
國 立 交 通 大 學

網路工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

高效率非集中式之KAD同儕網路

負載平衡策略

An Efficient Decentralized Load Balancing Scheme

in KAD Peer-to-Peer Networks

 研 究 生：徐崇騵

 指導教授：王國禎 博士

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 九九九九 年年年年 六六六六 月月月月

高效率高效率高效率高效率非集中式非集中式非集中式非集中式之之之之KADKADKADKAD同儕網路同儕網路同儕網路同儕網路

負載平衡策略負載平衡策略負載平衡策略負載平衡策略

An Efficient Decentralized Load Balancing Scheme

in KAD Peer-to-Peer Networks

研 究 生：徐崇騵 Student：Chung-Yuan Hsu

指導教授：王國禎 Advisor：Kuochen Wang

國 立 交 通 大 學

資 訊 學 院
網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

Department of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Sciencmae

June 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年六月

 i

高效率高效率高效率高效率非集中式非集中式非集中式非集中式之之之之KADKADKADKAD同儕網路同儕網路同儕網路同儕網路

負載平衡策略負載平衡策略負載平衡策略負載平衡策略

學生：徐崇騵 指導教授：王國禎 博士

國立交通大學 資訊學院 網路工程研究所

摘 要

KAD 同儕網路已被廣泛地應用在檔案分享軟體中，但這些同儕網路仍就

被不平衡的發佈負載且被詢問負載所困擾，造成少量的節點處理大量的索

引。這些高負載的節點會成為網路的瓶頸。因此，在本論文中，我們提出

一個以同餘定理為基礎的方法 (KAD-mod) 以平衡網路中各節點的負載，我

們給予每個節點一個同餘編號，並且設定一個門檻 (RFT) 用以限制一個節

點可以負擔的相同索引數。模擬結果顯示，我們的方法的確可以將索引分

佈的更平均。此外，針對我們的模擬環境，RFT = 6000 是最佳的設定。我

們利用基尼係數來評估相關的負載平衡方法，在基尼係數中0為最平衡情

 ii

況，1為最不平衡情況。由模擬結果得知，KAD-mod可以提升搜尋命中率至

98.24%，在發佈負載平衡方面，KAD-mod， KAD-7及KAD 在基尼係數的表現

上分別為0.23，0.80，0.93。而詢問負載平衡方面，KAD-mod， KAD-7及KAD

在基尼係數的表現上分別為0.33，0.67，0.83。評估結果顯示本方法的發

佈及詢問負載皆比KAD及KAD-7更平衡。但它會增加8%的額外流量及平均需

要額外的0.5 hop才可找到發布目標節點。當有節點失效時，本方法可藉由

增加搜尋命中率加強搜尋的強韌性。此外，本方法可以很容易地被延伸應

用至其他以DHT為基礎的同儕網路。

關鍵詞關鍵詞關鍵詞關鍵詞：負載平衡，KAD，同儕網路，強韌搜尋。

 iii

An Efficient Decentralized Load Balancing

Scheme in KAD Peer-to-Peer Networks

Student: Chung-Yuan Hsu Advisor: Dr. Kuochen Wang

Department of Computer Science

National Chiao Tung University

Abstract

Kademlia (KAD) peer-to-peer (P2P) networks have become more and more popular.

However, they have an unbalanced publish load problem. It causes a few peers to store a large

number of indexes and these peers will become hotspots. Once become a hotspot, the peer

must handle a large number of requests that result in high load, and it become a network

bottleneck. To conquer this problem, we propose a modulo based method (called KAD-mod)

to balance load in the KAD network. We give each peer a new ID (called mod ID) using

modular arithmetic. A request forwarding threshold (RFT) is used to help decide if an index

should be redirected to the same mod ID of peers in another zones. This method allows the

same mod ID peers to share load. We used Gini coefficient (G, 0 ≤ G ≤ 1, 0: fully balanced) as

a load balancing index to evaluate representative load balancing methods. Simulation results

show that the proposed KAD-mod has the search hit rate close to 100%. The G’s of KAD-mod,

KAD-7, and KAD for publishing load are 0.23, 0.80, and 0.93, respedtively. As to G for

request load, KAD-mod is 0.33, KAD-7 is 0.67, and KAD is 0.83. We can see that the

proposed KAD-mod is much more load balancing than the other methods. However,

KAD-mod has 8% extra traffic and the hop count per publish increases from 2.5 to 2.9. By

enhancing the search hit rate, KAD-mod can improve the search resilience of KAD P2P

 iv

networks with failed peers. Furthermore, the proposed KAD-mod method can be easily

extended to other DHT-based P2P networks.

Keywords: KAD , load balancing, , peer to peer network, resilient search.

 v

Acknowledgements

 Many people have helped and encouraged me with this thesis. I appreciate my thesis

advisor, Dr. Kuochen Wang, for his intensive advice and guidance. I would like to thank all

the classmates in the Mobile Computing and Broadband Networking Laboratory (MBL) for

their friendship and assistance. This work was supported by the National Science Council

under Grants NSC96-2628-E-002-138-MY3. Finally, I thank my father and my mother for

their endless love and support.

 vi

Contents

Abstract (in Chinese)…………………………………………….…………………...i

Abstract ... iii

Contents ... vi

List of Figures ... viii

List of Tables ... ix

Chapter 1 Introduction ... 1

1.1 Why structured P2P networks ... 1

1.2 Load balancing problems in structured P2P networks 3

1.3 Motivation ... 3

1.4 Problem statement ... 4

1.5 Thesis organization ... 4

Chapter 2 Preliminaries and Related Work ... 5

2.1 Distributed hash table ... 5

2.2 Background of KAD ... 6

2.2.1 Lookup procedure ... 7

2.2.2 Publish procedure .. 8

2.2.3 Search procedure ... 11

2.3 Original load balancing scheme in KAD .. 11

2.4 Other existing load balancing schemes ... 11

 vii

2.5 Qualitative comparison of representative load balancing schemes 12

Chapter 3 Proposed KAD-mod Load Balancing Scheme 13

3.1 Concept of KAD-mod ... 14

3.2 Publish procedure ... 14

3.3 Search procedure ... 19

Chapter 4 Simulation Results ... 21

4.1 Simulation setup ... 21

4.2 Simulation results ... 22

4.3 Comparison with existing schemes ... 25

Chapter 5 Conclusion .. 29

5.1 Concluding remarks .. 29

5.2 Future work ... 30

Bibliography ... 31

 viii

List of Figures

Figure 1. An inverted index example of four objects [15]. ... 6

Figure 2. An example iterative lookup procedure [16]. .. 8

Figure 3. An example of an object to be published. .. 9

Figure 4. The KAD publish steps for an index [16]. ... 9

Figure 5. An example of 2-level publish. .. 10

Figure 6. A mapping between KAD IDs and mod IDs in the KAD P2P network. 13

Figure 7. The concept of KAD-mod for publishing. ... 14

Figure 8. The KAD-mod publish procedure for a key. ... 15

Figure 9. The publish procedure in KAD-mod. .. 18

Figure 10. The search procedure in KAD-mod. .. 20

Figure 11. The Gini coefficient regarding the number of indexes published in each

zone under a different RFT.. 23

Figure 12. The average hop count of finding a target peer to publish an index under a

different RFT. .. 24

Figure 13. The percentage of extra traffic under a different RTF. 25

Figure 14. Comparison of publish load balancing among the three schemes in terms

of the Gini coefficient. .. 26

Figure 15. Comparison of extra network traffic and average hop count for finding a

target peer to publish. .. 26

Figure 16. The search hit rate with respect to the peer failed rate for different

approaches. .. 27

Figure 17. G’s of the request load for the best, average, and worst cases of MHF. ... 28

 ix

Figure 18. Comparison of G’s regarding the request load for four representative

approaches. .. 29

List of Tables

Table I. Comparison of three main P2P architectures ... 3

Table II. Qualitative comparison of four load balance schemes. 12

Table III. Simulation parameter settings. .. 22

 1

Chapter 1

Introduction

The peer-to-peer (P2P) application is one of the most important applications in the

internet. The most popular P2P based applications are file sharing systems, storage systems

and communication systems. P2P accounts for more than 73% of the internet traffic at the end

of 2007 [27]. Moreover, there are millions of simultaneous connected P2P users spread out on

different continents and states [16].

There are three main types of P2P overlays: unstructured P2P overlays, hybrid P2P

overlays, and structured P2P overlays. Structured overlays account for 99% of all the P2P

network traffic and KAD, the most popular structured P2P overlays account for 95% of the

structured P2P traffic [27]. We will explain why structured P2P overlays (networks) are the

most popular P2P networks.

1.1 Why structured P2P networks

Structured P2P networks [5, 6, 7, 8, 9] are based on distributed hash table (DHT). They

were developed to improve the performance of data discovery. They impose constraints both

on the node graph and on data placement to enable efficient discovery of data [29]. When a

peer wants to share an object, it needs to decide which peer the index should be stored. Using

a hashing function can achieve the purpose that maps an object’s name to a unique peer in the

network. If a peer wants to find an object, it first hashes the object’s name to get a peer and

then queries the peer to get an index. Using the index, it can find the actural peers that store

this object. These structured P2P networks differ basically in how peers maintain their routing

tables to guarantee an efficient route between peers. KAD [5] is a Kademlia-base P2P DHT

 2

based routing protocol implemented by several applications such as eMule [10], BitTorrent

[11] and aMule [12].

Unstructured P2P networks, such as Gnutella [2], Napster [3], Freenet [4], organize peers

into a random graph and use floods or random walks to discover data stored by overlay peers.

This approach supports arbitrarily complex queries and it does not impose any constraints on

the peer graph or on data placement; for example, each peer can choose any other peer as its

neighbor in the overlay [29]. Unstructured P2P networks often uses TTL to restrict discovery

time and discovery scope. They cannot find rare data items efficiently because it requires to

visit a large fraction of overlay peers. It may causes a lot of network traffic.

Hybrid P2P networks combine the flooding and DHT. To improve search quality and

efficiency for both popular and rare items, the hybrid P2P network is introduced [13, 14]. By

combining the above two architectures, queries are handled in a hybrid manger: popular

objects are found via flooding, while rare objects are found via a DHT-based algorithm.

Table I shows that the structured P2P network is an effective design for file sharing. The

structured P2P network can guarantee to search not only popular objects but also rare objects,

and it causes network traffic much lower than the unstructured P2P network. The hybrid P2P

network’s searching scheme depends on how popular the object is. However, defining popular

objects is a complex problem. So compared with hybrid P2P networks, the search mechanism

in structured P2P networks is much simpler. Therefore, in this thesis, we will focus on

structured P2P networks. In structured P2P networks, we chose KAD since it is the most

popular structured P2P networks [27].

 3

Table I. Comparison of three main P2P architectures

Architecture Unstructured P2P Structured P2P Hybrid P2P

Routing scheme Flooding DHT Flooding and DHT

Guaranteed search No Yes Yes

Network traffic High Low Middle

Index is stored in Local peer Foreign peer
Local or foreign

peer

Search efficiency O(N) O(logN) O(logN)

1.2 Load balancing problems in structured P2P networks

Many solutions have been proposed to solve load balancing problems in structured P2P

systems. Generally speaking, there are publish, request, and routing load balancing problems

in structured P2P networks. The publish load balancing problem is the most important

problem since it will result in request and routing load balancing problems. To resolve the

publish load problem, most of the solutions reassign loads from heavy loaded peers to light

loaded peers. There are three difficult issues, where the loads be reassigned, where to find

the reassigned loads, and how to achieve a better tradeoff to resolve the above two issues.

1.3 Motivation

In this thesis, we want to balance the publishing load in KAD P2P networks as much as

possible to avoid peers becoming hotspots. In structured P2P systems, each data item is

mapped to a unique identifier (ID) and the peer with this ID stores all the indexes that are

mapped into it. Structured P2P systems could result in an)(log NO imbalance factor in the

number of objects stored at a peer, where N is the number of peers in the system [28]. Heavy

load peers may become hotspots and cause network congestion around them and also affect

routing performance. Once these peers become offline, the search hit rate will decrease

 4

dramatically. Load imbalancing is a critical problem that must be treated property in order to

fairly use available physical resources.

1.4 Problem statement

In this thesis, we intend to resolve two problems in KAD P2P networks. The first one is

the publish load imbalancing problem and the other is the search hit rate problem. By the

structured P2P network mechanism, each keyword produces a key. Each key has a specific

target peer to publish. Target peers use these keys to construct indexes of objects. If a

keyword is popular, the target peer will handle unusually large indexes. In this way, a few

peers may handle most of the indexes. It may cause unbalanced loads between peers. As to

the search hit rate, because peers are online or offline frequently in KAD P2P networks, peers

offline or failure may result in indexes lost. Although indexes may be lost, actually, the

related objects still exist in the network. To find these objects, it will lower the search hit rate.

1.5 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 reviews the background of KAD

P2P networks and existing load balancing schemes in structured P2P networks. In Chapter 3,

we present our design approach in detail. Simulation setup and simulation results are

presented in Chapter 4 and Chapter 5 concludes the thesis and outline future work.

 5

Chapter 2

Preliminaries and Related Work

Since the KAD P2P network is our main target to enhance, in this chapter, we review the

KAD P2P network and some existing load balancing methods. KAD P2P networks are based

on distributed hash table (DHT). First we review the DHT and then describe the mechanism

of how to lookup, publish, and search objects in the KAD P2P network. Finally, we review

existing load balancing mechanisms, KAD [5], KAD-7 [23], and MHF [24].

2.1 Distributed hash table

DHT is based on a consistent hashing function. In DHT-based P2P networks, each object

is assigned a unique ID using a consistent hashing function. A DHT-based P2P network

basically supports only the exact name match as each object is given a unique identifier

obtained by hashing its name to determine its location in the network. Keyword search must

be built on top of the network to enhance search functionality. The most common way to

implement keyword search in information systems is by inverted index [15]. An inverted

index is a set of pairs (keyword, objects set). After an inverted index is built, we can use a

keyword to find all objects that contain this keyword.

A distributed inverted index is built to implement keyword search in a structured P2P

network. By using DHT-based P2P networks, one can use a given keyword as a key to find

out the peers who have objects that contain this keyword. Peers can retrieve objects with a

given search query (keyword set) to perform a keyword search operation [15]. In Figure 1(a),

we show an inverted index example of four objects: Objects 1, 2, 3, and 4. Object 1 contains

Keywords 1, 2, and 3, and Object 2 has Keywords 1, 3, and 5, etc. Figure 1(b) shows the

 6

inverted index which is built by these keywords and objects. Following this rule, we can link

keywords to different objects. For example, if we use “Keyword 2” as a keyword to search the

network, we can find Objects 1, 3, and 4.

2.2 Background of KAD

Each KAD node has a global identifier, referred as KAD ID, which is 128-bit long and

randomly generated by a cryptographic hash function. The designers of KAD decided to

consider a contact sufficiently close to the target if it shares with it at least the first 8 bits. The

space of KAD IDs that satisfy this constraint is called tolerance zone [17]. There are

25628 = zones in a KAD P2P network. We will briefly explain the lookup, publishing, and

searching procedures in KAD P2P networks.

(a) Each object has some keywords

Keyword Object set

Keyword 1 {Object 1, Object 2, Object 3 }

Keyword 2 { Object 1, Object 3, Object 4}

Keyword 3 { Object 1, Object 2}

Keyword 4 { Object 3, Object 4}

Keyword 5 { Object 2}

(b) An inverted index

Figure 1. An inverted index example of four objects [15].

 7

2.2.1 Lookup procedure

When searching for some objects, a peer needs to know the target location and explores

the network in several steps. Each step will find peers that are closer to the target. Routing in

KAD is based on prefix matching. In KAD networks, the distance between two nodes is

calculated by XOR-distance. The XOR-distance is defined as d(a, b) = a ⊕ b. It calculated

bitwise on the KAD IDs of two nodes, e.g., the distance between a = 10011 and b = 01111 is

d(a, b) = 10011 ⊕ 01111 = 10100. Routing to a KAD ID is done in an iterative way. Figure 2

is an example lookup procedure. In the first step, the searching peer has three closest possible

contacts from the routing table. They have different XOR-distances and are still not close

enough to the target peer. The second step in Figure 2 shows that the searching peer received

three responses. The searching peer obtains three more closer possible contacts by the

responses. If a new possible peer in the tolerance zone, it will be stored to a list called the

candidate list. In the third step, two of these possible peers are in the tolerance zone. These

two peers will be saved to the candidate list. In the fourth step, the searching peer sends a

request for more closer peers to the three closest peers again. The lookup procedure

terminates when the lookup responses contain only peers that are either already present in the

candidate list or farther away from the target than the other top three candidate peers [17]. At

this point, no new request is sent and the candidate list becomes stable. KAD travels only

O(logN) peers during the execution of the lookup procedure when there are N peers in the

network.

 8

2.2.2 Publish procedure

Publish is an essential action when peers want to share objects. Peers will publish

keyword keys and a source key to foreign peers. In Figure 3, the KAD ID of the peer is

“10111.” An object can produce two different keys, a source key and keyword keys. A source

key is computed by hashing the name of the object. Keyword keys are computed by hashing

keywords from the name of the object [16]. The keywords of this object are “Modular” and

“KAD.” In Figure 3, the source key is “01011” and the keyword keys of “Modular” and

“KAD” are “00001” and “00100,” respectively

Figure 2. An example iterative lookup procedure [16].

 9

Figure 4 shows an example of publishing steps for an index. Before publishing an index,

a sending peer must use KAD_REQ to find a receiving peer. At first the sending peer sends a

KAD_REQ to the receiving peer. KAD_REQ is used to find the receiving peer and check

whether the peer is alive. When the receiving peer receive KAD_REQ, it will send a

KAD_RES back. After establishing a connection between the sending peer and the receiving

peer, the sending peer starts to publish keys to the receiving peer.

Figure 4. The KAD publish steps for an index [16].

Object

Source

Keyword

Keyword

01011

00001

00100

Peer 10111

Figure 3. An example of an object to be published.

 10

When a peer starts to publish keys, the peer will publish a source key and keyword keys

by 2-level publishing scheme. Figure 5 shows an example 2-level publish. A peer “10111”

wants to publish an object named “Modular KAD.” This object name will result in two

keywords, “Modular” and “KAD.” All relevant references to the original object are generated,

such as the source key and the keyword keys. Next, keyword keys “Modular 00001” and

“KAD 00100” are published to corresponding peers “00001” and “00100” to build indexes,

which are all pointed to peer “01011.” Finally, the source key is published, with an index

pointing to the publishing peer.

In KAD, each key is not published just on a single peer that is numerically closest to that

key, but on 11 different peers whose KAD ID matches at least the first 8-bits of the key. This

zone around a key is called the tolerance zone or the keyspace [17].

Figure 5. An example of 2-level publish.

 11

2.2.3 Search procedure

Like publishing, searching files is also a 2-level search: keyword search and source

search. For a keyword search, the hash value of the first word of the user input is computed.

The rest of words are packed in a form of a search tree. A query consists of a hash value of

the first keyword and a search tree [16]. The query is routed to the peers that have a KAD ID

close to the hash value. The matching results are responded from that peers and carry the

information of source keys. For a source search, a user chooses a desired object from returned

results. Then the source key of the object is used for searching the peers who have the object.

The returned results would be added to the download queue of the object.

2.3 Original load balancing scheme in KAD

KAD limits the number of indexes in each peer to avoid overloading. A peer can handle

a maximum of 60,000 indexes and can hold a maximum of 50,000 indexes of an individual

keyword. Therefore, when a peer reaching the limit of maximum indexes number receives a

publishing request, it will reply a successful message, even if the publishing request is

rejected.

2.4 Other existing load balancing schemes

KAD-7 [23] hashes the keyword of an object r times to produce a key for publishing

objects, where r is a random number and 1 ≤ r ≤ 7. Different peers may hash different times to

produce different indexes, which all represent the same keyword. These keys will be

published to different peers, not just to one peer. Because indexes are spread, KAD-7 will

increase the number of search messages.

In [18], the authors found that the peaks of load are due to very popular keywords that

are most often meaningless stopwords. They proposed to add a stopword exclusion step into

all KAD based P2P systems. They use stopword exclusion to reduce the number of indexes,

 12

so the total indexes in the KAD will decrease.

In [24], the authors describe a novel approach with multiple hash functions (MHF) to

replicate the hotspots in a series of different nodes to distribute the high load evenly, and it

can increase or decrease the replicas dynamically. MHF provides a load balancing scheme for

a high request rate. If the request rate is not over a threshold, the zone with popular keywords

will still have a large number of requests. MHF will result in a lot of additional network

traffic because a large number of indexes are replicated.

2.5 Qualitative comparison of representative load

balancing schemes

Table II shows the comparison of four representative load balancing schemes. In the

proposed KAD-mod, the publish load and request load are more balanced and thus the search

hit rate will increase. If a popular keyword references 610 indexes, KAD-mod can

distributes indexes more even to 160 zones. In contrast, KAD-7 can only spread indexes to

seven zones and KAD only to just one zone. Since KAD-mod and KAD-7 will spread the

indexes, there will be more peers that have the same indexes. As a result, the search hit rates

of both schemes will increase in case that some peers failed. However, their network traffic

will increase slightly because of increased search messages. MHF uses a scheme that

replicates the hotspot load to other peers, so it will generate a lot of indexes which increase

the network traffic. Peers to know where the key is located must ask the original responsible

peer. Once the original responsible peer becomes offline, the search hit rate will decrease.

Table II. Qualitative comparison of four load balance schemes.

Approach KAD [5] MHF [24] KAD-7 [23] KAD-mod (proposed)

Publishing load High High Middle Low

Request load High Middle Middle Low

Search hit rate Middle Middle High High

Network traffic Middle High Middle Middle

 13

Chapter 3

Proposed KAD-mod Load Balancing

Scheme

KAD has a 128-bit ID space and there are 256 zones in a KAD P2P network. Divide

1282 by 256 to get a quotient of 1202 so that each zone has at most 1202 peers. We will

define a new ID type: mod ID. A mod ID is computed as KAD ID mod1202 . By deriving a

new mod ID (as follows), for each peer, the peers with the same mod ID will be located in

different zones. In Figure 6, assume that there are 15 peers and 5 zones so that each zone has

3 peers. Each peer’s KAD ID mod 3 will generate its mod ID. For example, 4 ≡ 1 mod 3

and “1” is the mod ID. For example, a peer’s KAD ID is N, then peers with KAD

ID 1202+N , 12022×+N , …and 1202255×+N will all have the same mod ID.

Deriving a new mod ID:

Let n be a nonzero integer. We say that two integers a and b are congruent modulo n if

there is an integer k such that a – b = kn. In the KAD case, we have nba mod≡ , where

a = KAD ID, 1202=n , b = mod ID.

Figure 6. A mapping between KAD IDs and mod IDs in the KAD P2P network.

 14

3.1 Concept of KAD-mod

We propose a modulo based load balancing method to let peers with the same mod ID

share loads. Using mod ID, we can easily find where loads are reassigned and where to find

the reassigned loads. We use a request forwarding threshold (RFT) to help decide if an index

should be redirected to the same mod ID of a peer at another zone. We limit the number of

indexes stored in each peer to avoid overloading. A peer can handle at most RFT indexes of

an individual keyword. For example, when a peer reaches the limit of RFT indexes, it will

redirect the remaining requests to the same mod ID of peers at another zones. Figure 7 shows

the concept of KAD-mod for publishing. In this example, there are 180 keys K published

from many peers to peer N and RFT = 60. Peer N will handle the first 60 keys. For the

remaining keys, peer N redirects 61th to 120th keys to peer N + 2120 and redirects 121th to 180th

keys to peer N +2 * 2120.

3.2 Publish procedure

In KAD P2P networks, a key could be published to a peer from many peers. Each peer

has a counter (REQ_counter) to record the number of KAD_REQ’s for storing the same key.

The basic idea is when the number of REQ_counter exceeds RFT, then the peer will redirect

the remaining KAD_REQ’s for storing the same key to other zones. In other words, the

Figure 7. The concept of KAD-mod for publishing.

 15

receiving peer will become a redirection peer when the number of KAD_REQ’s received for

storing the same key exceeds RFT. Figure 8(a) shows a scenario that the number of

KAD_REQ’s peer N received for storing the same key does not exceed RFT. Figure 8(b)

shows an alternative publishing procedure in five steps when the number of KAD_REQ’s

peer N received for storing the same key K is over RFT. The five steps are:

Step 1: When a sending peer wants to publish key K to receiving peer N, it sends a

KAD_REQ to receiving peer N.

Step 2: Divide REQ_counter by RFT to get a quotient i. In this case, i ≥ 1. Receving peer N

will become a redirection peer and redirect KAD_REQ to peer 1202×+ iN .

Step 3: When receiving peer 1202×+ iN receives KAD_REQ, it will sends a KAD_RES to

the sending peer.

Step 4: Then, the sending peer starts to send KAD_PUBLISH_REQ to new receiving peer

1202×+ iN .

Step 5: When receiving peer 1202×+ iN receives KAD_PUBLISH_REQ, it sends KAD_

PUBLISH _RES to sending peer N . Then, keywork K is published successfully.

Figure 8. The KAD-mod publish procedure for a key.

 16

The detail of the publishing procedure in KAD-mod is shown in Figure 9. Figure 9(a)

shows the procedure that a peer publishes a key. We hash keyword A to generate a key K.

Peer K will be the target peer and then the peer uses a lookup procedure to send KAD_REQ to

the target peer. The details of the lookup procedure has been presented in Chapter 2. Then we

will receive several responses which contain some possible peers who are closer to the target

peer. We use these peers to update the candidate list. If the candidate list becomes stable, then

go to the the next step. Top 11 peers will be selected from the candidate list for sending

KAD_REQ to ask for storing the key. After receiving KAD_RES, the peer sends publishing

messages to the 11 peers to complete the procedure of publishing a keyword to the KAD P2P

network.

Figure 9 (b) shows the condition that a peer receives KAD_REQ for storing a key K.

First, the peer will check if it has ever received the same KAD_REQ. If the peer has not

received the request before, it initializes a new counter, REQ_counter, to 1. Otherwise, it adds

one to REQ_counter and the peer checks whether REQ_counter > RFT. If yes, the peer will

calculate a peer number NEXT and redirect KAD_REQ to peer NEXT with the same mod ID

at other zones. If no, the peer will send KAD_RES to the sending peer. In order to avoid an

infinite loop, the peer will redirect to at most 255 different zones except its own zone.

 17

(a) The procedure of a peer publishing a key.

 18

22
128120

mod)*
_

(

+
RFT

CounterREQ
N

RFT

CounterREQ_

(b)The procedure of a peer receiving KAD_REQ for storing a key.

Figure 9. The publish procedure in KAD-mod.

 19

3.3 Search procedure

Figure 10 describes the search procedure of KAD-mod. The searching peer obtains a

keyword from a keyword query (for example, keyword A). Then, this keyword will be hashed

to produce a key K. The searching peer uses key K as target peer ID to send search messages.

The searching peer can know REQ_counter by the received response and the searching peer

can know where the indexes corresponding to key K are stored by REQ_counter. After that,

we send search messages to these peers from the nearest peer to the farthest peer in our

routing table. Then, we will receive several search responses which may contain search

answers. The search will stop when a maximum numbers answers, TOTAL, has been received

or a timeout is triggered. The default TOTAL value is 300 and the default timeout is set to 20

seconds. In other words, we will stop the search process after 20 seconds or if the searching

peer receives more than 300 answers [20].

 20

RFT

CounterREQ _

Figure 10. The search procedure in KAD -mod.

 21

Chapter 4

Simulation Results

4.1 Simulation setup

First, we analyze the KAD P2P network environment. In [21], the authors crawled a

representative subnet of KAD every five minutes for six months. They found that in average,

there are 8000 peers in a zone. In [19], the authors spied on one zone in the KAD P2P

network for 12 hours. They observed that the number of search messages is 561,542 and the

size of search messages is 10.8 MB, while the number of publishing messages is 5,549,183

and the size of publishing messages is 996MB. According to the observation in [19], the

average size is 0.019 KB for a search message and 0.18 KB for a publishing message. We

classify keywords into ranks according to the number of times a keyword appeared. The nth

popular keyword is classified as rank n. The number of indexes for the nth popular keyword is

proportional to 63.11 nk× where k is the number of indexes for the most popular keyword

[18]. According to [18], k is about 710 . The parameter settings of our simulation environment

are shown in Table III. We used JAVA to construct our simulation environment. In the

simulation, the number of indexes handled by each zone and the number of times each zone

being requested were collected for comparison and evaluation.

 22

4.2 Simulation results

We used Gini coefficient (G) as a load balancing index for evaluation of load balancing

regarding the number of indexes handled by each zone. The range of G is between 0 and 1.

The closer the G approach to 0, the more load balancing it is. G is computed as follows [22]:

∑∑
= =

−=
N

i

N

j
ji ll

N
G

1 1
2

1

2

1

µ
 (1).

For calculating G regarding the number of published indexes in each zone. N is the number of

zones (N = 256), l i and l j are the numbers of indexes handled by the i th and jth zones,

respectively, and µ is the average number of indexes handled by each zone. For calculating G

regarding the number of requested indexes in each zone, N is the number of zones (N = 256),

l i and l j are the number of requested indexes in the ith and j th zones, respectively, and µ is the

average number of requested indexes in each zone.

Table III. Simulation parameter settings.

Number of KAD peers 256 × 8,000

Number of KAD zones 256

Peers per zone 8,000

Number of different keywords 1,000,000

Keywords popularity distribution Zipf’s law [18]

Search distribution Zipf’s law [18]

Raito of publish messages to search messages 10 : 1

 23

Because RFT would affect the performance of KAD, KAD-7, and the proposed

KAD-mod, we conducted experiments to decide the best RFT. Figure 11 shows the G

regarding the number of indexes published in each zone under a different RFT. We found that

the lowest value of G occurs when the values of RFT are between 5000 and 6000.

There are two issues in the proposed KAD-mod. First, the average hop count of finding a

target to publish an index will increase after applying the KAD-mod method. We used the

results of [17] to evaluate the average hop count of finding a target to publish an index. Figure

12 shows the average hop count of finding a target to publish an index under a different RFT.

In our method, for some popular keywords receiving peers may need to redirect KAD_REQs

to other peers because the total number of indexes of a popular keyword in the receiving peers

exceeds RFT. The redirection of KAD_REQs needs an additional hop to find the next target.

Figure 11. The Gini coefficient regarding the number of indexes published in each

zone under a different RFT.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
1

0
0

0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

1
7

0
0

0

1
8

0
0

0

1
9

0
0

0

2
0

0
0

0

G
in

i
co

ef
fic

ie
nt

 (G
)

RFT

 24

Second, the number of search messages will also increase after applying the proposed

KAD-mod method. However, the number of publish messages will not be affected. Note that

total network messages include search messages and publishing messages. The percentage of

extra traffic (eT) for KAD-mod is defined as:

KAD of traffic network Total

KAD) of traffic network (Total mod)-KAD of traffic network (Total
Te

−=

In Figure 13, the percentage of extra traffic decreases with a higher RFT. However, G

increases with a higher RFT, as shown in Figure 11. We found that 6000 is the optimal RFT in

the proposed KAD-mod. Remind that the percentage of extra traffic for KAD-mod is small

(8% for RFT = 6000) number of search messages is much smaller than the number of publish

messages.

Figure 12. The average hop count of finding a target peer to publish an index under a

different RFT.

2.5

2.6

2.7

2.8

2.9

3

A
ve

ra
ge

 h
op

 c
ou

nt

RFT

 25

4.3 Comparison with existing load balancing schemes

KAD-mod can publish popular indexes more balanced than KAD-7 and KAD. The

proposed KAD-mod can publish indexes to all of 256 zones when the number of the indexes

in the original publish target peer exceeds RFT, while KAD-7 and KAD can only publish

indexes to seven zones and one zone, respectively. Figure 14 shows the comparison of the

Gini coefficient regarding the number of indexes in each zone among KAD-mod, KAD-7 and

KAD. We found that KAD-mod is more balanced than KAD-7 and KAD. Figure 15(a) shows

the percentage of extra traffic compared to KAD. KAD-mod has only 0.68% more extra

network traffic than KAD-7. In Figure 15(b), we observed that KAD-mod’s average publish

hop count is only 0.5 hop more than KAD and KAD-7.

Figure 13. The percentage of extra traffic under a different RTF.

0

2

4

6

8

10

12

14

16

18

20

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

1
7

0
0

0

1
8

0
0

0

1
9

0
0

0

2
0

0
0

0

P
er

ce
nt

ag
e

of
 e

xt
ra

 tr
af

fi
(%

)

RFT

 26

8.2827

7.6

0

1

2

3

4

5

6

7

8

9

KAD-mod (our proposed) KAD-7

P
e
rc

e
n

ta
g

e
o

f
e
x
tr

a
 t
ra

ff
ic

 (
%

)

2.9651

2.5 2.5

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

KAD-mod (our
proposed)

KAD-7 KAD

A
v
e
ra

g
e
 h

o
p

 c
o

u
n

t

Figure 15. Comparison of extra network traffic and average hop count for finding a

target peer to publish.

Figure 14. Comparison of publish load balancing among the three schemes in terms of

the Gini coefficient.

0.2311

0.8024

0.9303

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KAD-mod (our proposed) KAD-7 KAD

G
in

ic
oe

ffi
ci

en
t

 27

Indexes in failed peers are called missing indexes. Objects referenced by missing indexes

are not searchable. The search hit rate is calculated by 1- (dividing the number of missing

indexes to the number of total indexes). According to [25], the percentage of failed peers in a

day is about 27%. Figure 16 shows that the search hit rates of KAD-mod and KAD-7 are

98.24% and 97.71% when 27% of peers failed.

The publish load will affect the request load. We also evaluate the load balancing of

requests. Since MHF [24] did not describe how to publish indexes, we only include MHF [24]

for load balancing requests of comparison here. MHF [24] set the threshold of the request rate

to 800 requests per second. Figure 17 shows G of the request load under the best, average, and

worst cases of MHF. In the best case, all requests are from the same peer and the request rate

is higher than the threshold of request rate all the time. The best case is almost impossible to

happen because it does not meet the real P2P network characteristics. In the worst case, the

request rates of all requests are lower than the threshold of request rate and this also does not

Figure 16. The search hit rate with respect to the peer failed rate for different

approaches.

60

65

70

75

80

85

90

95

100

0 10 20 30 40

S
ea

rc
h

hi
t r

at
e(

%
)

Peer failed rate (%)

KAD

KAD-mod (our
proposed)

KAD-7

 28

meet the real P2P network characteristics. The average case can reflect the real P2P network

characteristics.

For the proposed KAD-mod, because indexes are evenly published, the request load will

become even as well. Figure 18 shows the comparison of G’s regarding the request load

among the four approaches. KAD-mod performs the best in terms of G of the request load,

because in KAD-mod, the more popular indexes are handled by more peers.

Figure 17. G’s of the request load for the best, average, and worst cases of MHF.

0.1898

0.6668

0.8359

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

best average worst

G
in

ic
oe

ffi
ci

en
t

(G
)

 29

Chapter 5

Conclusion

5.1 Concluding remarks

In this paper, we have presented an efficient modulo based method (KAD-mod) to

balance the publish load and request load of KAD P2P networks. Our approach also improves

the hit rate of keyword searching. The proposed KAD-mod is a simple and effective method

without complex calculations. By redirecting overloaded indexes, indexes can be distributed

more even, and not only the publish load but also the request load of each peer would be more

balanced. Although the average hop count of finding a target to publish an index will increase

and the total network traffic will slightly increase, these overhands are very small. Based on

the simulation results, the G (G, 0 ≤ G ≤ 1, 0: fully balanced) of publishing load for

Figure 18. Comparison of G’s regarding the request load for four representative

approaches.

0.3369

0.6668 0.6725

0.835

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

KAD-mod (our proposed) MHF KAD-7 KAD

G
in

ic
oe

ffi
ci

en
t (

G
)

 30

KAD-mod is 0.23, KAD-7 is 0.80, and KAD is 0.93. As to G of request load, KAD-mod is

0.33, KAD-7 is 0.67, and KAD is 0.83. KAD-mod improves the search hit to 98% and only

causes 8% extra traffic and KAD-mod‘s is only 0.5 hop more than KAD and KAD-7. Our

method can not only improve the search resilience but also balance the publish and request

load among peers in KAD P2P networks.

5.2 Future work

The proposed KAD-mod is simple and effective method to achieve publish load

balancing, request load balancing, and search resilience. In the future, we will adapt our

method to let it be applicable to other DHT based P2P networks. In addition, if the number of

indexes become too large, how to flexibly adjust RFT to balance load in the KAD P2P

network is deserved to further study.

 31

Bibliography

[1] D. Kundur, Z. Liu, M. Merabti, and H. Yu, “Advances in peer-to-peer con tent search,” in

Proceedings of the IEEE International Conference on Multimedia and Expo, pp. 404-407,

July 2007.

[2] “The Gnutella 0.4 protocol specification, 2000.” [Online]. Available:

http://dss.clip2.com/GnutellaProtocol04.pdf

[3] A. Oram et al., Peer-to-Peer: Harnessing the Power of Disruptive Technologies, 2001,

O'Reilly.

[4] I.Clake, TW. Hong, O.Sanberg, and B.Wiley. “Protecting free expression online with

freenet,” IEEE Trans. Internet Computing, vol. 6, no. 1, pp.40-49, 2002.

[5] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information system based

on the XOR metric”, in Proceedings of the 1st International Workshop on Peer-to-Peer

Systems (IPTPS), pp. 53- 65, March 2002.

[6] Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A

scalable peer-to-peer lookup service for Internet applications,” in Proceedings of the

Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communications, pp. 149-160, August 2001.

[7] Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable

content-addressable network,” in Proc. ACM Applications, Technologies, Architectures,

and Protocols for Computer Communications, pp. 161-172, August 2001.

[8] Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location and routing for

large-scale peer-to-peer systems,” in Proceedings of the Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications, pp. 161-172,

August 2001.

 32

[9] Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure for fault-tolerant

wide-area location and routing,” University of California, Berkeley, Tech. Rep.

UCB/CSD-01-1141, April 2001.

[10] “eMula Project,” [Online]. Available: http://www.emule.com/

[11] “BitTorrent,” [Online]. Available: http://www.bittorrent.com/

[12] “aMula Project,” [Online]. Available: http://www.amule.org/

[13] B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and I. Stoica. “Enhancing P2P

File-Sharing with an Internet-Scale Query Processor,” Proceedings of the Thirtieth

international Conference on Very large data bases, vol. 30, pp. 432-443, 2004.

[14] Loo, b. T., Huebsch, r., Stoica,i., & Hellerstein, j. (2004). The Case for a Hybrid P2P

Search Infrastructure. In Proceedings of the 4th International Workshop on Peer-to-Peer

Systems (IPTPS), pp. 141-150, February 2004.

[15] Y.J. Joung, L.W. Yang, and C.T. Fang, "Keyword search in DHT-based peer-to-peer

networks," IEEE Journal on Selected Areas in Communications, vol. 25, pp. 46-61,

January 2007.

[16] R. Brunner, “A performance evaluation of the KAD-protocol,” Master’s Thesis,

University of Mannheim and Institut Eurecom, November 2006

[17] M. Steiner, D. Carra, and E. W. Biersack, “Faster content access in KAD,” in

Proceedings of the Eighth International Conference on Peer-to-Peer Computing, pp.

195-204, September 2008.

[18] M. Steiner, W. Effelsberg, T. En-Najjary, and E. W. Biersack, “Load reduction in the

KAD peer-to-peer system,” in Proceedings of the 5th International Workshop on

Databases, Information Systems and Peer-to-Peer Computing, October 2007.

[19] E. W. Biersack, “Everything you want to know on KAD,” June 2008. [Online].

Available: http://www.thlab.net/old/rescom2008/talks/E-Biersack_KAD-tut.pdf

[20] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load balancing in

 33

dynamic structured p2p systems,” in Proceedings of the IEEE INFOCOM, pp. 2253-2262,

March 2004.

[21] M. Steiner, T. En-Najjary, and E. Biersack. “Long Term Study of Peer Behavior in the

KAD DHT,” in Proceedings of the IEEE/ACM Transactions on Networking, 2009.

[22] T. Pitoura , P. Triantafillou , T. Pitoura , P. Triantafillou. “Load Distribution Fairness

in P2P Data Management Systems,” in Proceedings of the IEEE 23rd International

Conference on Data Engineering, pp. 396-405, April 2007.

[23] T.T. Wu, K.C. Wang. “An Efficient Load Balancing Scheme for Resilient Search in

KAD Peer to Peer Networks,” in Proceedings of the Ninth IEEE Malaysia International

Conference on Communications, pp. 759-764, March 2010.

[24] Y.Mu, C. Yu, T. Ma, C. Zhang, W. Zheng, X. Zhang. “Dynamic Load Balancing with

Multiple Hash Functions in Structured P2P System,” in Proceeding of WiCom '09. 5th

International Conference on Wireless Communications, Networking and Mobile

Computing , October 2009.

[25] M. Steiner, T. En-Najjary, and E. W. Biersack, “A global view of KAD” in Proceedings

of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 117-122, October

2007.

[26] E.K.Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and comparison of

peer-to-peer overlay network schemes,” IEEE Trans. Communications Surveys &

Tutorials, IEEE, vol. 7, no. 2, pp. 72-93, 2005

[27] “Internet Study 2007,” [Online]. Available: http://www.ipoque.com/

[28] Y. Zhu , Y. Hu. “Efficient, Proximity-Aware Load Balancing for DHT-Based P2P

Systems,” IEEE Trans. Parallel and Distributed Systems, vol. 16, no. 4, pp. 349-361,

2005

[29] M. CASTRO, M. COSTA AND A. ROWSTRON,, “Peer-to-Peer overlays: structured ,

unstructured, or both?,” Microsoft Research, Cambridge, CB3 0FB, UK, 2004.

