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Abstract: A design algorithm is introduced to
synthesise a discrete time LQG optimal controller
subject to design constraints requiring (i) complete
and arbitrary stable poles placement, (ii) some
zeros assignment, and (iii) input-output decoup-
ling. The zeros placement is partially used to deal
with the deterministic reference tracking and dis-
turbances rejection problems. In the paper, the
Wiener-Hopf technique is employed and two
weighting matrices are shaped by the inverse
optimal control method, so that the controller is
optimal with respect to the chosen weighting
matrices and achieves the above three goals simul-
taneously.

1 Introduction

The design of continuous-time multivariable multi-
purpose controllers has received much attention [3, 4, 5,
12, 13, 14]. In particular, Wolovich [4] designed a multi-
purpose controller to achieve the following:

(i) input-output decoupling
(ii) complete and arbitrary closed-loop poles place-

ment
(iii) disturbance rejection and reference signal tracking.

Recently, Chen and Wang [3] extended this problem
to continuous-time LQG optimal systems. In their
approach, an LQG optimal controller is synthesised by
Wiener-Hopf's technique [5, 6], and two weighting
matrices Q(s) and R(s) in the cost function J are shaped
by the inverse optimal control method, so that the
optimal controller will achieve the three purposes given
above.

On the other hand, however, few results are known
concerning the design of discrete-time multivariable
multipurpose controllers, with a notable exception of the
paper by Grimble [1], in which the solution to discrete-
time linear quadratic stochastic optimal control, with
cost function including both sensitivity measures and the
usual LQG error and control quadratic terms, is
obtained. However, the specification of a cost function
(or weighting matrices) is one of the basic requirements
for the formal analysis of quantitative decision processes.
In fact, any mathematical criterion in a practical control
problem cannot explicitly define the optimum system
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uniquely [15-19]. Consequently, we develop the selection
of the cost function for economic stabilisation policy by
solving the inverse optimal problem.

It is well known that the LQG optimal problem has a
unique solution for prespecified weighting matrices.
However, the solution of the inverse optimal control
problem is not unique in general [15-19], but there is a
relationship between two weighting matrices. In many
cases, there may be a wide variety of performance indices
that are equally suitable for determining optimal policies.
This suggests that the design of physical and technologi-
cal systems involves the inverse optimal control problem,
instead of asking for a control policy corresponding to a
given performance index.

In this paper, the inverse optimal control problem is
considered, and the results of Grimble [1] and Chen and
Wang [3] are modified and extended to solve the
problem of discrete-time multivariable multipurpose con-
troller synthesis for LQG based design. More specifically,
we will present an algorithm for systematic design of
discrete-time multivariable LQG optimal controllers
which ensures:

(i) input-output decoupling
(ii) complete and arbitrary closed-loop poles place-

ment
(iii) some zeros assignment.

Of course, stability of the system is ensured in our design
work. In practical control design, the requirements of
readability and causality of the controller are necessary.
These requirements have also been considered in this
paper.

Our development will employ the Wiener Z-domain
solution [2] for controller synthesis, and two weighting
matrices Q(Z) and R(Z) are shaped by the inverse
optimal control method [15-19] to achieve the above
design purposes in the LQG optimal systems. The feature
of this paper is that the plant of the system is free of the
constraints: (i) poles and/or zeros are all inside the unit
circle and (ii) the plant matrix is strictly proper.

2 Problem formulation

The discrete-time multivariable linear time-invariant
system to be controlled has known causal, square plant
P(Z)eRnXn(Z), disturbance WJ&) e R"x «(Z), and mea-
surement noise Wn{Z) e R"x \Z) pulse transfer function
matrices. The whole system is shown in Fig. 1, where r(t),
d(t) and n(t) denote reference signal, disturbance and mea-
surement noise, respectively, and r{t), d(t) and h(t) are
zero-mean stationary white-noise signals with constant
covariance matrices QR, 0 d , and 0 n , respectively. Fur-
thermore, we assume that r(t), d\t) and h(t) are mutually
uncorrelated.
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The reference r(i) is generated by the colouring filter

r(t) = Wr(Z)r(t) (1)

the output y{t) e R" is given by

y(t) = P(Z)U(t) + WJ&dit) (2)

and the tracking error is defined as

e(t) = r(t):-y(t) (3)

For the optimal control problem to have a solution, P{Z)
is assumed to be free of unstable hidden modes. Define
the sensitivity matrix as

S(Z) = (/„ + P(Z)C(Z))~1 (4)

then

e(t) = r(t) - y(t) = (/ - S(Z))n(t) + S(Z)(r(t) - d{t)) (5)

and

u{t) = C{Z)S{Z)W) ~ n{t) - d(t)) (6)

Let the cost function be

dZ
-^ (7)

\z\ =
where Q(Z) and R(Z) are two weighting matrices such
that Q(Z)_= Q{Z)Q*(Z) and R(Z) = R(Z)R*(Z) [9], where
Q*(Z) 4 &{Z~\ R*{Z) ± RT{Z-l\ and Q(Z) and R(Z)
are positive definite on | Z | = 1. Furthermore, (|>e(Z) and
<(>U(Z) denote the power spectra of the signals e(t) and u(t),
respectively, where

- S(Z))

+ S(Z)(4>r(Z) +

and

<J>U(Z) = C(Z)S(Z)(4>r(Z)

(8)

<J)n(Z))5*(Z)C*(Z)

where <J>,,(Z), <t>d(Z) and <|)r(Z) are the power spectral den-
sities of measurement noise n(t), disturbance d(t) and ref-
erence signal r(t), respectively.

reference
disturbance

measurment noise

Fig. 1 Closed-loop feedback control system

Substituting eqn. 8 into eqn. 7 yields

2?y

+ S(Z)(d>r(Z)

+ /?(Z)[C(Z)5(Z)(<J>r(Z) +

- 5(Z))*

(9)

The problem considered in this paper is to develop a sys-
tematic design algorithm for an LQG optimal controller,

and to shape weighting matrices Q(Z) and R{Z) so that
the optimal controller achieves the three design purposes
as mentioned in Section 1.

3 The optimal controller

In this Section, we will derive the optimal controller that
achieves the three design purposes. Let us consider the
optimal controller that minimises eqn. 9.

Introduce the spectral factors AX(Z) and A2(Z), which
are free of poles and zeros in | Z | > 1, as [3, 6, 8]

R(Z)

\ZMZ)l{Z)] + } AJ \Z)

Using

Z) = P*(Z)Q(Z)P(Z)

A2(Z)Af(Z) = <|>r(Z) + $d(Z) + <j>n(Z) (10)

Then the optimal controller that minimises eqn. 9 can be
stated as follows:

Theorem 1: The optimal controller €(Z) to minimise
eqn. 9 for the system shown in Fig. 1, can be calculated
from the optimal closed-loop transfer function

(11)

(12)

where GC{Z) = P~ \Z){I - ${Z)), L(Z) is a polynomial
matrix given by eqn. 49, p&Z) is a polynomial which con-
tains all poles of P*(Z) in | Z | < 1, and /(Z) is a strict
Hurwitz polynomial to be selected to ensure both Q(Z)
and R(Z) are proper rational matrices. The proof is given
in the Appendix.

Remarks:
(i) {/(Z)}+ denotes the part associated with all the

poles of J[Z) in | Z | < 1. Similarly, {/(Z)}_ denotes the
part associated with all the poles of/(Z) in | Z | ^ 1.

(ii) The degree of t{Z) and /(Z) must be selected to
ensure causality of <JC(Z) [5].

Thus, the problem considered in this paper may be
restated as follows: Given a causal plant P(Z), pulse
transfer function matrices WJ^Z), Wn(Z) and W£Z), which
may be unstable, and power spectral densities tyJiZ),
<j)n(Z) and <|)r(Z), find the weighting matrices Q(Z) and
R(Z) so that the optimal controller, given by eqn. 12, that
minimises eqn. 9 and simultaneously achieves the three
design purposes as mentioned earlier.

3.1 Realisability and causality
Before we discuss further the design of the multipupose
controller, the realisability of the sensitivity matrix S(Z)
is discussed.

Definition: S(Z) is realisable if, for some choice of con-
troller C(Z):

(i) S{Z) = (/„ + P(Z)C(Z))~l

(ii) the closed-loop system of Fig. 1 is asymptotically
stable.

Let[12]

P(X) = A~ \Z)B{Z) = B£Z)A T \Z) (13)

where the pairs (A(Z), B{Z)) and (B^Z), A^Z)) constitute
any left-coprime and right-coprime polynomial decompo-
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sition of P(Z), respectively. The following lemma gives
useful characterisation of realisable S{Z).

Lemma 1 [77]: Suppose det (A(Z)) and det (BX{Z)) have
no common zero in \Z\ ^ 1. Then S{Z) is realisable if,
and only if, det (S(Z)) =fc 0, and, for some appropriately
dimensioned (X(Z), Y(Z)) having no unstable poles:

S(Z) = Y(Z)A(Z)

l-S{Z) = Bx(Z)X(Z) (14)

From lemma 1, we can see that S(Z) is realisable if, and
only if, both the following conditions hold:

S(Z)A ~ \Z) has no poles in | Z | ^ 1

Bx
 l(Z)(I - S(Z)) has no poles in | Z | 1

(14a)

(14b)

Remark: There are no unstable hidden modes between
C{Z) and P(Z) if both conditions 14a and 146 hold.

Definition: An arbitrary rational matrix

G(Z) =

where both G^Z) and Fi3{Z) are polynomials of Z, i,
j = I, ..., n. Let the degree of a polynomial f(Z) be
denoted by d(f(Z)). Define 0[<7(Z)] = g = max (d(G0{Z))
-diF^Z))} V,,., and 0[G(Z)] = g = min {rf(G0<Z))
— d(Fij{Z))} Vjj. With these definitions, we can now state
and establish the following useful result.

Lemma 2: Consider a feedback system of Fig. 1, where
P(Z) is a causal plant and O[P - 1(Z)] = q. If the sensi-
tivity matrix S(Z) satisfying eqn. 14 has the following
properties:

(i) limz_>005(Z) = diag [s1} s 2 , . . . , s j , where st is a
nonzero constant, i = 1, . . . , n

(ii) "
Then

S^ -q

ensures that C(Z) is causal.

(15)

Proof: As / - S(Z) = P(Z)C(Z)S(Z), it follows that
P~\Z) (I - S(Z)) = C(Z)S(Z). Under the assumption
that the plant P(Z) is nonsingular, therefore,

q + 5> c = OIC(Z)-] (16)

Eqn. 16 is derived based on the fact that

O[5(Z)] = O[S(Z)] = 0 (17)

Hence, if S + q ^ 0, c ^ 0, then C(Z) is causal.

3.2 Decoupling
The closed-loop transfer function of Fig. 1 is
P(Z)C(Z){\ + P(Z)C(Z))~l =1- S{Z). Under our
decoupling constraint, S(Z) must have the diagonal form

~SX(Z) 0 ... 0
S2(Z)

S(Z) =
0 0

0 Sn(Z)_

(18)

where S^Z), i = 1, . . . , n are any rational functions of Z
such that S(Z) satisfies lemmas 1 and 2. Then the control-
ler is causal, reliable and input-output decoupled. The
controller is given by

C(Z) = P~ \Z){I - S{Z))S~ \Z) (19)

3.3 Reference signal tracking and disturbance
rejection [7]

Consider the system of Fig. 1. Suppose r(t), d(t) and'n(t)
are impulse functions 8(0, then r(t) and n{t) are determin-
istic signals generated by pulse transfer function matrices
WT(Z\ WIZ) and Wn{Z), respectively. To distinguish the
deterministic signals and stochastic signals, we denote
r\t), d(t) and h(t) to be deterministic signals instead of the
stochastic notation r(t), d(t) and n(t). Similarly, the follow-
ing y(t) and e(t) denote the deterministic signals derived
by deterministic inputs r(r), d(t) and h(t)

y(Z) = (I- S{Z))r\Z) + S(Z)d(Z) -(I- S(Z))h(Z) (20)

and

where

- d(Z)) + (/ - S(Z))h(Z)

-r{Z)=Wr{Z)b{Z)=Wr{Z)l\...\y'
d{Z) =

(21)

(22)

hence

(23)
- S(Z))h(Z) = (I- S{Z))Wn{Z)[\ ... l ] r

Therefore, if each entry St(Z) of S(Z) is properly selected
so that the matrices S(Z)Wd(Z), (I - S(Z))Wn(Z) and
S(Z)Wr(Z) are stable, then the unstable disturbance and
noise can be rejected and reference signal (which may be
unstable) can be tracked. Let

Sk(Z) =
qk(Z)

k = 1, 2, . . . , n (24)

where qk(Z) is a polynomial that contains the desired
stable poles Zki, with multiplicity j i t i = 1, ..., mk for
each k, i.e. qk(Z) = qk(Z)qk(Z), where

= Yl(z-zkiy (25)

and qk(Z) are polynomials of Z to be determined to
ensure 0(S(Z)) = 0, and ctk(Z) is a polynomial selected for
tracking reference r(Z) and rejecting disturbance d{Z).
Hence,

*k(Z) = OLdk(Z)ocrk(Z)ocpk(Z)

where <x.dk(Z) and <xrfc(Z) are polynomials which contain all
the unstable poles of the feth row of W^Z) and the /cth
row of Wr(Z), respectively, so that S(Z)Wd{Z) and
S{Z)Wr(Z) are stable. Furthermore, <xpk(Z) is a polynomial
which contains all unstable poles of the /cth row of
A~l(Z) (for condition 14a). In addition,

UZ) = hkf\(Z- tki) fl (Z - Zkj)

where S'k = q — 1, tk = (number of unstable poles of the
kth row of Wn(Z)) + (number of unstable poles of the kih
column of B^l(Z)), tki for i = 1, 2, . . . , tk are unknown
constants, yet to be determined so that condition 146 is
satisfied and measurement noise h(Z) is rejected (i.e.
(/ - S{Z))Wn{Z) is stable), and constants hk and Zkj, for
j = \,..., S'k, are chosen so that / — S{Z) satisfies lemma
2.
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As 0{S(Z)) = O(S(Z)) = 0, it follows that qk(Z) can be
an arbitrary strict Hurwitz polynomial with degree
d{qk{Z)) = d(<xk(Z)) + d(Pk(Z)) - d(qk(k)).

3.4 Determination of Q (Z) and R (Z)
In general, in the inverse optimal control problem, the
choices of Q(Z) and R(Z) are not unique. For con-
venience, we choose Q(Z) such that the term [. ] + in eqn.
11 is equal to zero; e.g. let

then A? " \Z)P*(Z)Q(Z)(<\>r(Z) + UZ))^2 " l(Z)Pl{Z)l(Z)
has no pole in \Z\ < 1. Note that h in Q(Z) is a small
positive constant yet to be determined, to ensure R(Z) is
positive-definite on | Z | = 1; /(Z) is an arbitrary strict
Hurwitz polynomial with enough degree to ensure that
both Q(Z) and R(Z) are proper (reusable). Substituting

Q(Z) = h(4>r(Z)- + UZ)) ~ 1/(l(Z)l*(Z)) (26)

into eqn. 11, we obtain

A,(Z) = £(Z)A2" \Z)pr \Z)G; \Z)l- \Z) (27)

where L(Z) is a polynomial of Z yet to be chosen such
that AX(Z) is free of poles and zeros in \Z\ > 1. Hence,
the corresponding weighting matrix R(Z) is

R(Z) = A?(Z)AX(Z) - P*(Z)Q(Z)P(Z) (28)

4 The algorithm

In this Section, we present an algorithm to synthesise an
optimal controller that achieves the goals described in
Section 1:

Step 1: Perform the factorisation of P(Z) as eqn. 13 to
obtain A(Z) (A^Z)) and

Step 2: Choose S{Z) as eqns. 18 and 24. Assign ak(Z),
which contains the unstable poles of Wd{Z), W£Z) and
A~1(Z). Form polynomials /?k(Z) with unknown coeffi-
cients, and set up qk(Z) = qk(Z)qk(k) where d{qk(Z)) =
d(<xk(Z)) + d(Pk(Z)) - d(qk(Z)). (Note: qk{Z) is assigned pre-
viously.)

Step 3: Choose the unknown coefficients of /?fc(Z) such
that S(Z) satisfies eqns. 14 and 15, and rejects the
unstable noise h(Z).

Step 4: From eqn. 10, we obtain A2(Z), which is free of
poles and zeros in \Z\ > 1.

Step 5: Choose Q(Z) as in eqn. 26 to let
[A* " 1(Z)P*(Z)Q(ZMr(Z) + 4>d(Z))l(Z)A*2 ~

 l(Z)Pl{Z)-] + = 0
in eqn. 11, where Q(Z) is positive-definite for all | Z | = 1.

Step 6: Calculate CC(Z) = P~\Z) (I - §{Z)). This
CC(Z) ensures input-output decoupling, deterministic dis-
turbance and noise rejection, and deterministic reference-
signal tracking.

Step 7: Select suitable L(Z) such that At(Z) in eqn. 27
is free of poles and zeros in |\Z \ > 1.

Step 8: Determine a positive small constant h to
ensure that R(Z) obtained from eqn. 28 is positive-
definite.

Step 9: From eqn. 12, we obtain the optimal controller
C(Z) corresponding to the particular choice of Q(Z) and
R(Z) obtained from steps 5 and 8, respectively.

Remarks:
(i) Poles-zeros placement and decoupling are achieved

in step 2.
(ii) The choice of Q(Z) in step 5 is not unique, and

hence the corresponding R(Z) is also nonunique [15-19].

5 Illustrative example

Consider the system as shown in Fig. 1, where

Z + 0.5 3(Z + 1.5)

P{Z) =
Z{Z + 1.2) (Z + 1.2)(Z - 0.5)

0
Z + 1.5

Z(Z - 0.5)

wT{z) =
oi

and

Z - 0.5 0 1

Hence,

and

(Z-0
-J p °
'.5XZ-1 -0.5)|_0 l

Furthermore, assume that P(r), d(t) and h(t) are determin-
istic signals generated by pulse generators Wr{Z), Wd{Z)
and Wn(Z), respectively. The problem is to design a con-
troller C(Z) so that the closed-loop system ensures
(i) poles at —0.3 and 0.5 for each channel, (ii) input-
output decoupling, and (iii) having zeros at certain loca-
tions for tracking r\t) as well as rejecting d(t) and h(t).
Moreover, selecting two suitable weighting matrices Q(Z)
and R(Z) so that the controller is also optimal with
respect to the chosen weighting matrices.

Solution: We solve the problem following our algorithm
step by step as follows:

Step 1: From eqn. 13,

P(Z) = A~ \Z)B{Z) = B X{Z)A I \Z) (29)

Choose

A(Z) =

AX{Z) =

3Z2 1

- 0.5)J0 Z{Z

+ 1.2) 1.2857Z

0 Z(Z-0.5)

Z+°,J
, x "Z + 0.5 4.2857Z1

*'(Z) = I 0 Z + 1.5 J (30)

Step 2: Let at(Z) = (Z - 1)(Z + 1.2), a2(Z) = (Z - 1),
and qx{Z) = ^2(Z) = (Z + 0.3)(Z - 0.5). Because q = 1,
S't = 5'2 = 0, tr = 0 and t2 = 1, therefore <h(Z) =
^2(Z) = 1 and ^(Z) = hu p2(Z) = h2(Z - t2l). Hence

1

(Z + 0.3)(Z - 0.5)

(Z + 1.2)(Z - 1)

0 h2(Z

0 1 (31)
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Step 3: Lemma 2 requires 0(1 — £(Z)) ̂  —1, hence
hl = h2 = 1. To satisfy condition 146, it is required that
t21 = -0.54. Thus,

1

(Z + 0.3)(Z - 0.5)

Tl.05-0.4Z 0 1
L 0 0.26(Z + 1.5)J

Step 4: From eqn. 10,

where 7 £ Z + Z"1 . Therefore,

_ Z-'-\.S Tl 0]
( Z " 1 - l)(Z-0.5)[_0 l j

(32)

(33)

(34)

Step 5: In order to let

x/\(Z)/(Z)]+=0

where />,-(Z) = 1 + 1.2Z, we choose

= h
(1.25-0.5y)3L0

(35)

Where l(Z) is chosen as l(Z) = (Z - 0.5)3 to ensure that
both Q(Z) and R(Z) are proper.

Step 6: From CC(Z) = P~ \Z)(I - §{Z)\ it follows that

GC(Z) = Z + 03

Z(Z + 1.2X1.05 - 0.4Z) -0.78(Z + 1.5)Z2'
(Z + 0.5)(Z - 0.5) (Z + 0.5)(Z - 0.5)

0 0.26Z
(36)

Step 7: In order to let At(Z) be free of poles and zeros
in | Z | > 1, we select

,37)

then

0.3)

(1 + 1.2ZXZ-0.5XZ"1- 1.5)

Z + 0.5

0
0.26Z(Z - 0.5)

Step 8: R(Z) is obtained from eqn. 28

(38)

(39)

where

Rll(Z) = H(Z)(Kl(Z)-K2(Z))

R12(Z) = 3H(Z)\
\Z + 0.5)

(Z+ 1.5XZ"1 +0.5)
\Z- 0.5)(1.25 + 0.57) 2 l '

(Z
Z(Zl - 0.5)(1.25 + 0.57)

R^=HiZ[ush^K^z)

\4.%K,(Z)

2V ;

(1.25-0.57)(1.25 + 0.57)

9(3.25 + 1.57) 1
~ (1.25 + 0.57)(1.25 - 0.57)3J

( 2 - 7)(3.25+ 1.57)
(1.25-0.57)4

in which 7 = Z~ i + Z = 2 cos co, Z = ei<o;

„ , » 1.09 + 0.37

H(Z) =

K2(Z) =

3.25- 1.57

( 2 - 7)(1.25 + 0.57)
(2.44+ 1.27)(1.25-0.57)

(1.25-0.5 7)

Here, 0 ̂  h < 0.067 guarantees R(Z) to be positive-
definite.

Step 9: From eqn. 12, the optimal controller with
respect to the weighting matrices Q(Z) in eqn. 35 and
R(Z) in eqn. 36 is

Z(-0.4Z + 1.05) -0.78Z2(Z + 1.5)

- 1
Z + 0.5

0

(Z + 0.5)(Z + 0.54)
0.26Z(Z - 0.5)

Z + 0.54
(40)

392

-1.00
0 20 40 60 80 100 120 140

time

Fig. 2 Deterministic response j>1(t) of the example with d(t) = h(t) = 0
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The responses y(t) of this example corresponding to

(i) Kt) = —=ua

and

h(t) = d(t) = 0,

and

(ii) r[t) = d(t

and

h(t) = e-°<

1.40

1.00

0.60

0.20

-0.20

-0.60

-1.00
l

Fig. 3

1.40

1.00

0.60

0.20

-0.20

-0.60

-1.00
0

Fig. 4

1.40

1.00

0.60

0.20

-0.20

-0.60

-1.00
0

Fig. 5

20 40 60 80 100 120 140
time

Deterministic response y2(t) of the example with d{t) = h{t) = 0

20 40 60 80 100 120 140
time

Deterministic response yY(t) of the example with

and h(t) = e~

20 40 60 80 100 120 140
time

Deterministic response y2{t) of the example with

and "W = g " °

are shown in Figs. 2 and 3, respectively, where us(t)
denotes a unit step input. It is clear that the controller of
eqn. 40 completely achieves these objectives: (i) tracking
r(t) and (ii) rejecting h(i) and d(t).

6 Conclusions

This paper presents an algorithm for synthesising a dis-
crete multivariable optimal controller for input-output
decoupling, complete and arbitrary closed-loop pole
placement, and disturbance rejection and reference signal
tracking. The weighting matrices Q(Z) and R(Z) corre-
sponding to the optimal controller of the LQG systems
are derived in a very simple and straightforward method.
It should be noted that the choice of Q(Z) is not unique,
consequently the choice of R(Z) is also nonunique. This is
the characteristic of inverse optimal control problems.
Moreover, as it is possible to select a suitable sensitivity
matrix S(Z) that possesses extra freedoms after achieving
the three specified design goals, it is possible to design an
optimal controller that not only achieves three design
goals specified in this paper, but also ensures some other
design objectives. This problem is currently under investi-
gation.
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9 Appendix

Proof of theorem 1: From eqns. 7 and 8 we set S(Z) —
§{Z) + sT(Z) (where the symbol "denotes 'optimal'). The
necessary condition for minimising J is

= 0dJ
de e = 0

Therefore

dJ

de £ = O

- T*(Z))
|Z| =

<|>d(Z))r*(Z)]

R{Z)l-P-\Z){I - §{Z))L{Z)T*{Z)-\} ^

- cj>n(Z)]
|z| =

= T-.tr$ {P*{Z)Q{Z)l§{Z)n.Z) - <|>n
2nJ J|Z| = 1

-IR(Z)GC(Z)Z{Z)-]}T*(Z) ^ = 0

where

CC{Z) = p~ \z){i = C{Z)§{Z)

(41)

(42)

After adding P*(Z)Q(Z)(^Z) + <|)r(Z)) to eqn. 41 and
subtracting P*(Z)Q(Z)(4>d(Z) + <J>r(Z)) from the resulting
equation yields

dJ

e=0

- {P*(Z)Q(Z)(I -

- /»*(Z)Q(Z)(<t>r(Z)

tr <
J|Z| =

x <?e(Z)E(Z) - P*(Z)Q(Z)

^ = 0 (43)

Perform the spectral factorisation:

A2(Z)A*(Z) = nZ) = <|>n(Z) + <|>r(Z) + W Z ) (44)

where AX(Z) and A2(Z) are free of poles and zeros in
| Z | ^ 1. Hence, eqn. 43 can be written as

de £ = 0
(A?(Z)A1(Z)^c(Z)A2(Z)Af(Z)

|z| =

- P*(Z)Q(Z)(4>r(Z) + <J>d(Z))} J*(Z) ^

F(Z)A*(Z)A$(Z)T*(Z)dZ = 0 (45)

where

F(Z) = {

+ 4>d(Z))AVl(Z)}Z-1 (46)

Because Af(Z)Af(Z)r"(Z) is analytic in | Z | < 1 , it
follows that eqn. 45 is true provided that all the poles of
F(Z) lie in | Z | ^ 1. Let

P*(Z) =
1

Po(Z)p,(Z)
P*(Z)

po(Z)pt{Z) denotes the least common denominator (LCD)
of P*(Z), where po(Z) absorbs all zeros of LCD in
\Z\ ^ 1,p{Z) contains those zeros of LCD of P*(Z) such
that | Z | < 1. Hence, Pi(Z)P*(z) is unstable.

Multiplying by Zpi(Z)l(Z) to each term of eqn. 46
yields

ZPi(Z)F(Z)l(Z) =

(47)

Remark: The selection of /(Z), which is a polynomial with
all zeros in | Z | < 1, is to ensure Q(Z) of eqn. 26 to be
proper.

Note that the left-hand side of eqn. 47 is an unstable
rational matrix, while the first term on the right-hand
side of eqn. 47 is stable. Therefore, we perform the spec-
tral factorisation on the second term of the right-hand
side of eqn. 47 and rearrange the terms, to obtain

ZPi(Z)F(Z)l(Z) + lA*-l(Z)P*(Z)Q(Z)(4>r(Z)

(48)

where all the terms on the left-hand side of eqn. 48 are
analytic in \Z\ < 1, while all the terms on the right-hand
side of eqn. 48 are analytic in | Z | ^ 1.

Thus, eqn. 48 must be a polynomial matrix of Z, say
t{Z\ so that

£(Z) = A1(Z)Cc(Z)A2(Z)pi(Z)l(Z)

(49)

From eqn. 49, the optimal controller can be obtained:

+} A2" \Z)p; \Z)l~ \Z) (50)

By simple calculation, it is easy to show that

d2J

de2 > 0 when Z = e1"

Therefore, G(Z) given by eqn. 50 is the optimal controller
corresponding to the cost functional given by eqn. 9.
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