
 

 

 

國 立 交 通 大 學 
 

網路工程研究所 
 

碩碩碩碩    士士士士    論論論論    文文文文 
 

 

 

 

萃取、分類及匿名封包流量與誤檔漏檔之個案研究 

Extracting, Classifying and Anonymizing Packet Traces  

with Case Studies on False Positive/Negative Assessment 

 

 

 

 

研 究 生：王聲浩 

指導教授：林盈達  教授 

 

 

中中中中    華華華華    民民民民    國國國國        九九九九    十十十十    九九九九        年年年年    六六六六    月月月月 



 

 

萃 取 、 分 類 及 匿 名 封 包 流 量 與 誤 檔 漏 檔 之 個 案 研 究 

Extracting, Classifying and Anonymizing Packet Traces  

with Case Studies on False Positive/Negative Assessment 
 

研 究 生：王聲浩          Student：Sheng-Hao Wang 

指導教授：林盈達          Advisor：Dr. Ying-Dar Lin 

 

國 立 交 通 大 學 

網 路 工 程 研 究 所 

碩 士 論 文 

 

A Thesis 

Submitted to Institute of Network Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 

Computer Science 

 

June 2010 

 

Hsinchu, Taiwan 

 

中華民國九十九年六月 



 

I 
 

萃取萃取萃取萃取、、、、分類及匿名封包流分類及匿名封包流分類及匿名封包流分類及匿名封包流量量量量與誤檔漏檔之個案研究與誤檔漏檔之個案研究與誤檔漏檔之個案研究與誤檔漏檔之個案研究    
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國立交通國立交通國立交通國立交通大學網路工程研究所大學網路工程研究所大學網路工程研究所大學網路工程研究所    

    

摘要摘要摘要摘要    

 真實網路流量是許多網路相關研究與發展的重要資產，一個具有完整分類的

網路流量資料集，可提供研究人員依其需求快速的選擇所需流量類別，此舉有效

的降低研究流程在流量採集上的成本與時間。然而公開網路流量所需面臨的風險

是使用者個人隱私的洩漏，目前公開網路流量的組織大多依賴贊助者自行上傳且

不保障網路流量內的隱私性資料安全。因此本研究旨在提供一個具萃取、分類及

匿名的網路流量資料庫在此稱之為 PCAP Lib，PCAP Lib 包含三個目標，第一，

利用具偵測流量功能的網路設備取其紀錄用於萃取與分類出十種不同類型且進

一步區分出帶有惡意或良好的網路流量。第二，現今的匿名技術大多著重於

TCP/IP 標頭的欄位，即使有些能處理 payload，但解析大量的網路應用層協定

仍是一項艱難的議題，在此我們採用深度匿名的方式，確保個人的隱私資料。此

外，在網路流量測試中，參與測試的設備其偵測率並無法達到百分之分的準確，

因此我們第三個目標是設計一套誤擋與漏擋的分析流程整合於 PCAP Lib 中。在

五個月的網路流量中我們主動蒐集 323 筆不同性質的網路流量樣本，其中 33%為

正常流量，67%為惡意流量。在匿名方法中，我們定義出 privacy/utility 及

efficiency 用於評量匿名的方法，本文所提出的匿名策略有效性達到 93%，優於

其他方法的 27%和 33%。在誤擋與漏擋的分析上，觀察出 63%影響誤擋的主因在

於 P2P 類型其動態埠的流量性質，常使偵測設備誤認為其他類型的應用協定，而

62%漏擋的主因在於設備中的特徵資料庫不具可用於比對的特徵值。 

關鍵字關鍵字關鍵字關鍵字：：：：流量資料庫、流量分類、封包匿名、誤擋、漏擋    
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Abstract 

 Well-classified packet traces make researchers to pick up the class of traces what 

they want quickly. However, opening packet trace might expose the user’s privacy 

information and let attackers use to exploit. This work aims to provide extracting, 

classifying, and anonymizing packet traces. We propose PCAP Lib framework which 

achieves three goals. First, actively extract healthiness and malicious traces from 

real-world traffic to classify into 10 types of application by multiple detection devices 

logs. Second, we present an anonymization method to protect personal privacy 

through deep packet anonymization (DPA). Besides, no one detection device can 

provide 100% accuracy under packet trace testing; we design an analysis procedure to 

investigate the cause of false positive (FP)/ false negative (FN) in devices and find out 

the frequent cases as the third goal. In the result, we collect 323 distinctive packet 

traces in five months. Among them, 33% are healthy and 67% are malicious. In 

anonymization, we define “privacy/utility” and “efficiency” to evaluate the different 

anonymization methods. DPA achieves the best efficiency of 93% than other 27% or 

33%. In FP/FN case studies, 63% of FP causes are due to traffic similarity and 62% of 

FN causes are due to signature insufficiency. 

Keywords: trace repository, traffic classification, packet anonymization, false 

positive, false negative 



 

III 
 

Acknowledgement 

這篇論文是靠許多人的幫忙才能完成，因此要感謝的人也很多，首先謝謝我

的指導教授 林盈達教授一直不厭其煩的指導我，給予我相當大的研究空間，其

次我感謝林柏青學長適時的提點我，解答我對於研究上的疑惑與困境，不論是課

業研究或是做人處事方面兩位都讓我成長許多，再來我要謝謝在高速網路實驗室

的同學們，能跟你們一起奮鬥是件很愉快的事，最後我要謝謝我的家人不斷的給

我支持與愛護讓我有動力完成研究。沒有你們也就沒有現在的我，謝謝!  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

IV 
 

Contents 

Abstract (in Chinese) …………………………………………………….………..…I 

Abstract (in English) …………………………………………………………….….II 

Acknowledgement…………………………………………………………………..III 

Contents …...………………………………………………………………………..IV 

List of Figures ...……………………………………………………………………..V 

List of Tables………………………………………………………………………...VI 

Chapter 1 Introduction ................................................................................................ 1 

Chapter 2 Background ................................................................................................ 3 

2.1 Challenges in sharing traffic traces .................................................................. 3 

2.2 Packet trace anonymization ............................................................................. 4 

2.3 Method of FP/FN assessment .......................................................................... 6 

Chapter 3 PCAP Lib Methodology ............................................................................ 7 

3.1 Overview of three mechanisms ........................................................................ 7 

3.2 ATC: Active Trace Collection .......................................................................... 8 

3.3 PCAPAnon: Deep Packet Anonymizer ............................................................ 9 

3.4 FPNA: False Positive/Negative Assessment .................................................. 13 

Chapter 4 Implementation issues of PCAP Lib ...................................................... 14 

4.1 Active Trace Collection.................................................................................. 14 

4.2 PCAPAnon framework .................................................................................. 15 

Chapter 5 Evaluation and Observation ................................................................... 19 

5.1 Completeness of various class traces ............................................................. 19 

5.2 Privacy, Utility, and Efficiency of Anonymization policies ........................... 20 

5.3 Statistics of FP/FN cases ................................................................................ 25 

Chapter 6 Conclusions and Future Works .............................................................. 27 

References ................................................................................................................... 29 

Appendix. POP3 Payload Deep Anonymization ..................................................... 30 

 

 

 

 

 



 

V 
 

List of Figures 

Figure 1: PCAP Lib Block Diagram. ............................................................................. 8 

Figure 2: ATC system flow. ........................................................................................... 9 

Figure 3: PCAPAnon Framework. ............................................................................... 10 

Figure 4: Pseudo code of LPP and LSP. ....................................................................... 12 

Figure 5: PCAPAnon packet processing. ..................................................................... 16 

Figure 6: Protocol Tree of Dissection .......................................................................... 17 

Figure 7: The anonymization impact of HTTP header fields ...................................... 22 

Figure 8. False negative in anonymized HTTP trace ................................................... 22 

Figure 9: Privacy of Anonymization Tools .................................................................. 23 

Figure 10: Utility of Anonymization Tools .................................................................. 24 

Figure 11: Efficiency of anonymization tools .............................................................. 25 

Figure 12: Efficiency of three-level anonymization policies ....................................... 25 

Figure 13: Statistic of False Positives .......................................................................... 27 

Figure 14: Statistic of False Negatives ........................................................................ 27 

 

 

 

 

 

 

 

 

 

 

 



 

VI 
 

List of Tables 

Table 1. Comparison of trace repositories ..................................................................... 4 

Table 2. Comparison of anonymization tools ................................................................ 5 

Table 3. Classification for Traces and their representative keywords ......................... 15 

Table 4. Identity Patterns ............................................................................................. 18 

Table 5. Trace Classification Matrix ............................................................................ 20 

Table 6: Number of Application Packet Traces ........................................................... 20 

Table 7. Identities of Privacy Measurement ................................................................ 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

Chapter 1 Introduction 

 Real-world Internet traffic is useful for intrusion detection systems/prevention 

(IDS/IDP) and network forensics analysis. For network and security research 

communities, they rely on large, diverse, active and non-synthetic traffic traces for 

experimental studies [1], such as investigating the causes of False Positives (FP) and 

False Negatives (FN) on IDS/IDP. As network analysts can collaborate in inspecting 

malicious and user network behaviors, they can share the extracted traces from their 

study. Lastly, educators can use the obtained exemplary data in their student projects 

and exercises. However, the availability of real-world traces is quite limited so far 

because they are likely to contain sensitive information such as host addresses, emails, 

and even authentication keys. Therefore, the packets in the traces should be well 

anonymized to hide private information before sharing among researchers. 

In the past few years, researchers used to focus on anonymization in TCP/IP 

header fields [2-4]. Although some works can anonymize the payloads [5-8], most 

solutions are still limited to few protocols (e.g., HTTP, FTP, POP3) because parsing a 

large number of application protocols is a complex and tedious work. It is also 

non-trivial to clearly identify the semantics of so many protocols.  

To date, most of organizations release the traces from user submission and 

classify the traces based on the users’ perspective [10] [11]. The number of the 

participants is the largest impact factor to the quality of traffic traces. These traces are 

often poorly categorized, inactive, and even unusable, as they lack a central and 

unified control to maintain the quality. An automatic and unified approach to 

categorize the traces is important for the researchers to acquire the exact traces they 

want.  

For security purpose, traffic traces can be applied into network security systems. 



 

2 
 

An important requirement of these systems is making them be effective; that is, it 

should detect a substantial percentage of malicious traffic into the supervised system, 

while still keeping the FP/FN rate at an acceptable level. The FP/FN rate is the 

limiting factor for the performance of a network security system. This is due to the 

base-rate fallacy phenomenon [12].  

In this work, we design PCAP Lib aims to generate “valuable” packet traces for 

variety of application usage. The output traces will be extract, classify, anonymize and 

most importantly, provide false positive/negative assessment from original traces. In 

packet traces extraction and classification, we proposed an Active Trace Collection 

(ATC) that automatically classifies traffic traces into extracted applications datasets 

with healthiness and malicious classes. This mechanism based on multiple traffic 

classification systems such as IDS/IDP, Anti-Virus, Anti-Spam and application 

classifier (abbreviated as device under test DUT) that leverage their knowledge built 

into malicious signature databases. In packet trace anonymization, we proposed Deep 

Packet Anonymization (DPA) which provides privacy protection. This mechanism 

also supports configurable functionality that enables users to select hidden parts in the 

application layer with consistent transformation, nevertheless, keep the integrity and 

utility of traces. Finally, in False Positive/Negative Assessment (FPNA), it can 

automatically select potential FP/FN by comparing results produced from different 

devices and statistic results to most significant causes. 

The rest of this paper is organized as follows. Chapter 2 presents the background 

and related works. Chapter 3 describes the design and solution ideas of our 

methodology. Chapter 4 addresses the main implementation issues of the PCAP Lib. 

Chapter 5 displays evaluation of our works. Finally, Chapter 6 concludes this work 

and discusses the future works. 
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Chapter 2 Background 

2.1 Challenges in sharing traffic traces 

Successful development and testing of network analysis devices require a wide 

available source of robust and accurate traffic traces. Researchers generally use two 

main approaches to collect traffic traces. One way to create test traces is to generate 

artificial traffic in lab, such as using Harpoon traffic generator [13] and 

DARPA-sponsored IDS evaluation datasets [14]. However, useful traffic traces must 

accurately represent real network, user, and system activities, so they must be 

continually updated to reflect new protocols, applications, or changes in user 

behaviors, it is usually difficult for the artificial traffic to satisfy these requirements. 

For instance, developers of security products will not be able to train the products 

with the behaviors of a new attack or create the signatures for that. 

Rather than generate traffic on their own, some researchers prefer to capture 

traffic traces from the backbone traffic in their affiliations[19]. This approach can 

satisfy the requirement of realistically recreating the bandwidth or activity level of 

user behaviors. However, it is often difficult to well categorize real-world traffic into 

several kinds of application traces due to its complexity and volume. Privacy concerns 

also inhibit sharing traffic traces. Although it is possible to anonymize confidential 

information in the packets, the anonymized packet traces will affect the detection 

capability of IDS products as they might no longer contain the cues that would trigger 

an alert or might produce false alarms [20]. This issue will be further discussed in 

next section. Table 1 compares the packet sources in terms of completeness, update 

frequency, categorization and anonymization of trace repositories. 
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Table 1. Comparison of trace repositories 

Repository  Source  Update  Category  Anony- 
mization  

Pros  Cons  

OpenPacket
.org  

User 
submission  

Low  Normal 
Suspicious 
Malicious  

N/A  Categorized 
traces  

PCAP amount 
is low  

Packetlife.n
et  

User 
submission  

High  Property 
Protocol  

N/A  Focus on 
routing and 
switching  

Un-unitary 
categorization  

DARPA 
datasets  

Simulation  Suspend  Attack free 
Attacks  

N/A  Most popular 
evaluation 

traces  

Update-less 
traces  

Wireshark/
SampleCapt
ures  

User 
submission  

High  Protocol  N/A  Various traces  Few malicious 
traces  

CAIDA 
Traces 
Dataset  

OC192 
Internet 

backbone  

High  Year  IP 
address  

Prefix- 
preserving 

anonymization  

Payload 
truncation  

Pcapr  User 
submission  

High  Protocol  N/A  On-line packet 
display  

Unclear 
categorization  

PCAP Lib   Beta-site  High  Application 
(Malicious/ 
Healthy)  

Entire 
packet  

Various 
functionalities 
with unitary 
repository  

No on-line 
packet display  

2.2 Packet trace anonymization 

As previously mentioned, packet trace anonymization has become an important 

means to protect the privacy of packet traces for network research. Over the past 

decade, the anonymization of packet trace has been shifted from the TCP/IP header 

fields to the application level, but the repositories of sharing packet traces are still 

few. We consider that several hurdles still for open sharing of traffic traces: 

(1)  Too many application-level protocols: Besides common protocols (e.g., HTTP, 

FTP, SMTP, POP3, etc.), there are many others for applications in the 

real-world, such as P2P, online gaming, and instant messengers. It is difficult to 

identify and anonymize private information in the packet traces based on the 

semantics of so many application layer protocols. 

(2)  Since most IDS/IPS relies on signatures for intrusion detection, the 

anonymization may accidentally modify an attack signature and affect the 

detection results. For example, an HTTP GET method may include a malicious 

content following is a shellcode exploit example : 
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However, to protect the privacy of web browsing, anonymization tools often 

hide the URL in the GET method, but this URL may contain an important 

signature for IDS/IPS detection. For example, a Snort [15] IDS rule below 

contains a string of all A’s in the signature to detect a shellcode. The detection 

will fail if the string of A’s in the URL is anonymized. 

 

Anonymization Policies 

Several tools or libraries for packet anonymization are available for network 

research [2-8]. Table 2 compares these tools. Among the tools, only tcpanon, anontool, 

scrub-tcpdump and Bro can anonymize the packet payloads and remove sensitive 

information. The others just drop the entire payloads. The tools that can anonymize 

the payloads are described below: 

Table 2. Comparison of anonymization tools 

Tools Feature 
MAC 

addresses 
IPv4 address 

Application 
layer 

Tcpdpriv  Retain class designation N/A 
Random, 

Prefix-preserving 
Truncation 

Tcpmk- 
pub 

Various TCP/IP header fields 
Prefix- 

preserving 

Random, 
Cryptographic, 

Prefix-preserving 
Truncation 

FLAIM  
Contain a broad set of 

algorithms 
Random, 

Partial hiding 
Random, 

Prefix-preserving 
N/A 

Tcpanon Fields in application layers N/A 
Random, 

prefix-preserving 
Partial field 

hiding 

SCRUB- 
tcpdump 

Substitution specific string in 
application layer 

N/A 
Random, 

subnet/host 
permutation 

Pattern hiding 

Anontool Provide AAPI 
Block black 

marker 
Random, 

prefix-preserving 
Specific string 

hiding 

Bro+anon 
Various application-level 

fields 
N/A N/A 

Specific fields 
hiding 

PCAPAn
on 

Deep Packet Anonymization 
Length-Semantic-Preserving 

Block Black 
Marker 

Length-Prefix-Pre
serving 

Deep packet 
anonymization 

GET 

/iframe3?C00jAE12BADcCRkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4AAQACB3qzB 

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"SHELLCODE x86 inc 

ecx NOOP"; content:"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA";content:"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA";content:"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA";content:"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; 

classtype:shellcode-detect; sid:1394; rev:10;) 
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Tcpanon [5], written in Python, can parse and anonymize certain fields in the 

HTTP, FTP, SMTP, POP and IMAP application protocols. However, the payloads of 

other protocols not supported by tcpanon will be discarded. Writing a new protocol 

parser in Python is necessary to extend the number of supported protocols. This 

approach is complicate and error-prone. 

Scrub-tcpdump [6] and [21] can search the payload for specified patterns in 

regular expressions, but these approachs may be imprecise for payload anonymization 

such as user ID and password. Anontool [7] provides a set of APIs that can also 

support pattern searching, but the ability of parsing application-level protocols is 

necessary.  

Bro IDS [16] implements an anonymization process as a plug-in [8]. The process 

can anonymize both on-line and off-line traffic traces. Despite its flexibility, the 

process still has several limitations. First, as Bro works with events, the fields in the 

packet header can be altered only for those protocols which have registered events 

that support trace transformation. That is, a user needs to write the suitable policy 

scripts, one for each protocol (HTTP, FTP, POP, etc.) for the anonymization. Our 

framework PCAPAnon, on the contrary, provides a larger set of protocol parsers based 

on wireshark dissectors [17] that can be applied to all packet fields up to the 

application level. The parsing can help to identify the right fields for anonymization. 

Second, after application-level anonymization, Bro will store the content into a buffer, 

and re-create the packets, so the number of packet, packet lengths and other 

characteristics of traffic traces will be completely different from the original traces. In 

our framework, we replace the field values with those values of the same semantic 

and length in the anonymization to maintain the characteristics as much as possible. 

2.3 Method of FP/FN assessment 

 Many researchers and developers consider ways to acquire modern traffic traces 
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as the test datasets for evaluating their own IDS/IPS designs. Clearly, how well the 

traffic traces can match real-world ones will have a significant impact on the 

false-alarm rate. It is demonstrated that even a small rate (1 in 10,000) of false 

positives could generate an unacceptable ratio of false alarms to real detections [12]. 

Chen et al. design a system of Attack Session Extraction (ASE) [18] to integrate 

efforts of signature analysis and development from different vendors to figure out 

false alarms. The ASE captures, replays, and extracts real-world traffic. The system 

replays traffic traces to IDS/IPs of different vendors, and finds potential FPs and FNs 

(denoted by P-FPs and P-FNs) to a certain IDS/IDPby comparing the logs of 

IDS/IPSs because some attack logs are “logged” or “not logged” only at a certain 

IDS/IDP. The former is P-FPs, while the latter is P-FNs to the IDS/IDP. 

 

Chapter 3 PCAP Lib Methodology 

This chapter details the mechanisms of PCAP Lib which includes three major 

parts. The first part is Active Trace Collection to provide valuable packet trace from 

real-world traffic. The second part is Deep Packet Anonymization to precisely and 

deeply substitute the sensitive information, while still keeping the trace suitable for 

research. The third part is False Positive/Negative Assessment to find out the frequent 

causes of FP/FN in detection in security devices from selective packet traces. 

3.1 Overview of three mechanisms 

The goal of trace sharing is to reserve real-world traffic behaviors in packet traces, 

which can be replicated and picked up easily among researchers for network forensics. 

However, recording entire real-world traffic could easily consume up the storage 

space and searching for specific events in the huge traces is time-consuming. Thus, 

recording only traffic associated specific events would be better. Furthermore, packet 
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anonymization protects privacy from leakage in trace sharing. This work proposes 

Active Trace Collection (ATC) and Deep Packet Anonymization (DPA) to provide 

high-quality packet traces that meet the above requirements. 

As shown in Figure 1, the ATC actively extracts both healthful and malicious 

traces from real-world traffic captured in NCTU BetaSite, which is to construct a test 

network in the campus and record the student network interaction into PCAP files 

(http://speed.cis.nctu.edu.tw/~ydlin/Betasite.html). The DPA then parses 

application-level protocol identities and anonymizes sensitive fields in the collected 

traces. We investigate the causes of FP/FN in the DUTs to the collected traces by 

FP/FN Assessment (FPNA). The details of the three mechanisms are explained in the 

following subsections. 

  

Figure 1: PCAP Lib Block Diagram. 

3.2 ATC: Active Trace Collection 

The quality of trace repositories to represent real activities relies on the active 

involvement and frequent update of user submission. We therefore design the ATC 



 

9 
 

mechanism to extract and categorize large-scale packet traces from real-world traffic, 

so that users can easily choose what they want. Figure 2 shows the ATC system flow. 

The procedure of the ATC to provide valuable traffic traces involves two phases: First, 

it uses traffic replay tool (e.g., tcpreplay) to replay captured raw traffic to multiple 

DUTs to leverage their domain knowledge. If a DUT detects a specific behavior in the 

traffic, it will trigger a log. According to the DUT logs, we can find out the anchor 

packets by 5-tuple, and process 2-level association to extract each specific session 

into packet trace [18].  

Second, we use supervised classification to category the extracted packet traces. 

From the generated logs, we can also separate various traces into different 

classifications by keywords. Here we define 10 attributes, each of them includes a 

variety of keywords to match the logs and decide to which attributes packet traces 

belong. We also verify the classification to ensure the packet traces are useful. The 

verification replays the categorized packet trace to the particular DUT(s) which 

triggered a log from the categorized session in the raw PCAP files. If the session can 

trigger the same log, we insert it into database; otherwise the trace is invalid. At the 

same time, we judge whether the traces are unharmful or malicious from the detection 

result of a set security devices (IDS/IDP, Anti-Virus, Anti-Spam).  

 

Figure 2: ATC system flow. 

3.3 PCAPAnon: Deep Packet Anonymizer 
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 ATC provides the well-classified traces, but when we release these traces for 

open research organization, we have to face the privacy leakage problem. 

PCAPAnon supports a precise method for privacy protection of packet traces. The 

method depends on two elements: (1) trace parsing to decide what information in 

the trace we need to hide and (2) identity substitution to choose how we anonymize 

data elements. Figure 3 presents the PCAPAnon framework of deep packet 

anonymizer, which anonymizes each layer with various policies. The framework 

provides a large set of protocol parsers and substitutes the identities with those of 

the same length and data type to maintain the semantics of the application protocols. 

We detail the two elements, trace parsing and identity substitution, in the 

following. 

 

Figure 3: PCAPAnon Framework. 

Trace Parsing 

A major challenge in protocol parsing is that it is non-trivial for the parser to 

precisely recognize the semantics of application protocols due to the large number 

of protocols. Writing a large number of application protocol parsers is complex and 

tedious. Thereby, we leverage Wireshark (www.wireshark.org), a network packet 

analyzer, for its plenty of protocol dissectors (www.wireshark.org/docs/dfref) 
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registered as plugins to parse the traces. Each dissector decodes its part of the 

protocol, and then hands off the decoding to subsequent dissectors for an 

encapsulated protocol. User can make a custom script to decide which protocol 

identities should be transferred by (www.wireshark.org/docs/dfref). For example, 

“-Tfield –e http.host” changes the http host content. 

 Besides protocol dissection, we also support regular expression matching 

(RegExp) to seek and match the sensitive identities, such as IP addresses, Mail 

addresses, and URLs, for two reasons. First, RegExp is fast and has been used in 

deep packet inspection. Second, RegExp can match some identities that protocol 

dissection cannot define in protocol. However, RegExp might miss matches of 

important privacy information, if it doesn’t define the patterns well. 

Identity Substitution 

PCAPAnon provides a variety of anonymization functions, including Block 

Black Marker for MAC address, Length-Prefix-Preserving for IP address (based on 

cryptographic and mapping table), Semantic-Length-Preserving for RegExp 

matching, Pattern Replacement for protocol fields, and Checksum adjustment for 

all protocols, thus providing adequate functionality for each different identity. (1) 

Block Black Marker sets field encryption. (2) Length-Prefix-Preserving (LPP) 

ensures that if two original IP addresses share the same prefix and length, both will 

still share the same length and prefix, i.e., the subnet and length of the IP addresses 

remain unchanged. LPP contains three steps: First, DES-ECB records the original 

digits of four blocks ( ) in IP address format and encrypts each block value 

( ). Second, MSB-Pad make most significant bit OR 1 in each block to extend 

every block into 3-digits value. Last step makes  =  % (10 x ) to 

reduce it to the original length. (3) Length-Semantic-Preserving (LSP) matches an 

identity like a mail address or URL in the payload, and then substitutes it for 
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another mail address or URL of the same length. Therefore, the semantics of the 

identity is reserved. (4) Pattern Replacement fills the field with a pattern repeatedly. 

The pattern can be an integer or string. (5) Checksum Adjustment aims to keep 

checksum valid. If the checksum is invalid, for instance, some IDS/IDP will drop 

the packets with invalid checksums. The checksum should be re-calculated 

carefully. The pseudo code for the (2) and (3) procedure are described in Figure 4. 

IF  Pattern is IP address       //Length-Prefix-Preserving 
 Then  

Transfer ascii.pattern to bin.pattern 
 For i ⃪ 1 to 4                       //Divide address into four blocks 
    ⃪ Digit [ ]          //Record block digits 

    ⃪ DES-ECB [ ]    //Encrypt block 

  ⃪ MSB-Pad [ ]    //Extend Digits 

    ⃪  mod (10 x ) //Recovery digits 
 Transfer bin.pattern to ascii.pattern 
 Replace pattern      //Copy data buffer to packet 
ELSE IF Pattern is Mail address    //Length_Sematic_Preserving 
 Then 

n ⃪  length[pattern] 
 m ⃪ length[replace_vec]        //Basic_replace_vec = "x@nctu.tw" 
 IF  n > m  
  h ⃪  n - m 
  Generate data_buf by h     
  Merge data_buf and replace_vec  
  Replace pattern      //Copy data buffer to packet 
 ELSE 
  Replace pattern 
ELSE Pattern is URL       //Length_Sematic_Preserving 

n ⃪  length[pattern] 
m ⃪ length[replace_vec] //Basic_replace_vec = 

"http://www.nctu.tw" 
 IF  n > m  
  h ⃪  n - m 
  Generate data_buf by h     
  Merge head_vector, data_buf, and tail_vector  

//Head_vector="http://www.", 
//Tail_vector=".nctu.tw" 

  Replace pattern      //Copy data buffer to packet 
 ELSE 
  Replace pattern 

Figure 4: Pseudo code of LPP and LSP. 
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In our work, we wish the characteristics of anonymized packet trace can be 

close to the original one as possible. For instance, we substitute the 

application-level protocol fields for those of the same type and length. This 

approach has two main benefits. First, the number of the original packets, the time 

and the length are reserved. The reservation allows statistical approaches to 

anomaly detection and flow classification to have a greater chance to still work 

after anonymization [22]. An IDS/IPS can also parse the protocol semantics as 

usual.. Second, keeping the length of the original packet makes the design of 

anonymization tools relatively simple. Fields such as TCP header sequence number, 

acknowledgment number, options in the field and so on need not be transformed, so 

are the information fields in an application protocol, such as the HTTP header 

Content-Length field. The mechanism does not handle the complexity in 

recalculating the above values after anonymization. 

3.4 FPNA: False Positive/Negative Assessment 

As previous work, The ATC uses the domain knowledge of IDS/IDP, Anti-Virus, 

Anti-Spam and application classifier to collect packet traces from real-world traffic. 

The detection of DUTs might be wrong due to FPs/FNs. To find out these FP and FN 

cases, we process three steps as follows. First, by majority voting of DUTs, we can 

find out the potential FPs and potential FNs. The concept is that if the ratio of 

detection result in DUTs for a specific trace is 1：N-1, than the minor one, which 

means the unique DUT that detects this trace, is more likely the FP result and the FN 

case vice versa. Second, after finding out potential FP/FN, we replay the extracted 

packet traces to DUTs again. This step is to verify whether the cases are reproducible 

to the original DUTs. Last, to ensure the result is correct, we process manual analysis 

to investigate the FP/FN causes and count the occurrences of frequent cases.  
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Chapter 4 Implementation issues of PCAP Lib 

 This chapter focuses on the implementation issues of the PCAP Lib, which is 

built on 64-bit Linux kernel 2.6.31. Section 4.1 will cover the extraction and 

classification phase in ATC. Section 4.2 will cover packet dissection, pattern 

substitution, and field transformation in PCAPAnon.  

4.1 Active Trace Collection 

ATC leverages the domain knowledge of security DUTs for intrusion detection, 

anti-virus, anti-spam, P2P/IM management, and so on, to interpret the specific 

packet trace. These functions are typical and comprehensive in ordinary security 

devices. 

Extraction phase 

 The first phase consists of three-pass scanning of the traffic trace: (1) finding 

out the anchor packets, (2) associating other packets with the anchor packets into 

the same TCP or UDP connection, and (3) associating connections with the anchor 

connection into a session. First, there are two tables: Alarm Log Table (ALT), 

generated by DUTs and used to record logs from DUTs. The other is Replay Log 

Table (RLT), generated by the machine running Tcpreplay and used to record the 

time when Tcpreplay sends each packet. Five-tuple in the ALT should be sufficient 

to identify anchor packets. Unfortunately, some DUTs won’t have “five”-tuple, they 

simply log part of five-tuple, e.g. source IP address and destination IP address. The 

ASE, therefore, also needs the time information in the ALT and RLT to set up a 

time frame. This time frame is used to narrow down the searching scope, and thus 

identify anchor packets correctly. Second, packet association discovers the attack 

connection where the anchor packets belong to. The packets of same connection 

share common five-tuple. Last, connection association uses longest common 
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subsequence (LCS) to calculate the similarity of two packets. After identifying 

similar packets, we watch the source and destination IP addresses at the same time. 

This step keeps only the packets which consists the specific traffic behavior within 

session. The other packets are dropped to reduce the size of traffic trace. After 

extraction, the information of ALT will be inserted into database and associated 

with extracted traffic trace which triggers the log for later classification usage. The 

details of extraction phase can refer to ASE [18]. 

Classification phase 

We wish to provide researchers and developers with packet traces in taxonomy, 

so that they can select which class to apply in the research. Table 4 defines 10 

attributes as our supervised classification training sets that generated by heuristic 

method. Each class includes a variety of keywords. We apply the keywords to 

match the DUT logs by regular expressions, and find out the matching packet 

traces. 

Table 3. Classification for Traces and their representative keywords 

Attribute Keywords within DUT Log 
Web  HTTP 

Email  POP3, SMTP, IMAP 
FileTransfer  FTP, SMB, TFTP 
RemoteAccess  Telnet, SSH, RDP, VNC 
Encryption  SSL, FTPs, HTTPs 
Chat  IRC, ICQ, Yahoo Messenger, MSN, AIM, Skype ,Google talk 
FileSharing  Bittorrent, eDonkey, Gnutella, Pando, SoulSeek, Winny, Xunlei,  
Streaming  PPLive, QuickTime, Octoshape, Orb, Slingbox 

VoIP  SIP 

Network NetBIOS, DNS, SNMP, Socks, STUN 

Next, we separate the packet trace into benign or malicious ones from the detection 

result of security devices. If most security devices trigger a log from a packet trace, 

the trace may be malicious with high possibility. Thus, the classification is 

two-dimensional: one is based on applications, and the other is based on security.  

4.2 PCAPAnon framework 

This work intends to keep the privacy and utility of traces with deep packet 
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anonymization. To keep the semantics of packet traces, the anonymzation steps 

involve trace parsing and identity substitution, respectively. In our work, we 

propose a configurable policy with three levels of anonymization: (1) TCP/IP 

header (2) Regular Expression matching and (3) Application-level protocol 

dissection. Most anonymization tools support the first , so we do not repeat here. 

We realize the latter two policies with the three stages in the packet processing 

illustrated in Figure 5, including (1) Packet dissection (2) Field transformation and 

(3) Pattern substitution. We explain them in the following subsections. 

 

Figure 5: PCAPAnon packet processing. 

Packet Dissection 

 Wireshark provides more than 800 protocol dissectors to handle trace parsing 

for various application protocols. Each dissector decodes its part of the protocol, 

and then hands off decoding of the encapsulated protocol to subsequent dissectors. 

To keep the relationship between protocol layers and handle each layer properly, 

wireshark uses  a data structure of Protocol Tree. Figure 6 presents a simple 

protocol tree for parsing up to the TCP layer. The parsing all starts with a Frame 
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dissector, which dissects the packet details (e.g., timestamps) of the capture file , 

passes the data to an Ethernet frame dissector that decodes the Ethernet header, and 

then passes the payload to the next dissector (e.g. IP) and so on. The dissector 

decodes the information in the layer that it is responsible for.  

Moreover, wireshark use protocol signature to identify an encapsulated 

protocol in the sibling node (a child of the same parent node). Each protocol can 

register their own specific signatures, [ data_handle=find_dissector("foo"); 

foo_handle=create_dissector_handle(dissect_foo,proto_foo);dissector_add("udp.po

rt",3001,foo_handle) ];(http://anonsvn.wireshark.org/wireshark/trunk/doc/READM

E.developer). Wireshark can distinguish the children nodes from each other with 

these signatures. For example, registering TCP port field “tcp.port = 21” can be 

considered as a signature for FTP. Packets with this signature will be passed to the 

FTP dissector. The signature can be defined. As a result of enhancing the protocol 

tree with signature identification, the system is highly flexible for expansion. 

 

Figure 6: Protocol Tree of Dissection 
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Field transformation 

 Packet dissection can unmistakably parse the protocol fields for 

anonymization of application-level protocol fields. We provide a protocol field list 

(www.wireshark.org/docs/dfref) for the developer to describe the fields needed for 

anonymization. The identities can configure in a script, for example, that certain 

fields such as user ID, password, authentication key, contain private information for 

anonymization. In the Figure 5, we can get the node field value of protocol tree by 

the Proto_tree_get_node_field_value function. Through Hash_table_lookup, we 

locate the field values which need to be anonymized and replace the values with 

consistent length of patterns (e.g.. pass 1234 to pass XXXX). 

Pattern substitution 

After packet dissection, we can separate TCP/IP header and payload. The 

anonymization searches for private identities in the packet payload with patterns in 

regular expressions (listed in Table 4), and hides the identities that are found. If the 

pattern matches a specific identity in the payload, then we substitute it for another 

of the same length and semantics. If the payload length is changed due to 

anoymization, then the sequence/acknowledge numbers of the packets should be 

adjusted as well to meet the semantics of TCP. If not, traffic analysis that examines 

the sequence/acknowledge numbers (e.g., packet reassembly in IDS) will result in 

an error. On the other hand, keeping the semantics of protocol fields is also 

important, or it will affect the DUT parsing, like malformed mail address in packet. 

Table 4. Identity Patterns 

Identity  Regular Expression Pattern  
IPv4 

address  
[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3} 

Mail 
address  

[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?̂_`{|}~-]+)*@(?:[a-z0-9](?:[a-
z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])? 

URL  (?:(?:(?:http|ftp|gopher|telnet|news)://)(?:w{3}\.)?(?:[a-zA-Z0-9/;\?&=:\-_\$\+!\*'\(\|\\~\[
\]#%\.])+) 
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Domain 
name 

([a-zA-Z0-9]([a-zA-Z0-9\\-]{0,61}[a-zA-Z0-9])?\\.)+[a-zA-Z]{2,6} 

 We propose two anonymization functions for Length-Prefix-Preserving and 

Length-Semantics-Preservingin identity substitution. If two IP addresses a and b 

share a common k-bit prefix, and their address lengths are ℓ and � in the ASCII 

representation, then LPP(a) and LPP(b) also share a k-bit prefix and their lengths 

ℓ and � are reserved as well. Therefore, the characteristics of packets, such as 

lengths and numbers, can be reserved after anonymization. The reservation is 

important if the packet traces are to be analyzed statistically. 

Three steps are in LPP: (1) DES-ECB record the original digits and scrambles 

the four blocks of the original IP address individually with the DES algorithm. (2) 

MSB-Pad extends each block to three digits in decimal by padding the most 

significant bit with 1 for length preserving. (3) Because we recorded the block 

digits of original IP address in DES-ECB, we mod each block according to their 

digit records to restitute original IP address ASCII length. 

 

Chapter 5 Evaluation and Observation 

 In this chapter, we evaluate the three main modules of the PCAP Lib framework. 

First, ATC provides 323 packet traces with different traffic behaviors that be classified 

into 10 x 5 classification matrix. Second, the utility and privacy of anonymization 

tools are evaluated. We also evaluate the efficiency of three different anonymization 

policies supported by PCAPAnon. Finally, we assess the most frequent FP/FN cases, 

and find out main causes of these FP/FP cases. 

5.1 Completeness of various class traces 

Our real-world traffic is captured from the NCTU BetaSite 

(http://speed.cis.nctu.edu.tw/~ydlin/Betasite.html) from October 1, 2009 to February 
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1, 2010. Table 6 presents number of the classified traces generated by ATC which 

includes 8 DUTs (BroadWeb, Cisco, D-Link, Fortinet, McAfee, TrendMicro, 

TippingPoint, and ZyXEL). During the period of five months, the web traffic is the 

most popular application traces. It includes 40% of web-type traces are malicious, 

meaning attackers frequently exploit Web applications. File transfer is the second 

popular application, and 30% traces are malicious. Table 7 summarizes the 10 

application classes, each containing various application name that represents the 

number of application traces that we collected in the five-month by ATC. 

Table 5. Trace Classification Matrix 

 
Web  Email  

File 
Transfer  

Remote 
Access  

Encryp
tion  

Chat  
File 

Sharing  
Strea
ming  

VoIP  
Net 

work  
Healthy 
General 

53  8  36  8  6  15  21  6  2  32  

Healthy 
Special 

21  4  0  2  0  1  0  0  0  0  

Attack 49  6  15  5  6  5  0  0  2  13  
Virus 0  0  0  1  1  0  0  0  0  0  
Spam 2  3  0  0  0  0  0  0  0  0  
Total 125  21  51  16  13  21  21  6  4  45  

Table 6: Number of Application Packet Traces (number) 

Attribute T1 T2 T3 T4 T5 T6 T7 

Web 
HTTP 
(125) 

      

Email 
POP3 

(5) 
SMTP 
(11) 

IMAP 
(5) 

    

File Transfer 
FTP 
(28) 

SMB 
(22) 

TFTP 
(1) 

    

Remote Access 
Telnet 

(6) 
SSH 
(4) 

RDP 
(4) 

VNC 
(2) 

   

Encryption  
SSL 
(11) 

FTPs 
(1) 

HTTPs 
(1) 

    

Chat 
IRC 
(7) 

ICQ 
(4) 

Yahoo 
Messenger 

(4) 

MSN 
(1) 

AIM 
(1) 

Skype 
(1) 

Google 
talk 
(1) 

File Sharing 
Bittorrent 

(2) 
eDonkey 

(1) 
Gnutella 

(1) 
Pando 

(1) 
SoulSeek 

(1) 
Winny 

(1) 
Xunlei 

(1) 

Streaming 
PPLive 

(2) 
QuickTime 

(1) 
Octoshape 

(1) 
Orb 
(1) 

Slingbox 
(1) 

  

VoIP 
SIP 
(4) 

      

Network 
NetBIOS 

(21) 
DNS 
(19) 

SNMP 
(3) 

Socks 
(1) 

STUN 
(1) 

  

5.2 Privacy, Utility, and Efficiency of Anonymization policies 

In this evaluation, we define the utility and privacy for the anonymization. The 
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privacy is evaluated with the percentage of sensitive fields in the packet traces that 

have been anonymized precisely. Utility is evaluated with the percentage of malicious 

packet traces after anonymization that can be still detected by DUTs. We use Snort 

2.8.5, which is an open source signature-base IDS, as the DUT to verify trace that we 

can investigate the effect of anonymization by comparing snort’s signatures and 

packet traces. The first step is to replay the raw ATC traces to Snort and collect the 

logs. Next, we anonymize these traces and replay them again to calculate the metrics. 

We choose true positive (TP) and false negative (FN) as our metrics to define utility 

and privacy as follows: TPfield is True Positive of field, FNfield is False Negative of 

field and TPtrace is True Positive of trace, FNtrace is False Negative of trace, 

fieldfield

field

FN of #  TP of #

TP of #
Privacy 

+
= ,

tracetrace

trace

FN of #  TP of #

TP of #
Utility 

+
= . Since the HTTP 

malicious traces dominate our ATC collected traces, we use these traces in the 

evaluation. Figure 7 presents the impact on the utility from of the anonymization of 

HTTP header fields. The evaluation observes that most malicious signatures are 

embedded in host/cookie/request.uri fields. If these fields are anonymized, the traces 

will not be triggered by DUTs. Figure 8 illustrates an example of false negatives that 

occurs in anonymizing http URI field. The original packet trace tried to access the 

password configuration file against GET URI /etc/passwd. If the URI argument is 

anonymized for privacy protection, the / signature in the packet trace will be lost --- 

the trace will not trigger the alert of "WEB-MISC /etc/passwd" anymore. 
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Figure 7: The anonymization impact of HTTP header fields 

[Before Anonymization] 
GET 
//lists/admin/index.php?_SERVER[ConfigFile]=../../../../../../../../../../../../../../../../../../../.
./../../../etc/passwd HTTP/1.1  
[After Anonymization] 
GET 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX HTTP/1.1 
[Snort rule]  
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS 
(msg:"WEB-MISC /etc/passwd"; flow:to_server,established; content:"/etc/passwd"; 
nocase; metadata:service http; classtype:attempted-recon; sid:1122; rev:6;)  

Figure 8. False negative in anonymized HTTP trace 

Figure 9 and 10 compare the privacy and utility of PCAPAnon with two other 

anonymization tools, anontool and tcpanon which can anonymize packet payload. In 

the privacy evaluation, we defined sensitive identities for four protocols,http, ftp, pop 

and smtp, as Table 8 lists. Figure 9 shows the comparison result, we can observe that 

(1) anontool provides only pattern substitution and leads to privacy leak seriously, (2) 

tcpanon uses customized parsing to hide more identities than anontool, but its ftp 

protocol parser not be defined well. It misses some sensitive identities such as PORT 

and STOR, (3) PCAPAnon provides DPA to hide identities accurately due to its rich 

set of protocol parsers. 

 Figure 10 shows the utility result, we can observe that  
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(1) Although anontool keeps excellent utitility after anonymization, it maintains the 

privacy poorly withitd rough pattern substitution;  

(2) tcpanon’s customized parsing overwrites significant content, so the utility 

becomes poor. 

(3)Because PCAPAnon provides protocol dissection which can parse protocol fields 

accurately, it avoids overwriting the packet payload and modified the specific content 

which occurred in tcpanon, and results in less alternation of signatures. 

Table 7. Identities of Privacy Measurement 

HTTP sensitive fields  FTP sensitive fields  POP sensitive fields  SMTP sensitive fields  
Proxy_authentication USER  USER  HELO  
Proxy_authorization PASS  PASS  MAIL FROM:  
WWW_authenticate  PORT  Reply.+OK  RCPT TO:  
Content  RETR  Mail address  DATA  
Authorization  STOR  IP address  Reply.220  
Set_cookie  Reply.150  URL address  Reply.250  
Referer  Reply.227   Mail address  
HOST  Reply.230   IP address  
Cookie  Reply.331   URL address  
Mail address  Mail address    
IP address  IP address    
URL address  URL address    

 

 

Figure 9: Privacy of Anonymization Tools  
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Figure 10: Utility of Anonymization Tools 

Besides privacy and utility, we define a metric for the efficiency of 

anonymization as follows to consolidate the former two metrics as one. The single 

metricis useful for comparing anonymization tools and policies when both privacy 

and utility are of concern.  

tracetrace

trace

fieldfield

field

FN of #  TP of #

TP of #

FN of #  TP of #

TP of #
                  

Utility Privacy Efficiency

+
×

+
=

×=
 

Figure 11 presents the efficiency of the anonymization tools in the evaluation. The 

efficiencies of anontool and tcpanon are 27% and 33%, while that of PCAPAnon’s 

DPA support is as high as 93%. 

Figure 12 shows the efficiency of PCAPAnon three-level anonymization policies. (1) 

Hiding MAC/IP addresses and Checksum in the L2/L3/L4 headers provides little 

protection of sensitive identities, (2) Pattern Matching allows to replace Mail/IP/URL 

within the payload, but if identities were not defined in patterns, these identities will 

be missed from protection. (3) Protocol Dissection can precisely parse for protocol 

semantics (e.g.. Host, Cookie, Authentication Key, Password and User ID) to 

anonymize not only the patterns but also field values. In our experiment, the three 

combo policies gain good efficiency up to 93%. 
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Figure 11: Efficiency of anonymization tools 

 

Figure 12: Efficiency of three-level anonymization policies 

5.3 Statistics of FP/FN cases 

FPNA provides a convenient way to find out the FPs and FNs of DUTs. In this 

section, we study the causes of FP/FN cases using the same ATC source traffic 

captured from the NCTU BetaSite. In our investigation, the main causes of FP/FN can 

be subsumed into three types: Type 1 is attributed to signature design.The signatures 

are too general or rough, so that they can easily match the packet content. Type 2 is 

attributed to traffic similarity, where normal traffic may behavior weirdly or mistake 

to other network protocol. Type 3 is Rule Configuration, meaning some configuration 
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arguments may not be instituted well, such as a threshold too high to detect a specific 

malicious behavior of. 

 Figure 13(a) shows the most frequent FP cases (1) SQL Injection comment 

attempt results from BitTorrent traffic similarity because the client binds port 80 (2) 

FTP wu-ftp bad file completion attempt [ results from "[" character often appear in ftp 

transfer data (3) EXPLOIT Veritas Backup Agent DoS attempt results from BitTorrent 

traffic similarity because the client bind port 10000 (4) Google Chrome setInterval 

Denial of Service results from SetInterval('swltxtColor()', 500) may be used in many 

web pages and its’ User-Agent is Mozilla/4.0 not Chrome. (5) IBM Lotus Domino 

Accept-Language Buffer Overflow results from Accept-Language field does not exist 

buffer overflow code just because field length over 100. Figure 13(b) present the 

proportion of three types that Traffic Similarity accounts for 63% of the FP cases 

because P2P dynamic port make the DUTs mistake the application protocols (e.g. (1) 

and (3)).  

 
(a) Top five frequent cases 
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  (b) Proportion of three causes 
Figure 13: Statistic of False Positives 

Figure 14(a) shows the most frequent FN cases. (1) SQL SA brute force login 

attempt TDS v7/8 due to threshold be set to 5 times in 2 seconds, but in our 

investigation, it happens in 3 times in 2 seconds. The other four cases result from the 

DUTs does not have such signatures. From Figure 14(b), we can know the 

insufficiency signatures account for 62% of FN cases. 

  
(a)Top five frequent cases 

  
(b) Proportion of three causes 

Figure 14: Statistic of False Negatives 

Chapter 6 Conclusions and Future Works 

 This work proposes a PCAP Lib framework to provide well-classified packet 

traces with anonymization and FP/FN case studies from these traces. ATC collects 

323 distinctive packet trace in five months. 33% of the packet traces are healthy and 

67% are malicious. The distribution of collected traces shows that web applications, 

which occupy 40%, are a frequent way that attacker used to exploit.  



 

28 
 

In anonymization, we define “privacy/utility” and “efficiency” to evaluate the 

different anonymization methods. PCAPAnon uses DPA to achieve the best efficiency 

93%. Moreover, PCAPAnon’s efficiency of pattern matching 51% higher than 

anontool due to it supports global search.  

In FP/FN case studies, FPNA gives the statistic of cases from ATC collected 

traces. Herein, we focus on security devices, but the method could be extended to 

other DUTs. In false positive, we observe that traffic similarity 63% dominates the 

high percentage because P2P dynamic port makes the DUTs mistaking the application 

protocol. In false negative, signature insufficiency, which is the main cause, occupies 

62% high proportion. To researcher and developer, PCAP Lib provides completeness 

and flexibility to satisfy their various purposes. 

Although PCAP Lib has many functions, it still exists an issue needs to be solved. 

As Section 5.2 shows false negative in anonymized trace, if malicious signatures are 

embedded in privacy fields, we choose to protect privacy first. Because these 

signatures are modified, packet trace will not be triggered by IDS/IDP. According to 

the feedbacks of IDS/IDP then reserving the signature contents is a way to avoid this 

situation happen. Another issue is due to our anonymization policy script base on 

manual decide which protocol field should be transferred. But if the packet traces 

contain various protocols, it will hard to configure. Hence, a good way is to use traffic 

statistic tool (e.g. trace-summary) identify the protocols in traces and provide a 

collaborative mechanism for user can modify the same policy script. 
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Appendix. POP3 Payload Deep Anonymization 

This table shows the anonymization result of PCAPAnon, The left column shows the 

original payload data which is a plain mail content. The right column shows mail 

address in column (2, 3, 5, 13, 15, 25, 29-34) are substituted by 

Length-Semantic-Preserving and IP address in column (7 and 20) are substituted by 

Length-Prefix-Preserving. 

1 +OK 797880 octets 

2 Return-Path: <bluemoon609.ac95@g2.nctu.edu.tw> 

3 X-Original-To: nightmare0918.ac95@nctu.edu.tw 

4 Delivered-To:   

5 nightmare0918.ac95@d2-spool-lb-0.nctu.edu.tw 

6 Received: from mail-iw0-f194.google.com  

7 (mail-iw0-f194.google.com [209.85.223.194]) 

8 by d2-spool-lb-0.nctu.edu.tw (Postfix) with ESMTP id  

9 B010969A8D7; 

10 Tue, 27 Oct 2009 09:38:09 +0800 (CST) 

1 +OK 797880 octets 

2 Return-Path: <nblnblnblnblnblnblnb@nbl.org.tw> 

3 X-Original-To: nblnblnblnblnblnbln@nbl.org.tw 

4 Delivered-To:  

5 nblnblnblnblnblnblnblnblnblnblnbl@nbl.org.tw 

6 Received: from mail-iw0-f194.google.com  

7 (mail-iw0-f194.google.com [138.52.206.189]) 

8 by d2-spool-lb-0nctuedu.tw (Postfix) with ESMTP id  

9 B010969A8D7; 

10 Tue, 27 Oct 2009 09:38:09 +0800 (CST) 
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11 Authentication-Results: d2-spool-lb-0.nctu.edu.tw;  

12 sender-id=none  

13 header.from=bluemoon609.ac95@g2.nctu.edu.tw;  

14 spf=none  

15 smtp.mfrom=bluemoon609.ac95@g2.nctu.edu.tw 

16 Received: by iwn32 with SMTP id 32so6481732iwn.23 

17        for <multiple recipients>; Mon, 26 Oct 2009  

18 18:38:08 -0700 (PDT) 

19 MIME-Version: 1.0 

20 Received: by 10.231.1.22 with SMTP id  

21 22mr1672949ibd.56.1256607488296; Mon, 26  

22 Oct 2009 18:38:08 -0700 (PDT) 

23 Date: Tue, 27 Oct 2009 09:38:08 +0800 

24 Message-ID:  

25<8197f2480910261838h50b01e49x933c16c77428dba1@ 

26 mail.gmail.com> 

27 Subject: =?Big5?B?xbLD0azsvsekwLLVs/inaarsqqk=?= 

28 From: =?Big5?B?pP2pycV0?=  

29 <bluemoon609.ac95@g2.nctu.edu.tw> 

30 To: codyp.iac93g@nctu.edu.tw, vm3m4bj6@hotmail.com, 

31 seyron.ac95@g2.nctu.edu.tw,  

32 nightmare0918.ac95@nctu.edu.tw,  

33 joy0910.ac95@nctu.edu.tw,  

34 agnesbird99@hotmail.com, nevertears@gmail.com 

35 Content-Type: multipart/mixed;  

36 boundary=00151773eaa0f64c850476e0badb 

37 

38 --00151773eaa0f64c850476e0badb 

39 Content-Type: multipart/alternative;  

40 boundary=00151773eaa0f64c740476e0bad9 

41 

42 --00151773eaa0f64c740476e0bad9 

43 Content-Type: text/plain; charset=Big5 

44 Co 

11 Authentication-Results: d2-spool-lb-0.nctu.edu.tw;  

12 sender-id=none  

13 nblnblnblnblnblnblnblnblnblnblnb@nbl.org.tw;  

14 spf=none 

15 nblnblnblnblnblnblnblnblnblnbln@nbl.org.tw 

16 Received: by iwn32 with SMTP id 32so6481732iwn.23 

17        for <multiple recipients>; Mon, 26 Oct 2009 

18 18:38:08 -0700 (PDT) 

19 MIME-Version: 1.0 

20 Received: by 37.188.7.86 with SMTP id  

21 22mr1672949ibd561256607488296; Mon, 26  

22 Oct 2009 18:38:08 -0700 (PDT) 

23 Date: Tue, 27 Oct 2009 09:38:08 +0800 

24 Message-ID:  

25<nblnblnblnblnblnblnblnblnblnblnblnblnblnblnblnbl@n

26 bl.org.tw> 

27Subject: =?Big5?B?xbLD0azsvsekwLLVs/inaarsqqk=?= 

28 From: =?Big5?B?pP2pycV0?=  

29 <nblnblnblnblnblnblnb@nbl.org.tw> 

30 To: nblnblnblnbln@nbl.org.tw, nblnblnbl@nbl.org.tw, 

31 nblnblnblnblnbl@nbl.org.tw,  

32 nblnblnblnblnblnbln@nbl.org.tw, 

33 nblnblnblnbln@nbl.org.tw,  

34 nblnblnblnbl@nbl.org.tw, nblnblnbl@nbl.org.tw 

35 Content-Type: multipart/mixed;  

36 boundary=00151773eaa0f64c850476e0badb 

37 

38 --00151773eaa0f64c850476e0badb 

39 Content-Type: multipart/alternative;  

40 boundary=00151773eaa0f64c740476e0bad9 

41 

42 --00151773eaa0f64c740476e0bad9 

43 Content-Type: text/plain; charset=Big5 

44 Co 

 


