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以頻寬整合縮短行動裝置之檔案傳輸時

間 

 

學生：楊邵軒 指導教授：易志偉 教授 

 

國立交通大學 

網路工程研究所 

 

摘要 

目前行動裝置配備有多種無線介面，可供人們連線上網際網路。但人們為了

省電的目的，通常只有其中一個無線介面被啟用。因此在過去的文獻中，對於同

時啟用多種無線網路介面進行傳輸的想法並未被深刻的探討過。然而在許多的應

用中如車載網路，能量的消耗已不再成為絕對主要的考慮，使用多重介面傳輸來

增加傳送速度則成為一種選擇。 

在這篇論文中我們著手研究同時啟用多個無線介面來改善傳輸效率。傳統的

檔案傳輸協定中雖然有多重連線的設計但沒有處理同時啟用多種無線傳輸介面

的做法，所以我們首先提出了 Multipath File Transfer Protocol 來減少檔案傳輸時

間。然而在考慮網路狀況變動的情形下，我們提出了 Adaptive Multipath File 

Transfer Protocol。為了更有效率使用無線介面頻寬，我們進而提出了結合 UDP

傳送及網路編碼的檔案傳輸協定 NC-Based Multipath File Transfer Protocol，此檔

案傳輸協定更可以進一步的減少檔案傳輸時間。實驗環境設定在 netbook 透過

WiFi 和 3G 網路下載遠端伺服器的檔案。 



ii 

 

我們透過實作比較這些檔案傳輸協定。而實驗的結果證實了同時啟用多種無

線網路介面進行傳輸是可行的。而在我們的實驗中，我們所提出的協定可以減少

40%的原本的 FTP 的檔案傳輸時間。 

關鍵字：異質性網路，MFTP， AMFTP， NCFTP，網路編碼，WiFi，3G 
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Abstract 

In the past, although mobile devices were equipped with multiple radio interfaces, 

for the sake of power saving, only one was activated for data transmission. The idea 

of concurrent transmission via multiple radio interfaces has not been seriously studied. 

However, power consumption no longer is a problem in many application scenarios, 

e.g. VANETs. In this work, we investigate the performance improvement of 

concurrent file transfer over two heterogeneous radio networks, e.g. WiFi and 3G. 

The traditional File Transfer Protocol is modified to utilize two heterogeneous radio 

connections. We propose Multipath File Transfer Protocol to reduce the file transfer 

latency. Then, considering the network variation, we propose Adaptive Multipath File 

Transfer Protocol. Final, we propose NC-Based Multipath File Transfer Protocol to 

further raise the performance. The experiments are executed over the Internet and a 

3G data network to measure the latency and average bandwidth. Our results show that 

it is possible to integrate the bandwidth of both radio networks. The file transfer 

latency of our proposed protocols is 60% of file transfer latency of FTP via single 
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interface. 

Keywords：Heterogeneous Networks, MFTP, AMFTP, NCFTP, Network Coding, 

WiFi, 3G  
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Chapter 1

Introduction

Mobile devices, such as smartphones, PDAs, netbooks, notebooks, etc., have become part

of modern life and are one of the must-have gears. For example, the penetration rate of

smartphones reached 14% worldwide, 21% in US, and 8.6% in Taiwan, and the rate keeps

going up [1] [2]. As part of pervasive computing, mobile devices can support various in-

novative services such as location-based services and augmented reality. To support these

applications, a large amount of data are needed to be transmitted via wireless communi-

cations. However, insufficient wireless bandwidth may limit possible developments. In this

work, we speedup file download by aggregating the bandwidth provided by heterogeneous

networks and evaluate the improvement in term of file transfer latency that is usually the

first user-noticing performance metrics.

To provide seamless network access, most mobile devices equip with multiple interfaces,

e.g., WiFi, UMTs, WiMAX. If more than one wireless networks are available, for the sake of

1



energy saving, only one interface will be activated, and the most choice is the one with the

best signal quality. However, mobile users may experience fluctuations in service quality due

to vertical and/or horizontal handoff and also contention from coexisting users. In addition,

activating only one interface may waste the bandwidth that can be contributed by other idle

interfaces. Therefore, it is worthy to investigate the possibility of aggregating bandwidth

provided by multiple communication interfaces.

There are challenges on the implementation of bandwidth aggregation on mobile devices.

First, activating multiple interfaces increases energy consumption and creates a concern on

device lifetime. However, in some applications, e.g. VANET, energy consumption is no

longer a problem, and due to the advancement of power management and battery technolo-

gies, energy consumption is not a major concern compared to network bandwidth. Second,

although heterogeneous interfaces use difference communication techniques, the interference

may exist between collocated antennas. However, according to our experiment results, this

doesn’t degenerate the performance on bandwidth aggregation. Third, activating multiple

interfaces also produces data sequence problems. Receivers need to handle this problem es-

pecially for TCP-based applications. So, applications should carefully handle this problem.

File transfer latency is the duration between the moment users initial a file transfer

task and the moment the task is completed. It should be the most noticeable performance

metrics from user aspects. Compared to bandwidth, file transfer latency is a better metrics

to evaluate the performance of bandwidth aggregation. In this paper, we focus on how to

reduce the file download latency for a mobile device equipped with heterogeneous interfaces.
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As we know, FTP supports multi-session connections to fully utilize the bandwidth be-

tween servers and clients, but multi-interface scenarios are not considered. So, the first

protocol proposed in this work is a variation of the multi-session FTP. In the design, files are

divided into several segments each of which will be transmitted by an individual interface,

and the length of each segment is proportional to the transport capacity of the correspond-

ing interface such that all interfaces can complete their task expectedly at the same. In

other words, we minimize the expectation of file transfer latency. The proposed protocol is

called Multipath File Transfer Protocol and abbreviated as MFTP. However, the interface

transport capacity is not static. To further reduce the latency, we propose another protocol

called Adaptive Multipath File Transfer Protocol, abbreviated as AMFTP, that dynamically

dispatches sub-tasks to interfaces according to real time statistics.

Both MFTP and AMFTP are TCP-based protocols. However, there are some limitations

on the TCP protocol. For example, the sliding window protocol may restrict the utility of

network capacity. In order to further raise the utility of network capacity and decrease

the file transfer latency, we apply random linear network coding technique to transmitted

packets via UDP channels. The proposed algorithm is called Network Coding Based File

Transfer Protocol, abbreviated as NCFTP. Theoretically, applying network coding technique,

we only don’t need to exactly identify which packets are received but only the number of

coded packets is received. BTW, network coding also can provide the functionality of forward

error correction. This is one reason why network coding packets can be transmitted via UDP

channels.
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The proposed protocols are implemented in Java language. Experiments are executed on

a window-based netbook that is equipped with a built-in WiFi interface and a plugged-in

USB 3G interface and a file server that is connected to the Internet by a high-speed Ethernet

interface. Files are downloaded from the server to the netbook via either the WiFi interface

connecting to the Internet or the 3G interface over a commercial 3G network, or simultane-

ously both. Various empirical data are measured in the realistic network environments. The

outcomes show that bandwidth aggregation can effectively reduce file transfer latency. Be-

sides empirical results, we also give analysis on file transfer latency for two possible designs.

One represents an achievable improvement and is corresponding to the MFTP scenario. The

other represents the best possible improvement and is corresponding to the NCFTP scenario.

We derive the CDF of file transfer latency based on a lossy channel model. Our analytical

results are verified by simulations.
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Chapter 2

Preliminaries

In this chapter, we introduce some useful protocols and related works of aggregating het-

erogeneous networks. We also introduce the concept of network coding, it is used in our

proposed protocol. First, we will introduce the most famous protocol for file transfer that is

file transfer protocol.

2.1 File Transfer Protocol

File Transfer Protocol (FTP) that transmits files via Transmission Control Protocol (TCP)

is one of the most popular network applications. FTP partitions files into segments of

1400 bytes except the last one of each file whose length can be less than 1400 bytes. Each

segment is prefixed a header at most 20-bytes to form a TCP packet. So, the size of the

TCP packets is at most 1420 bytes. Flow control and data integrity are provided by TCP.

TCP adopt sliding window size for flow control. In TCP, the sliding window protocol is used

5



for flow control, and packet integrity checking and retransmission for lost packets are used

to guarantee reliability.

Each TCP packet has a unique sequence number, and must be explicitly or implicitly

ACKed by the receiver. The sliding window size is the maximal allowance in the difference

of the sequence number of the last sent packet and the oldest un-ACKed packet. See Fig

2.1. The window size would change in terms of network conditions. If the sliding window

Sliding Window

Last 

transmitted 

packet

The oldest 

unACKed 

packet

Figure 2.1: File partition and sliding windows in FTP.

become full or a timeout occurs, the window size become smaller. If all packets are ACKed

in time, the window size may be increased. However, there is a upper bound for the window

size. The packet transmission rate is controlled by the sliding window protocol.

The receiver inform sent the receiving of packets by ACK. The lost packets will be

retransmitted according to either go-back N protocol or selective-repeat protocol. In the go-

back N protocol, as the sender sends a packet, a timer is set to wait the ACK for this packet.

The receiver sends an ACK back for each packet received in order. Out of order packets are

dropped and no ACK is sent back. If a packet has not been ACKed and timeout happens,

the sender retransmits this packet and all packets behind it. In addition, the sliding window

is full, the sender retransmits all packets after the oldest packet that has not been ACKed.
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In the selective-repeat protocol, similarly, as the sender send a packet, a timer is set to

wait the ACK for the packet. The receiver sends an ACK back for each received packet even

out of order. The sender retransmits a packet only if no ACK is received before timeout

occurs or when the sliding window is full. Fig 2.2 illustrates an example of the selective-

repeat protocol. In the example, the window size is 3. First, PKT0, PKT1 and PKT2 can

PKT0 sent

         3  4  50  1  2

Sender Receiver 

PKT0 received

ACK0 sent PKT1 sent

         3  4  50  1  2

Lost

       PKT2 sent

    0              4  51  2  3

PKT2 received

ACK2 sent 

       PKT3 sent  

    0              4  51  2  3

PKT3 received

ACK3 sent       window full 

retransmit PKT1

      0              4  51  2  3

PKT1 received

ACK1 sent 

X

sliding window

Figure 2.2: TCP sliding window and selective-repeat operation

be sent even without receiving ACKs. As PKT0 is received, ACK0 is sent back. After ACK0

is received by the sender, the window moves forward and PKT3 can be sent. Assume, PKT1

is sent but lost. So, there is no ACK1, and the sender keep sending packets until the sliding

window is full or timeout occurs. Assume PKT2 and PKT3 are sent and ACK2 and ACK3

are received. When the timeout of ACK1 occurs, the sender only needs to retransmit PKT1.

Compare to the selective-repeat protocol, the buffer size needed by the go-back N protocol

is smaller. However, the selective-repeat protocol has better bandwidth utilization.
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2.2 UDP-based File Transfer Protocol

Instead of TCP, the UDP-based File Transfer Protocol (UFTP) use User Datagram Protocol

(UDP) for data transmission. UFTP uses one TCP connection and one UDP connection.

The TCP connection is for exchanging command/control packets, and the UDP connection

is for transmitting data packets. UFTP partitions files into 1472-bytes segments except the

last one of each file that can be less than 1472 bytes. A UDP header is 8 bytes, so the UDP

data packets usually are in the size of 1480 bytes. UDP is a connectionless datagram protocol

without hand-shaking, data ordering and integrity checking. Packets may arrive out of order,

appear duplicated or miss without notice. UDP does not provide mechanisms to solve these

problems. Applications need to handle these problems by themselves. Furthermore, UDP

does not have a flow control mechanism, either. The advantage is that bandwidth can be

fully utilization but it may cause buffer overflow, network congestion, and even throughput

decreasing.

Figure 2.3: File partition and session in UFTP.

UFTP groups number of successive segments together, called a session, and sends them

in batch. The session size is decided by application layer. See Fig 2.3. Each segment is

assigned a unique sequence number by UFTP. The data integrity is provided in application

layer session by session. The details can be found in [3]. Before the sender transmits packets,
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it sends a packet-tracking table to the receiver. The packet-tracking table is used to trace

which packets are lost. The unique sequence number of packets is used for reordering packets

and identifying lost packets. The packets of a session are sent one by one until all packets of

the session are received. If packets are lost, a list of lost packets, called NAK, is sent back

to ask the sender to resend the missing packets. Only if all packets of a session are received,

the next session starts. If all session are received by receiver, the file transmission is finish.

sender receiver

PKT0 sent

PKT1 sent

PKT2 sent 

wait

PKT1 resent

PKT3 sent

Lost

PKT0 

received

PKT2 

received

NAK sent

PKT1 

received

NAK sent

X

(UDP)

(UDP)

(UDP)

(UDP)

(UDP)

(TCP)

(TCP)

packet-tracking table(TCP)

Figure 2.4: UFTP operation

An example of UFTP is illustrated in Fig 2.4. In this example, the session size is 3. The

sender sends PKT0, PKT1 and PKT2 to the receiver. After finishing sending a session, the

sender set a timer to wait NAK. The receiver misses PKT1, so it sends a NAK to ask the

sender to resend PKT1. The sender receives the NAK to resend PKT1. After the receiver

receives PKT1, the sender would start next session.
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2.3 Related Works

The idea of bandwidth aggregate can be found in the early 90’s, e.g., the PPP Multilink

Protocol that was originally described in RFC 1717 and was updated in RFC 1990 [4].

To provide seamless network access, most mobile devices equip with multiple interfaces,

e.g., WiFi, UMTs, WiMAX. If more than one wireless networks are available, for the sake of

energy saving, only one interface will be activated, and the most choice is the one with the

best signal quality. At the same time, there are many other mobile devices within the same

area to access the resources. So, load balancing is needed to optimize system performance.

In addition, vertical handoff and horizontal handoff happen as mobile devices moving from

here to there. In such a case, mobile users may experience fluctuations in service quality.

Moreover, the idea of activating only the best interface for communication may waste the

bandwidth that can be contributed by idle interfaces. Therefore, it is worthy to investigate

the possibility of aggregating bandwidth provided by multiple communication interfaces.

In literature, there were a lot of research works on the integration of heterogeneous

networks. Some research contributions are architecture design and QoS supporting. In

[5], a bandwidth adaptation algorithm was proposed to provide adaptive QoS support by

WLAN and cellular networks. Some focus on handoff and load balancing in integrated

heterogeneous networks. The handoff problems considers when and how to switch from one

network to another to provide smooth transition and consistent network services. In [6], an

energy-efficient scan policy algorithm was proposed to minimize the energy consumed by

handoff scan operation. The load balance problem considers how to distribute subscribers

10



among heterogeneous networks such that users can have qualified server and traffic can be

fairly distributed.

However, there are some researches focused on the performance of integration hetero-

geneous networks. In [7], it proposed a 3-stage greedy algorithm on video streaming with

heterogeneous networks, but it mainly distributes packets via heterogeneous networks under

the deadline constraints. And in [8], it proposed an Earliest Delivery Path First algorithm

to ensure packets arrived under the deadline constraints. However, there are some different

ideas to deal with packets reordering. For example, in [9], it proposed a multilink proxy idea

to handle the packets delivery. There is a research considered on real-time video applications

in [10]. In order to assure the quality of service, it proposed a packet scheduling scheme to

deal with the packets reordering issue and try to reduce the reordering delay. In [11], it

focused on IP packet reordering for heterogeneous networks. It also proposed an mechanism

of dividing and scheduling packets if the devices with resource constraints. However, these

researches are not considered the file transfer latency as the most important criterion. In

this paper, we consider the file transfer latency as the important criterion, and we reduce

the latency as many as possible.

2.4 Network Coding Concept

The concept of network coding was first introduced in the pioneering work by Ahlswede et

al. (2000) [12], which is proposed to solve multicast capacity problem by properly mixing

information from different sources at intermediate nodes. After that, many works on theo-
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retical designing efficient coding schemes to improve network capacity were published. Li et

al. (2003) [13] proposed a linear network coding scheme, which regards a block of data as a

vector over a certain finite field and allows a node to apply linear transformation to a vector

before transmitting, for multicast in direct acyclic networks that can provide a throughput

for each individual destination. [14]. In [15], Koetter and Médard proposed an algebraic

approach for polynomial time encoding and decoding algorithms. Following this framework,

Ho et al. [16] proposed a random linear network coding in which network nodes indepen-

dently and randomly select linear mapping from inputs onto output links over a certain finite

field.

Recently, researchers focus on implementing network coding into practices. In [17], Katti

et al. proposed a network coding techniques for wirless mesh networks, called COPE, that

was implemented as a protocol layer inserted between the IP and MAC layers. COPE was

latter extended to OASIS by Wang et al [18], which further brought opportunistic informa-

tion dissemination that tries to mix information that may provide additional throughput for

receivers in future transmissions.

Gkantsidis and Rodriguez [19] proposed a randomized and distributed large content dis-

tribution solution that adopted the concept of random linear network coding and utilized

network broadcasting. When a source node wants to share a large file to other nodes, the

source node divides the file into equal size segments and broadcasts enough number of lin-

early independent combinations of these segments into the network. If one node receives

enough linearly independent combinations, it can recover the original file. To increase the

12



independence among linear combinations, instead of purely relaying received combinations,

intermediate nodes may broadcast a new linear combination from received combinations.

In this paper, we adopt the idea from random linear network coding to further improve

the data transfer efficiency in term of latency by integrating network coding into file transfer

protocol. To see possible improvement, we will first give an analysis on latency

13



Chapter 3

Latency Analysis

In this section, we consider two possible thoughts to integrate channel bandwidth contributed

by multiple independent interfaces for downloading files. One is a practical solution that

is compatible with the existing FTP and represents achievable performance improvement.

The other is an ideal solution that represents the theoretical upper bound for performance

improvement. First of all, we introduce the notations and models used in the following

discussion.

3.1 Latency Preliminaries

Let X denote a random variable (abbreviated as RV) of the number of successes in a sequence

of n independent and identical Bernoulli trials of success probability p. The probability mass

function (abbreviated as pmf) of X = s for s = 0, 1, · · · , n follows the binomial distribution

14



with parameters n and p, denoted as fB (s; n, p), and is given by

Pr [X = s] = fB (s; n, p) =

(
n

s

)
ps (1− p)n−s .

The cumulative distribution function (abbreviated as cdf) of X can be given in terms of the

regularized incomplete beta function

Pr [X ≤ s] = FB (s; n, p) =

bsc∑
i=0

fB (i; n, p)

= I1−p (n− s, s + 1)

= (n− s)

(
n

s

) ∫ 1−p

0

tn−s−1 (1− t)s dt,

where

Ix (a, b) =
B (x; a, b)

B (a, b)
;

B (a, b) =

∫ 1

0

ta−1 (1− t)b−1 dt (the beta function);

B (x; a, b) =

∫ x

0

ta−1 (1− t)b−1 dt (the incomplete beta function).

Readers can refer to [20] and [21] for details.

Let Y be an RV denote the number of failures in a series of Bernoulli trials of success

probability p before s successes. The pmf of Y = r for r = 0, 1, 2, · · · follows the negative

binomial distribution with parameters s and p, denoted as fNB (r; s, p), and is given by

Pr [Y = r] = fNB (r; s, p) =

(
r + s− 1

r

)
ps (1− p)r .
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The cdf of Y can be given in terms of the regularized incomplete beta function

Pr [Y ≤ x] = FNB (r; s, p) =

bxc∑
i=0

fNB (i; s, p)

= Ip (s, r + 1) .

Readers can refer to [22] and [23] for details.

There is a simple relation between the negative binomial distribution and binomial dis-

tribution. Let Ys be a RV following the negative binomial distribution with parameters s

and p, and Xn be a RV following the binomial distribution with parameters n and p. We

have

FNB (r; s, p) = 1− FB (s− 1; r + s, p)

and

Pr [Ys ≤ r] = Pr [Xr+s ≥ s] .

In other words,

Pr [there are at most r failures before s successes]

= Pr [there are at least s successes after r + s trials] .

3.2 Real Latency Analysis

We assume there are K independent lossy channels between the sender and receiver. Consider

there are totally N packets to be transmitted and all packets are of the same size. For

k = 1, · · · , K, let Sk denote the number of packets that can be transmitted via the k-th
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channel per second, and every packet transmitted via the k-th channel is independently with

a success probability pk. So, Skpk is the expected transport capacity of the k-th channel.

Let Nk denote the number of packets to be transmitted via the k-th channel. The expected

transmission duration of the k-th channel is Nk

Skpk
. Let Ti denote the transmission duration

of the k-th channel. T = maxK
k=1 Ti is the transmission latency. Note that once a packet is

added into to the buffer of a channel, it can’t be dequeued from the buffer.

Intuitively, if the bandwidth of each channel is fully utilized and all channels have the

same transmission duration, the latency is minimized. So, we distribute packets to channels

proportionally to their transport capacity such that all channels have the same expected

transmission duration. Thus,

Nk =
Skpk∑K
i=1 Sipi

N, (3.1)

and the CDF of the latency can be derived as follows

Pr [N packets can be transmitted in time T ]

=
K∏

k=1

Pr [Nk packets can be transmitted via the k-th channel in time T ]

=
K∏

k=1

FNB (bTSkc −Nk; Nk, pk)

=
K∏

k=1

(1− FB (Nk − 1; bTSkc , pk)) . (3.2)

where FNB (·; s, p) is the CDF of the negative binomial distribution with parameters s and

p, and FB (·; s, p) is the CDF of the binomial distribution with parameters s and p.
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3.3 Ideal Latency Analysis

Although the expected transmission durations of all channels are the same, the real trans-

mission durations are dynamic and different from channels to channels. Applying dynamic

dispatching, we can further reduce the latency. In addition, applying the random linear

network coding technique, we don’t need to distinguish packets are transmitted via which

channels, and theoretically, the receiver only needs totally N coded packets to decode the

original N native packets. In such a case, the bandwidth of the K channels can be really

treated as one. For k = 1, 2, · · · , K, let Xk denote the number of packets received via the

k-th channel. X =
∑K

i=1 Xi is the total number of packets received via the K channels. Xk

is an RV following the binomial distribution with parameter bTSkc and pk, and the PMF

of X can be given by the convolution of the PMFs of X1, X2, · · · , XK . The CDF of the

improved file transfer latency can be derived as follows

Pr [N packets can be received in time T ]

= Pr

[
K∑

i=1

Xi ≥ N

]
= 1−

N−1∑
n=1

Pr

[
K∑

i=1

Xi = n

]

= 1−
N−1∑
n=1

∑
n1+···+nK=n

K∏
i=1

fB (ni; bTSic , pi) .

= 1−
∑

n1+···+nK≤N−1

K∏
i=1

fB (ni; bTSic , pi) . (3.3)

Note that this ideal scenario optimizes file transfer latency.
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3.4 Latency Simulation Result

A simple simulation is executed to verify the correctness of our analysis. Consider a file

of 1.33MB is transferred and each data blocks is of 1400 bytes. Therefore, 1000 packets

will be transmitted. There are three independent lossy channels between the file server and

the portable device. The bandwidths of these channels are 1Mb/s, 1.2Mb/s, and 1Mb/s,

respectively. Each packet can be successfully transmitted with the probability 0.9, 0.7, and

0.9, respectively. For simplicity, we assume the feedback is perfect. In other words, there is

no cost for acknowledgement and the result is known immediately.

First, Eq. (3.1) is applied to distribute packets among channels. This heuristic is denoted

as H1 and will be implemented in Section 4. Next, with the help of such as network coding,

1000 packets in total received by the receiver is enough to recover the file. This heuristic is

denoted as H2. A protocol will be designed based on this heuristic in Section 4.3. In Fig 3.1,

the green curve with cross marks is the CDF of the latency of H1, and the blue curve with

triangle marks is the theoretical CDF given by Eq. (3.2); the black curve with circle marks

is the CDF of the latency of H2, and the red curve with square marks is the theoretical CDF

given by Eq. (3.3). The simulation outcomes agree with the analytical results. We can see

latency can be reduced by adaptively packet dispatching.
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Figure 3.1: CDF of latency for 1000 packets without consider ACK.
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Chapter 4

Multipath File Transfer Protocol

In this chapter, we propose three protocols for file transfer. First, we introduce the detail

of Multipath File Transfer Protocol. Then, we consider the factor of fluctuated of network

bandwidth, we propose Adaptive Multipath File Transfer Protocol. Finally, we further

rise the utility of network bandwidth, we combine network coding concept and transferring

packets via UDP connections. The proposed protocol is called NC-Based Multipath File

Transfer Protocol.

4.1 Multipath File Transfer Protocol

File Transfer Protocol (FTP) on top of Transmission Control Protocol (TCP) is one of the

most popular network applications. FTP partitions files into 1400-bytes data blocks except

the last one of each file whose length can be less than 1400 bytes. Each data block is prefixed

a TCP head no longer than 20 bytes to form a TCP packet. TCP provides flow control and
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data integrity for FTP. In TCP, flow control is implemented by the sliding window protocol,

and data integrity is guaranteed by packet integrity checking and lost packet retransmission.

FTP has supported concurrent multi-session file transfer to fully utilize the bandwidth

between senders and receivers. Our first thought is to design a multi-interface file transfer

protocol based on the multi-session feature such that the enhancement is compatible with the

original FTP. The proposed algorithm opens one data session, or called a data channel, on

each interface. Files are divided into segments, and one segment will be transmitted by one

data session. The size of each segment is proportional to the bandwidth of its corresponding

interface. Each data channel acts like in the original FTP. The proposed protocol is called

Multipath File Transfer Protocol, and abbreviated as MFTP. Since MFTP is compatible

with FTP, only the client-side psuedocode will be given.

Assume there are K interfaces available, and totally N packets are going to be trans-

mitted. For k = 1, · · · , K, let Bk be the bandwidth of the k-th interface, and Nk =

N × Bk/
∑K

i=1 Bi be the number of packets to be transmitted by the k-th interface. The

psuedocode of MFTP is given in ALGO 1. To implement MFTP, interface information and

bandwidth information are needed. The interface information are provided by a profile file,

and the bandwidth information can be obtained either by probing the connections or from

historical statistic data. A separate control session, or called a control channel, is opened

for exchanging control information such as the interface information, file information, and

segment information, etc.
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ALGO 1 MFTP for the receiver
Bk: the bandwidth of the k-the interface

N : the total number of data blocks

T0 = 0 and B =
∑K

k=1 Bk

for k = 1 to K do

Tk = Tk−1 + N ×Bk/B

end for

for all k = 1 to K do {parallel}

Receive data blocks Tk−1 + 1 to Tk via the k-th interface

end for

4.2 Adaptive Multipath File Transfer Protocol

MFTP minimizes the expected file transfer latency based on the assumption of static channel

bandwidth. However, end-to-end bandwidth fluctuates according to network conditions. A

channel whose bandwidth drops may dominate the latency performance. If we apply adaptive

partition strategies, the latency performance can be improved. An adaptive heuristic comes

up to deal with dynamic bandwidth fluctuation. In the design, files are partitioned into

M segments each of which is composed of S data blocks except the last one. The number

of data blocks assigned to each channel is calculated one segment by one segment. If one

interface reminds less than R data blocks to be received, the bandwidth of all channels are

re-evaluated, and the receiving of the next segment is arranged. The number of data blocks
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to be received by each channel is calculated based on current channel bandwidth and also the

number of data blocks that has not received. This procedure is iteratively executed until the

last segment is scheduled. The proposed file transfer protocol is called Adaptive Multipath

File Transfer Protocol, abbreviated as AMFTP, is depicted in ALGO 2.
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ALGO 2 AMFTP for the receiver
Bk: the bandwidth of the k-th interface.

Rk: the number of residual data blocks to be received via the k-th interface.

Divide the file into S1, · · · , SM segments each of which has S data blocks.

Initialize Rk = 0 for all k = 1, · · · , K

for i = 1 to M do

Calculate Nk for all k = 1, · · · , K such that min
N1+···+NK=S

max
1≤k≤K

Rk+Nk

Bk

T0 = S × (k − 1) and B =
∑K

k=1 Bk

for k = 1 to K do

Tk = Tk−1 + S ×Bk/B

end for

for all k = 1 to K do

if Nk 6= 0 then

Data blocks Tk−1 + 1 to Tk is scheduled to be received via the k-th interface.

end if

end for

Update Bk and Rk for all k = 1 to K as one of those interfaces has less than R data

blocks to be received.

end for
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4.3 NC-Based Multipath File Transfer Protocol

Files are divided into equal-length data blocks, and a certain number of data blocks are

grouped together and transmitted in a batch. Each group of data blocks is called a coding

set. A linear combination of data blocks in a coding set is called a coded (data) block.

In the random linear network coding scheme, the coefficients for encoding data blocks are

generated randomly. Instead of the native data blocks, the coded blocks as well as the

encoding coefficients are transmitted. Due to the linear independency of random vectors,

in most cases, the data blocks in a coding set can be decoded if the same number of coded

blocks as of the native data blocks are received no matter how many packets or which packets

are lost. In some sense, random linear network coding provides the functionality of forward

error correction, and this is why coded blocks can be transmitted via lossy UDP channels.

However, UDP does not provide the functionality of data integrity and flow control.

Just like UFTP, additional mechanisms are needed to guarantee data integrity and provide

flow control. Data integrity is guaranteed by the forward error correction of random linear

network coding, and flow control is provided by a sliding window mechanism and a packet

dispatching mechanism. In addition, an adaptive waiting heuristic is used at the receiver

side. The proposed protocol is called NC-based File Transfer Protocol or NCFTP in short.

Details are given below.

Let csSIZE denote the size of coding sets, i.e. the number of data blocks in a coding

set. ITTk, called the Inter Transmission Time of the k-th channel, is the minimal waiting

time between two successive packets added into the buffer of the the k-th channel. ITTk is
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a variable parameter for flow control. The receiver needs csSIZE coded blocks to decode a

code set and 1 more coded block for checking integrity. Since UDP channels are lossy, more

than csSIZE coded blocks will be added into channel buffers. Let pk be the probability of

successful transmission of the k-th channel, and Nk be the number of data packets added

into the k-th channel. Then,
∑K

k=1 pkNk ≥ csSIZE is the condition to stop adding data

packets into the buffers. Note that besides the UDP data channels, a TCP control channel is

maintained for exchanging commands and control messages, transmitting lost data packets,

etc.

After adding enough number of coded blocks into the buffers, the sender will wait a

reply from the receiver. At the receiver side, the receiver sets a countdown timer to WT

for receiving coded blocks. As the time is up, the receiver tries to decode received coded

blocks by applying Gaussian elimination. If the coding set can be decoded, an ACK is replied;

otherwise, a NAK is sent back to indicate which data blocks are needed. If a NAK is received,

the sender will transmit the indicated data block via the TCP connection. Therefore, the

coding set can be decoded and verified, and the receiver send and an ACK back. After the

sender receives an ACK from the receiver, the transmission of the coding set is completed.

At the same time, the receiver also does statistics to adjust the waiting time WT and inter

transmission time ITTk.

1. If the packet lost rate during the last half of the waiting time is significantly higher

than the rate during the first half of the waiting time, WT will be increased. On the

other hand, if most packets are received earlier than the timeout of WT , WT will be
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decreased.

2. If the packet loss rate of the k-th channel is above a threshold and not due to the

insufficiency of waiting time, ITTk will be increased. On the other hand, if the packet

loss rate is below a threshold, ITTk will be decreased.

At the same time, to prevent wasting bandwidth on waiting the NAK, the sender keeps

going to send the following coding sets. On the other hand, to prevent network congestion,

the number of ongoing coding sets must be controlled. Therefore, a sliding window like the

one used in TCP is adopted for limiting the number of ongoing code sets. Let minWIN ,

maxWIN , and WIN , respectively, denote the minimum sliding window size, maximum

sliding window size , and current sliding windows. WIN is the maximal number of ongoing

coding set before receiving an ACK. When the last unACKed coding set is ACKed, the

coding set window advances. WIN increases as network conditions become better, and

decrease as network conditions become worse.

The sender part of NCFTP is depicted in ALGO 3, and the receiver part is in ALGO 4.
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ALGO 3 NCFTP for the sender
CS1, CS2, . . . , CSN : coding sets to be transmitted.

ACK = i = 0

Initialize ITTk and pk, for k = 1, 2, . . . , K, and csWIN , and csWIN .

repeat

if i < ACK + csWIN then

i = i + 1

for all k = 1 to K do {parallel}

Nk = 0

repeat

Add a coded packet of CSi to the buffer of the k-th channel every ITTk seconds.

Nk = Nk + 1

until
∑K

k=1 pkNk ≥ csSIZE

end for

end if

if receive an ACK then

Update ITTk and pk, for k = 1, 2, . . . , K, and csWIN .

end if

if receive a NAK then

Send the requested native data blocks to the receiver by a TCP channel.

end if

until ACK = N
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ALGO 4 NCFTP for the receiver
N : the total number of coding sets.

repeat

if a coded packet P is received then

Assume P belongs to the coding set CSi.

if P is the first received coded packet of CSi then

Set the count down timer Ti = WT .

end if

Decode CSi.

if CSi is completely decoded. then

Send ACKi, clear timer Ti, and update WT .

end if

end if

if a timer Tj is up then

Send NAKj with a list of requested native data blocks.

Clear time Tj, and update WT .

end if

until All coding sets are received.
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Chapter 5

Implementations and Empirical

Results

We implement the proposed protocols in Java language. A netbook equipped with a built-

in WiFi interface and a plugged-in USB 3G interface downloads files from a file server

connected to the Internet by a high-speed Ethernet interface. The WiFi interface connects

to an AP backhauled to the Internet and the 3G interface also connects to the Internet over

a commercial 3G network. We use a bandwidth control software to limit the bandwidth of

WiFi interface in order to have a fair comparison between the 3G and WiFi interfaces. The

bandwidth of WiFi interface is set to 128KB/s, 192KB/s and 256KB/s. The architecture

of the experiment environment is in Fig. 5.1. There are three download scenarios: (a) files

are downloaded via the WiFi interface; (b) files are downloaded via the 3G interface; (c)

files are downloaded concurrently via both interfaces. The data provided in this section are
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Figure 5.1: The architecture of the experiment environment

measured in realistic network environments.

5.1 Packet Latency Analysis

We first give some analyze the packet transfer latency of WiFi and 3G between client and

server through implemented FTP. In this experiment, 1000 packets are transmitted from the

server to the receiver. The packets size is 1400 byte. The WiFi bandwidth is set to 128KB/s

by software. In order to accurate measure the packet transfer latency, we will control the

inter transmission time between packets by packets. Because we want to eliminate the time

of packets in the buffer, we write 15 packets into the buffer per second. To measure packet

transfer latency, the clocks of the two computers are synchronized. The server places a time
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stamp in each packet. As the client receives a packet, it calculates the time difference between

the current time and the time stamp in the packet. We collect packet transfer latency of FTP

by WiFi and 3G only. Fig. 5.2 illustrates the empirical pdf of TCP connections over WiFi

and 3G interfaces. The packet transfer latency distribution is analogous normal distribution.

Most packet transfer latencies are shorter than 80ms in TCP. We also do the measurement
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Figure 5.2: pdf of packet transfer latency of TCP over WiFi and 3G

for UDP connection. However, since UDP does not provide flow control, we figure out a

proper ITT first. In order to consider the performance of NCFTP, we test some possible

ITT . The probability of successful deliver rate under different ITT is given in Fig. 5.3.

The ITT choose 3ms and 5ms for WiFi and 3G respectively. The PDF of transfer latency

of UDP connection is illustrated in Fig. 5.4 and 5.5.
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Figure 5.3: The received rate via UDP of WiFi and 3G in five ITT scenarios

5.2 Parameters Choice of NCFTP

Next, we will choose the parameters for NCFTP via the experiments. In NCFTP, we should

maintain flow control in the application layer. The flow control follows the previous section

designed. There are three parameters adjusted with time including ITTk, WT , and WIN .

In next subsections, we will introduce our mechanisms of parameters in NCFTP. We choose

these parameters of NCFTP via the experiments. The receiver sends a download request to

the sender, then the sender sends a file to the receiver. The size of file is 1MB.

5.2.1 ITTk mechiansm

When the congestion occurs, there are many successively packets lost in the pattern of

received packets in the receiver side. ITT must become longer to avoid too many packets
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Figure 5.4: pdf of packet transfer latency of UDP over WiFi

inserting into the buffer of the sender. If the successively lost packets in the receiver side

does not too many, ITTk can become shorter to reduce inter transmission time. ITTk

is adjusted by Eq. (5.1). Let s lost, inITT , deITT , maxITT , minITT , congestion, and

lower, respectively, denote the number of successively lost packets in a coding set, increasing

rate of ITT, decreasing rate of ITT, maximum Inter Transmission Time, minimum Inter

Transmission Time, the congestion occur, and lower network utility.

ITTk =





min(inITT × ITTk,maxITT ) if s lost ≥ congestion ∧ ITTk < maxITT ;

max(deITT × ITTk,minITT ) if s lost < lower ∧ ITTk > minITT ;

(5.1)

We find the parameters of Eq. (5.1) via the experiments. First, we fix the congestion

and lower, and test the file transfer latency of NCFTP in the different inITT and deITT.

The results are given in Table 5.1, We choose 1.2 and 0.8 as inITT and deITT .
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Table 5.1: The initial change rate experiment of ITT

deITT/inITT 0.9/1.1 0.8/1.2 0.6/1.4

Time(s) 8.065 8.019 8.363

Similarly, we fix inITT and deITT , and test the file transfer latency of NCFTP in the

different congestion and lower. The results are given in Table 5.2. Then, we choose 8 and

4 as congestion and lower.

5.2.2 WT mechiansm

When WT is too short, the number of received packets of the second half is much less than

the first half. We consider WT too short to let packets lost, and WT adjusts longer to

wait for packets. If the received number of the first half and the second half are almost the
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Table 5.2: The initial condition experiment of ITT

lower/congestion 3/6 4/8 5/10

Time(s) 8.303 8.161 8.557

same, it means that WT can become shorter to reduce the unnecessary waiting time. Eq.

(5.2) is what we used to adjust WT in our implementation. Let fh, sh, inWT , deWT ,

maxWT , and minWT , respectively, denote the number of received packets in the first half,

the number of received packets in the second half, increasing rate of WT, decreasing rate of

ITT, maximum waiting time, and minimum waiting time.

WT =





min(inWT ×WT, maxWT ) if fh > sh× 2 ∧WT < maxWT ;

max(deWT ×WT,minWT ) if sh > fh× 3
4
∧WT > minWT ;

(5.2)

Table 5.3: The initial change rate experiment of WT

deWT/inWT 0.9/1.1 0.8/1.2 0.7/1.3 0.6/1.4 0.5/1.5

Time(s) 8.56 8.314 8.411 8.518 9.14

We test the file transfer latency in different inWT and deWT , and fix the other param-

eters of Eq. (5.2). The results are given in Table 5.3. So, we choose 1.2 and 0.8 as inWT

and deWT.
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5.2.3 WIN mechiansm

When p is bigger than a certain rate, it means that the bandwidth of interfaces may not be

fully used. So, WIN can become bigger to send more coding sets into the networks. If p is

smaller than the lower bound, it means too many packets inserted into the networks. WIN

should become shorter to avoid dropping packets. Eq. (5.3) is what we used to adjust WIN

in our implementation. Let p, frate, srate, maxWIN , and minWIN , respectively, denote

the successful transmission probability of the receiver, the rate of speedup signal, the rate

of slow down signal, maximum window size, and minimum window size.

WIN =





min(WIN + inWIN,maxWIN) if p > frate ∧WIN < maxWIN ;

max(WIN − deWIN,minWIN) if p ≤ srate ∧WIN > minWIN ;

(5.3)

Table 5.4: The initial change rate experiment of WIN

inWIN/deWIN 2/2 4/4 8/8 WIN / (WIN/2) 3WIN / (3WIN/4)

Time(s) 8.053 8.117 8.365 8.313 8.679

Table 5.5: The increasing condition experiment of WIN

fsign 0.95 0.85 0.75 0.65

Time(s) 8.5 8.136 8.077 8.384

We test the file transfer latency of inWIN and deWIN , and fix the other parameters of

Eq. (5.3). The results are given in Table 5.4. We choose +2 and -2 as inWIN and deWIN .
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Table 5.6: The decreasing condition experiment of WIN

ssign 0.5 0.6 0.7

Time(s) 8.069 8.156 8.491

We fix inWIN , deWIN , and srate, and test the file transfer latency in different frate.The

result are given in Table 5.5. Then, we fix inWIN , deWIN , and frate, and test the file

transfer latency in different srate. The results are given in Table 5.6. We choose 0.75 and

0.5 as frate and srate.

5.3 File Latency Analysis

To compare the performance of MFTP, AMFTP, and NCFTP, a file of size 1MB is down-

loaded from the server. Five transmission scenarios are considered in these experiments,

including 1) Download one file via FTP by 3G only; 2) Download one file via FTP by WiFi

only; 3) Download one file via MFTP by 3G and WiFi concurrently; 4) Download one file

via AMFTP by 3G and WiFi concurrently; 5) Download one file via NCFTP by 3G and

WiFi concurrently. We execute each scenario steps 100 times under limited WiFi bandwidth

respectively 128KB/s, 192KB/s and 256KB/s. The file transfer latency of each transfer is

recorded.

In Fig. 5.6, the average file transfer latency of our proposed protocols are shorter than

FTP via WiFi only and 3G only. The average file transfer latency of MFTP, AMFTP,
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and NCFTP under WiFi with 128KB/s are 11.654s, 11.355s, and 11.074s respectively. The

average file transfer latency of MFTP are 57.07% and 52.36% of transfer latency of using

WiFi only and 3G only. The ratio of AMFTP are 55.6% and 51.01% respectively. The ratio

of NCFTP are only 54.23% and 49.76%. The average file transfer latency and bandwidth

are given in Table 5.7.
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Figure 5.6: The average file transfer latency of five scenarios

We can see the performance of AMFTP better than MFTP, and the performance of

NCFTP is better than AMFTP. The file transfer latency of NCFTP is 97.43% of AMFTP,

and the transfer latency of AMFTP is 97.53% of MFTP. So NCFTP reduce the file transfer

latency more than AMFTP. Similar results can be found in the experiments with WiFi

bandwidth 192KB/s and 256KB/s. The results verify the performance of our proposed

protocols. Our proposed protocols are successful shortened the file transfer latency. When

the bandwidth of each interfaces are closed, the latency of our proposed protocols are nearly
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Table 5.7: The average latency and bandwidth for a file of 1MB.

WiFi with bandwidth 128KB/s

3G WiFi MFTP AMFTP NCFTP

Time 22.25 20.42 11.65 11.36 11.07

KB/s 46.01 50.15 87.87 90.18 92.46

WiFi with bandwidth 192 KB/s

3G WiFi MFTP AMFTP NCFTP

Time 21.27 16.32 9.71 9.40 9.34

KB/s 48.15 62.74 105.38 108.88 109.69

WiFi with bandwidth 256KB/s

3G WiFi MFTP AMFTP NCFTP

Time 20.28 13.74 8.20 8.05 7.93

KB/s 50.51 74.51 124.89 127.26 129.17

the half latency of FTP via WiFi only or 3G only. We can see that there are no big problems

for a mobile device to activate both radio interfaces. The bandwidth of MFTP and AMFTP

are roughly equal to the sum of the bandwidth of the 3G and WiFi interfaces, but the

bandwidth of NCFTP can further improve the performance. In Fig. 5.9, Fig. 5.8, and Fig.

5.7, the distribution of file transfer latency of FTP, MFTP, AMFTP and NCFTP are similar

with our proposed math model in Fig. 3.1. It adequately verifies the truth of the math

model. We find a phenomenon in Fig. 5.9 and Fig. 5.7. When the bandwidths of interfaces
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are lower, the improvement of transfer latency of NCFTP is much bigger than AMFTP and

MFTP.
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Figure 5.7: c.d.f of file transfer latency under WiFi with 256KB restriction

42



5 10 15 20 25
0

20

40

60

80

100

second

%

 

 

NCFTP

AMFTP

MFTP

FTP−WiFi

FTP−3G

Figure 5.8: c.d.f of file transfer latency under WiFi with 192KB restriction
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Figure 5.9: c.d.f of file transfer latency under WiFi with 128KB restriction
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Chapter 6

Conclusions

In this work, we proposed three file transfer protocols for mobile devices equipped with

multiple radio interfaces to reduce file transfer latency by integrating heterogeneous radio

resources. We implemented the proposed protocols on a netbook to download files via WiFi

and 3G connections, and observed performance improvement. In the experiment results,

our proposed protocols are successful shortened the file transfer latency. The file transfer

latency of our proposed protocols are almost 60% of transfer latency of FTP via single

interface. When the bandwidth of each interfaces are closed, the latency of our proposed

protocols are nearly half of transfer latency of FTP via single interface. When the bandwidth

MFTP and AMFTP are roughly equal to the sum of the bandwidth of the 3G and WiFi

interfaces, but the bandwidth of NCFTP can further improve the performance. The results

verify the performance of our proposed protocols. Our proposed protcools are reducing the

file transfer latency and raising the bandwidth utility of network interfaces. We also induce
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the c.d.f math model of practical solution and ideal solution, and verify the truth of the

math model. In the future, we hope the proposed protocols be used on file transfer, and we

will develop general-purpose protocols not only for file transfer.
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