Bord 2t g ¢ N KAD R v e B2
i R e

An Efficient Decentralized-Load Balancing Scheme

in KAD.Peer-to-Peer Networks

PEREBEIRLT LFKNA

B axF LR ¢ ;N2 KADR Hipe it
¢ i\l =k

An Efficient Decentralized Load Balancing Scheme

in KAD Peer-to-Peer Networks

Foyo4 k4R Student Chung-Yuan Hsu
g IR 2 WA Advisor: Kuochen Wang
] L

R s F
o F fe
¥R IR A AT
A <

A Thesis
Submitted to Institute of Computer Science and.Engineering
Department of Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Computer Sciencmae

June 2010

Hsinchu, Taiwan, Republic of China

PEARAY L4 ESD

B o 2bg P N2 KADR i e
A AR S L

g4 A hEREC IR £L

KAD o fiiple et R 723 BT Gfpx~ 5 AP > izt f%agw;m%;
SR S ST SR A S S AR AL B R e sE YRR
5l e il § f PN BEE & 5 RELOEITE o Tt 0 AR Yoo AR
- B ARTILG A# A (KAD-mod) T frieped L& EBehf Lo A
P E RS- BRAKRE ¥R T - B (RFD * - B &
BLY L p Eedple Rl R R > AP Z gy A
e T oo gboh > SR P ORRIRE 0 RFT = 6000 £ @ ok o 2

ORI SR SR L E TR RS R St I

o 15 B TR o d RS S @A KAD-mod ¥ 1% S B0 &Y % 3

98.24% » & f T §> 6 - KAD-mod - KAD-T% KAD # A~ fhfcend 3k
b w50.2300.8000.93° @@k § 3T # > 5 > KAD-mod » KAD-T% KAD
BRR G d B AN 50.3300.670.83 % SKE T A FOE
2390 § 4 KADR KAD-TH o v ¢ H 4c8engshin £ 2 303

EEohen0. 5 hopd T IEF B RE B o § F EBA P A2 T B

BAHOE b Y F R EF Pt 0 AT R B

* 3 H s uDHT 5 A A cile T e Bt o

M4k ¢ f T KAD e R o S 0 o

An Efficient Decentralized Load Balancing
Scheme in KAD Peer-to-Peer Networks

Student: Chung-Yuan Hsu Advisor: Dr. Kuochen Wang

Department of Computer Science
National Chiao Tung University

Abstract

Kademlia (KAD) peer-to-peer (P2P) networks have become more and more popular.
However, they have an unbalanced publish load problem. It causes a few peers to store a large
number of indexes-and. these peers will become hotspots. Once become a hotspot, the peer
must handle a large number of requests that result in high load, and it become a network
bottleneck. To conguer this problem; we propose a modulo.based method Kédlladod)
to balance load in the KAD network. We give each peer a new ID (caltet ID) using
modular arithmetic. Aequest forwarding threshol®RET) Is used to help decide if an index
should be redirected to the same mad ID of peers in another zones. This method allows the
same mod ID peers to share load. We used Gini coeff(€@eft<G <1, 0: fully balanced) as
a load balancing index to evaluate representative load balancing methods. Simulation results
show that the proposed KAD-mod has the search hit rate close to 100%s dh&&D-mod,

KAD-7, and KAD for publishing load are 0.23, 0.80, and 0.93, respedtively. A3 far

request load, KAD-mod is 0.33, KAD-7 is 0.67, and KAD is 0.83. We can see that the
proposed KAD-mod is much more load balancing than the other methods. However,
KAD-mod has 8% extra traffic and the hop count per publish increases from 2.5 to 2.9. By

enhancing the search hit rate, KAD-mod can improve the search resilience of KAD P2P

networks with failed peers. Furthermore, the proposed KAD-mod method can be easily

extended to other DHT-based P2P networks.

Keywords: KAD , load balancing, , peer to peer netwassilient search.

Acknowledgements

Many people have helped and encouraged me with this thesis. | appreciate my thesis
advisor, Dr. Kuochen Wang, for his intensive advice and guidance. | would like to thank all
the classmates in tHdobile Computing and Broadband Networking Laborat@iBL) for
their friendship and assistance. This work was supported by the National Science Council
under Grants NSC96-2628-E-002-138-MY3. Finally, | thank my father and my mother for

their endless love and support.

Contents

ADSEraCt (IN ChINESE). ... ettt e e e e e e e i
Y 013 1 = Lo SO PP PPPPPPPPPPI iii
(070141 (=] 0 £ TSP PPP TR Vi
S o) T PSSR Vil
S Ao) = 1] =TT IX
(@ g F=T o (= g A [Yo 111 1 o ISR 1
1.1 Why structured P2P NeIWOIKS ... e i e 1
1.2 Load balancing problems:in structured P2P. néSVOr.............cccooeeeeeeeeeeennn. 3
HIRC I 1Y [0 1 117 [0] P ST 3
1.4 Problem STatEMENT.......ccuur i it bt ettt e e e e e 4
1.5 ThESIS OFQANIZALION oo coverieeeeeessnnmmmmsimns st e e e e adnabineeeessssnssnnnnnansseeeaeeeaeees 4
Chapter 2 Preliminaries and Related WOork ...t e, 5
2.1 Distributed hash table ... e 5
2.2 Background Of KADuuuueiiiii e 6
2.2.1 LOOKUP PrOCEAUIEcoiiiiiiiiiiieeet s s e e e e e e e e e e e e e e eeeeeneeennnne e e ns 7
2.2.2 PUDIISN ProCEAUIEueeeiie e 8
2.2.3 SEAICH PrOCEAUIEuueiiiie oo ettt e e e e e e e e e 11
2.3 Original load balancing scheme in KAD ... 11
2.4 Other existing load balancing schemes............cccciiiiiiiccccee e, 11

Vi

2.5 Qualitative comparison of representative load balancing schemes
Chapter 3 Proposed KAD-mod Load Balancing Scheme............ccccoevvvvciinnnn. 13
3.1 Concept Of KAD-MOU..........ccoeererieietmmmmmss s se e e e e e e eeeeeeeeeeeeeeesnnsnnnnae s 14
3.2 PUDIISN PrOCEAUIEcoiiiiieieiieet ettt s e e e e e e e e e e e eeeeaeeanannees 14
IR IS Y=Y Tdod g o] o Tot =T U] = U 19
Chapter 4 SImMulation RESUILSuuuuiiiimm e 21
v ST 0 [U] P 1 0] ST =3 (U] o PP 21
4.2 SIMUIALION rESUILS ...t et i e e 22
4.3 Comparison with existing-Schemes...... .ot 25
Chapter 5 CONCIUSIONcormmmmne saiimmme e ne s sadan tanan s eeeans ansiheeeeesssssnsnnnnnnseaseeeees 29
N R OTo] Tod (1T 10T I =10 4 F= T S B 29
5.2 FULUINE WOTK eciiih s it e e st sk ms et am b st e e e e e e e 30
(=11 0] [oTe] =1 o] o) V2 SRR PPURTUPUPPTRR 31

Vii

List of Figures

Figure 1. An inverted index example of four objects [15].cccceeeviveiiieiiiiiiieeeeeeiiiiiins 6
Figure 2. An example iterative lookup procedure [L16]........cccoeeeviiiieiiiiiiiiiiiiiiiiinnns 8
Figure 3. An example of an object to be published............ccccoovviiiis 9
Figure 4. The KAD publish steps for an index [L6]..........cooeviiiiiiiiiiiiiininieeeeeeeeee, 9
Figure 5. An example of 2-level publish.ccccccooo o, 10
Figure 6. A mapping between KAD IDs and mod IDsha KAD P2P network......13
Figure 7. The concept of KAD-mod for publisSNing.........ccoeeiiiiiiiiiiiiiiiis 14
Figure 8. The KAD-mod publish procedure fora Key............ccceevieiiiiiiiiiiiinnenn. 15
Figure 9. The publish procedure in KAD-MOd. ...ttt 18
Figure 10. The search procedure in'KAD-MO.ccovreeeeiieeeeeiiiiiiieeeee 20

Figure 11. The Gini coefficient regarding the numdaieindexes published in each

zone under a different RET.. ... o i i e 23
Figure 12. The average hop count of finding a tapget to publish an index under a

ifferent R T ... i i s ettt e e e e et e e e et e e e e e e e e e e e e e e e e e 24
Figure 13. The percentage of extra traffic undeiffarént RTFEc..cvvvvneens 25
Figure 14. Comparison of publish load balancing agrtbe three schemes in terms

Of the Gini COBTICIENT.ooiiiii s 26
Figure 15. Comparison of extra network traffic andrage hop count for finding a

target peer to PUDIISN.ooee e ————- 26
Figure 16. The search hit rate with respect to ter failed rate for different

=T 0] 0] {0 =T 1= 1 27

Figure 17. Gs of the request load for the best, average, and worst cases of MHF. ...28

viii

Figure 18. Comparison of'®arding the request load for four representative

APPIOACKIES. e 29

List of Tables

Table I. Comparison of three main P2P architeCtures..........cccccooiveiviiiiiiiiecciiiiee e, 3
Table II. Qualitative comparison of four load balarschemes.ccccoeeeiiieeeeenn. 12
Table Ill. Simulation parameter SEttiNgGS. ... e i 22

Chapter 1

Introduction

The peer-to-peer (P2P) application is one of the most important applications in the
internet. The most popular P2P based applications are file sharing systems, storage systems
and communication systems. P2P accounts for more than 73% of the internet traffic at the end
of 2007 [27]. Moreover, there are millions of simultaneous connected P2P users spread out on

different continents and states [16]:

There are three. main types of P2P overlays: unstructured P2P overlays, hybrid P2P
overlays, and structured P2P-overlays. Structured.overlays account for 99% of all the P2P
network traffic and KAD, the most popular structured P2P overlays account for 95% of the
structured P2P traffic [27]. We will- explain why structured P2P overlays (networks) are the

most popular P2P networks.

1.1 Why structured P2P-networks

Structured P2P networks [5, 6, 7, 8, 9] are based on distributed hash table (DHT). They
were developed to improve the performance of data discovery. They impose constraints both
on the node graph and on data placement to enable efficient discovery of data [29]. When a
peer wants to share an object, it needs to decide which peer the index should be stored. Using
a hashing function can achieve the purpose that maps an object’s name to a unique peer in the
network. If a peer wants to find an object, it first hashes the object’s name to get a peer and
then queries the peer to get an index. Using the index, it can find the actural peers that store
this object. These structured P2P networks differ basically in how peers maintain their routing
tables to guarantee an efficient route between peers. KAD [5] is a Kademlia-base P2P DHT

1

based routing protocol implemented by several applications such as eMule [10], BitTorrent
[11] and aMule [12].

Unstructured P2P networks, such as Gnutella [2], Napster [3], Freenet [4], organize peers
into a random graph and use floods or random walks to discover data stored by overlay peers.
This approach supports arbitrarily complex queries and it does not impose any constraints on
the peer graph or on data placement; for example, each peer can choose any other peer as its
neighbor in the overlay [29]. Unstructured P2P networks often uses TTL to restrict discovery
time and discovery scope. They cannot find rare data items efficiently because it requires to
visit a large fraction of overlay peers. It may causes a lot of network traffic.

Hybrid P2P networks ‘combine the flooding-and DHT. To improve search quality and
efficiency for both popularand rare items, the hybrid P2P network is introduced [13, 14]. By
combining the above two architectures, queries are handled in a hybrid manger: popular
objects are found via flooding, while rare objects are found via a DHT-based algorithm.

Table | shows that the structured P2P network is an effective design for file sharing. The
structured P2P network can,guarantee to search-not only popular objects but also rare objects,
and it causes network traffic. much lower than the unstructured P2P network. The hybrid P2P
network’s searching scheme/depends on how popular the object is. However, defining popular
objects is a complex problem. So compared with hybrid P2P networks, the search mechanism
in structured P2P networks is much simpler. Therefore, in this thesis, we will focus on
structured P2P networks. In structured P2P networks, we chose KAD since it is the most

popular structured P2P networks [27].

Table I. Comparison of three main P2P architectures

Architecture

Unstructured P2P

Structured P2P

Hybrid P2P

Routing scheme Flooding DHT Flooding and DHT
Guaranteed search No Yes Yes
Network traffic High Low Middle
))) Local or foreign
Index is stored in Local peer Foreign peer
peer
Search efficiency O(N) O(logN) O(logN)

1.2 Load balancing problems in structured P2P networks

Many solutions have been proposed to solve load balancing problems in structured P2P
systems. Generally speaking,-there are publish, request, and routing load balancing problems
in structured P2P“networks.-The publish load balancing problem is the most important
problem since it will result in request and routing load balancing problems. To resolve the
publish load problem, most of the solutions reassign loads from heavy loaded peers to light
loaded peers. There are three difficult issues, where the loads be reassigned, where to find

the reassigned loads, and how to achieve a better tradeoff to resolve the above two issues.

1.3 Motivation

In this thesis, we want to balance the publishing load in KAD P2P networks as much as
possible to avoid peers becoming hotspots. In structured P2P systems, each data item is
mapped to a unique identifier (ID) and the peer with this ID stores all the indexes that are
mapped into it. Structured P2P systems could result iDdag N) imbalance factor in the
number of objects stored at a peer, whiis the number of peers in the system [28]. Heavy
load peers may become hotspots and cause network congestion around them and also affect

routing performance. Once these peers become offline, the search hit rate will decrease

dramatically. Load imbalancing is a critical problem that must be treated property in order to

fairly use available physical resources.

1.4 Problem statement

In this thesis, we intend to resolve two problems in KAD P2P networks. The first one is
the publish load imbalancing problem and the other is the search hit rate problem. By the
structured P2P network mechanism, each keyword produces a key. Each key has a specific
target peer to publish. Target peers use these keys to construct indexes of objects. If a
keyword is popular, the target peer will handle unusually large indexes. In this way, a few
peers may handle most of the indexes. It may cause unbalanced loads between peers. As to
the search hit rate, because peers are online or-offline frequently in KAD P2P networks, peers
offline or failure may result in-indexes lost. Although indexes may be lost, actually, the

related objects still existiin the network. To find these objects, it will lower the search hit rate.

1.5 Thesis organization

The rest of this thesis is organized as follo@lsapter 2 reviews the background of KAD
P2P networks and existing load balancing schemes in structured P2P networks. In Chapter 3,
we present our design approach in detail. Simulation setup and simulation results are

presented in Chapter 4 and Chapter 5 concludes the thesis and outline future work.

Chapter 2

Preliminaries and Related Work

Since the KAD P2P network is our main target to enhance, in this chapter, we review the
KAD P2P network and some existing load balancing methods. KAD P2P networks are based
on distributed hash table (DHT). First we review the DHT and then describe the mechanism
of how to lookup, publish, and search objects in the KAD P2P network. Finally, we review

existing load balancing mechanisms, KAD [5], KAD-7 [23], and MHF [24].

2.1 Distributed ‘hash table

DHT is based.on a consistent-hashing-function. In DHT-based P2P networks, each object
is assigned a unique ID using a consistent hashing function. A DHT-based P2P network
basically supports only the exact name match as each object is given a unique identifier
obtained by hashing.its name to.determine its location in the network. Keyword search must
be built on top of the network.to enhance search functionality. The most common way to
implement keyword search in“information systems is by inverted index [15]. An inverted
index is a set of pairs (keyword, objects set). After an inverted index is built, we can use a
keyword to find all objects that contain this keyword.

A distributed inverted index is built to implement keyword search in a structured P2P
network. By using DHT-based P2P networks, one can use a given keyword as a key to find
out the peers who have objects that contain this keyword. Peers can retrieve objects with a
given search query (keyword set) to perform a keyword search operation [15]. In Figure 1(a),
we show an inverted index example of four objects: Objects 1, 2, 3, and 4. Object 1 contains

Keywords 1, 2, and 3, and Object 2 has Keywords 1, 3, and 5, etc. Figure 1(b) shows the

inverted index which is built by these keywords and objects. Following this rule, we can link
keywords to different objects. For example, if we use “Keyword 2” as a keyword to search the

network, we can find Objects 1, 3, and 4.

e e e e e
——— e e

Object 1 { Object 2 { Object 3 { .
Keyword 1, Keyword 1, Keyword 1, Object 4 {
Keyword 2,
Keyword 2, Keyword 3, Keyword 2, Keyword 4
Keyword 3, Keyword 5, Keyword 4, ’

oy oy Ly

(a) Each.object has'some keywords

Keyword Object set

Keyword 1 {Object 1, Object2, Object 3}
Keyword 2 {-Object 1, . Object 3, Object 4}
Keyword 3 {Object 1, Object2}
Keyword 4 {Object 3, Object 4}
Keyword 5 { Object 2}

(b) An.inverted index

Figure L An.inverted index example of four objects [15].

2.2 Background of KAD

Each KAD node has a global identifier, referred as KAD ID, which is 128-bit long and
randomly generated by a cryptographic hash function. The designers of KAD decided to
consider a contact sufficiently close to the target if it shares with it at least the first 8 bits. The
space of KAD IDs that satisfy this constraint is called tolerance zone [17]. There are

2 =256 zones in a KAD P2P network. We will briefly explain the lookup, publishing, and

searching procedures in KAD P2P networks.

2.2.1Lookup procedure

When searching for some objects, a peer needs to know the target location and explores
the network in several steps. Each step will find peers that are closer to the target. Routing in
KAD is based on prefix matching. In KAD networks, the distance between two nodes is
calculated byXOR-distanceThe XOR-distance is defined d§a, b) = a// b. It calculated
bitwise on the KAD IDs of two nodes, e.g., the distance betweed0011 and = 01111 is
d(a, b) =10011/701111 = 10100. Routing to a KAD ID is done in an iterative way. Figure 2
is an example lookup procedure. In the first step, the searching peer has three closest possible
contacts from the routing table. They have different XOR-distances and are still not close
enough to the target peer. The 'second step in Figure 2.shows that the searching peer received
three responses. The. searching peer obtains three more closer possible contacts by the
responses. If a new possible-peer in the tolerance zone, it will be stored to a list called the
candidate list. In the third step, two of these possible peers-are in the tolerance zone. These
two peers will be saved to the candidate list. In the fourth step, the searching peer sends a
request for more closer peers.to the three closest peers again. The lookup procedure
terminates when the lookup responses contain only peers that are either already present in the
candidate list or farther away from the target than the other top three candidate pedis [17].
this point, no new request is sent and the candidate list becomes stable. KAD travels only
O(logN) peers during the execution of the lookup procedure when theng peers in the

network.

) Possible contacts from
Searching peer the routing table Target peer

1. «—4§ —_— I ¥—i

Tolerance zone

.@ Target peer
| |
2' <00 00 N TV . | ""~...________.--"'x‘- ________ - 1] e 11’

Target peer

— Request
— ——— Response

Figure 2. An example iterative lookup procedure [16].

2.2.2Publish procedure

Publish is an essential action when peers-want to share objects. Peers will publish
keyword keys and a source key to foreign peers. In Figure 3, the KAD ID of the peer is
“10111.” An object can produce two different keys, a source key and keyword keys. A source
key is computed by hashing the name of the object. Keyword keys are computed by hashing
keywords from the name of the object [16]. The keywords of this object are “Modular” and
“KAD.” In Figure 3, the source key is “01011” and the keyword keys of “Modular” and

“KAD” are “00001” and “00100,” respectively

Peer 10111 ____..--* ,
Object Moﬁar KADg:--- >> Keywords
Source 01011
Modular ==~<k.__
Keyword 0000] <a-- - --= Hash(Modular)
KAD -..___|
Keyword 00100 == =%+ Hash(KAD)
- y

Figure 3. An example of an object to be published.

Figure 4 shows an example of publishing steps for an index. Before publishing an index,
a sending peer must use KAD_REQ to find a receiving peer. At first the sending peer sends a
KAD_REQ to the receiving peer.-.KAD. REQ is used to find the receiving peer and check
whether the peer is alive. When the receiving peer receive KAD_REQ, it will send a
KAD_RES back. After establishing a connection between the.sending peer and the receiving

peer, the sending peer starts to publish keys to the receiving peer.

Sending peer Receving peer: N

Figure 4. The KAD publish steps for an index [16].

When a peer starts to publish keys, the peer will publish a source key and keyword keys
by 2-level publishing scheme. Figure 5 shows an example 2-level publish. A peer “10111”
wants to publish an object named “Modular KAD.” This object name will result in two
keywords, “Modular” and “KAD.” All relevant references to the original object are generated,
such as the source key and the keyword keys. Next, keyword keys “Modular 00001 and
“KAD 00100” are published to corresponding peers “00001” and “00100” to build indexes,
which are all pointed to peer “01011.” Finally, the source key is published, with an index
pointing to the publishing peer.

In KAD, each key is not published just on a single peer that is numerically closest to that

key, but on 11 different peers whose KAD ID'matches at least the first 8-bits of the key. This

zone around a key is _called the tolerance zone or the keyspace [17].

Peer 01011
Source 01011 . [__©
Peer | 10111 N
\
\
y
Peer 10111

/ Peer 00001 Object | Modular KAD

,I \| 'Keyword Modular Source 01011

| Source | 01011 Keyword Modular

l‘ 00001

\ KAD

\ Keyword

\ 00100

\

\
\\ Peer 00100
\
K d KAD
" - - pUbish

Source

— — —p» reference

Figure 5. An example of 2-level publish.

10

2.2.3Search procedure

Like publishing, searching files is also a 2-level search: keyword search and source
search. For a keyword search, the hash value of the first word of the user input is computed.
The rest of words are packed in a form of a search tree. A query consists of a hash value of
the first keyword and a search tree [16]. The query is routed to the peers that have a KAD ID
close to the hash value. The matching results are responded from that peers and carry the
information of source keys. For a source search, a user chooses a desired object from returned
results. Then the source key of the object is used for searching the peers who have the object.

The returned results would be added to the download queue of the object.

2.3 Original load balancing.scheme.in KAD

KAD limits the:snumber of indexes in each peer.to avoid-averloading. A peer can handle
a maximum of 60,000 indexes and can hold a maximum of 50,000 indexes of an individual
keyword. Therefore, when a peer reaching the limit of maximum indexes number receives a
publishing request, it will reply a successful-message, evenif the publishing request is

rejected.

2.4 Other existing load balancing schemes

KAD-7 [23] hashes the keyword of an objectimes to produce a key for publishing
objects, where is a random number and Ir < 7. Different peers may hash different times to
produce different indexes, which all represent the same keyword. These keys will be
published to different peers, not just to one peer. Because indexes are spread, KAD-7 will
increase the number of search messages.

In [18], the authors found that the peaks of load are due to very popular keywords that
are most often meaningless stopwords. They proposed to add a stopword exclusion step into

all KAD based P2P systems. They use stopword exclusion to reduce the number of indexes,

11

so the total indexes in the KAD will decrease.

In [24], the authors describe a novel approach with multiple hash functions (MHF) to
replicate the hotspots in a series of different nodes to distribute the high load evenly, and it
can increase or decrease the replicas dynamically. MHF provides a load balancing scheme for
a high request rate. If the request rate is not over a threshold, the zone with popular keywords
will still have a large number of requests. MHF will result in a lot of additional network

traffic because a large number of indexes are replicated.

2.5 Qualitative comparison of representative load

balancing schemes

Table Il shows the comparison of four representative load balancing schemes. In the
proposed KAD-mod, the publish-load and request‘load are more balanced and thus the search
hit rate will increase. If a popular keyword referenck® indexes, KAD-mod can
distributes indexes_maore even to 160 zones. In contrast, KAD-7 can only spread indexes to
seven zones and KAD only to just one zone: Since KAD-mod and KAD-7 will spread the
indexes, there will be more peers that have the same indexes. As a result, the search hit rates
of both schemes will increase in case that some peers failed. However, their network traffic
will increase slightly because of increased search messages. MHF uses a scheme that
replicates the hotspot load to other peers, so it will generate a lot of indexes which increase
the network traffic. Peers to know where the key is located must ask the original responsible

peer. Once the original responsible peer becomes offline, the search hit rate will decrease.

Table 1. Qualitative comparison of four load balance schemes.

Approach KAD [5] MHF [24] KAD-7 [23] KAD-mod (proposed)
Publishing load High High Middle Low
Request load High Middle Middle Low
Search hit rate Middle Middle High High
Network traffic Middle High Middle Middle

12

Chapter 3
Proposed KAD-mod Load Balancing

Scheme

KAD has a 128-bit ID space and there are 256 zones in a KAD P2P network. Divide

2128 1y 256 to get a quotient 022 so_that each zone has at mat*° peers. We will

define a new ID typemod ID. A'mod ID is computed as KAD ID ma2t°. By deriving a

new mod ID (as follows), for each peer, the peers with the same mod ID will be located in
different zones. In Figure 6, assume that there are 15 peers. and 5 zones so that each zone ha:
3 peers. Each peer's KAD ID mod 3 will generate its mod ID. For exampk, 4 mod 3
and “1” is the mod ID. For example, a peer's KAD ID Ns then peers with KAD
ID N +2'%° N +2x 2", ‘and N + 255x 2'%°" will-all have the. same mod ID.
Deriving a new mod ID:
Let n be a nonzero integer./We say that two integers a and b are congruent modulo n if
there is an integerguch that a — b = kn. In the KAD case, we haag bmodn, where

a=KADID, n=2" b=mod ID.

modID 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Figure 6. A mapping between KAD IDs and mod IDs in the KAD P2P network.

13

3.1 Concept of KAD-mod

We propose a modulo based load balancing method to let peers with the same mod ID
share loads. Using mod ID, we can easily find where loads are reassigned and where to find
the reassigned loads. We useequest forwarding threshol®RET) to help decide if an index
should be redirected to the same mod ID of a peer at another zone. We limit the number of
indexes stored in each peer to avoid overloading. A peer can handle ®Fiastlexes of
an individual keyword. For example, when a peer reaches the lirREdfindexes, it will
redirect the remaining requests to the same mod ID of peers at another zones. Figure 7 shows
the concept of KAD-mod for publishing.. In this example, there are 180 Keaysblished
from many peers to pedd and RFT = 60. PeeN will handle the first 60 keys. For the
remaining keys, ped redirects 61 to 120" keys to peeN + 2"° and redirects 121to 180"

keys to peer N +2 *-2°,

Peer N redirects 61" ~120" keys to peer

Assgme there are 180 keys K N+2'? and redirects 121" ~180" keys to
published from many peers to peer N-+2%212
peer N

Ll
11...11

N N2 N#2e2™

Figure 7. The concept of KAD-mod for publishing.

3.2 Publish procedure

In KAD P2P networks, a key could be published to a peer from many peers. Each peer
has a counterREQ_countérto record the number of KAD_REQ'’s for storing the same key.
The basic idea is when the numbeREQ_counteexceedRFT, then the peer will redirect

the remaining KAD_REQ'’s for storing the same key to other zones. In other words, the

14

receiving peer will become a redirection peer when the number of KAD_REQ'’s received for
storing the same key excee®~T. Figure &a) shows a scenario that the number of
KAD_REQ’s peerN received for storing the same key does not exéded Figure 8(b)
shows an alternative publishing procedure in five steps when the number of KAD_REQ'’s
peer Nreceived for storing the same keyoverRFT. The five steps are:
Step 1. When a sending peer wants to publish Keto receiving peeml, it sends a
KAD_REQ to receiving peer.N
Step 2: DivideREQ_counteby RFT to get a quotient In this casel > 1. Receving peex
will become a redirection peer-and-redirect KAD_REQ to pieti x 2%,

Step 3: When receiving peeX +ix2'?° receives KAD _REQ, it will sends a KAD_RES to

the sending peer.

Step 4: Then, the sending peer starts to send KAD. PUBLISH_REQ to new receiving peer
N +ix 2129

Step 5: When receiving peeX +ix2'?° receives. KAD_PUBLISH_REQ, it sends KAD_

PUBLISH _RES to sending peer.N'hen, keywork Ks published successfully.

Sending peer Receving peer: N . Redirection Receving peer:
Sending peer peer: N Nti* 2120
®
). al @
Q\ IQQ D
@ \REQA
s—1 O 1 ss—
la— KAD’RE /KAD _RES
~—~—— @
) PUBLI \K A
SH_ RE D\PUBLISH RE
@ ~HO—]
i RES™| RES— |
pUBLISY- \’UB"‘S“’
‘/KAD— ‘/KAD,
\/ \/
\/ \ / \/

(a) The publish procedure when receiving

peer is not overloaded (b) The publish procedure when receiving

peer is overloaded.

Figure 8. The KAD-mod publish procedure for a key

15

The detail of the publishing procedure in KAD-mod is shown in Figure 9. Figure 9(a)
shows the procedure that a peer publishes a key. We hash keAmorgenerate a kek.
Peer Kwill be the target peer and then the peer uses a lookup procedure to send KAD_REQ to
the target peer. The details of the lookup procedure has been presented in Chapter 2. Then we
will receive several responses which contain some possible peers who are closer to the target
peer. We use these peers to update the candidate list. If the candidate list becomes stable, then
go to the the next step. Top 11 peers will be selected from the candidate list for sending
KAD_REQ to ask for storing the key. After receiving KAD_RES, the peer sends publishing
messages to the 11 peers to complete the procedure of publishing a keyword to the KAD P2P
network.

Figure 9 (b) shows the condition that a peer receives KAD_REQ for storing K. key
First, the peer will.check if it-has ever received the same KAD_REQ. If the peer has not
received the request before, it initializes a new couRtef) counterto 1. Otherwise, it adds
one toREQ_counterland the peer checks wheth®EQ_ counter> RFT. If yes, the peer will
calculate a peer numbBIEXT andredirect KAD=-REQ to peeEXT with the same mod ID
at other zones. If no, the peer will send KAD_RES to the sending peer. In order to avoid an

infinite loop, the peer will redirect to at most 255 different zones except its own zone.

16

Start

y

Obtain keyword A from an object name

y
Hash 4 to get key K

v
Use peer K as the target peer and
run the lookup procedure, as
shown in Figure 2

i

Use the responses of lookup messages to update the
candidate list

i

The candidate list stable
No

Select 11 closerpeers from the candidate list

v
Send KAD REQ to ask the 11 peers for

storing key K

Y
Receive KAD RES and send publishing

messages to the 11 peers

Y
End

(a) The procedure of a peer publishing a key.

17

y

Start

\
Receive a KAD REQ message

for storing key K

[s it the same KAD REQ for key K

No

REQ Co

/ REQ Counter++

unter =1

y

REQ Counter >

No RFT

Yes

120

"2

128

ymod 2

NEXT= (N+ { REQ _Counter J

RET

;

If {REQCounteJ > 255

RFT

Yes

/ No

Send KAD RES back

Send KAD REQ to peer

NEXT

(b)The procedure of a peer receiving KAD_REQ for storing a key.

Figure 9. The publish procedure in KAD-mod.

18

3.3 Search procedure

Figure 10 describes the search procedure of KAD-mod. The searching peer obtains a
keyword from a keyword query (for example, keyword A). Then, this keyword will be hashed
to produce a kel. The searching peer uses Ké€ws target peer ID to send search messages.
The searching peer can knd®EQ_countelby the received response and the searching peer
can know where the indexes corresponding tokeye stored byREQ_counterAfter that,
we send search messages to these peers from the nearest peer to the farthest peer in oul
routing table. Then, we will receive several search responses which may contain search
answers. The search will stop when a maximum numbers an§WErs\L, has been received
or a timeout is triggered. The defalilD TAL value 1300 and the default timeout is set to 20
seconds. In other words, we will stop the search process after 20 seconds or if the searching

peer receives more.than 300 answers [20].

19

Start

4

Obtain keyword A from a keyword query

Y

Hash keyword

Ato getkey K

4

Use peer K as the target peer and then send search
messages to the KAD P2P network

4

Get REQ Counter from the target peer

!

Searching peer knows where ' the-indexes corresponding to key K-are stored by {

REQ _ Counter

RFT

|

y
Send the search messages from the nearest peer to the
farthest peer

Y

Save answers from search responses

Number of ans

or timeout triggered

wers > TOTAL

TOTAL: Maximum number of answers

Figure 1C. The search procedurein KAD -mod.

20

Chapter 4

Simulation Results

4.1 Simulation setup

First, we analyze the KAD P2P network environment. In [21], the authors crawled a
representative subnet of KAD every five minutes for six months. They found that in average,
there are 8000 peers in a zone. In [19]; the authors spied on one zone in the KAD P2P
network for 12 hours. They observed that the number of search messages is 561,542 and the
size of search messages is 10.8 MB, while the number of publishing messages is 5,549,183
and the size of publishing messages'is 996MB. According to the observation in [19], the
average size is 0.019 KB for a search message and 0.18 KB for a publishing message. We
classify keywords intoanks according to the number of times.a keyword appearednfhe
popular keyword is ¢lassified as rankThe number-of indexes for th& popular keyword is

163

proportional to kX]/n wherek is the number of‘indexes for the most popular keyword

[18]. According to [18], ks about 107, The parameter settings of our simulation environment
are shown in Table Ill. We used JAVA to construct our simulation environment. In the
simulation, the number of indexes handled by each zone and the number of times each zone

being requested were collected for comparison and evaluation.

21

Table lll. Simulation parameter settings.

Number of KAD peers 256 x8,000
Number of KAD zones 256
Peers per zone 8,000
Number of different keywords 1,000,000
Keywords popularity distribution Zipf's law [18]
Search distribution Zipf's law [18]
Raito of publish messages-to-search messages 10:1

4.2 Simulation results

We usedGini coefficient (G) as a load balancing index for evaluation of load balancing
regarding the number of indexes handled by each zone. The ratge dietween 0 and 1.
The closer th& approach to 0, the more load balancing it iss Gomputed as follows [22]:
N N

Gzz—tI%ZHE;h -1 (1).
For calculatings regarding the number of published indexes in each 20reethe number of
zones N = 256),1; andl; are the numbers of indexes handled by itheand | zones,
respectively, ang is the average number of indexes handled by eawh. For calculating>
regarding the number of requested indexes in each kbisethe number of zonesl (= 256),
li andl; are the number of requested indexes ini'thendj" zones, respectively, andis the

average number of requested indexes in each zone.

22

BecauseRFT would affect the performance of KAD, KAD-7, and the proposed
KAD-mod, we conducted experiments to decide the IBYST. Figure 11 shows th&
regarding the number of indexes published in each zone under a diRéfEr'We found that

the lowest value of G@ceurs when the values of RFT are between 5000 and 6000.

0.7 -
/\0.6
9}
EO.S
o
S 04 -
5
s 03
1)
:§0.2
O o1
0
O 0.0 0 OO0 00 0 00 O 0000 900 9O O
Isisli=)isF-aelellellsllels N e el llele el lle)
OO 00 0000000000 b oo o o
A NN ST D ORKODMNO AN M ST INORIANO
D o DR B B R o R o B e R s IR s I oV
RFT

Figure 11. The:Gini coefficient regarding the number of indexes published in each

zone under.a different RFT.

There are two issues in,the proposed KAD-mod. First, the average hop count of finding a
target to publish an index will increase after applying the KAD-mod method. We used the
results of [17] to evaluate the average hop count of finding a target to publish an index. Figure
12 shows the average hop count of finding a target to publish an index under a di¥feérent
In our method, for some popular keywords receiving peers may need to redirect KAD_REQs
to other peers because the total number of indexes of a popular keyword in the receiving peers

exceeds RFETThe redirection of KAD_REQs needs an additional hop to find the next target.

23

2.9 -

2.8

2.7

Average hop count

2.6

Figure 12. The average‘hop count of finding a target peer to publish an index under a

different RFT.

Second, the number of search messages will also increase after applying the proposed
KAD-mod method.-However, the number of publish messages will not be affected. Note that

total network messages include search messages and publishing messages. The percentage o

extra traffic (T,) for KAD-mod is_defined as:

T = (Totahetworktraffic of KAD -mod) (Totahetworktraffic of KAD)
¢ Totahetworktraffic of KAD

In Figure 13, the percentage of extra traffic decreases with a hRfg&r However, G
increases with a higher RFas shown in Figure 11. We found that 6000 is the optimaliRFT

the proposed KAD-mod. Remind that the percentage of extra traffic for KAD-mod is small
(8% for RFT = 6000) number of search messages is much smaller than the number of publish

messages.

24

20|

18
16 \

12
10 —

Percentage of extra traffi (%)

O N B OO

O O O O O O O O O O 0O O O O O o O o o o
O O O O O O O O O O 0O 0O O O O o O o o o
O O O O O O O O O O O o o o o o o o o o
I N 0N < 1N O NN 0 OO " NS N O N 0 O O
Lo B B B B T o D o B o B o B o B o]

RFT

Figure 13. The percentage of extra traffic under a different RTE

4.3 Comparison with-existing load balancing schemes

KAD-mod can publish popular indexes more balanced than KAD-7 and KAD. The
proposed KAD-maod can publish indexes to all of 256 zones when the number of the indexes
in the original publish target peer excedrIsT, while KAD-7 and KAD can only publish
indexes to seven zones and one zone, respectively: Figure 14 shows the comparison of the
Gini coefficient regarding the number of indexes in each zone among KAD-mod, KAD-7 and
KAD. We found that KAD-mod is more balanced than KAD-7 and KAD. Figure 15(a) shows
the percentage of extra traffic compared to KAD. KAD-mod has only 0.68% more extra
network traffic than KAD-7. In Figure 15(b), we observed that KAD-mod'’s average publish

hop count is only 0.5 hop more than KAD and KAD-7.

25

1 0.9303
0.9

0.8
0.7
0.6
0.5
0.4

0.8024

Gini coefficient

0.3 0.2311
0.2

0.1
0

KAD-mod (our proposed) KAD-7 KAD

Figure 14. Comparison of publish lead.balancing among the three schemes in terms of

the Gini coefficient.

2.9651

9

o 8.2827 28

S s 76 26 25 25

9 24

= 7

© - 22

= c 2

@ 6 =)

g o 18

1% o

(0} 5 o 16

S 0

o ., 2 14

g o 12
o)

g s g !

3 o 08

o 2 Z 06

o) < 7

[04

02

KAD-mod (our proposed) KAD-7 KAD-mod (our KAD-7 KAD

proposed)
(b) Average hop count for finding a
target peer to publish

(2) Extra network traffic
compared to KAD

Figure 15. Comparison of extra network traffic and average hop count for finding a

target peer to publish.

26

Indexes in failed peers are called missing indexes. Objects referenced by missing indexes
are not searchable. The search hit rate is calculated by 1- (dividing the number of missing
indexes to the number of total indexes). According to [25], the percentage of failed peers in a

day is about 27%. Figure 16 shows that the search hit rates of KAD-mod and KAD-7 are

98.24% and 97.71% when 27% of peers failed.

100 rx

95 \ B - —
o N

S \

£ 8

S \ —o— KAD

= 80 ¢

5 \ —&— KAD-mod (our
< 75 e proposed)

% 70 KAD-7

65

60

0 10 20 30 40

Peer failed rate (%)

Figure 16. The search hit rate with respect to the peer failed rate for different

approaches.

The publish load will affect the request load. We also evaluate the load balancing of
requests. Since MHF [24] did not describe how to publish indexes, we only include MHF [24]
for load balancing requests of comparison here. MHF [24] set the threshold of the request rate
to 800 requests per second. Figure 17 shows§tGe request load under the best, average, and
worst cases of MHF. In the best case, all requests are from the same peer and the request rate
is higher than the threshold of request rate all the time. The best case is almost impossible to
happen because it does not meet the real P2P network characteristics. In the worst case, the

request rates of all requests are lower than the threshold of request rate and this also does not

27

meet the real P2P network characteristics. The average case can reflect the real P2P network

characteristics.

0.9
0.8
0.7
0.6
0.5

0.4

Gini coefficient (G)

0.3

0.1898
0.2

0.1

0.6668

0.8359

best

average

worst

Figure 17.G’s.of the request load for the best, average, and worst cases of MHF.

For the proposed KAD-mod, because indexes are evenly published, the request load will

become even as well. Figure 18 shows the comparisds'sofegarding the request load

among the four approaches: KAD-mod performs the best in ter@sobfthe request load,

because in KAD-mod, the more popular indexes are handled by more peers.

28

0.9 0.835
0.8
0.7 0.6668 0.6725

0.6

0.5

0.4 0.3369
0.3

Gini coefficient (G)

0.2

0.1

0

KAD-mod (our proposed) MHF KAD-7 KAD

Figure 18. Comparison of Gs regarding the request load for four representative

approaches.

Chapter.5

Conclusion

5.1 Concluding remarks

In this paper, we have presented an efficient modulo based method (KAD-mod) to
balance the publish load and request load of KAD P2P networks. Our approach also improves
the hit rate of keyword searching. The proposed KAD-mod is a simple and effective method
without complex calculations. By redirecting overloaded indexes, indexes can be distributed
more even, and not only the publish load but also the request load of each peer would be more
balanced. Although the average hop count of finding a target to publish an index will increase
and the total network traffic will slightly increase, these overhands are very small. Based on

the simulation results, th& (G, 0 < G < 1, 0: fully balanced) of publishing load for

29

KAD-mod is 0.23, KAD-7 is 0.80, and KAD is 0.93. As ®of request load, KAD-mod is

0.33, KAD-7 is 0.67, and KAD is 0.83. KAD-mod improves the search hit to 98% and only
causes 8% extra traffic and KAD-mod's is only 0.5 hop more than KAD and KAD-7. Our
method can not only improve the search resilience but also balance the publish and request

load among peers in KAD P2P networks.

5.2 Future work

The proposed KAD-mod is simple and effective method to achieve publish load
balancing, request load balancing, and search resilience. In the future, we will adapt our
method to let it be applicable to other DHT based P2P networks. In addition, if the number of
indexes become too large, how to flexibly adjBstT to balance load in the KAD P2P

network is deserved to further study.

30

Bibliography

[1] D. Kundur, Z. Liu, M. Merabti, and H. Yu, “Advances in peer-to-peer con tent search,” in
Proceedings of the IEEE International Conference on Multimedia and Expo, pp. 404-407,
July 2007.

[2] “The Gnutella 0.4 protocol specification, 2000.” [Online]. Available:

http://dss.clip2.com/GnutellaProtocol04.pdf

[3] A. Oram et al Peer-to-Peer: Harnessing the Power of Disruptive Technologies, 2001,
O'Reilly.

[4] I.Clake, TW. Hong, O.Sanberg, and B.Wiley. “Protecting free expression online with
freenet,” IEEETrans Internet Computings;.vol. 6, no. 1, pp:40-49, 2002.

[5] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information system based
on the XOR metric”, inProceedings of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS), pp. 355, March 2002.

[6] Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A
scalable peer-to-peer lookup-service for-Internet applicationsPrateedings of the
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, pp. 149-160, August 2001.

[7] Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable
content-addressable network,” Rroc. ACM Applications, Technologies, Architectures,
and Protocols for Computer Communicatippp. 161-172, August 2001.

[8] Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems,” Rroceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, pp. 161-172,

August 2001.

31

[9] Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure for fault-tolerant
wide-area location and routing,” University of California, Berkeley, Tech. Rep.
UCB/CSD-01-1141, April 2001.

[10] “eMula Project,” [Online]. Available: http://www.emule.com/

[11] “BitTorrent,” [Online]. Available:_http://www.bittorrent.com/

[12] “aMula Project,” [Online]. Available: http://www.amule.org/

[13] B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and I. Stoica. “Enhancing P2P
File-Sharing with an Internet-Scale Query Processér@ceedings of the Thirtieth
international Conference on Very large data bases. 30, pp. 432-443, 2004.

[14] Loo, b. T., Huebsch, r., Stoica,i., & Hellerstein, j. (2004). The Case for a Hybrid P2P
Search Infrastructurén Proceedings of the 4th International Workshop on Peer-to-Peer
Systems (IPTPS), pp. 141-150, February 2004

[15] Y.J. Joung, L.W. Yang, and C.T. Fang, "Keyword search in DHT-based peer-to-peer
networks," IEEE Journal on Selected Areas in Communicatiord. 25, pp. 46-61,
January 2007.

[16] R. Brunner, “A performance evaluation of .the KAD-protocoMaster's Thesis
University of Mannheim and Institut Eurecom, November 2006

[17] M. Steiner, D. Carra, and E. W. Biersack, “Faster content access in KAD,” in
Proceedings of the Eighth International Conference on Peer-to-Peer Computing, pp.
195-204, September 2008.

[18] M. Steiner, W. Effelsberg, T. En-Najjary, and E. W. Biersack, “Load reduction in the
KAD peer-to-peer system,” irProceedings of the 5th International Workshop on
Databases, Information Systems and Peer-to-Peer Computing, October 2007.

[19] E. W. Biersack, “Everything you want to know on KAD,” June 2008. [Online].

Available: http://www.thlab.net/old/rescom2008/talks/E-Biers&ckD-tut. pdf

[20] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load balancing in

32

dynamic structured p2p systems,”Rnoceedings of the IEEE INFOCQMp. 2253-2262,
March 2004.

[21] M. Steiner, T. En-Najjary, and E. Biersack. “Long Term Study of Peer Behavior in the
KAD DHT,” in Proceedings of théEEE/ACM Transactions on Networking, 2009.

[22] T. Pitoura, P. Triantafillou, T. Pitoura, P. Triantafillou. “Load Distribution Fairness
in P2P Data Management Systems,” Rnoceedings othe IEEE 23rd International
Conference on Data Engineering, pp. 396-405, April 2007.

[23] T.T. Wu, K.C. Wang. “An Efficient Load Balancing Scheme for Resilient Search in
KAD Peer to Peer Networks,” iRroceedings of the Ninth IEEE Malaysia International
Conference on Communicationp. 759-764, March 2010.

[24] Y.Mu, C. Yu, T. Ma, C. Zhang, W. Zheng, X. Zhang. “Dynamic Load Balancing with
Multiple Hash Functions in-Structured P2P System,Pmceeding of WiCom '09. 5th
International Conference onWireless - Communications, Networking and Mobile
Computing , October 2009.

[25] M. Steiner, T. En-Najjary, and E. W. Biersack, “A global view of KAD'Hroceedings
of the 7th ACM SIGCOMM Conference on Internet Measurermpentl17-122, October
2007.

[26] E.K.Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and comparison of
peer-to-peer overlay network schemedEEE Trans Communications Surveys &

Tutorials, IEEE, vol. 7, no. 2, pp. 72-93, 2005

[27] “Internet Study 2007,” [Online]. Available: http://www.ipoque.com/

[28] Y. Zhu , Y. Hu. “Efficient, Proximity-Aware Load Balancing for DHT-Based P2P
Systems,”IEEE Trans Parallel and Distributed Systems, vol. 16, no. 4, pp. 349-361,
2005

[29] M. CASTRO, M. COSTA AND A. ROWSTRON,, “Peer-to-Peer overlastsuctured ,
unstructured, or both?,” Microsoft Research, Cambridge, CB3 OFB, UK, 2004.

33

