

 

l Modular Multiplicative Inverter (MMI) 

Because the order n of the generator point used in the ECDSA operation is 

limited to a prime number, a multiplicative inversion is executed by using Equation 

(2.4) 1 2 modpa a p− −≡ , if gcd( , ) 1a p = . So, multiplicative inversion can be done by 

modular exponentiation of a by p−2. By the way, because we only use one MMMC, 

we must adopt sequential modular exponentiation shown below： 

-1 1 0

E

-1

Algorithm 8 : Sequential Modular Exponentiation

Input:   T, M, E=( ,..., , )
Output: T  mod M                                                 

   initial R=1
   1.if = =1  then  R=T;
   2.for 

k

k

e e e

e
i k= − 2 downto 0

   3.     R=R R mod M 
   4.     if = =1 then R=R T mod M;
   return R;

ie
×

×
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Using Fermat’s theorem and sequential modular exponentiation, the inverse 

requires about 21.5log p  multiplications. That is, if the prime p = (pN-1,…,p1,p0), the 

inverse requires about 1.5N multiplications. 

 

 

5.2.2 Modified MMMC 
 

    From [30], it can be easily proved that MM(S, 1) ≤ M, if 0 ≤ S < 2M. We can 

rewrite Algorithm 4 as Algorithm 9 without final subtraction. 

 

1 0 2 1 0 2 1 1 0 2

Algorithm 9 : Radix-2 Montgomery multiplication without final subtraction 

Input :    (0, ,..., , ) , (0, ,..., , ) ,  ( ,..., , )
              with , [0, 2 1],  gcd( , 2) 1
Output : 

m m m

m

X x x x Y y y y M m m m
X Y M M

S

−

+

= = =

∈ − =
( 2)

2

1

1

2  mod  2                                                                 

initial 0
for 0 to 1
     if ( ) is even
         then ( ) / 2
         else ( ) / 2 

m

i i

i i i

i i i

XY M

S
i m

S x Y
S S x Y
S S x Y M

− +

+

+

=

=
= +

+

= +
= + +

 

 

The (m+1)-bits operands are split into w-bit words. For now, suppose that e 

words are used. Word and bit vectors are represented as M = (0, M(e-1),…, M(1), M(0)), 

( 1) (1) (0) ( 1) (1) (0)(0, ,..., , ), (0, ,..., , ),e eY Y Y Y S S S S− −= = 1 0(0, ,..., , )mX x x x= . M, Y and S 

are extended to e+1 words by a mostsignificant zero word. Then, from Algorithm 9, 

we can derive the Algorithm 10：MWR2MM for dual-field. 
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Algorithm 10 : The MWR2MM for Dual-Field                                                                                 

( )                                                                         GF p G

(0) (0) (0)

(2 )
1. 0, 0                                                               1. 0 
2.for 0 to 1                                                       2.for 0 to 1
3.     ( , )    

m

i

F
S C S

i m i m
C S xY S

= = =
= + = −

= + (0) (0) (0)

(0) (0)
0 0

(0) (0) (0)

                                      3.     
4.     if 1 then                                                      4.     if 1 then

5.     ( , ) ( , )             

iS xY S
S S

C S C S M

= +

= =

= +

( ) ( )

(0) (0) (0)

( ) ( )

                       5.     
6.        for 1  to                                                      6.        for 1  to  1

7.           ( , )              j jj j
i

S S M
j e j e

C S C S xY M

= +
= = −

= + + + ( ) ( )( ) ( )

( 1) ( ) ( 1) ( 1) ( ) ( 1)
0 1,...,1 0 1,...,1

( ) ( )
1,...,1

    7.           
8.           ( , )                                      8.           ( , )

9.        ( , )      

j jj j
i

j j j j j j
w w

e e
w

S S xY M
S S S S S S

S C S

− − − −
− −

−

= + +

= =

= ( 1) ( 1)
1,...,1                                         9.        (0, )

10.     else                                                                    10.     else 
11.       for 1 to         

e e
wS S

j e

− −
−=

=
( ) ( ) ( ) ( )( ) ( )

( 1) ( )
0 1,..

                                             11.       for 1 to 1

12.            ( , )                          12.             

13.            ( ,

j j j jj j
i i

j j
w

j e

C S C S x Y S S x Y
S S S−

−

= −

= + + = +

= ( 1) ( 1) ( ) ( 1)
.,1 0 1,...,1

( ) ( ) ( 1) ( 1
1,...,1 1,...,1

)                                   13.           ( , )

14.       ( , )                                              14.       (0,

j j j j
w

e e e e
w w

S S S

S C S S S

− − −
−

− −
− −

=

= = ) )

 

    Observing Algorithm 10, there is one difference between GF(p) and GF(2m).That 

is, it needs to consider carry out over GF(p) but it does not need over GF(2m). 

Therefore, we can replace Full adders (FA) in Figure 5.3 with our proposed Dual-field 

adder (DFA). 

 

Figure 5.8 Standard full adder. 

 

Figure 5.9 Dual-field adder. 
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DFA has one more input called Fselect (field selector) that enables this 

functionality. When Fselect = 1, the DFA performs the bitwise addition with carry 

which enables the multiplier to do operations in the field GF(p). On the other hand, 

when Fselect = 0, the output Cout is forced to 0 regardless of the values of the inputs and 

enables the multiplier to do operations in the field GF(2m). 

 

In Figure 5.9, the two XOR gates are dominant in terms of both area and 

propagation time. As in the standard full-adder circuit, the dual-field adder has two 

XOR gates connected serially. Thus, propagation time of the dual-field adder is not 

larger than that of full adder. Their areas differ slightly, but this does not cause a 

major change in the whole circuit. 

 

Thus, the modified block diagram of a processing element (PE) for w = 3 is 

shown in Figure 5.10 by replacing FA in Figure 5.3 by DFA. 

 
Figure 5.10 Modified Processing Element (PE) for w = 3 bits. 
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5.3  Simulation Results 
 

In this section, we will discuss the synthesis result of our design. We use TSMC 

0.25μm process technology and Synopsys Design Analyzer to synthesize our RTL 

code. The gate count of our design is the physical cell size reported by Synopsys 

Design Analyzer divided by the size of two input NAND gate (it has 4 transistors), 

NAND2X1. Our architecture uses 8PEs with wordsize = 8bits to perform 192 bits 

input. According to implementation results, the gate count is 26,774 (divided 12,949 

gates for the core and 13,825 gates for the memory) and Minimum clock period is 

3.5ns (Maximum clock rate 285.7MHz). We show the comparison of ECC hardware 

performance in Table 5.1 and Table 5.2 for GF(p) and GF(2m), respectively. In Table 

5.3, we compare the circuit size of our designed with [33] and [30]. Finally, the 

latency of the operations according to the clock frequency of the implemented circuit 

is given in Table 5.4 for GF(p) and Table 5.5 for GF(2m). 

 
 
Reference Field 

size 
(bits) 

Platform # of 
cycles 

Max. 
freq. 

(MHz) 

Operation 
time (ms) 

Notes 

Our work 192 0.25-μm COMS 
ASIC 

691 285.7 0.00242 8PEs with 
w=8bits 

[33] 192 0.13-μm COMS 
ASIC 

1345 363.6 0.0037 8x8-bits 
multiplier 

[30] 160 FPGA 484 91.308 0.0053 Systolic 
array 

Table 5.1 GF(p) ECC hardware performance comparison. 
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Reference Field 
size 

(bits) 

Platform # of 
cycles 

Max. 
freq. 

(MHz) 

Operation 
time (ms) 

Notes 

Our work 192 0.25-μm COMS 
ASIC 

591 285.7 0.00207 8PEs with 
w=8bits 

[33] 192 0.13-μm COMS 
ASIC 

1269 763.4 0.0017 8x8-bits 
multiplier 

Table 5.2 GF(2m) ECC hardware performance comparison. 
 
 
 
Reference Field 

size 
(bits) 

Platform Core 
size 

(gates) 

Memory 
size 

(gates) 

Total 
size 

(gates) 

Notes 

Our work 192 0.25-μm COMS 
ASIC 

12,949 13825 26,774 8PEs with 
w=8bits 

[33] 192 0.13-μm COMS 
ASIC 

19,935 9,720 29,655 8x8-bits 
multiplier 

[30] 160 FPGA  115,520 Systolic 
array 

Table 5.3 Circuit size comparison. 
 
 
 

Operations Sub-operations 
Execution time* 

ms 
NtoM 3MMM 0.00726 

EPM 
n EC point doubling+ 

n/2 EC point addition 
9.75188 

PtoA MMI+3MMM 0.70382 
MtoN 2MMM 0.00484 

EC point doubling 14 MMM 0.03386 
EC point addition 14 MMM 0.03386 

MMI 1.5N MMM 0.69656 
MMM  0.00242 

*For N=n=192 at 285.7 MHZ. 
Table 5.4 GF(p) latency of the operations executed in ECP. 
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Operations Sub-operations 
Execution time* 

ms 
NtoM 3MMM 0.00621 

EPM 
n EC point doubling+ 

n/2 EC point addition 
6.75192 

PtoA MMI+3MMM 0.60196 
MtoN 2MMM 0.00414 

EC point doubling 10 MMM 0.02069 
EC point addition 14 MMM 0.02896 

MMI 1.5N MMM 0.59576 
MMM  0.00207 

*For N=n=192 at 285.7 MHZ. 

Table 5.5 GF(2m) latency of the operations executed in ECP. 
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Chapter 6 
 

Conclusions 
                                                                      
 
 

    We have described an efficient and scalable implementation of an elliptic curve 

cryptosystem over dual-fields GF(p) and GF(2m). The processor can be programmed 

to execute a modular multiplication, addition/subtraction, multiplicative inversion, EC 

point addition/doubling and multiplication. We use the method of Montgomery for 

modular multiplication. Besides, we can find that addition and doubling formula need 

inverse operations in affine coordinate system. As a field inversion is still far more 

expensive than a field multiplication, we use a method that changes the affine 

coordinate system to projective coordinate system. We only need filed multiplications 

in projective coordinate system and finally need only one inversion operation when 

PtoA. By the coordinate system changing, we save much time to implement the ECC 

hardware. In other words, this speeds up the cryptosystem computation. Compare 

with others paper, our ECC design has relative smaller area and can provide better 

performance. Our design also provides scalability and can used for various 

applications. 
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