

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

穩定流量重播至應用層代理伺服器

Stateful Traffic Replay on Application Proxies

研 究 生：廖鵬孙

指導教授：林盈達 教授

中 華 民 國 九 十 九 年 六 月

穩定流量重播至應用層代理伺服器

Stateful Traffic Replay on Application Proxies

研 究 生：廖鵬孙 Student: Peng-Yu Liao

指導教授：林盈達 Advisor: Dr. Ying-Dar Lin

國立交通大學

網路工程研究所

碩士論文

A Thesis

Submitted to Institutes of Network Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

In

Network Engineering

June 2010

HsinChu, Taiwan

中華民國九十九年六月

I

穩定流量重播至應用層代理伺服器

學生：廖鵬孙 指導教授：林盈達

國立交通大學資訊科學與工程研究所

摘要

 重播流量到網路產品並觀察它們的反應是一種測試網路產品的方法。目前已

存在的重播工具大多提供傳輸層的流量重播，以測試交換器、路由器、閘道器等

產品。然而，現有的流量重播工具無法針對應用層代理伺服器網路產品進行重播。

有鑑於此，基於應用層代理伺服器具有建立連線與修改應用層訊息的特性，我們

在本論文設計並實作一個適用於應用層通訊協定的 ProxyReplay 重播工具。代理

伺服器常常具有一些網路流量處理功能，如內容快取與過濾。這些行為可能會改

變重播應用層流量的基本流程，導致當內容快取與過濾行為發生時，重播工具送

出不必要的訊息，或是訊息無法被正常處理。ProxyReplay 這個工具按照應用層

協定規範的流程準確重播流量至應用層代理伺服器，它可以根據不同網路功能進

行處理，如更新訊息標頭檔讓訊息正確快取，檢查要求訊息再重播對應的回應訊

息，防止內容過濾發生時送出不必要的訊息。最後，為了避免重播時所帶來記憶

體空間的限制，ProxyReplay 也提供同步重播的機制，以處理比實際記憶體空間

還要大的流量資料，在實驗結果中，ProxyReplay 可達到 200Mbps 以上的輸出效

能，並重播大於實際記憶體空間的真實流量。

關鍵字：流量重播、流量錄製、真實流量、應用層代理伺服器

II

Stateful Traffic Replay on Application Proxies

Student: Peng-Yu Liao Advisor: Dr. Ying-Dar Lin

Department of Computer Science

National Chiao Tung University

Abstract

It is common to test network devices by replaying network traffic to them and

observe their reactions. Most existing replay tools support layer 4 stateful traffic

replay and hence they can be used to test switch, router, and gateway devices.

However, they do not support stateful traffic replay to application level proxies.

Therefore, considering the characteristics of connection interception and content

modification, we design and implement the ProxyReplay tool for application layer

proxies in this thesis. Application proxies often provide features such as data-caching

and content filtering. These features may affect replay procedures. As a result, it is

possible that a replay tool replays invalid application messages that cannot be

correctly processed by proxies. The proposed tool not only supports stateful replay to

application proxy by following the protocol procedure, it also handles different proxy

behaviors. For instance, it updates message headers so that web-caching works

correctly and it also analysis messages received from a proxy to prevent from

replaying of invalid responses when content filtering is adopted. Although replayed

data is usually preprocessed and stored in memory during a replay process, the

ProxyReplay tool provides a concurrent replay mode which allows it to replay

network traces that are much greater than the physical memory. In the experiment, the

throughput of ProxyReplay can achieve 200Mbps but also replays the real flow trace

file which is larger than the physical memory.

Keywords: traffic replay, traffic capture, real flows, application proxy

III

Content

Chapter 1 Introduction ... 1

Chapter 2 Background ... 4

2-1 Failure Replay of Existing Tolls .. 4

2-2 Taxonomy of Application Level Devices ... 6

2-3 Issues Affecting Accuracy of Application Traffic Replay .. 8

2-4 Related Works ... 9

Chapter 3 the Design of the ProxyReplay Tool ... 11

3.1 Design Issues ... 11

3.2 Architecture Overview .. 12

3.3 Solutions to Application Level Proxy Replay Issues .. 13

Trace Recovery .. 13

Stateful Proxy Replay .. 15

Functional Dependency Resolver .. 17

Concurrent Replay ... 19

Chapter 4 Implementation ... 21

Software Architecture ... 21

The Application Parser .. 21

The Replay Engine .. 22

Kernel Enhancements .. 23

The Proxy Replay User Interface .. 23

Chapter 5 Evaluation ... 24

5.1 Test Environment for ProxyReplay ... 24

5.2 Functional Evaluation .. 25

5.3 Performance Evaluation .. 27

5.4 Scalability Evaluation .. 29

5.5 Replay Tools Comparison Evaluation ... 30

IV

Chapter 6 Conclusions and Future Works ... 31

Reference ... 32

List of Figures

FIGURE 1(A): AN HTTP SCENARIO WITHOUT A PROXY .. 4

FIGURE 2(A): AN HTTP SCENARIO WITH A NON-TRANSPARENT PROXY 7

FIGURE 3: AN HTTP SCENARIO WITHOUT HANDLING CONTENT FILTERING 8

FIGURE 4: THE SYSTEM ARCHITECTURE FOR THE PROXYREPLAY TOOL 12

FIGURE 5: PARSE A PCAP FILE INTO AN INTERNAL DATA STRUCTURE 13

FIGURE 6: APPLICATION PAYLOAD LOST RECOVERY .. 13

FIGURE 7: IGNORE RETRANSMITTED PACKET ... 14

FIGURE 8: PACKETS OUT-OF-ORDER RECOVERY ... 14

FIGURE 9: A FAILED REPLAY SCENARIO FOR A WEB PROXY .. 15

FIGURE 10: A SUCCESSIVE REPLAY SCENARIO FOR A WEB PROXY 15

FIGURE 11: HTTP REPLAY WITH DNS MESSAGES ... 17

FIGURE 12: HTTP REPLAY SCENARIO WITH WEB CACHING .. 18

FIGURE 13: HTTP REPLAY SCENARIO WITH CONTENT CACHING 19

FIGURE 14: THE REPLAY STRATEGY FOR MULTIPLE CONNECTIONS REPLAY 20

FIGURE 15: SOFTWARE ARCHITECTURE OF PROXYREPLAY .. 21

FIGURE 16: PARSE A PCAP FILE INTO AN INTERNAL DATA STRUCTURE 22

FIGURE 17: AN EXAMPLE OF UPDATING DNS MAPPING ... 22

FIGURE 18: THE TEST ENVIRONMENT FOR PROXYREPLAY ... 24

FIGURE 19: RESULTS OF PROXYREPLAY WITH AND WITHOUT WEB CACHING 26

FIGURE 20: RESULTS OF PROXYREPLAY WITH AND WITHOUT CONTENT FILTERING 27

FIGURE 21: PERFORMANCE OF TWO REPLAY STRATEGIES .. 28

FIGURE 22: THE REQUEST RATE OF TWO REPLAY STRATEGIES .. 28

V

List of Tables

TABLE 1TAXONOMY OF APPLICATION LEVEL DEVICES ... 6

TABLE 2: A COMPARISON BETWEEN NON-TRANSPARENT PROXY AND TRANSPARENT

PROXY ... 8

TABLE 3: COMPARISON OF NETWORK TESTING TOOLS INCLUDING TRACE-BASED

APPROACH AND MODEL-BASED APPROACH .. 10

TABLE 4: HTTP HEADERS NEED TO BE MODIFIED BEFORE REPLAY 16

TABLE 5: DATE HEADER FIELD MODIFICATION ... 18

TABLE 6: COMPARISON BETWEEN SELECT, POLL AND EPOLL .. 23

TABLE 7: STATISTICS OF THE INPUT PCAP FILE ... 25

TABLE 8: WEB CACHING RULES ... 26

TABLE 9: THROUGHPUT OF PROXYREPLAY TOOL IN DIFFERENT SIZE OF RESPONSES 29

TABLE 10: COMPARISON BETWEEN TWO STRATEGIES .. 29

TABLE 11: COMPARISON BETWEEN REPLAY TOOLS .. 30

1

Chapter 1 Introduction

It is common to test network devices with manually generated network traces.

There are two major approaches to generate network traces manually. One is the

model-based approach and another is trace-based approach. The model-based

approach generates simulated network traces based on mathematical properties of

analyzed real network traces. On the contrast, the trace-based approach uses traffic

replay technologies to replay previously captured real network traces. There are

limitations on model-based approaches. First, the correctness of simulated network

traces depends on the mathematical model used to generate the traces. However, it is

difficult to prove that a model is 100% correct. Second, a mathematical model is often

created based on normal network traces. Hence it is also difficult to simulate

abnormal conditions, especially when an abnormal has not been identified. Third,

model-based approaches often focus only on numerical properties; it is hard to

simulate behaviors involving application content. Finally, it is undoubted that a

simulated network trace will never act exactly the same as real network traces.

Therefore, if there are choices, users would prefer to test their devices using real

network traces and seeing how the device under test acts in the real world.

Replaying network traces can be either stateless or stateful. A stateless traffic

player replays network traces based only on timestamps. The content of replayed

network packets is exactly the same as that stored in the captured network traces. On

the contrast, a stateful traffic player is much more complicated. The content of

replayed network packets may need to be altered to fit the network environment. For

example, the TCPReplay tool 0supports traffic replaying at the data-link layer and the

network layer. It may have to modify MAC addresses and IP addresses to make sure

the replay can be fluently done successfully. The NATReplay tool supports stateful

traffic replay for NAT devices. Hence, it must at least maintain the mapping state

2

between private IP addresses and public IP addresses. The SocketReplay tool [2]

supports stateful traffic replay for layer 4 firewall devices. It must maintain firewall

response states to prevent from replaying blocked connections.

Most existing replay tools only maintain layer 2, layer 3, or up to layer4 states

[1-5]. Although researches have shown the demands on stateful application-layer

replay, these tools failed on replaying for application-layer devices [6-8]. In order to

design a replay tool which can accurately replay network traffic to application-level

devices, four problems should be solved.

(1) Protocol Dependency: As mentioned above, connection should be established

before sending application traffic. Hence, replay tool should be able to establish

connections to application-level devices.

(2) Functional Dependency: Different proxies could have different behaviors, for

example, caching or content filtering [9-11]. Therefore, a replay tool must handle

these diversities.

(3) Concurrent Replay: Since a traffic trace may include multiple concurrent

connections, a replay tool must be able to replay these connections simultaneously.

(4) Error Resistance: Captured network traces may be incomplete due to packet loss

[13]. This is the most important part to guarantee the fluency of traffic replay.

ProxyReplay is the replay tool which is designed based on the solutions above four

problems.

In this thesis, we propose a framework for replaying traffic for

application-aware proxies. Based on the framework, a traffic replay tool is also

implemented to show its effectiveness and efficiency. The rest of this thesis is

organized as follows. The background of traffic capture, traffic replay, and related

works are introduced in Chapter 2. A formal problem statement is made in Chapter 3.

The design and the implementation of the proposed method are introduced in Chapter

3

4 and Chapter 5, respectively. Evaluation of the proposed solution is done in Chapter

6. Finally, a concluding remark and possible future directions are given in Chapter 7.

4

Chapter 2 Background

In this chapter, we illustrate the background knowledge about application replay.

First, Section 2-1 gives an example of HTTP proxy to explain the failure of existing

tools. Section 2-2 makes taxonomy of application level devices and introduces their

characteristics. Section 2-3 illustrates the factors that will affect application replay

accuracy. Last, Section 2-4 gives the related work about replay approaches in detail.

2-1 Failure Replay of Existing Tolls

Figure 1 (a) shows a regular HTTP scenario without a proxy. The web client

first establishes a connection to the web server. Then, the web client sends an HTTP

request via the connection. Finally, the web server sends an HTTP response back to

the web client. Figure 1 (b) shows an HTTP scenario with the existence of a proxy.

First, the web client establishes a connection to the proxy server instead of the web

server. The web client then sends an HTTP request to the proxy server via the

connection. On receipt of the request, the web proxy establishes another connection to

the web server according to the URL in the HTTP request and then forwards the

HTTP request to the web server. To send the response back to the client, the web

server sends the HTTP response to the web proxy in step 3. Finally, the web proxy

forwards the HTTP response to the web client.

Figure 1(a): An HTTP scenario without a proxy

5

Figure 1(b): An HTTP scenario with the existence of a proxy

Figure 1(c): A failed replay scenario for a web proxy

As we can see in Figure 1 (a) and Figure 1 (b), the number of actions and the

targets of actions are different. If we replay the network trace collected in Figure 1 (a)

directly to a proxy, the result must not be what we expected. Figure 1 (c) shows a

failed replay scenario for a web proxy. In Figure 1 (c), a web proxy is physically acted

the man in the middle between the web client and the web server. The relayed web

client and the replayed web server are the replay interfaces directly connected to the

web proxy. Suppose the web proxy listens for incoming connections on port 3128. In

the first step, the replayed web client traffic, which tries to establish a connection on

port 80 would fail since the destination IP address and the destination port number are

invalid to the proxy. Therefore, the connection cannot be established between the

replayed web client and the web proxy. Since the connection is not established

between the replay web client and the web proxy, web proxy will not receive the

HTTP request. In step III, the replayed web server replays the HTTP response to the

web proxy. Similarly, since there is no connection established between the web proxy

and the replay web server, the HTTP response cannot be sent.

6

2-2 Taxonomy of Application Level Devices

There are various different types of application proxies. The differences can be

caused by the protocols being focused, the targeted features, or the implemented

network architecture. Table 1 lists network behaviors for each application level device.

Understanding the network behavior of devices before designing the replay tool is

important since each behavior will affect the accuracy of replay.

Table 1Taxonomy of Application Level Devices

Protocol HTTP FTP

Behavior Web-Caching

Content-Filtering

Content Filtering

SOCKS authentication

SOCKS transfer

Mode Transfer

Protocol SIP SMTP

Behavior SIP Registration

SIP Signal Forwarding

Anti-Spam

Application level devices can also be classified into non-transparent devices

and transparent devices. Non-transparent devices are servers which have network

devices with public IP address. Transparent devices are firewall or gateway products

which act as a router between LAN and WAN areas.

Figure 2(a) shows the difference between the implementation of two HTTP

proxies. The proxy in Figure 2(a) is a non-transparent proxy while that in Figure 2(b)

is a transparent proxy. The main difference between the two scenarios depends on

whether the client knows the existence of the proxy. In Figure 2(a), since client knows

existence of the proxy, it establishes a connection directly to the proxy and adds the

HTTP “Proxy-Connection” header field in the request.

7

Figure 2(a): An HTTP scenario with a non-transparent proxy

Figure 2(b): An HTTP scenario with a transparent proxy

On the contrary, the client in Figure 2(b) does not know the existence of a

transparent proxy. Hence, the client establishes a connection directly to the server and

then sends an HTTP request. When the client establishes a connection to the server,

the transparent proxy intercepts the connection and then establishes another

connection to the server. Table 2 compares the difference between non-transparent

proxies and transparent proxies.

8

Table 2: A Comparison between non-transparent proxy and transparent proxy

 Non-transparent proxy Transparent proxy

Client needs to configure for

proxy

YES NO

Product Proxy server
Application-level Firewall

Application-level Gateway

2-3 Issues Affecting Accuracy of Application Traffic Replay

The main factors affecting accuracy of application replay are the type of

application device and completeness of network traces. For the type of application

device problem, we can classify it into protocol dependency and functional

dependency problem. Protocol dependency is to mimic different kinds of protocol

procedure and functional dependency is to handle different network behaviors. Refer

to Table 1; each type of device has different network behaviors. Replay tool should

handle the behavior whenever it happens. Otherwise, replay maybe failed due to

improper network behavior handling Mechanism. Figure 3 shows an HTTP scenario

without handling the content filtering behavior. Replayed web client replays a HTTP

request after establishing a connection with web proxy. Next, web proxy filters out the

request and sends a 503 forbidden response message back to the replayed web client.

If replay tool does not handle the content filtering behavior, replayed web server will

replay HTTP response to web proxy. Finally, web proxy drops the unrealistic HTTP

response message due to impractical network behavior.

Figure 3: An HTTP Scenario without Handling Content Filtering

Another factor leading to failure in replay is incomplete network trace. We

9

classify this problem into error resistance problem. There are several reasons that

cause the incompleteness. First, it is hard to capture traces in heavy-load environment

due to the bounded I/O hardware performance. Second, it is possible that a connection

is established before initiating a capture. It is also possible that a connection may still

be alive after concluding a capture. Third, packet loss caused by network congestion

also makes the trace incomplete. In conclusion, it is essential to design a replay

mechanism for each type of application level device and make sure the completeness

of network traces.

2-4 Related Works

As mentioned in chapter 1, there are tools developed for traffic replay.

TCPReplay [1] replays packets based only on the timestamps. It does not interact with

the DUT it interacts with. On the contrast, Tomahawk [3] replays consequent packets

depending on the responses from DUTs. The above two tools replay traffic without

maintaining any state of network protocols. Stateful traffic replayer, such as the

NATReplay tool, maintains the mapping state between private IP addresses and public

IP address so that traffic can be replayed through NAT devices. There are many

studies focusing on network layer and transport layer stateful traffic replay. TCPopera

[5] extends TCPReplay and follows TCP/IP stack by defining data dependencies

between messages. SocketReplay [2] mimics TCP/IP stack and improves the selective

replay. Furthermore, SocketReplay increases the traffic replay accuracy by recovering

packet loss situation.

There are also three researches focusing on application layer stateful replay.

Monkey [6] emulates web clients replaying web traffic to web servers and using

Dummynet to emulate network environment. RolePlayer [7] proposed a machine

learning method to identify state-specific protocol fields such as IP addresses, host

names, etc. and then modify these fields accordingly to replay application traces.

10

Replayer [8] provides a binary analysis and program verification techniques to solve

the application-level replay problem. In other words, the system can guarantee

accurate response to a request received by a protocol state analysis formula.

Saperlipopette [9] captures the web access pattern and replays the pattern to verify the

functionalities of web caching system. However, RolePlayer and Replayer can only

replay traffic to end point devices but not intermediate proxy servers. The reason is

that different proxy servers have different behaviors as mentioned in Section 2.3 and

the behavior of proxies are totally different from that of end point devices.

Saperlipopette is a tool which can replay traffic through a web proxy. However,

Saperlipopette benchmarks web-caching systems using one connection at a time and it

is not able to replay connections concurrently. On the other hand, three of them cannot

replay incomplete connections caused from capture loss. In this work, we develop a

tool called ProxyReplay to solve these problems. Table 3 compares the existed

network testing tools.

Table 3: Comparison of network testing tools including trace-based approach and

model-based approach

Name Tool type Completed PCAP Stateful Proxy Replay

TCPReplay Trace-based Not required No No

NatReplay Trace-based Required Partial No

SocketReplay Trace-based Not required Layer4 stateful No

Monkey Trace-based Not required Layer7 stateful No

RoleReplay Trace-based Required Layer7 stateful No

Replayer Trace-based Required Layer7 stateful No

Saperlipopette Trace-based Required Layer7 stateful YES

ProxyReplay Trace-based Not required Layer7 stateful Yes

11

Chapter 3 the Design of the ProxyReplay Tool

3.1 Design Issues

 The goal of the proposed solution is to replay network traffic through application

level proxies. To replay smoothly and correctly, four issues, namely error resistance,

protocol dependency, functional dependency, and concurrent replay, must be carefully

considered. The four issues are introduced below.

Error Resistance: The quality of network traces always affects the accuracy of traffic

replay. The quality can be affected by several different factors including packet losses,

packet retransmissions, and packet reorderings. First, a traffic replay process may fail

due to losses of critical packets. Second, a replay tool may send duplicated application

messages if retransmitted packets are not handled properly. Finally, an application

device may be not able to recognize a message if packets are replayed out of the

order.

Protocol Dependency: Application proxy has ability to forward network traffic

between hosts. However, before forwarding traffic hosts should follow the protocol

policy to communicate with the proxy including setup connections and sending

control messages. Since the protocol policy is different between original traces and

hosts with proxy, proxy will not work correctly if we just replay the original trace.

Functional Dependency: As mentioned in Section 2-2, each application proxy has

their own behaviors. For example, web proxy provides web caching and content

filtering behavior to speed up the access rate and to block undemanding web contents.

However, these proxy behaviors will alternate the data transfer procedure. Hence,

replay tools should handle the situation when proxy behavior happened.

Concurrent Replay: It is common that a network trace contains a number of

concurrent connections. If the replay tool can only replay one connection once, the

replayed traffic will not real enough and the performance will be low. Therefore, a

12

replay tool should replay these connections concurrently to simulate real network

conditions.

A good traffic replay tool for application level proxies must resolve these issues.

In this chapter, we introduce the design of the proposed tool and the solutions to the

above four issues. For the ease of explanation, the discussions focus on the replay of

web traffic. Nevertheless, the proposed architecture can be easily extended for other

application layer network protocols.

3.2 Architecture Overview

Figure 4 shows the architecture of a web traffic replay tool. There are two major

components, namely the parser and the replayer. The parser is an engine to parse input

data into valuable information and the replayer plays a role to simulate hosts. At begin,

the parser loads a PCAP file as the input and converts the traces into internal data

structure. After constructing the data structure, the parser stores the data into the

queue of the replayer. Finally, the replayer replays data in the queue to network

devices.

Figure 4: The system architecture for the ProxyReplay tool

13

3.3 Solutions to Application Level Proxy Replay Issues

Trace Recovery

Trace recovery is the solution to achieve error resistance. As shown in Figure 5,

before application replay starts, ProxyReplay tool has to parse packets in a PCAP file

into an internal application data structure. Since a flawed packet trace affects the

correctness of the data structure, we have to identify flaws caused by packet losses,

packet retransmissions and out-of-order packet deliveries.

Figure 5: Parse a PCAP file into an internal data structure

(a) Packet Losses: Application data is the most important part for ProxyReplay tool

to identify the protocol message. The data includes application headers and

application payloads. If an application header loses, ProxyReplay tool should skip all

the data in the connection since the corresponding application message cannot be

identified. If application payload loses, we should add enough dummy data to let the

payload length equal to the value of Content-Length header field. As shown in Figure

6, when RSP-P1 loses, it is possible to add 30 bytes dummy data at the end of the

message to match the value store in the Content-Length header field.

Figure 6: Application Payload lost recovery

14

(b) Packet Retransmissions: Packet retransmission can be detected by checking

whether there are packets have the same sequence number. When a packet

retransmission happens, we should ignore the duplicated data. As shown in Figure 7,

we skip the second RSP-H since retransmission is detected.

Figure 7: Ignore retransmitted packet

(c) Out-of-Order Packet Deliveries: Packets delivered out-of-order can be found by

inspecting the sequence number of each packet. As shown in Figure 8, we list a

sequence of packets which is used to send application data. We reorder them by

compare their sequence number. For the purpose of solving out of order problem, we

should reorder them in increasing order by their sequence number.

Figure 8: Packets out-of-order recovery

15

Stateful Proxy Replay

Figure 9: A failed replay scenario for a web proxy

 We use stateful proxy replay to solve the protocol dependency issue. This issue

can be solved by creating connections, accepting connections, ignoring messages,

adding messages, or modifying messages. Moreover, network traces which were

captured between hosts or host to proxy are all suitable for this method. Figure 9 gives

an example of failed replay without manipulating packets. Figure 10 shows a

successive replay scenario by manipulating packets. First, we ignore 3-way handshake

packets in the PCAP file because the port number used by a web proxy is often

different from that used by a web server. Second, in order to establish the connections

with a web proxy, we need to create connections between simulated web client and

web proxy. On the other hand, we also need to accept connection from web proxy to

simulated web server. After a connection is established successfully, the replayer can

start to replay application data.

Figure 10: A successive replay scenario for a web proxy

16

It is common that requests send to a server are often different from requests send

to proxies. Therefore, the replayer has to modify requests obtained from traces so that

it can send correct requests to the proxy. Table 4 shows common HTTP headers that

are required to be modified during a replay process. The Request-Line includes the

HTTP request method and the request URI. Before replay the request, the host name

or the IP address of the requested web server must be inserted before the URI. If the

network trace is captured between proxy and host, we only modify the host IP in the

Request-Line. Next, if the host header field is an IP address instead of a domain name,

it needs to be modified to the IP address of simulated web server. Last, chunked

encoding is not supported by the web proxy. Therefore, the transfer-encoding header

field should be removed if the encoding method is chunked.

Table 4: HTTP Headers need to be modified before replay

HTTP Header Fields Request or

Response

Modification Example

Request-Line Request GET /index.html HTTP/1.1

=>

GET http://192.168.1.2/index.html HTTP/1.1

(change to full URL)

Host Request Host: 140.113.88.168

=>

Host: 192.168.1.2 (change to new IP)

Transfer-Encoding Response Transfer-Encoding: Chunked

=>

(remove)

One important role during the replay process is the masqueraded DNS server. It

is common that a proxy always need to look up the IP addresses of a target server.

Therefore, we need a DNS server to handle DNS requests from proxies. Figure 11

shows the HTTP replay scenario with a masqueraded DNS server. At the beginning, a

17

masqueraded DNS server is run and creates domain names to IP addresses mappings

based on network traces. Next, when simulated web client replays a HTTP request to

a host “abc.com” via the proxy, the DNS request for “abc.com” sent from the proxy

can be answered by the masqueraded DNS server

Figure 11: HTTP replay with DNS messages

Functional Dependency Resolver

As shown in Section 2-3, various different functions, such as web caching and

content filtering, can be implemented on a proxy. The web-caching function caches

the response data from servers to save the uplink bandwidth and shorten the response

time. The content filtering function filters out malicious traffic based on predefined

access control lists. If a replay tool is not aware of modifications made by the proxies,

replays can be failed as shown in Figure 3. In this sub-section, we describe how to

properly handle the above two cases.

As shown in Table 5, in order to make web-caching working correctly, the date

header field should be updated to the current time to keep the freshness of the

application data. Otherwise, some responses will not be cached due to the validation

time is expired.

18

Table 5: Date header field modification

HTTP Header Fields Request or Response Modification Example

Date Response Date: Thu, 26 Nov 2009 07:34:04

GMT(Past)

=>

Date: Thu, 26 Nov 2009 11:33:35 GMT(Cur)

(change to current date)

After modify the header, Figure 12 shows our solution to replaying HTTP traffic

through a web cache proxy. First we replay a cacheable HTTP request REQ-A and

HTTP response RSP-A. Web proxy will cache the response in its cache swap space

and send the cached response to simulated web client. Then, we replay the same

request REQ-A to the web proxy again. Since REQ-A has been replayed before, the

web proxy is able to find the corresponding response RSP-A in its cache and then

sends a cache HIT response to the web client. Finally, we will not replay the last

HTTP response because web caching behavior happened.

Figure 12: HTTP replay scenario with web caching

Figure 13 shows our solution of replaying HTTP traffic through a content filter

proxy. At the beginning, we replay a HTTP request to the web proxy. If the web proxy

filters out the request according to the ACL rule and sends a “503 forbidden” response

back to the web client, we simply ignore the HTTP response since it is blocked by the

content filtering behavior.

19

Figure 13: HTTP replay scenario with content caching

Concurrent Replay

To simulate the real network conditions, a trace replayer must be able to replay

concurrent connections. In this sub-subsection, we describe the solution to replay

multiple connections. As shown in Figure 5, before replaying multiple connections

concurrently, we have to read the traces and parse each individual HTTP connections

into a client queue and a server queue. The two queues are used to store HTTP

requests and responses sent from the simulated web client and server, respectively.

Therefore, the total number of active replay queues is identical to two times of the

number of concurrent HTTP requests. Figure 14 shows a concurrent replay scenario.

There are six pairs of parsed HTTP requests and responses store in the client queue

and the server queue, respectively. In order to replay realistically, requests are sorted

in the client queue according to the timestamp and then replay them sequentially.

Since there are multiple connections we want to replay, we create the connection

queue for each connection. Each connection queue handles one request at once. When

the web proxy forwards the request to the simulated web server, the simulated web

server will find the corresponding response and replay it to the web proxy. The

advantage of this replay design is that we can handle web caching and content

filtering easily since simulated web server will not replay the response when no

request is received.

20

Figure 14: The replay strategy for multiple connections replay

One limit for the above replay design is the required memory space increases

linearly according to the size of HTTP requests and responses. Since ProxyReplay

tool stores connection data structure in the memory, the available memory space must

be large enough to store all the data. In order to eliminate the memory limitation, we

can run parser and replayer concurrently as the scenario in Figure 4. First, only a

fixed-size memory pool is used in the scenario. When the parser creates the HTTP

data structure, it gets a memory slot from the memory pool until the memory pool is

out of use. Whenever parser generates a pair of request and response messages, parser

will put the messages include client queue and server queue separately. Next, replayer

replays the messages in client queue and server queue. After replayer replays the

HTTP messages, replayer puts the memory slot back into the memory pool. In

principle, concurrent replay will be done when parser finishes reading the input pcap

file. When memory pool is out of use, we start to free the responses which are ignored

due to web caching behavior happened. Finally, ProxyReplay tool can complete

parsing and replaying network traces.

21

Chapter 4 Implementation

Software Architecture

Figure 15 shows the components of the ProxyReplay tool. Components of the

tool are implemented in both user space and kernel space. The user space components

include the replay interface, the application parser, and the replay engine. On the other

hand, the kernel space components allow a single machine to emulate both replayed

clients and replayed servers simultaneously. In this chapter, we describe each

component of the ProxyReplay tool in detail.

Figure 15: Software architecture of ProxyReplay

The Application Parser

The application parser is responsible to transfer a PCAP file into internal

application data structures. In order to replay correctly, the error resistance problem

must be solved by the component. Figure 16 gives an example of an HTTP parser.

Based on the five-tuple information, the parser extracts application protocol message

fragments from packets of the same HTTP connection and then put the messages into

corresponding message queues. In the meanwhile, the parser also needs to modify the

application payload according to the rules listed in Table 4 and Table 5. If necessary,

22

the parser has to add the hostname information to the masqueraded DNS server.

Figure 16: Parse a PCAP file into an internal data structure

As shown in Figure 11, a proxy server may send a DNS query when it does not

know the IP address of a host. We use the BIND9 DNS server to handle DNS queries.

Since BIND9 support dynamic updating of DNS mappings when DNS server is

running, we can update DNS mappings without interrupting the DNS server. Figure

17 shows the example of updating a DNS mapping. We use the nsupdate command to

update the mapping of a host named speed.cs.nctu.edu.tw to its new IP address

140.113.88.160.

Figure 17: An example of updating DNS mapping

The Replay Engine

The replay engine replays protocol messages stored in message queues. Each

protocol has its own replay module and the module also divided into replaying client

and replaying server. . In order to increase the replay performance, we emulate the

replayed client and the replayed server in two different threads. On the other hand,

since the ProxyReplay tool has to handle multiple connections simultaneously, the

ability to handle a large number of file descriptor must be taken into considerations.

Table 6 shows three API which are used to handle multiple FDs (file descriptors). We

use the epoll system call to implement the ProxyReplay tool because it has no

limitation on the number of FDs. Besides, the performance is not dropped

23

significantly when the number of FD is large.

Table 6: Comparison between select, poll and epoll

 Select Poll epoll

Max number of file

descriptors

2048 No limited No limited

Performance Depends on the

number of FD

Depends on the

number of FD

Independent to the

number of FD

Kernel Enhancements

Since the ProxyReplay tool emulates replayed clients and servers on the same

machine and it uses socket APIs to establish network connections, packets sent from a

client to a server and vice versa are traversed via the loopback interface instead of real

network interfaces. Therefore, we must modify the kernel so that the connections are

really replayed through real networks. Based on the Linux kernel version 2.6.20, we

have to modify two functions to fit the requirement. First, we modify the

ip_route_output_slow function so that loopback packets can be sent to the real

network interface conditionally. Second, we modify the fib_validate_source function

to accept loopback packets received from real network interfaces.

The Proxy Replay User Interface

With the user interface of the ProxyReplay tool, a user can specify the proxy type

and replay mode. The proxy type includes application protocol and the transparency

including transparent and non-transparent mode, the ProxyReplay tool then loads the

corresponding parser and the replay module according to the request of the user. The

replay mode can be either (1) preprocessing and replay, or (2) parser and replay works

concurrently. The former mode has a faster replay speed since it preprocesses PCAP

file and replay network trace separately. However, the first mode is also limited by the

amount of available memory space. On the contrast, the total execution time of the

second mode can be shorter since the parser and the replayer works concurrently. In

addition, there is no limitation on the size of replayed network trace files. Users can

choose the appropriate mode depending on the input file size and replay speed.

24

Chapter 5 Evaluation

In this chapter, we will evaluate the functionality, performance and scalability of

ProxyReplay with HTTP protocol. The evaluation of functionality focus on two proxy

behaviors: web-caching and content filtering. The performance focus on the

throughput of the two replay strategies: preprocessing and replay, and concurrent

replay. Third, the evaluation of scalability replay focus on how large the input file can

be supported by ProxyReplay. Last, we will compare different replay tools using

different types of DUT.

5.1 Test Environment for ProxyReplay

As shown in Figure 18, we use two computers to do the experiment including a

proxy server and a replay machine. Both of the computers have two interfaces which

are connected to each other. We use squid3 as a proxy daemon running on the HTTP

proxy. Next, we use Bind9 as a DNS server and run the ProxyReplay on the replay

machine.

Figure 18: The test environment for ProxyReplay

Before starting the experiment, it is important to make sure the completeness of

the input PCAP file. For HTTP application replay, we need to find a corresponding

response message for each request since an HTTP connection should include at least

one pair of request and response. Therefore, we should remove the traces which

 HTTP Proxy Replay Machine

CPU AMD

Athlon(tm) 64

Processor

3000+

Intel(R) Core(TM)2 Quad

CPU Q8200 @

2.33GHz

RAM 1GB 4GB

OS Linux 64bit Linux 64bit

Interfaces Set eth1 and

eth2 to bridge

mode

eh1:

http replaying client

eth2:

http replaying server

Software Squid3

ProxyReplay tool

Bind9:

25

cannot be identified since its application header was lost. Table 7 gives a statistics of

the input pcap file which is used in this experiment. The PCAP file records 2.6 giga

bytes HTTP network flow in 20 minutes. The number of connections is 10964

including 363 HTTP clients and 916 HTTP servers. The number of requests and

response is 26825 and 27420 accordingly. Last, the request and responds we can

replay is 21166 pairs.

Table 7: Statistics of the input PCAP file

File type HTTP PCAP File

File size 2.6 GB

Total time 20 minutes

Number of packets 3168672

Number of connections 10964

Number of clients 363

Number of servers 916

Number of requests (total) 26825

Number of response (total) 27420

Number of request and response pairs (can be

replayed)

21166

Number of responses will be cached 6074

Number of responses will not be cached 15092

Number of requests will be filtered (.jpg) 7134

Number of requests will not be filtered 14032

5.2 Functional Evaluation

In this section, we evaluate the functionality of ProxyReplay. In order to make

sure the correctness of replay, we make the comparison between predicted value and

replay result for each proxy behavior. The predicted value is calculated by analyzing

the packet trace.

5.2.1 Web-Caching

Before replay, we predict the number of cacheable responses according to the

web caching rule which is shown in Table 8. The response will be cached if it satisfied

the 5 factors including request method, status code, Cache-control header field,

Expiration and Dynamic content.

26

Table 8: Web caching rules

 Cacheable Non-cachable

Request method GET, HEAD POST, PUT, DELETE,

OPTIONS, TRACE

Status code 200, 203, 206, 300, 301, 410 Other status

Cache-control header field public, private, max-age>0 no-cache, max-age=0, no-store

Expiration and validation Date < Expires Date >= Expires

Dynamic Content Others Query terms

(“?” mark in URL)

Figure 19 shows the results of replay with and without web caching. Without

caching means that we replay to a web caching proxy which does not have any cache

data. On the contrast, with caching means that the proxy we have replayed once and

the proxy stores some cache data. In Figure 19, the number of messages between

client and proxy is the same ether with caching or without caching since simulated

client will replay all requests and all correspond responses should be received.

Without web caching, the number of messages between proxy and server decrease a

little bit because some requests with the same URL were cached. With web caching,

we found that about 16263 requests did not be cached which is similar to the

non-cacheable number of requests 15092. Due to each proxy daemon has their own

caching rules, the number of non-cacheable requests will not the same with our

estimation but they will be similar.

Figure 19: Results of ProxyReplay with and without web caching

5.2.2 Content Filtering

In order to evaluate the functionality of content filtering replay, we configure the

2
1

1
6

6

2
1

1
6

6

2
1

1
6

6

2
1

1
6

6

2
1

1
6

6

2
0

9
5

2

2
0

9
5

2

2
1

1
6

6

2
1

1
6

6

1
6

2
6

3

1
6

2
6

3

2
1

1
6

6

0

5000

10000

15000

20000

25000

number of Requests
from client to proxy

number of requests
from proxy to server

number of response
from server to proxy

number of response
from proxy to client

ALL without web caching with web caching

27

ACL (access control list) rule of the proxy server. The types we can filter out by ACL

including Source/Destination IP address, Source/Destination Domain, Words in the

requested URL (Ex: .jpg, .gif, .exe), Current day/time, Destination Port and HTTP

Method.

In this experiment, we configure the proxy to filter out all .jpg requests and the

total request will not be filtered out is 14032 as shown in Table 7. Figure 20 shows the

result of with content filtering and without content filtering. We found that the sum of

the number of requests from proxy to server 13845 and the number of cached

response 187 which is the same with our predict number 14032.

Figure 20: Results of ProxyReplay with and without content filtering

5.3 Performance Evaluation

In this section, we compare the performance between our two replay strategies

including “preprocessing and replay” and “concurrent replay”. Figure 21 shows the

result of the performance evaluation. We recorded the bandwidth of replay in each

second. The result of two replay strategies is shown as preprocessing and concurrent.

In Figure 21, we found that the throughput of preprocessing strategy is higher than

concurrent strategy since parser will decrease the performance of replay. In order to

achieve application stateful replay, parser needs to construct the application data

structure, modify payloads and update DNS message. Therefore, parser would be the

bottleneck since replayer should wait for the parser until the application data structure

2
1

1
6

6

2
1

1
6

6

2
1

1
6

6

2
1

1
6

6

2
1

1
6

6

2
0

9
5

2

2
0

9
5

2

2
1

1
6

6

2
1

1
6

6

1
3

8
4

5

1
3

8
4

5

2
1

1
6

6

0

5000

10000

15000

20000

25000

number of Requests
from client to proxy

number of requests
from proxy to server

number of response
from server to proxy

number of response
from proxy to client

all without content filtering with content filtering

28

is constructed. On the other hand, the parse time of concurrent strategy is shorter than

preprocessing strategy since parser and replayer starts concurrently.

Figure 21: Performance of two replay strategies

Figure 22 shows the request rate of two replay strategies using the 2.6GB HTTP

PCAP file as input. For preprocessing strategy, the average request rate can achieve

1200 requests per second. For concurrent strategy, the average request rate about 200

requests per second which is limited by the performance of parser. However, when

parser finished parsing, the average request rate can achieve 1000 requests per second.

Figure 22: The request rate of two replay strategies

 Table 9 shows the throughput of ProxyReplay tool in different size of responses.

0

50

100

150

200

250

300

350

400
0 8

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0

4

1
1

2

1
2

0

1
2

8

1
3

6

1
4

4

1
5

2

1
6

0

1
6

8

1
7

6

1
8

4

1
9

2

b
an

d
w

id
th

 (
M

b
)

time (second)

preprocessing concurrent

0

500

1000

1500

2000

0 6
1

2
1

8
2

4
3

0
3

6
4

2
4

8
5

4
6

0
6

6
7

2
7

8
8

4
9

0
9

6
1

0
2

1
0

8
1

1
4

1
2

0
1

2
6

1
3

2

n
u

m
b

e
r

o
f

re
q

u
e

st
s

time (seconds)

preprocessing concurrent

29

We configure the size of each response to 1.5 KB, 15 KB and 50 KB. The average

request rate of ProxyReplay tool is 1300 requests per second. We found that the

throughput of ProxyReplay depends on the size of the response since the speed of data

transfer is faster than establish connections. If the size of response is larger,

ProxyReplay tool will spend more time on data transfer.

Table 9: Throughput of ProxyReplay tool in different size of responses

Size of response 1.5 KB 15 KB 50 KB

Throughput (Mbps) 28.18 106.74 244.60

5.4 Scalability Evaluation

 In the section, we use two replay strategies to replay three input http pcap file

with different sizes. The size of the three file is 800 MB, 2.6 GB and 5.2 GB

separately. We found that “preprocessing and replay” can only replay the first two

files due to the third file is too large to load to the memory. On the contrary,

“concurrent replay” can replay all the three files. Table 10 gives a comparison

between the two strategies. For “preprocessing and replay”, the average replay speed

can achieve 200 Mb/s but the parse time is long and the input file size is limited by

memory size. For “concurrent replay”, the average replay speed is only 103.1Mb/s but

the parse time only needs 2 second for initial parsing and there is no limitation for the

input file size.

Table 10: Comparison between two strategies

 Preprocessing and Replay Concurrent Replay

Parse time Depending on the file size 2 sec (initial parsing)

Average replay speed 200 Mb/s 103.1 Mb/s

Input file size Depending on the memory size No limited

Test Case

(Using http flow)

800 MB (pass)

2.6 GB (pass)

5.2 GB (fail)

800 MB (pass)

2.6 GB (pass)

5.2 GB (pass)

Pros 1. High replay speed 1. Low parse time

2. No memory size limitation

30

Cons 1. Longer parse time

2. Limited be memory size

1. Low replay speed

(parser is bottleneck)

5.5 Replay Tools Comparison Evaluation

In this section, we make a comparison between different existed replay tools. As

shown in Table 11, the replay tools including TCPReplay, NATReplay, SocketReplay

and ProxyReplay. We configure the computers which are listed in Figure 18 to NAT,

transparent, router and proxy mode. As shown bellow, TCPReplay supports

transparent mode and router mode device and the throughput is 363Mb/s and 288Mb/s

accordingly. NATReplay can support NAT devises and the throughput is about

320Mb/s. SocketReplay supports TCP/IP stateful replay on transparent and router

devices and the throughput is 40Mb/s and 12Mb/s separately. The last, ProxyReplay is

the tool supports proxy mode devices and the throughput can achieve 200 Mb/s.

Table 11: Comparison between replay tools

 TCPReplay NATReplay SocketReplay ProxyReplay

Transparent (363Mbs) X (40Mbs) X

Router (288Mbs) X (12Mbs) X

NAT X (320Mbs) X X

Proxy X X X (200Mbs)

31

Chapter 6 Conclusions and Future Works

 In this thesis, we design and implement the ProxyReplay tool to statefully replay

network traces for application level proxies. Four fundamental issues, namely error

resistance, protocol dependency, functional dependency, and concurrent replay, are

identified and solved. In addition, the ProxyReplay tool provides two replay modes,

i.e., preprocessed replay mode and concurrent replay mode. The preprocessed replay

mode can be used to launch stress test using real network traces. On the contrast, the

concurrent replay mode can be used to replay network traces that are greater than

physical memory.

 In addition to the completeness of functionalities, the evaluations show that the

captured network traces can be accurately replayed using the both replay modes. The

overall throughput for the preprocessed mode exceeds 200Mbps by using an

off-the-shelf desktop computer. When the concurrent replay mode is used, the size of

the network trace file is not limited by the size of physical memory. It can be used to

emulate a complete real application scenario.

 Although we only discuss the case of replaying web traffic in this thesis, we

believe that the proposed architecture can be easily extended for other application

protocols. Take mail proxy replay for example, since mail proxy acts as a MTA (Mail

Transfer Agent), we should follow the protocol procedure diagram to replay traffic for

the mail proxy. On the other hand, it is also essential to convert incomplete network

trace to mail application data structure by trace recovery. Then, we use stateful proxy

replay to replay data to the mail proxy. In the future, we plan to add more application

protocols to the ProxyReplay tool so that it can be a universal benchmark tool for

various different types of application layer proxies. Moreover, it is also essential to

enhance the request rate to test benchmark more high performance DUTs.

32

Reference

[1] A. Turner, Tcpreplay, http://tcpreplay.synfin.net/trac/.

[2] Tsung-Huan Cheng, Ying-Dar Lin, “Low-Storage Capture and Loss-Recovery

Stateful Replay of Real Flows”, Institutes of Network Engineering College of

Computer Science National Chiao Tung University, June 2009.

[3] Tomahawk, http://www.tomahawktesttool.org/, 2005.

[4] A. Turner, “Flowreplay design notes,” http://synfin.net/papers/flowreplay.pdf.

[5] Seung-Sun Hone and S. Felix Wu, “On Interactive Internet Traffic Replay,” in 8
th

Symposium on Recent Advanced Intrusion Detection (RAID), LNCS, Seattle,

September 2005.

[6] Yu-Chung Cheng, Urs Holzle, Neal Cardwell, Stefan Savage, and Geoffrey M.

Voelker, “Monkey see, monkey do: A tool for tcp tracing and replaying,” In

Proceedings of the 2004 USENIX Annual Technical Conference, June 2004.

[7] Weidong Cui, Vern Paxson, Nick C. Weaver, and Randy H. Katz.,

“Protocol-Independent Adaptive Replay of Application Dialog,” in Proceedings

of the 13th Annual Network and Distributed System Security Symposium

(NDSS), February 2006.

[8] James Newsome, David Brumley, Jason Franklin, and Dawn Song, “Replayer:

Automatic Protocol Replay by Binary Analysis,” ACM Conference on Computer

and Communications Security, October 2006.

[9] Guillaume Pierre and Mesaac Makpangou, “Saperlipopette!: a distributed Web

caching systems evaluation tool,” Proceedings of the Middleware conference,

2009.

[10] Ari Luotonen, “Web Proxy Servers”, Netscape Communications Corporation,

1997.

[11] Duane Wessels, “Squid the Definitive Guide”, O’Reilly & Associates, Inc.

January 2004.

[12] Duane Wessels, “Web Caching”, O’Reilly & Associates, Inc. 2001.

[13] Fabian Schneider, Jorg Wallerich, Anja Feldmann, “Packet Capture in 10-Gigabit

Ethernet Environments Using Contemporary Commodity Hardware,” Passive

and Active Measurement Conference, April 2007.

[14] Pete Loshin, Peter H. Salus, “Big Book of Internet File Transfer RFCs”, Morgan

Kaufmann, 2000.

[15] Flavio E. Goncalves, “Building Telephony Systems with OpenSER”, Packet

Publishing, 2008.

[16] Web-polygraph, http://www.web-polygraph.org/.

http://tcpreplay.synfin.net/trac/
http://www.tomahawktesttool.org/
http://synfin.net/papers/flowreplay.pdf

