PR B AR E RO A T R &

Design and Implementation of a real networking system:

Problem taxonomy and solutions

R S A

EEEYY 3
R e g

H
H
Ht

EB nt+tn XA

R ARG AR R (TN AR T2 R %

Design and Implementation of a real networking system:
Problem taxonomy and solutions

S SR Student : Yi-Shuan Lee

I ERR gk Advisor : Chien-Chao Tseng

A Thesis
Submitted to Institute of Network Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
June 2010

Hsinchu, Taiwan, Republic of China

PEARA L EST

Design and Implementation of a real networking system:

Problem taxonomy and solutions

Student : Yi-Shuan Lee Advisor : Dr. Chien-Chao Tseng

Institute of Network Engineering
College of Computer Science

National Chiao Tung University

Abstract

Although many references-on programming techniques exist on
Internet, they are not organized systematically. Therefore, programmers
normally have to spend a lot of time searching for solutions when they
encounter problems during the development of a real system. Therefore,
this thesis aims to present some programming or development
techniques that can help programmers to identify and resolve the
development problems of a real system. We first summarize the problems
we encountered during the development of a real-life popular Internet

application—Remote Browsing of IP Cam, discuss how they affect the

system and then provide the solutions to these problems.

Our discussion includes the behavior of servers, the interaction of
clients and servers, the resource management, the error tolerance and the
exception handling of components. These discussions and experiences
are not only helpful to programmers of BRIC-like applications, but also are
beneficial to developers of other kinds of applications.

Keywords: Real network environment, System development

EERBEAARTEEFNBEDMERRS X
MEE: FEE EEHE . BEB AR

v 2 ;}% 354

RARTEERRLARAERE KEBIEF LAOHE BERNEF
BENH XS ZEERTAL EREARTEEEREZCERZNKEN LN
EESHENERKBABRTE - Bt - XRRXERTEAENSEZER
HEDHREARAEEMEN ARmIARBH AR R R2GUREEEREIE
B EAZAFRNER BELESFMURERERBERPIEZINRERE - £l
AimE LR IR ER —ERFOMEEEFAR D I H R HE LR ENE
RIFE -

KNimam X U —ERRAREE RIEA—EZER IP Cam 2 E (Browsing
Remote IP Cam; BRIC)%&E4l - /T BRIt R A ZIRNEFRIBEBER
73 - WRBERE - RR®XRTHNEEARB 2 AREEARENTH - BF
InANE R e 2 B E & SE T ENEREIE - B EHGILURBIIMR TR EIE -

REWXIRS L 2RBFBRETEEBRNZEARBFAENARE

2

o - BEABRNDZER FJGE T EENEREEFEE BRIC EHRENAR

WETRREI B Z BN Z EPRRF S R S ER AT 2 A /Y

BErE2EALEERZSZ/ -

B EERISIRIE - RAHE

HOPF RS LA AP Ee Ao 2D FIR R A0 AR R4
f%ﬁ§¥U£mi¢¢’$%¢mﬁ—@Aﬂéwf&ﬂﬁ’ﬂw$ LY S
BrhF4F R B e - Ao BB RERARGE - B4 o

> d g %—gﬂﬂfva@1w4—aﬂA»§wﬁsw ¥R
HEEa, §v ;}gg’ﬂ,\, \jﬁ';"\‘.g’ﬂg-ﬁ‘%\ +3‘\§fﬁx F— 8 ek e
EEBEIEA MO EA DT E el EPF T E A2 s - A
e
P

@\

ﬁ@}éﬁ_gi\.

d-_
(Rl S,
e § RIER

0 NF R

TR ERE - HFAIR KA FHACRBRE
BBEEMA LSS R o HPRL P KA e F oM

a‘%%‘*ﬂ@gﬁ»ﬂﬁﬂa‘g%?’zﬁ - B KRS EDHADL IR iR

PEBEROBEAER T ARFHRT L TAFY O L G
NG EHFEAS FAANLR BAEE AT 6 T ok W E A
CEA R IR) FRRIEME RS AR Fli G iPaip e
Fi ifﬁvr—'m?”b?ai"“;{g °

G Arend A ’?Eﬁiﬁkug\{— PSS FIe— HF LA LE R RO
_ iz llija‘ff'/ﬂ- o;ﬂ:]";ﬂ:]"J E NI o 4 \g{iT.: \&13\\ X =~ KIE N F ol R
Gunter ¥ 8 L4 aAf- ig- & R AP apgfofies » #Fraaprd g
SFEREEERY NGBS SEPE - PR RE RGP BB Z
feA B BEaf £ A k- ERHEPEF R | 5 AR BRHD & REE H P
oo RS R HR AL eR g o frin - Ao B gk Ac T # T 5E 0 B -

EERARFRANAATESGLE P FENEEY AR XY AR AER
APRE BT ApF e £ 0T, FR 2 g AGRF R PR ARl
S LS IECIRURINE i U RS S S SR EUE S R

=

/f 5533_'14’*\'@4}3T’ﬁ:fﬁt?\’#iﬁ;”;\‘.’ﬁgﬂ;b;;{lgg,}ﬁj” 1
J‘,ﬁg,g:w?d N ’i’é{?‘\%ﬂi" 4 L ;}}7‘\;1‘_&;';,;;7‘ i 3oy {L%g;\‘.

e 3 o FlE3F 5 A deadline wend AR fRbug AP A AT E
Bos Bl A G EERT R & bk e sk b i - 7’ﬂééiﬁﬁﬁﬁ
W‘ﬁ@ﬁiﬁiﬂﬁﬁi$oﬁ%¢§4%$fp%%?b%mwgﬂﬁﬁa
LIEi@en QB A A £ LB L MPF 4 G Pt FIEA 0 F A AT A
S F TfeR AT B oo FERAN G (AR g o Tasklm%; i - 2

v ez

Vi

> Vincent» L £ » P& > Harry 4o Artist > %3 87 Ufcin i 2§ > - 428 ¥
S RN SRR AR T S B N R
3t Ak & - - AR TR FR AR L0 (R) T g b
ﬂ}“/)»)ii'%’l\?'” K&7 RN PE L PR et BouF 2 A kena v4
VR € AR R ARE R |

PN

PN

WRIEEH BT kg fen] £ EANE Ty 4 RE B HE &S > U
RS %$#$%i$’wﬁiﬁmﬁ*44ﬁm& > 4 v, S A ok vh e
Gl F R AR IE A £ A b X a4 viﬂ} {4 7 © #3— & A

SR 1 ﬁmﬁm—-%%% TRFATIEREIREAAR BRI ELFF
AR N SR RN AY L ANSIIEMERE L FAST 2 o
R R 1‘7;%1&)‘;;”3@,%, A A E TR TR KA R
ABEIPFAEHT 2 E X AT ARG o F R Y BE B
WenT 4P A £ H F A ﬁ,@ e gk B~ BAefe i E > uwm Ay R
BREMFE R TR UE ¥ foAF R SRR L B AR B
B ek o AR EEEALBA T RF BN - LG FLEP s auR
R R EAR R S

P2

EREY G Rl o -Q);J\‘ &GS = s S R FHE 5T) ifﬁ' 4 o é—§4#f
o FLinE N ;g;wﬂuzg, e
@“ﬂ’ﬁﬂ%ﬂﬁﬁ%ﬁiﬁiéﬁ:&iﬁi’ﬁﬁa?ugﬂgﬁw%
FEEAF o ANE S mfli:nffp FNNE O AANY S P EEESFESS A D
dend FEfefles o SRR IR A S DL @ F o S B L R R R -
Em AR E AP Ao AP R SRS A Eo g AN B

'h%;©

ED

vii

CONTENTS

N 0] 1 (o SRS ii
PR dE R s iv
BB e e e e e e e e e e e e e e e e e a—e e e e e arreaeeannes Vi
CONTENTS ..ttt bbb sen e e nneesnneenee s Vil
LIST OF FIGURES ..ottt X
LIST OF TABLES ...ttt bbbt Xii
Chapter 1 08 0o 11 Tod £ o] o SRR 1
Chapter 2 BacKground ..o e 2
2. L. N AT e ra s 2
2.1.1. NAT MaAPPING -ttt 2

2.1.2. NAT FITErING ... iiiilitne e 6

2.1.3. NAT TraVEISaAl i oo it ittt 9

2.2, FaIINESS MEASUIEiuueeeeiueesiaataneeea bt tneseesseesaeeseesseesseensesseesseessesseessenssens 10
Chapter 3 System ArChIteCTUNE. it 13
3.1, System DeSIgN PUIPOSE.ccuiiieiieieiieeniesiesiee sttt sie e sie e 13

3.2, ANEXAMPIE oo 14
321, ATCHITECTUIE. ... s 15

3.2.2. ComPONENE OVEIVIBWcoviiiieiiieiiieie st 18

Chapter 4 Development problemsccevieiiiieiicie e 22
4.1. OS related ProbIemS........c.coviiiiieiieie e 22
4.1.1. Limited cONNECION PAIF.......c.ccveiviiieiierece e 22

4.1.2. Unfair Resource Sharing.........cccoceeveiieiieie e 28

4.2. Programming ProbIEMSccoveeiiiiieiieie e 32
4.2.1. Imprecise relay path confirmationc.cccooe e, 32

4.2.2. Connection biNdiNg €rror.........cccccvveveiiieieere e 36

4.2.3. SeSSION INTEIErENCEeoveieieecc e 42

4.2.4. Incorrect Packet AlIGNMENtcooevveiiiii i 44

4.2.5. Short Internet disconnection effect..........cccccvvrieiiiiiiiniiiciienn, 46

4.2.6. Abnormally offline.........c.ccceiieiiiiiie e 47

Chapter 5 CONCIUSIONocviiiiicc e 51

REFERENCE

LIST OF FIGURES

Figure 2-1 NAT mapping table ..o 3
Figure 2-2 Independent MAapPINGcccueeeeiierieeieseeseee st se e eesae e e sae e sreenee s 4
Figure 2-3 Address dependent MapPiNgcoeeeeerieienenese st 5
Figure 2-4 Address and port dependent MapPINgccocceveererierieeneeie e 5
Figure 2-5 Independent fIltEriNGcccoieiiiiiiee e 7
Figure 2-6 Address dependent MapPingcccvoveieeieeieieeie e se e 8
Figure 2-7 Address and port dependent MapPingccceevvereeresieeneeresieeseeseseeseeneens 9
Figure 3-1 SYStEM SCENAIO.......ueiieeieiieiieeie sttt se et et ste e s e e nneeneenns 14
Figure 3-2 Architecture 0f BRICoooiiiiiiiiec e 16
Figure 3-3 Steps 0f CONNECLION SELUP....ccvvirieieeriieie e et 17
Figure 3-4 Steps of streaming data tranSMISSION. ..c..c.eoeeieerieriesee e 19
FIGUIE 3-5 REIAY ..c.vveueiiiiecieeie i s e iesssssest e dias e ssaesteaneesseesteansesseenseansesnaeneeeneenrs 21
Figure 4-1 Function declaration of seleCt()...........ccooiiieiieee e 23
Figure 4-2 Adding fd 3,4, 5,7, 8,9 inthe fd_Set........cccocvviiviieiieiii e 24
Figure 4-3 fd_set array with fixed Size 1024 ... 24
Figure 4-4 Scenario of unfair resource Sharing..........ccocceveeeneeniieie e 29
Figure 4-5 FIFO method — NOrmal CaSe.........c.ooeeiiiiiiienesie s 30
Figure 4-6 FIFO method — B runs faster than A..........cccooe e 31
Figure 4-7 Path confirmation between only two NOdescccoccvviveivevecieie e 32
Figure 4-8 End Device Initiated Confirmationccoocvvvvevieeiiesie e 33
Figure 4-9 Exception situation in Relay path confirmation.............ccccoceveiiiinnnnnns 34
Figure 4-10 Server Controlled Confirmation............ccoceveiieniinienie e 35
Figure 4-11 Output messages when server accepts new CONNECtions............cceceeeenee. 37

X

Figure 4-12 Output messages when new threads are createdcccceevvevvevirenenne. 37

Figure 4-13 Function declaration of pthread_create()ccceovevvrierveresiieseeie s 38
Figure 4-14 An example code of pthread_create()cccccvevevieerveieviiese e 39
Figure 4-15 One 10cation Per CONNECTION.curieierieiie e 40
Figure 4-16 CritiCal SECHIONoieiiiiiiiie e e 41
Figure 4-17 SeSSION INTEITEIENCEcceoiieiiiiecieeie e e 43
Figure 4-18 Incorrect packet alignment...........cccooviiiiicie e 45
Figure 4-19 Solution to incorrect packet alignmentccccovevieieiieeve e 46
Figure 4-20 Example code of SEtSOCKOPL() ...ovvvivvervreiiiieieeie e 47
Figure 4-21 Real time announce by Relay Server ... 49

Xi

LIST OF TABLES

Table 4-1 Comparison of two methods

Table 5-1 Improvements after modificationccceoveiiiiiii i

xii

Chapter 1 Introduction

There are few related articles and books about developing a real
system, so programmers have to spend a lot of time to search for
solutions when they encounter problems. Therefore, we want to provide a
reference for building a real system, decrease people’ s searching time so
that they can focus on implementation.

We can find many papers that discuss the topic of system design or
system architecture, but some of them,just focus on one component,
which is too narrow [1]; others just discuss the architecture of a system
but don’ t describe the detail of components and implementations [2].
This article includes both of them, from architecture design to component
design and interaction between components. Based on our experience of
developing a system and using the product in real life, we summarize the
problems we faced, and discuss how they affect a system and provide

their solutions.

Chapter 2 Background

2.1.NAT

Network Address Translation (NAT) [3, 4, 5, 6] is a mechanism where
a device performs translations to the address and port number of a
packet. NAT alleviates the IPv4 address exhausting problem by mapping
multiple private IP addresses to one public IP address, so hosts on a
private network can access the Internet using the public IP address
allocated by the NAT. In the following, we first introduce two primary
functions of an NAT — mapping and filtering [7]; then we state the NAT

traversal problem and list some existing solutions to it.

2.1.1. NAT Mapping

The NAT mapping is required to maintain a session between the
internal network and the external network of a NAT. When an internal host
starts an outgoing session through a NAT, the NAT assigns an external
(public) IP address and a port number to the session so that subsequent
response packets from an external host can be received by the NAT,

translated, and forwarded to the internal host.

2

Src 192.168.0.7:5100

»|c Src 140.113.215.188:12345

Dst 140.113.21.88:747

Src 192.168.0.5:1278

Dst 140.113.21.88:747

Src 140.113.215.188:13579

Dst 140.113.23.89:27

Dst 140.113.23.89:27

#[140113.215.188 |

| 192.168.0.1 |

.

Mapping Table

Internal IP/Port Local NAT Port
192.168.0.7 5100 12345

192.168.0.5 1278 13579

Figure 2-1 NAT mapping table

A NAT maintains a mapping table (also called masquerading table)

which records several [internal IP: port] and [external IP: port] tuple entries

such as Figure 2-1. According to the'mapping table, the NAT is able to

translate the [internal IP: port] in a packet header to an [external IP: port]

for routing outside the NAT. NAT mapping behaviors can be classified into

three categories:

® Independent: The sessions start from the same [internal IP: port]

are mapped to the same [external IP: port], although their

destinations are different. For example, in Figure 2-2, no matter

the internal host, node A, sends packets to the different ports P1,

P2 on node B or P3 on node C, NAT would assign the same

3

[external IP: port] (Pa) to those sessions.

Public network

Private network

192.168.0.7

Node C
140.113.215.183

Figure 2-2 Independent mapping

® Address dependent: The sessions from the same [internal IP: port]
to the same destination host'are mapped to the same [external IP:
port], regardless of the port number on the destination host. For
example, Figure 2-3 shows that NAT would assign (Pa) when node
A sends packets to P1 and P2 on node B, but when the destination

is node C, the NAT assigns (Pb) to the session.

Public network

Private network

ode B
140.113.102.173
Node A -~
192.168.0.7

Node C
140.113.215.183

Figure 2-3 Address dependent mapping

® Address and port dependent: Only the sessions from the same
[internal IP: port] to the same destination IP address and port
number are mapped to the same [external IP: port]. As shown in
Figure 2-4 , if the destination IP addresses or ports are different,

NAT would assign different [external IP: port].

Public network

Private network

Node C
140.113.215.183

Figure 2-4 Address and port dependent mapping

2.1.2. NAT Filtering

When an internal host opens an outgoing session through a NAT,
the NAT assigns a filtering rule for the session. The filtering rule means
what criteria are used by the NAT to filter packets originating from
external hosts, in other words, according to the filtering rule, the NAT
decides what packets can pass and forwards them to the internal host; on
the contrary, the packets that don’ t meet the rule are dropped by the
NAT. The same as above, the NAT filtering behaviors can also be classified
into three categories:

® Independent: Internal-hosts behind the NAT send packets to any
external IP address is sufficient to allow any packets from external
host with any IP address and port back to the internal host. As
shown in Figure 2-5, once node A sends packets through the NAT,
any inbound packets from external hosts such as P1, P2 and P3

can pass the NAT and be received by node A.

Public network
-j
Node B

140.113.201.187

ke 1 " L- \ 1 I 3
192.168.0.7 NAT
S

Node C
140.113.215.188

Private network 10°

Figure 2-5 Independent filtering

Address dependent: In order to receive packets from a specific
external endpoint, it is necessary for the internal endpoint to send
packets first to that specific external endpoint's IP address. For
example, Figure 2-6 shows that once the session has been
established between node A to node B, only inbound packets from
external host, node B, such as P1 and P2 can pass through the NAT.

Packets from node C, on the other hand, are dropped by the NAT.

Public network
Session . e B

to B:P1 L,.'; 140.113.102.173
Node A e E)
192.168.0.7 NAT
S

140.113.215.183

Private network 1.°

Figure 2-6 Address dependent mapping

® Address and port dependent: This behavior is similar to the

previous one, but it’ s stricter because the external port is also
relevant. If internal hosts want to receive packets from a specific
external host, it is necessary for them to send packets first to that
specific external host's IP address and port. For example, in Figure
2-7, once the session has been established between node A and
(P1) of node B, only inbound packets from P1 can pass the NAT.
Packets from (P2) of node B and (P3) of node C are all dropped by

the NAT.

Public network
Session . e B

to B:P1 L,ﬁ 140.113.102.173
Node A el
192.168.0.7 NAT @
S

140.113.215.183

Private network 1.°

Figure 2-7 Address and port dependent mapping

2.1.3. NAT traversal

As described before, an-external node which locates outside the
NAT can send packets to an internal node only because the internal node
sends out packets first. Consequently, an external node cannot initial
communication to an internal node behind the NAT. This is widely known
as the NAT traversal problem. Although using IPv6 technology, which
does not need NATs, is the long term solution to the IPv4 address
exhausting problem, the technology has not spread to home network yet.
So, the NAT traversal technologies are still important and the demand for
it is increasing.

NAT traversal approaches can be roughly classified into following

9

three types [8]:

® NAT Behavior-based type: This type of NAT traversal approaches
can use regular NATs without modification; the goal of NAT
traversal is achieved by modifying the applications. This type of
approaches is mostly used in the real life such as STUN [9], TURN
[10] and ICE [11].

® NAT Control-based type: This type of approaches creates NAT
mapping by adding functions to a NAT device, so programmers
need to have the permission to do modifications on the device. An
example to NAT Control=based approach is UPnP IGD [12].

® NAT-less type: This type‘of approaches, such as IP 4+4 [13], solves
the problem by its own process without the NAT. Approaches of
this type are considered less practical and hard to implement in

real life because they may need to modify the protocol stack.

2.2.Fairness measure

Fairness measures [14] are used in network engineering to
determine users or applications are receiving a fair share of system
resource.

1. Jain’ sfairness index [15]
10

Jain’ s equation,

fairness = (ZX‘)2
in-inZ)

rates the fairness of a set of values where there are nusers and x;is the
throughput for the 1th connection. The result ranges from % (worst case)
to 1 (best case), and it is maximum when all users receive the same
allocation. This index is %when k users equally share the resource and the
other n - k users receive zero allocation.

Above is the mathematical explanation of Jain' s fairness. After that,
we use an example to describe itin vernacular. Assume there are ten
bowls of rice and five people who want to'share them, the fairest way to
share the bowls in Jain" s fairness index is everyone gets two bowls, in
spite of their different appetite. That is to say, in Jain" s fairness index,

"fairness” means everyone has equal opportunity to access resources
no matter what their own demands are.
2. Max-min fairness [16]

In Max-min fairness, resources are distributed to everyone according

to their demand. Continue using the above example, assume the five

people who want to share the rice are composed of two boys, one girl

11

and two children, so the fairest way to share the bowls in Max-min
fairness may be three bowls for boys, two bowls for girl and one bowl for
the children. Unlike the unconditional equality in Jain" s fairness,

everyone gets just what they need in Max-min fairness.

12

Chapter 3 System Architecture

3.1.System Design Purpose

We want to build a system that supports users watch remote image
through the web browser, which is very simple and convenient.

Take Figure 3-1 for example, the left part represents a room, a
house or any place that have things users care about, so they put an IP
camera in there. The right part can be an office or a school. Parents may
want to see whether their children'are safe at home while they are
working, or students may miss their pets when they are at school. At this
time, all they have to do is get on'theInternet and open the web browser,

than they can see what they want to see.

13

Relay Server

. . . Relav
Direct Connection Y

Office

Figure 3-1 System scenario

The place of the IP camera may be far-from the user’ s office or

school, and both places are likely.to be under some complicate network

environment, for example, multiple NATs. This kind of system provides

NAT traversal mechanism for building direct connections through NATs. If

the direct connection can’ t be build successfully, there is a Relay server

to help both sides deliver packets. Above mechanisms are used to make

sure users can watch images they are interested in no matter where the

image is.

3.2.An Example

In this section, we use the system we developed as an example to

14

introduce this kind of system. The system we developed is called Browsing
Remote IP Cam (BRIC), we describe the system architecture and make an

overview of components in BRIC.

3.2.1. Architecture

Figure 3-2 is the architecture of BRIC system. There is an IP camera

on the left side of the figure, the IP camera contains two components: a
user agent (UA) that we implemented and a media server which provides
media streaming. On the right side there is-a web browser, there are also
two components in the web browser: an UA and a media player that can
play the media streaming on the browser. For simplicity, we use the word

"Device” to represent the IP camera side and "Browser” to represent
the web browser side in the following article. On the top of the figure
there is a third-party server which keeps the location of every active
device. Between the device and the browser, there are two servers: an
XSTUNT server and a Relay server, both servers provide help for

connection setup between a device and a browser.

15

. Data

—— Control

Third-Party
Server

XSTUNT
Server

Relay

I Server

UA

|
Device Browser

Figure 3-2 Architecture of BRIC

We first describe the steps of connection setup to show the general
idea of the system and the role‘of each component in the system. Then we

introduce each component more detailed.

16

Data

w— (Control

Third-Party

@ Server ‘
“) (5)
XSTUNT

b

Server
_.'(3)
4—-‘—‘*"'
UA =g L Server = UA

Device

Browser

Figure 3-3 Steps of connection setup

Figure 3-3 shows the steps of connection setup.

Stepl. When a user connects to the portal site of the system and

clicks the icon of a specific device, it means the user wants to watch image

of this IP camera. A message is sent by the portal to the third-party server

to ask it to find the device.

Step2. The third-party server finds the specific device and notifies it

that someone wants to build a connection with it.

Step3. The device registers at the XSTUNT server and the Relay

server after it is notified by the third-party server.
Step4. After Step3 is finished, the device tells the third-party server

17

that it is ready.

Step5. The third-party server then tells the browser that the device
is ready.

Step6. The browser registers at the XSTUNT server and the Relay
server.

Step7. After above six steps of message exchanging, the device and
browser start trying to build a direct connection through the help of
XSTUNT server. The Relay server is used if the direct connection path

can’' tbe built.

3.2.2. Component Overview

In this section, we make an overview to the components in BRIC
system. We only focus on the three components we developed, so the
media server, media player and the third-party server are beyond the
scope of this discussion.

User Agent (UA)

The UA executes on both device and browser sides, including two

kinds of functions.

First kind of functions uses NAT traversal technologies to establish
18

connections to pass through NATs. As describe before, according to
different network environments, there are direct connection paths and
relay paths.

Second kind of functions is to help users to watch remote image on
browsers. These functions work after the connection is built, which means
the path for data transmission is decided, no matter it is a direct
connection path or a relay path. The path is considered as a tunnel,
control message and data are encapsulated by a UA header and flow
inside the tunnel. Figure 3-4 shows the steps of streaming data

transmission.

UA

Device Browser

Figure 3-4 Steps of streaming data transmission

Stepl. The browser UA sends a command to device to ask for media
streaming
Step2. The device UA receives media streaming from the media

19

server
Step3. The device UA sends the media streaming to the browser UA
Step4. The browser UA passes the media streaming to the media

player, so the user can watch it.

XSTUNT

XSTUNT [17] is an open source, and we made some adjustments to
make it suitable for our system.

XSTUNT is an extension to STUNT [18]; it implements partial functions
of STUNT, so we talk about STUNT before introducing XSTUNT.

STUNT is an abbreviation of“Simplée Traversal of UDP through NATs
(STUN) and TCP too” . STUN [9] is an NAT traversal method for UDP, and
STUNT extends STUN to include TCP functionality, which allows
applications running behind NATs to obtain their external IP and
port-binding properties, packet filtering rules and various timeouts
associated with TCP connections through the NAT.

XSTUNT is a C/C++ library which implements the “STUNT #2"
approach in [19]. It provides a set of simple functions and a particular
XSTUNT server, through the cooperation of these functions and the server,

20

XSTUNT helps hosts behind NATSs to establish a TCP direct connection.

Relay

The device and the browser are relay clients, and the Relay server
forwards data from one side to the other side. As Figure 3-5 shows, the
device and the browser each build a connection with the Relay server, and
they can send data to each other through the Relay server. The Relay
server ensures every user can connect to their device to watch image, so it

is the last line of establishing connections.

" S S
Device Browser

Figure 3-5 Relay

21

Chapter 4 Development problems

According to their caused, problems we encountered in developing a
system can be classified into two categories, which are OS related
problems and programming problems. OS related problems are caused
by the behavior of OS, and programming problems has nothing to do
with the OS, they happen because of there' s some mistakes or
negligence in writing the program. In the following, we introduce the two

kinds of problems.

4.1.0S related problems

4.1.1. Limited connection pair

Every server has an approximate upper bound of number of clients it
can serve. Here we observe a problem that a server can’ t serve new
clients while number of clients currently served is still far from the upper
bound. In the following we will describe two possible causes of this

problem and provide their solutions.

4.1.1.1. Resource allocation limitation caused by OS

Here we use the limitation of select() system call as an example[22,

22

23].
In the beginning, we introduce the se/ect() system call. UNIX

applications use select()to monitor multiple fds to see whether they are

“ready” ornot. Anfdis considered “ready” ifitis possible to perform
some I/O operation (e.g., read, write) without blocking. Figure 4-1 is the
declaration of select(). The nfdsis the largest fd number actually used; the
timeout controls how long the se/ect() will return if no fds become ready;
fds are added into an /d_setfor select()to monitor, there are readfds,

writefds and exceptfdsfor reading, writing and exception events

respectively. The 7d_setcan be regarded as an array, if we add an fd into it,
the entry corresponding to the fd-numberis marked. One fd is mapped to
one specific location in 7d_set. Figure 4-2 is an example of adding fd 3, 4, 5,

7, 8,9 into the fd set

#include <sys/select.h>

int
select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
struct timeval *timeout):

Figure 4-1 Function declaration of select()

23

Figure 4-2 Adding fd 3,4, 5,7, 8, 9 in the fd_set

Next, we talk about the limitation caused by OS. The fd_set has a fixed
size 1024 decided by the OS, so the index of the array starts from 0 to
1023. That is to say, the maximum fd number that can be added into the
fd_set is 1023 (Figure 4-3). Buffer overflow will happen if we add an fd
larger than 1023 into the fd_set, and it may bring about some potential
problems on the program. Note that it is‘hot the amount of fds but the fd
number that is restricted by the OS limitation, and the OS assigns fd
number incrementally. Take our system for example, a pair of clients build
three connections with the Relay server, so there are only 341 (1024/3)
pair of clients can be simultaneously served, which is not good enough

for a server that used by a lot of people.

0 1 2 1023

Figure 4-3 fd_set array with fixed size 1024

We provide two ways to solve this kind of situation.

24

Solution 1. Modify and re-compile the kernel to change the size of

fd_set

Following are the modifications made in our BRIC system

lusr/include/bits/typesizes.h:63:

define _ FD_SETSIZE 4096

/usr/include/linux/posix_types.h:25:

define _ FD_SETSIZE 4096
lusr/src/redhat/BUILD/kernel-2.6.23/linux-2.6.23.i686/include/linux/posix_types.h:25:
define _ FD_SETSIZE 4096

sysctl -w net.core.rmem_max=8388608

sysctl -w net.core.wmem_max=8388608

sysctl -w net.ipv4.tcp_moderate_rcvbuf=1

sysctl -w net.ipv4.tcp_rmem="32768 87380 8388608"
sysctl -w net.ipv4.tcp_wmem="16384 65536 8388608"
sysctl -w net.ipv4.tcp_mem="8388608 8388608 8388608"
sysctl -w net.ipv4.tcp_syncookies=0

ulimit -n 65535

ulimit -s unlimited

ulimit -u unlimited

Solution 2. Replace select() by epoll()

epoll()[24, 25] is a new system call introduced in Linux 2.6. Unlike
select(), which is O(n), epoll()is an O(1) algorithm -- this means that it
scales well as the number of watched fds increase. epo//() has no

limitation on the amount of fds or the fd number, it can support fds as

25

much as the max open files supported by OS, which is much more than
1024. This value could differ from system to system, for example, the
value is 203800 on the Linux server in NCTU.

Followings are the comparisons of the two solutions; programmers
can choose one of them according to their circumstances and
requirements. There' s no need for programmers to rewrite their code if
solution 1 is used, they just have to modify and recompile the kernel to
enlarge the limit value. But programmers may not have the permission to
make the changes on the machine they are using, so this solution is not
suitable for every circumstance.-Moreover, it takes extra time to recompile
kernels. On the other hand, solution 2 is-a'long-term solution for this
problem, because epol/()is proposed exactly for replacing select(). The
problem is that epo//()is a new system call that people are less familiar
with it comparing with select(), therefore, programmers have to spend

more efforts on learning how to use it and adjusting their original code.

4.1.1.2. Poor resource management

Here we use the resource clean up of a thread as an example.

First we talk about the attribute “detach state” of a thread, which
26

can be joinable or detached. This attribute determines whether another
thread may wait for the termination of the thread or not. A thread can be
terminated by calling pthread exit(), but pthread exit()doesn’ t handle
the resource clean up of the thread. If a joinable thread terminates,
resources used by it are not freed until another thread called

pthread join(). pthread _join() suspends the calling thread, waits for the
termination of a specific joinable thread, and releases the resources used
by it. That is, the resources used by a joinable thread are cleaned up by
another thread who calls pthread join(). On the other hand, when a
detached thread terminates, the resources used by it will be automatically
reclaimed. Because a detached thread has no relationship with other
threads, so there’ s no need for another thread to clean up resources for
it.

The default value of “detach state” of a thread is joinable, which
means a thread is set to joinable if there’ s no extra change to it after its
creation. In the situation that a server creates many joinable threads
without calling pthread join()in other threads to wait for their
termination, the system resources will be exhausted soon, even if those
threads are all terminated, because a joinable thread doesn’ t release

27

resources by itself on termination. As a result, the server may not accept
new clients after running a short time.

Through the example above, we can see that it is very important to
do the resource clean up for a joinable thread by calling pthread _join() in
another thread. But in our BRIC system, a thread is created to serve a
connection, and it has nothing to do with the parent thread, so it should
be a detached thread. A thread can be set to detached by calling
pthread_detach() after it is created, thus the relationship with its parent
thread is cut off. In this case, no extra resource clean up process is needed.
Programmers have to decide the “detach state” of a thread according

to different scenarios, and handle the resource clean up appropriately.

4.1.2. Unfair Resource Sharing

In a multi-thread program, process resources are shared by threads it
created, but the resource may not be distributed to those threads in a fair
way. One common case is that many threads compete with each other for
the permission to enter a critical section. Thread with better efficiency
may earn the permission very often, which makes other threads perform

their job with serious delay.

28

/="
Streaming Command
Thread Thread

mm—— Nedia streaming
""" Command

Figure 4-4 Scenario of unfair resource sharing

Take the situation in BRICfor example, two threads on device side are
competing, the thread that gets the mutex can do what they want, and
the other thread should wait. We can look at Figure 4-4, one thread is in
charge of forwarding media streaming of the IP camera, and the other
thread forwards the command of user to the camera, such commands can
be zoom in, zoom out or rotate the camera lens. We use “streaming
thread” and “command thread” to represent the two threads. The
problem we encountered is that the streaming thread always gets the
mutex, and the command thread can’ t process the user command.

Therefore, even the user keep clicking icons on the web portal to send

29

commands to the camera, the camera may have no reaction or react after
a long while. Such unfair resource sharing may bring about bad user
experience, so a fair resource sharing policy is needed.

Our solution is called FIFO method, and it is based on the idea of
Max-min fairness. The FIFO method doesn’ t force every thread to have
the equal chance of earning the mutex, but it ensures every thread can do

its job as long as it needs.

A B C

N\, c

Figure 4-5 FIFO method — normal case

Figure 4-5 shows the FIFO method. As soon as a thread is willing to
enter the critical section, its thread ID is recorded in an array maintained
by the process, so the request order is also recorded in the array. In Figure
4-5, the request orderis A>B->C. There’ s an indicator points to the
current available thread ID according to the order, so if a thread gets the

mutex and its thread ID is identical to the thread ID pointed by the

30

indicator, it can enter the critical section. Figure 4-5 shows this kind of
situation. After thread A finishes its job and releases the mutex, the
indicator then moves to the next field to point to thread B, representing
that thread B has the right to enter critical section now. This is a normal
case of threads competing the mutex. On the other hand, if thread B has
better efficiency than thread A and gets the mutex before thread A, like
Figure 4-6 shows, FIFO method won' tlet thread B enter the critical
section because the indicator doesn’ t point to its thread ID now. The
indicator won’ t shift to the next field before the current thread releasing

the mutex, so thread B has to wait until thread A finishes its job.

A B c @ [+

B

& C

Figure 4-6 FIFO method — B runs faster than A

With the FIFO method, there’ s no preemption to or from other
threads, according to the request order, every thread can enter the critical

section as long as it needs. Therefore, even a thread earns the mutex very

31

often, itwon' t block other threads from doing their jobs. So, this is a

fairer way of resource sharing.

4.2.Programming Problems

4.2.1. Imprecise relay path confirmation

In order to avoid losing of important data, we need to check whether
a path is ready or not before we start to send data on that path.

First we discuss the simplest situation, the path confirmation between
only two nodes. The confirmation is initiated by one of the two nodes by
sending a test string to the othernode. Take Figure 4-7 for example, node
Ais the initiated node, and node B returns what it receives from node A
back to node A. The path will be considered ready if node A receives the

same test string returned from node B.

1) Test strin
A @) ttg‘B

(2) Test string

Figure 4-7 Path confirmation between only two nodes

In the situation that a Relay server locates between two nodes, the

32

path is more necessary to be confirmed in advance, because each peer
build a connection with the Relay server respectively, they have no idea
about whether the counter part is ready or not. The above idea is very
simple and intuitive, but if we use the same idea in the relay situation, the
path confirmation will become imprecise, which means a successful case
may be misjudged to be a failed case. As mentioned before, relay is the
last line of establishing connections, using an imprecise confirmation

method is harmful to the system, because it lowers the connection rate.

Relay Seiver

Device Browser

Figure 4-8 End Device Initiated Confirmation

We use Figure 4-8 to explain why using above idea in the relay case is
imprecise. We call this method End Device Initiated Confirmation. A Relay
server locates between the device and the browser. In data transmission,

the browser will send the first message to ask the device for media

33

streaming, so the relay path confirmation should initiated by the browser.
After the browser is connected to the Relay server, it sends a test string to
the device through the Relay server and waits for the return from the
device. This method is based on an assumption that when the initiated
node sends the test string, the counter part is already connected to the
Relay server. The assumption is usually true in the normal case, but there

may be exceptions as Figure 4-9.

Relay Server

Browser

Figure 4-9 Exception situation in Relay path confirmation

Due to the bad network environment, the device may be connected
to the Relay server later than the browser. The Relay server can’ t forward
the test string to the device, and the browser certainly can’ t receive the
return of the device, so the path will be considered failed. It is reasonable

to do so if the delay of device is long, but the delay may be very short,

34

which is short enough to be tolerant. If we don” t do the confirmation
such eagerly, the relay path will be a successful case.

Our suggestion is that if relay is used in a system, the path
confirmation should be done by the Relay server, we call it Server
Controlled Confirmation. Because the Relay server can see both clients
and knows about the connection status of them, it can make sure the

device and the browser are connected before the path confirmation.

Relay Server

Device Browser

Figure 4-10 Server Controlled Confirmation

Figure 4-10 shows how the Server Controlled Confirmation works.

Stepl. After the device and the browser both connect to the Relay
server, Relay server then sends an “"OK” message to device.

Step2. The device returns an “"AOK” message, representing the
path between device and Relay server is ready.

Step3. The Relay server sends an "OK" message to the browser

35

after the device is ready.

Step4. The browser returns an “AOK" message, representing the
path between browser and Relay server is also ready.

After above four steps are done and each message is received
successfully, the relay path is judged to be ready for data transmission.
Using this method, there will be no misjudgment in the situation

described before.

4.2.2. Connection binding error

In network programming,-a connectionis represented by a file
descriptor (fd). The problem we discuss here is that one file descriptor is
used by multiple connections, this problem may happen when a lot of
clients connect to a server in a very short duration (e.g., 10 clients in 1
second). If many connections are using the same fd, the server will
become confused and can’ t serve any of them.

Figure 4-11 is an extract of output messages of the server when it
accepts new client connections. As we can see, there are five connections
which represented by fd 296 to 300. After the server accepts a connection,

it creates a thread and passes the fd into the thread as a variable, so the
36

new accepted connection is served by the thread. Figure 4-12 shows the
output messages after the thread is created. Surprisingly, we found that

all fds passed into the thread turn into 300!

Main procéess selecttt?

Control port triqger™

Control Socket Accept: 68_.Z2Z51.172.
ssxxControlfd:

Main process sS&efeEccre?

Control port trigger™™

Control Socket fccept: 68.251.172.
sxxControlfd:

Hain process selfect???

Control port trigger™™

Control Socket - Aecept: 68.251.172.
x=x=Controlfd: @

Main process selectt??

Control port trigger™™

Control Tocket Accept: 1Z22.116.61.
xxControlfd:

Main process sereCibre?

Control port trigger™™

Control Socket accept: 122 _1146.61.
sx=Controlfd: §

Figure 4-11 Output messages when serveraccepts new connections

Thread created, Thread ID(1764272448), controlfd is 464
Thread created, Thread ID{1669863744), controlfd i
Thread created, Thread ID{1698843456), controlfd i
Thread created, Thread 1D(1761333312), controlfd i

Thread created, Thread ID{1722313024), controlfd if
Thread created, Thread ID{1743292736), controlfd i§
Thread created, Thread 1D{1711823168), controlfd i
Thread created, Thread 1D{1732802880), controlfd is
Theead created, Thread ID{1774762304), controlfd is\36d

Figure 4-12 Output messages when new threads are created

This problem is caused by inappropriate use of pthread create()

37

function [20]. First we make a brief introduction to pthread_create().
Figure 4-13 is the function declaration of pthread create(), this function is
used to create a new thread within a process. The thread is created to

execute start_routine with arg as its sole argument. That is, after the

thread is created, it starts from the function start routine(), and the argis

passed into start_routine() as its argument. Note that the arg must be

passed by reference by casting its type to vo/d* no matter what type it
was originally. If there are several arguments we want to pass into the
thread, we can pack those argumentsiin a structure then pass the address

of the structure.

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg);

Figure 4-13 Function declaration of pthread_create()

Now we explain why the connection binding error happens. Figure
4-14 is an example code of a server accepts a new connection and calls
pthread create()to create a thread. The conn_fdthat returns by accept()

system call is the fd number that represents the new accepted connection.

38

We use the address of the conn_fd as the last argument of

pthread create(), after the thread is created completely, it copies the
value of conn_fdfrom arg and stores in a local variable of its own. The
pthread_create() takes time to create a new thread, it may not finish
immediately. So if the connections come very closely, the conn_fd of
newly accepted connection is likely to overwrite the former conn_fds
before they are copied by the threads, because all the conn_fds are the

same variable, using the same address.

int conn_fd;
while(1)

{
conn_fd = accept(listenfd, (struct sockaddr*) &cliaddr, &clilen);

pthread_create(&threadlD, NULL, thread_func, (void*) &conn_fd);

Figure 4-14 An example code of pthread_create()

According to above description, the Connection Binding Error
problem is caused by two factors:

1. Shared fd memory

2. Short inter-arrival time of connections

So this problem can be solved by breaking one of the two factors.

39

There are two suggested solutions to this problem, both solutions can
ensure that each thread obtains a unique conn_fd and the fd will not be
overwritten by others.

Solution 1. One location per connection (break factor 1) [21]

In this method, we use the idea of memory management. Figure 4-15
is a sample code of this method. In the original case, the conn_fd is
declared as an int type variable, but in this method, it is declared as an int*
type variable instead. The server allocates a memory space for conn_fd
before accepting a new connection; so every conn_fd has its unique space

and won’ t be covered by others.

voud “thread_tunc{veid *arg)
{

¥

free(arg);

while(1)
{
int* controlfd;
controlfd = malloc(sizeof(int));
*controlfd = accept(listen, (struct sockaddr®) &cliaddr,&clilen);

pthread_create(&threadID), NULL, thread_func, controlfd);

Figure 4-15 One location per connection

40

Solution 2. Critical section (break factor 2)

In this method, we use a global variable to create a critical section.
The server can’ taccept new connection before the thread of last
connection is created successfully and the conn_fd is copied. Figure 4-16
shows how this method works. The initial value of the global variable lock
is 0, which means the server can accept new connections. The server
changes the value to 1 before accept(), and set it back to O after the new
created thread obtains the conn_fd. In the section that the value of lock is
1, the server can’ taccept new connections. If there are new connection
requests pending, the server should wait until the lock is released (i.e. set
back to 0). As a result, the connection binding error won’ t happen even

if there are only one conn_fd variable.

void *thread_func(voeid *arg)

{

lock = 0;
H
while(1)
{
while(1)
1
if(lock = 0)
{
lock=1;
controlfd = accept(listen, (struct sockaddr™) &cliaddr,&clilen);
break;

}

pthread_create(&threadID, NULL, thread func, (void*)& controlfd);

Figure 4-16 Critical section

41

Table 4-1 is a simple comparison of these two methods.

Table 4-1 Comparison of two methods

One Location Per Connection Critical Section

Pros | More efficiency Don’ tneed extra memory

Cons | Needs more memory Less efficiency

Using while loop wastes CPU

4.2.3. Session interference

If several users want to watch theiimage of one camera, they may be
interfered by each other. For example, the image may become not
smooth (i.e.,, delay or lag) or temporary stop while users are watching it,
and users may have bad impressions on the system due to these
situations. In the following, we discuss two causes and solutions of this
problem.

First we discuss the delay or lag of the image, which is a minor
situation caused by insufficient upload bandwidth of the device. If there is
no limit for number of browsers that can be connect to a device at the
same time, the sum of bandwidth required by browsers may exceed the

upload bandwidth of device. Therefore, the transmission of image
42

becomes not smooth. To deal with this situation, the number of browsers
must be carefully decided. Programmers can set a maximum number of it,
or dynamically adjust it by current available bandwidth.

The stop of image is a severe problem. For example, in Figure 4-17,
three browsers are willing to watch the image of the device. The device
UA makes three copies of the streaming data, and runs a loop to deliver
them to three sub-components in it, then the sub-components deliver
the streaming data to browsers separately. If data transmission to one of
the sub-components gets stuck, others will also get stuck until the stuck
one return smooth. Therefore; abrowser’ -sinability to watch image may

become all browsers’ problem:

UA

ocked!

Figure 4-17 Session interference

This problem is caused by using blocking mode of write() system call

43

in device. Our suggestion is that in the “one to many” scenario, the
input and output functions should be set to non-blocking mode so that

the whole system will become more efficiency.

4.2.4. Incorrect Packet Alignment

A packet is normally started with a specific header and then the
payload. But during using BRIC system, we discovered that sometimes
browser UA receives packet with wrong alignment, which means the
headerisn’ tinthe beginning.of the packet but in somewhere else.

Figure 4-18 is the schematic diagram of Incorrect Packet Alignment, this
problem happens especially in bad network environment. Packets with
wrong alignment can’ t be interpreted and displayed by the media player,
so the media streaming may be broken off. Moreover, this situation will
affect the follow-up packets and turns out all the packets will be

misaligned in the following.

44

Figure 4-18 Incorrect packet alignment

This problem can be solved by making some adjustments before
browser UA sending packets to media player. The browser UA has to
check whether the header is in the' beginning of the packet or not, if not, it
means the UA receives a packet with-wrongalignment. At this time, the
UA receives one more packet because there must be a complete packet in
two misaligned packets. Then the UA searches the header and sends
packet with correct alignment start with the header to media player. With
this mechanism, even the Incorrect Packet Alignment happens, the media
player still can receive correct packets and users can watch media

streaming normally. Figure 4-19 shows the solution.

45

Figure 4-19 Solution to incorrect packet alignment

4.2.5. Short Internet disconnection effect

While using Internet products, the service quality is often affected by
bad network environment, such as the signal of wireless Internet is
unstable or the network cable is disconnected accidentally. These short
Internet disconnection situations make users unable to continue using
the service, because the error detection and error handling of the system
are very sensitive. But those are temporary situations which may be
recovered in a short time, so if they could be tolerant, the service can be
more fluent and brings a better using experience to users.

It is simple to achieve the error tolerance by using the setsockopt()

46

function [26] to set the SO _SNDTIMEO of the data transfer socket. The
SO_SNDTIMEOis the timeout value specifying the amount of time that an
output function (e.g., send(), write()) blocks. For instance, if the

SO _SNDTIMEO:s set to 10 seconds, the output function won’ treturn
error until it blocks for 10 seconds. In other words, when the output
function is unable to transfer data, it won’ treturn errorimmediately. So,
if the network cable is accidentally pulled out, the connection will remain
as long as the cable is inserted back within 10 seconds. Also, the
temporary disconnection of wireless Internet won’ t affect users using

the service too. Figure 4-20 is:an.example code of using setsockopt().

Struct timeval TIMEOUT;

TIMEOUT.tv_sec = 10;

TIMEOUT.tv_usec = 0;

setsockopt(datafd, SOL_SOCKET, SO_SNDTIMEO,(const char *) &TIMEOUT, sizeof(TIMEQUT));

Figure 4-20 Example code of setsockopt()

4.2.6. Abnormally offline

Internet products are likely to become offline accidentally. Take BRIC
system as an example, the situation may happen on both the device and
the browser, such as the computer user is using crashes down or the

device powers off. In these situations, the device or browser become

47

offline without following the normal procedure, that is, without notifying
the counter part about their leaving. Some problems may happen
because of the abnormally offline.

As we described before, a device may have a limit number of
browsers can connect to it. The first problem is that device can’ t serve
new browsers before number of browsers reaching the upper bound. This
is because there may be some browsers become offline abnormally that
the device doesn’ t know about it, so the resources associated by them
are not released by the device, and then the device' s resources become
exhausted, that’ s why the device can’ t serve new connections anymore.
The second problem is more severe and-it'is caused by continuously
sending or receiving data to or from the counter part which is already
offline, the device or browser may crash in some platform due to this kind
of behavior. Two mechanisms are needed to protect systems from above
problems.

First is the appearance discovery of counter part. In our BRIC system,
we provide a real time announce method by Relay Server. As Figure 4-21
shows, the Relay Server detect read/write error on the fd of browser side,
which means the connection between browser and Relay Server may

48

become unavailable due to some accidental situation. Before Relay Server
close this connection pair (including both device and browser side), it
should inform the device about the abnormally offline of browser. We

describe the steps of this method in the following.

(4) Relay server

1) Detect error

Device

Figure 4-21 Real time announce by Relay Server

Stepl. Relay Server detects error on browser side

Step2. Relay Server sendsa “BYE" message to device

Step3. Devicereturnsa “FIN” message after receiving the “BYE"
to confirm that it knows about the accidental situation of browser

Step4. After receiving the "FIN” message, Relay Server closes the
fds and terminates the connections.

The above method ensures that no one become offline silently. The

exception handling of this method is also important. Follow the example

49

above, after sending “BYE" to device, the Relay Server waits for the
response “FIN” of device. But if the device is unable to send the
response back, Relay Server still has to do the termination process instead
of keeping waiting for the response. On the contrary, if Relay Server
insists that the “FIN" must be received, it will keep sending “BYE" to
device, which make itself become very busy and lower the performance.
So, despite the arrival of “FIN” , Relay Server should close the
connections in a specific time.

Although we already use the first:mechanism to detect and inform
the error situation, there may be.some situations that are unnoticed by
the system. As a result, the second-mechanism is needed, which is
regularly close/retrieve unused resources. Whether there are errors
detected or not, the system should periodically check the resources and
clean up those has not been used for a long time. For example, if there are
no data transmitted on a connection for 5 minutes in a real-time
streaming system like BRIC, the connection should be closed. This
mechanism is important to any program or any component we developed;
it can make sure the unused resources won’ tremain on a system and
become a burden on it.

50

Chapter 5 Conclusion

Table 5-1 lists the improvements to the system after solving above
problems. The whole system becomes better in no matter the

performance, stability or user experience.

Table 5-1 Improvements after modification

Problem Improvement after modification
Limited connection pair Larger service amount

Unfair resource sharing Better resource management
Imprecise relay path confirmation Higher connection rate
Connection binding error More robust

Session interference Better user experience

Incorrect packet alignment Better error tolerance

Short Internet disconnection effect Better user experience
Abnormally offline More robust

51

According to our experiences, we summarize and classify problems
that are possibly faced during a real system implementation in this thesis.
We explain why these problems happen, how these problems affect a
system, and provide solutions to these problems. Furthermore, we explain
how these solutions improve a system. We hope these experiences can be
good references to programmers need help in developing a system or

interested in such problems.

52

REFERENCE

[1] C. Fetzer, M. Marwah and S. Mishra, “Enhanced Server Fault-Tolerance for

Improved User Experience”, June 2008

[2] M. Zarki, L. Cheng, H. Liu and X. Wei, “An Interactive Object Based
Multimedia System for IP Networks”, 2003

[3] K. Egevang and P. Francis, “The IP Network Address Translator (NAT)”,
RFC 1631, May 1994

[4] D. Clark, L. Chapin, V. Cerf, R. Braden and R. Hobby, “Towards the Future
Internet Architecture”, RFC 1287, Dec. 1991

[5] Z. Wang and J. Crowcroft, “A Two-Tier Address Structure for the Internet: A
Solution to the Problem of Address Space Exhaustion”, RFC 1335, May
1992

[6] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot and E. Lear,
“Address Allocation for Private Internets”-RFC 1918, Feb. 1996

[7] F. Audet and C. Jennings, “Network-Address Translation (NAT) Behavioral
Requirements for Unicast UDP”, RFC 4787, Jan. 2007

[8] H. Suzuki, Y. Goto and A. Watanabe, “External Dynamic Mapping Method
for NAT Traversal”, 2007

[9] STUN, J. Rosenberg, J. Weinberger, C. Huitema and R. Mahy, “STUN -
Simple Traversal of User Datagram Protocol (UDP)”, March 2003

[10] J. Rosenberg, R. Mahy, P. Matthews and C. Huitema, “Traversal Using
Relays around NAT (TURN)”, draft-ietf-behave-turn-07, February 2008

[11] J. Rosenberg, “Interactive Connectivity Establishment (ICE)”,
draft-ietf-mmusic-ice-15, March 2007

[12] UPNnP IGD, UPnP Fourm, http://www.upnp.org/standardizeddcps/igd.asp

[13] Z. Turanyi, A. Valko and A. Campbell, “4+4: An Architecture for

53

Evolving the Internet Address Space Back Toward Transparency”, ACM
SGICOMM, 2003

[14] Fairness measure, http://en.wikipedia.org/wiki/Fairness_measure

[15] R. Jain, D. Chiu and W. Hawe, "A Quantitative Measure Of Fairness And

Discrimination For Resource Allocation In Shared Computer Systems", Sep. 1984

[16] JEAN-YVES LE BOUDEC, Rate adaptation, Congestion Control and
Fairness: A Tutorial, Dec, 2008

[17] XSTUNT,
http://www.cis.nctu.edu.tw/~qis87577/xDreaming/XSTUNT/index.html

[18] STUNT, http://nutss.gforge.cis.cornell.edu/stunt.php

[19] S. Guha and P. Francis, “Characterization and Measurement of TCP

Traversal through NATs and Firewalls”, 2005

[20] Pthread tutorial, B. Barney, Lawrence Livermore National Laboratory,

https://computing.lInl.gov/tutorials/pthreads/

[21] W. Richard Stevens, UNIX Network Programming

[22] select() http://linux.die.net/man/2/select

[23] G. Banga, J. Mogul and P. Druschel, “A Scalable and Explicit Event
Delivery Mechanism for UNIX”, June, 1999

[24] epoll() http://linux.die.net/man/4/epoll

[25] L. Gammo, T. Brecht, A. Shukla, and D. Pariag, “Comparing and

Evaluating epoll, select, and poll Event Mechanisms”, July, 2004

[26] Setsockopt(),
http://www.opengroup.org/onlinepubs/009695399/functions/setsockopt.html

54

