

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

利 用 線 條 平 移 與 合 併 簡 化 線 條 繪 畫

Line Drawing Simplification by Stroke Translation and

Combination

研 究 生：簡 韻

指導教授：莊榮宏 教授

 林文杰 教授

中 華 民 國 一百零一 年 九 月

利用線條平移與合併簡化線條繪畫

ᏢғǺ 簡ǳᜩ Ꮴ௲௤Ǻࡰ ಷᄪֻǳറγ

݅Ў݇ǳറγ

୯ҥҬ೯εᏢ

ӭ൞ᡏπำࣴ܌ز

ᄔǳा

ࢂۓ،ሡ؃ޣॺ཮ਥᏵ٬用ךǶ२ӃǴݤᄽᆉޑ簡化線條繪畫૛ዺޑॺගрΑ΋ঁཥך

ցाஒᒡΕޑ線條ϩࢤǶךॺ཮ᢀჸԔ౗ (curvature)Ǵ٠ӧԔ౗ၸεޑՏ࿼Ϫ໒線條Ƕ

ௗ๱Ǵय़ჹ畫ৎᒿཀ繪рޑ᚞ණ線條Ǵךॺ٬用ե೯ᘠݢ (low-pass filter)ٰᆫ໣೭٤線

條Ƕךॺ཮ჹ繪畫଺ե೯ᘠݢǴฅࡕӆ利用ᘠ่݀ޑࡕݢբࣁ៾ख़ (weight)Ǵᆉр؂條

線ޑ៾ख़Ǵ٠ஒ線條平移Կ畫य़΢៾ख़ၨଯޑӦБǶوӛ࣬߈ǵຯᚆௗޑ߈᚞ණ線條ஒ

཮೏ᆫ໣ӧ΋ଆǴך٬ॺૈ୼ӧϐ؁ޑࡕᡯ׳ᇸܰӦ合併線條ǶϐࡕǴךॺ཮٩Ᏽ線條

ឦ܄Ǵפр࣬ޑ߈線條ଛჹ٠合併Ǵ෧Ͽ線條ᕴኧٰၲډၨଳృޑ線條繪畫Ƕ೭ঁس಍

཮෧Ͽᚇ໶ޑอ線條ǴஒѬॺ合併ԋၨޑߏ線條Ƕ٬ᚇ໶ޑ૛ዺᡂԋၨଳృޑ繪畫Ƕ

i

Line Drawing Simplification by Stroke Translation and
Combination

Student: Yun Chien Advisor: Dr. Jung-Hong Chuang

Dr. Wen-Chieh Lin

Institute of Multimedia Engineering

College of Computer Science
National Chiao Tung University

ABSTRACT

In this thesis, we propose a new algorithm for simplifying line drawing sketches. First, if user

want to segment, we segment the strokes at the points of large curvature. Then, we perform

a low-pass filter and use the result to assign a weight to every stroke. The strokes are moved

to the position of the higher weight. After that, we find the stroke pairs and combine them to

reduce the total number of the strokes, resulting in a cleaner line drawing art. This system also

cuts down the disordered and confusing small strokes and combines them to form long strokes.

ii

Acknowledgments

I would like to thank my advisors, Professors Jung-Hong Chuang and Wen-Chieh Lin, for

their guidance, inspirations and encouragement. I would also like to thank my thesis commit-

tee members, Professors Hung-Kuo Chu and Yu-Ting Tsai for giving me excellent advice and

viewpoints. I am also grateful to Pascal Barla and Amit Shesh for providing me the testdata in

their papers. I appreciate my senior colleagues’ help, Tan-Chi Ho, who taught me lots of knowl-

edge of computer graphics and programming skills, and Tsung-Shian Huang, who gave me kind

assistance and advice. I want to express my gratitude to all my colleagues and junior colleagues

in CGGM lab. Besides, I would like to thank Ceqblack, who helped me to understand and use

some mathematic formulas. Finally, I would like to thank my parents for their love and support.

iii

Contents

ᄔा i

Abstract ii

Acknowledgement iii

Content iv

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Contribution . 2

1.2 Organization of the Thesis . 3

2 Related Work 4

2.1 Progressively Improving Method . 4

2.2 Density-based Simplification . 5

2.3 Curve Extracting Method . 5

3 Research Method 7

3.1 Definition . 7

iv

3.2 Overview . 8

3.3 Input and Rendering . 8

3.4 Preprocessing . 10

3.5 Segmentation . 12

3.6 Stroke Translation . 13

3.7 Stroke Simplification . 15

3.7.1 Stroke Pairing . 15

3.7.2 Stroke Combination . 18

3.8 Discussion . 25

4 Results 30

4.1 Stroke Translation . 30

4.2 Experiment with Different Parameters . 32

4.3 Simplification Results and Comparison . 35

5 Conclusions 42

5.1 Summary . 42

5.2 Future Works . 43

Bibliography 45

v

List of Tables

4.1 Stroke numbers of different drawings. 40

4.2 Computation time of different drawings. 41

4.3 Parameters of the results. 41

vi

List of Figures

1.1 The process of making the digital art. 1

3.1 Overview. 8

3.2 Stroke rendering [Her02]. 10

3.3 Subdivision. 11

3.4 Segmentation. 13

3.5 Conditions of stroke combination [BTS05]. 15

3.6 Combination. 16

3.7 Combination of fork. 16

3.8 End point-stroke point pairs. 17

3.9 Error calculation between pe and po. 18

3.10 T junction. 19

3.11 V junction. 19

3.12 Example 1 of V junction. 19

3.13 Example 2 of V junction. 20

3.14 Stroke pair candidate without full overlap. 21

3.15 Problem of the order of combination. 22

3.16 Cases of combination. 23

3.17 Interpolation of Case A. 24

3.18 (a) l is not an ε-line. (b) l is an ε-line [BTS05]. 25

vii

3.19 ε-group [BTS05]. 26

3.20 (a) original strokes (b) bifurcation points [OK11]. 27

3.21 (a) natural skeleton (b) natural combination (c) final stroke clusters [OK11]. . . 28

3.22 Laplacian eigenmaps [OK11]. 28

3.23 Locally quadratic curve is fit to a fixed number of points. (a) The original point

xp, yp is projected parallel to the local coordinate frame. (b) Curve parameteri-

zation is computed after the point placements [OK11]. 28

4.1 Results of using Gaussian low-pass filter with different filter size. 31

4.2 Stroke translation results with different moving distance. 31

4.3 Results with different curvature limit. 32

4.4 Results with different filter size with stroke translation. 33

4.5 Results with different filter size without stroke translation. 33

4.6 Results with different stroke moving distance. 34

4.7 Results with different spatial error. 34

4.8 Results with different angular error. 35

4.9 Simplification results of lion. 36

4.10 Simplification results of woman. 36

4.11 Simplification results of passage. 37

4.12 Simplification results of Gandhi. 37

4.13 Simplification results of lamp. 38

4.14 Simplification result of bird. 39

4.15 Simplification result of hand. 39

4.16 Simplification result of house. 39

4.17 Simplification result of houses. 40

5.1 Problem of full overlap check. 43

viii

C H A P T E R 1

Introduction

The process of making the digital art usually contains three parts, the sketch, line-art and

coloring; as shown in Figure 1.1. The sketches are usually used to demonstrate the idea of

the whole picture. It can be drawn freely and quickly. Next, the artists must make the picture

“cleared”. They will draw the contour of the art carefully using the beautiful lines. Finally, they

color the line-art by using the base color to fill the line-art, and then adding the shadows and

details to finish the art.

The process of making the sketch to the line-art, however, could be very time consuming

because it is nearly impossible to draw a long beautiful stroke directly. To prevent the shiver

Figure 1.1: The process of making the digital art.

1

Introduction 1.1 Contribution 2

of hand, the stroke must be drawn in one breath. Artists usually draw many short beautiful

strokes and link them carefully, resulting in a complete and pretty single stroke. Drawing the

line according to sketches seems easy but it is very time-consuming. This motivates us to study

how to translate the sketch into line-art automatically. Although it is intuitive for human to

understand the shape from lots of discontinuous and disordered lines, it is very hard for the

computer. The goal of our study is to find out a method to simplify the sketch to a fewer strokes,

making the contours to be as long as possible and close to the artists’ instinct of linking the short

strokes and reducing the density of the hatchings.

Barla et al. proposed the concept of ε-line and ε group [BTS05]. The combined strokes

are restricted to the cases that they can not fold onto themselves. Shesh and Chen presented

an efficient and dynamic stroke simplification [SC08] based on the overlap of the stroke pairs.

However, most of the contour strokes of a sketch do not overlap others that much. Orbay and

Kara proposed a new method not only simplify the sketches but also beautify them [OK11].

Their focus is the process of contour strokes, not the hatching strokes. In previous work, too

many rules are usually given to restrict the strokes dealt with or the strokes are combined locally

regardless their global feature.

In this thesis, we provide a simple algorithm to simplify the strokes, especially for the sparse

strokes. We compute the features of strokes, such as tangent and curvature, then use a low-pass

filter to gather the sparse strokes together. Finally, we will find out the stroke pairs by the feature

of the strokes and combine the stroke pairs to obtain a simplified line-art.

1.1 Contribution

The contributions of our line simplification can be summarized as follows:

• Present a unified simplification framework for contours and hatching.

• Present a stroke simplification based on a low-pass filtering

2

Introduction 1.2 Organization of the Thesis 3

1.2 Organization of the Thesis

The following chapters are organized as follows. Chapter 2 gives a literature review and the

background knowledge. Chapter 3 introduces the details of preprocessing, segmentation, stroke

translation, stroke pairing and combination. Chapter 4 shows the experimental results of our

line simplification algorithm and comparisons to previous work [BTS05, SC08]. Finally, we

summarize our study and discuss the future work in Chapter 5.

3

C H A P T E R 2

Related Work

Several novel techniques have been proposed for the simplification of line-drawing. We

classify them into three groups: progressively improving method, density-based simplification,

and curve extracting method.

2.1 Progressively Improving Method

These systems simplify the strokes while users are drawing. New curves that the users just

add are used to modify the old curves. Baudelȷs design is based on patterns extracted from

the artists’ drawing and editing [Bau94]. It allows input with many strokes to modify a single

stroke. Igarashi et al. proposed a method to beautify the strokes one after another by considering

the geometric constraints among the curves [IMKT97]. They also provided multiple candidates

to avoid the ambiguity. Kara et al. used conceptual sketches to update the existing 3D template

models [KDS06]. They modified the points on the original models by using the attraction of the

points from the input curves.

A common problem of these methods is that the artists must give up their natural drawing

style, which could disrupt their idea of drawing.

4

Related Work 2.2 Density-based Simplification 5

2.2 Density-based Simplification

There are several studies that are based on density control of the line rendering. Preim

and Strothotte sorted the lines with respect to the screen position, local density and line length

[PS95]. They cut down the strokes according to this order. Deussen and Strothotte proposed

a method for drawing the trees [DS00]. They used the depth information of a tree model to

simplify the foliage. Praun et al. created Level-of-Detail (LOD) for the hatching [PHWF01].

They constructed a sequence of mipmapped hatch images corresponding to different tones, col-

lectively called a “tonal art map”. They used the textures of hatching which fit the user defined

tones. Wilson and Ma created the complexity map of the screen image. They could render

the 3D model in different style such as silhouette or hatching [WM04]. Grabli et al. also cre-

ated a density map [GDS04]. They used the density map and other information selected from

the 3D scene (silhouettes, depth, etc.) to evaluate the significance of the lines and delete the

least significant lines. Cole et al. used a “priority buffer” to determine the significant of lines

[CDF+06].

These methods only reduce the existing lines and do not add the new lines, which are not

suitable for the sketch drawn by the artists. Because the artists usually use many short lines to

form a long line.

2.3 Curve Extracting Method

Many techniques for drawing simplification have been proposed to extract the geometric

curves from completed sketches. Saund extracted the arcs from the curve using “curve element

tokens” [Sau92] and then used the least-squares arc to fit the new curve. Their results, however,

are too limited due to the presentation of arcs. Rosin proposed three aspects to group the strokes:

continuation, parallelism and proximity, but they did not provide good experiments [Ros94].

Barla et al. used the concept of “ε-lines” and “ε-group” to simplify the line-drawings [BTS05].

However, the ε-line can not fold onto itself, and hence is not applicable to the folding or self-

5

Related Work 2.3 Curve Extracting Method 6

intersecting curves. They used the proximity of the curves as the constraint to combine the

curves. Pusch et al. divided the curve into small rectangular regions until the region can only

be presented by a single curve [PSNW07]. Later, they linked the small boxes to get new curves.

They could not process the self-intersecting curves. Shesh and Chen used the information of the

overlap, parallelism, and proximity of the strokes to combine the strokes [SC08]. Their concept

of overlaping can be weak because the contour curves may not overlap that much. Orbay and

Kara proposed a new method not only simplify the sketches but also beautify them [OK11].

They used trainable stroke clustering which use the neural network takes the input of the feature

extracted from the stroke then decided whether the two strokes should group together. Their

feature contains three parts: continuation, parallelism and proximity. They focus on the contour

of sketches and did not mention the hatching.

6

C H A P T E R 3

Research Method

In this chapter, we will introduce the concepts of input and rendering, preprocessing, seg-

mentation, stroke translation and stroke simplification. The stroke simplification includes point

pairs finding and stroke pairs finding and the combination of stroke pairs. We discuss and com-

pare the different approaches at last.

3.1 Definition

We define the line drawing art L as a set of strokes in two-dimensional space. A stroke

l is a continuous path which represented by a sequence of points p1, p2,p3, ..., pn, where n is

the number of the points and n ≥ 2. p = (px,py) is the point on the stroke, containing three

attributes: radius rp, tangent t = (tx, ty) and curvature κp. px, py, rp, tx, ty, κp are all real

numbers. In addition, there are no neighbors with same position (pi ̸= pi+1) and radius. The

position and radius vary smoothly between the points. The line segment pi,pi+1 is the line

between two neighboring points of the same stroke, and the ∥pipi+1∥ is the length of all its line

segment. The length of a stroke is the sum of the length of the line segments, denoted by llength.

7

Research Method 3.2 Overview 8

Figure 3.1: Overview.

3.2 Overview

Our thesis provides a simple algorithm to simplify the strokes. First, we calculate the at-

tributes of the stroke’s points, such as tangent and curvature. Then we segment the strokes that

are too zigzag or winding, hence we truncate the points with large curvature. In the next step,

we use a low-pass filter, such as Gaussian kernel to move the sparse or overwriting strokes more

closer such that we can simplify them with a shorter distance tolerance. Then we find out the

end point-stroke point pairs and stroke pairs by using the tangent and position of the strokes.

Finally, we combine the stroke pairs and obtain a simplified line drawing art.

3.3 Input and Rendering

Our system accepts three types of the input strokes. First, read predefined input file. The

file defines a stroke starting with a symbol “*”, followed by a line containing the attributes of

the stroke. Then, the points are defined in the following lines, each starts with a character “P”,

and positions (px, py) and the radius r. For example, the file

8

Research Method 3.3 Input and Rendering 9

∗

2

P 177 366 1

P 172 369 1

P 172 374 1

∗

2

P 175 352 1

P 172 354 1

defines two strokes. The first stroke has three points (177, 366), (172, 369), (172, 374) and the

second stroke has two points (175, 352), (172, 354). The radiuses of all points are 1.

The second type of input is the strokes given by the user using the mouse. The user can input

the stroke radius ruser and draw on the screen. When user clicks the left button of the mouse,

the system starts to record points of the mouse’s path. When the user releases the left button,

the stroke will be created if the point set contains at least two points.

Last, the user can use the tablet to draw the strokes. The user draws on the screen with a

pressure-sensitive pen. When the user put the pen-point on the tablet, the system will start to

record the points on the path. After each little time period, our system will record the point

according to the pen-point’s position and pressure. The radius r = fpen
ffull

ruser, where fpen is the

pressure of the pen-point and ffull is max pressure allowed for the tablet. For examples, ffull

for WACOM Intuos seriesris 1024. When the user pulls up the pen, the stroke will be created

if the point set contains at least two points.

The system can also delete the last stroke or save all strokes to the file.

We render the stroke by using Hertzmann’s method [Her02] as follows:

1. Compute the tangent u at each point by using ui = (uxi, uyi) = pi+1 − pi−1 and u1 =

p2 − p1 and un = pn − pn−1. Notice that u is used only for the rendering.

2. Compute stroke normal directions as ni = (nxi,nyi) = (uyi,−uxi)/∥ui∥.

9

Research Method 3.4 Preprocessing 10

Figure 3.2: Stroke rendering [Her02].

3. Compute the boundary points of the stroke by using the radius r along the normal direction

of the stroke. The points are ai = pi + rni and ai = pi − rni

4. Tesselate the stroke as shown in Figure 3.2.

5. Add circular caps for end points as triangle fans.

6. Render the triangles.

3.4 Preprocessing

Before stroke simplification, we need to check the drawing range. If the drawing was drawn

out of the viewport, we need to normalize the line drawing into the viewport because we will

render the drawing to the texture and do the stroke translation later. Suppose the viewport size

is bwindowsize. We will translate the strokes later so we make it blank at the rim of the viewport.

Let rim size be δtranslation which is the limited offset of stroke translation distance for the next

step. To transform the point (pix, piy) on the line drawing to a relative position (pnewx,pnewy)

within the viewport, we do the following

pnewx = pix ·XYscaling +Xtranslation, (3.1)

pnewy = piy ·XYscaling + Ytranslation, (3.2)

10

Research Method 3.4 Preprocessing 11

Figure 3.3: Subdivision.

since
pnewx − δtranslation

pix −Xmin

=
pnewy − δtranslation

piy − Ymin

= XYscaling (3.3)

where

Xmin = min{pix|pix ∈ l, l ∈ L} (3.4)

Ymin = min{piy|piy ∈ l, l ∈ L} (3.5)

Xmax = max{pix|pix ∈ l, l ∈ L} (3.6)

Ymax = max{piy|piy ∈ l, l ∈ L} (3.7)

Xscaling =
bwindowsize − 2 · δtranslation

Xmax −Xmin

(3.8)

Yscaling =
bwindowsize − 2 · δtranslation

Ymax − Ymin

(3.9)

XYscaling = min(Xscaling, Yscaling, 1) (3.10)

Xtranslation = −XYscaling ·Xmin + δtranslation (3.11)

Ytranslation = −XYscaling · Ymin + δtranslation. (3.12)

If the input points are too few or too sparse, we need to do the subdivision. It allows us

to compute the distance between the strokes by calculating the distance between points of the

strokes. We did not use the curve fitting or regular sampling because we do not have the paramet-

ric form of the strokes and we want to make it simple. To do the subdivision, we first calculate

the distance between the neighboring points pi and pi+1 and insert a new point between pi and

pi+1 if the distance is larger then a threshold δsubdivision. The newly added point pnew is the

midpoint of pi and pi+1.

11

Research Method 3.5 Segmentation 12

The subdivision is recursively applied to pi and pnew, and pnew and pi+1. The subdivision

stop when the errors of all line segments are smaller than the δsubdivision. We set δsubdivision = 5

for all of the experiments in Chapter 4.

In the next step, we compute the tangent t and curvature κ for each point. Because the input

may be influenced by the jiggling of the hand, we use the offset to get the reference point before

and behind for the point we want to compute. The tangent and curvature of point pi are defined

as

ti = (p+i − p−i)/∥p+i − p−i ∥ (3.13)

where

p−i =

{ p1, for i 6 Offset1 (3.14)

pi−Offset1, for i > Offset1 (3.15)

p+i =

{ pi+Offset1, for i < n−Offset1 (3.16)

pn, for i ≥ n−Offset1 (3.17)

κi =
2 · t−i × t+i

∥t−i ∥+ ∥t+i ∥+ ∥t−i + t+i ∥
(3.18)

where

t−i =

{ pi − p1, for i 6 Offset2 (3.19)

pi − pi−Offset2, for i > Offset2 (3.20)

t+i =

{ pi+Offset2 − pi, for i < n−Offset2 (3.21)

pn − pi, for i ≥ n−Offset2. (3.22)
We set Offset1 = 5 and Offset2 = 10 in practice.

3.5 Segmentation

The winding and zigzag stroke could make it hard to be combined. So this kind of stroke

need to be segmented into several new strokes. We have found out that the curvature will be

large at the bent point of a stroke. Apparently, we need to cut the stroke at the points of high

12

Research Method 3.6 Stroke Translation 13

Figure 3.4: Segmentation.

curvature. However, if we just separate a stroke at the point of the largest curvature, the end

points’ tangents are still can not present the alignment of the stroke well. It will still cause the

wrong combination of the strokes. So we cut out all of the parts with large curvatures, i.e., we

remove the points if κ > δcurvature for a user-specified δcurvature.

We did not consider the continuity of the strokes after they are segmented because we think

it is not important for the contours or hatchings. However, it is a very interesting question of

whether we need to link them after segmentation or not.

3.6 Stroke Translation

When artists want to express a thick stroke, they will draw many strokes at the same place

to present the thickness. However, it will cause us hard to combine the stroke because the

distance between stroke is one of the important properties for stroke combination. Sometimes,

the strokes are just too sparse or overwriting. No matter what reason is, we need a method to

move the strokes to the center of the artists’ expectation. At least, we need to move these strokes

as close as possible.

We have tried the Moving Least Squares (MLS) method but failed. MLS is a point based

translation method. However, if we do not make sure each group of points can only be presented

by a stroke, the points from other strokes will influence the results. If we just do the MLS after

13

Research Method 3.6 Stroke Translation 14

we get two strokes to combine, the results are still not good enough since the two strokes are not

enough to gather the strokes to the center as we wish. Because we may not find out the center

of final long stroke from these two strokes.

At last, we use a very simple method, low-pass filter to locate where the center of the strokes

is. First, we draw all the strokes to a textureT and apply the low-pass filter to this texture. We use

Gaussian kernel and standard deviationσ is calculated by the filter size δf . For e−
(δf /2)2·2

2σ2 < 0.05,

we need to set σ2 > −1
4
δ2f · ln(0.05).

The filter result of pixel p is

w(p, σ) =
∫
q∈T

T (q)G(p, q, σ)dq (3.23)

where T (q) is the value of texture T at pixel q and G(p, q, σ) is the Gaussian kernel

G(p, q, σ) =
1

2πσ2
e−

∥
−→pq∥2

2σ2 , (3.24)

where δf
2
≥ px − qx ≥ − δf

2
and δf

2
≥ py − qy ≥ − δf

2
.

We use the filter result as the weight and calculate the sum of the weight the points for each

stroke l,

wl =
∑
p∈l

w(p, σ). (3.25)

Then, we need to find out the offset d = (dx,dy) to make the stroke with the highest weight

so we give the limited offset to the x and y to all points of the stroke and calculate all cases in this

small square area, where δtranslation ≥ dx ≥ −δtranslation and δtranslation ≥ dy ≥ −δtranslation.

δtranslation is the limited offset of stroke moving distance. The modified weight is

wl+d =
n∑

i=1

w(p+ d, σ). (3.26)

We will translate the stroke to the position with the highest weight by the offset dmax where

dmax = max(wl+d). (3.27)

We translate points of the strokewith the same offset instead ofmove the points with different

offsets since we want to preserve the tangent of the line segments of the strokes. The stroke’s

14

Research Method 3.7 Stroke Simplification 15

Figure 3.5: Conditions of stroke combination [BTS05].

new point positions are calculated as followed:

lnew = l + dmax. (3.28)

3.7 Stroke Simplification

There are many methods to pair and combine the strokes. The main differences are in the

processing units and the conditions to pair the strokes. The processing units can be points or

line segments. In this section, we will discuss how to pair the strokes in 3.7.1 and the method

of stroke combination in 3.7.2.

3.7.1 Stroke Pairing

The three papers discussed in the related work section use different methods. Barla et al.

[BTS05] used the definition of the ε-line to pair the strokes. They conclude that there are only 5

cases to pair the ε-line as shown in Figure 3.5(b) and Figure 3.5(c). They calculate the distances

between strokes and the end of the strokes but did not mention that the unit used is point or line

segment. Shesh and Chen [SC08] used points to pair the strokes. They find out every point pairs

of two strokes. They pair two strokes if the percentage of the point pairs between two strokes

is high. Orbay and Kara [OK11] found out the stroke pair by finding the closest points to end

points then use the attributes of these points to calculate the feature of stroke pair. However,

they use neural network to determine the stroke pairs at last.

We do not use the stroke overlap percentage as Shesh and Chen [SC08] did because that in

most of the cases, especially for the contours, the overlap percentage does not mean a lot. In the

15

Research Method 3.7 Stroke Simplification 16

Figure 3.6: Combination.

Figure 3.7: Combination of fork.

extreme case, they will overlap only at the end point of the strokes as shown in Figure 3.6. We

think that the continuity [OK11] is more important for the contour case.

We believe that the first method - “the combination only occurs at the end points” is true, but

we ignore the combination case as in Figure 3.5(c) because the real cases are more complicated.

In most cases, the strokes will combine to strange closed strokes instead of a beautiful circle.

Moreover, once the stroke is closed, it can only wait other stroke to fully overlap with it and it

can not link out again. In other word, it will be harder to find the stroke pair.

We choose the first method to pair the strokes, but there is a problem - “the fork cases are

very complicated too.” Figure 3.5(a) is the fork case that we must avoid. But we may want to

combine the strokes in Figure 3.7.

We have tried two methods but failed. First, we defined the line segments as “head”, “mid-

16

Research Method 3.7 Stroke Simplification 17

Figure 3.8: End point-stroke point pairs.

dle” or “end” by the length of the stroke and reject the line segment pairs with “middle” to

“middle.” We also tried another method to check only a limited percentage of the points near

the end point with other strokes’ line segments. The second method may be better but it is

time-consuming with no outstanding result.

So we only check the error between the end points of a stroke and the points of the other

stroke. For example, Figure 3.8 shows that l1’s end points can find a point pair from l2 and l2’s

end points can find two point pairs from l1.

Although themethod of P. L. Rosin [Ros94] did not present good results, they brought out the

concept of the rules for simplifying the strokes. They have mentioned about the Gestalt school

of psychology which studied the grouping of sensory. The following papers use this concept a

lot. We also use the proximity and parallelism for our simplification.

The proximity is the spatial error between the strokes. We can also call it the distance be-

tween two strokes. Several measures have been proposed, the maximum distance [BTS05],

the minimum distance [OK11], or point distances [SC08]. We calculate the distance between

end points of a stroke and the points of the other strokes. There are four end points need to be

checked between two strokes. So there are at most four pairs between two strokes. The error

Es is calculated by an end point pe and a point from other strokes po

17

Research Method 3.7 Stroke Simplification 18

Figure 3.9: Error calculation between pe and po.

Es = ∥−−→pepo∥. (3.29)

The parallelism is the angular error between the strokes. The error Ea is calculated by the

tangent of an end point te and the tangent of another stroke’s point to

Ea = te · to, (3.30)

where te and to are all unit vectors.

The user can set the threshold of the spatial and angular error δs and δa. Then we will record

the stroke pair if there are more than two end point-stroke point pairs ray traced two strokes. We

can not count the pair if there is only one pair between two strokes. It means that the strokes are

arranged as a T junction as in Figure 3.10. They can not be combined to a single stroke. The

end point-stroke point pair should record the stroke indexes and the overlap stroke point’s index

for the combination step.

3.7.2 Stroke Combination

Now, we know all the candidates for stroke pairs. We need to check if the stroke pair can

be combined together or not. The additional conditions about the order of combination and the

grouping of the strokes are important.

18

Research Method 3.7 Stroke Simplification 19

Figure 3.10: T junction.

Figure 3.11: V junction.

Figure 3.12: Example 1 of V junction.

19

Research Method 3.7 Stroke Simplification 20

Figure 3.13: Example 2 of V junction.

The first additional condition is to prevent the case as shown in Figure 3.11. If the strokes

only have two end point-stroke point pairs, we need to check their orientation. We notify the

stroke 1’s tangent of overlapped point tl1 and tl2 for stroke 2. We can have tl1 · tl2 < 0 if stroke

1’s head is paired with stroke 2’s head or stroke 1’s tail is paired with stroke 2’s tail as shown in

Figure 3.12. So as tl1 · tl2 > 0 for stroke 1’s head pair with stroke 2’s tail or stroke 1’s tail pair

with stroke 2’s head as shown in Figure 3.13. In the Figures, the head means the start point of

the stroke, denoted as p1. The tail means the last point of the stroke, denoted as pn.

The second additional condition is to prevent the case as shown in Figure 3.14. We need to

check if the strokes are fully overlap to each other at the overlap area. The point pairs define two

sub-strokes of overlap area as the red part of the Figure 3.14. We need to make sure the distance

between sub-strokes is smaller than the spatial error. Actually, we need to find a sequence of

corresponding relationship between two strokes’ points in the overlap area. However, we just

simply check if all of the points can find a corresponding point on another stroke within a user-

specified distance δs.

The order of the combination should be important too. Because after the combination, the

stroke may change and can not be combined with another stroke pair candidate. One case is that

it should be related to the errorEs andEa. Another case is that it should be related to the weight

texture T. Due to the difficulty of the error update during the combination of the first case, we

choose the second case.

20

Research Method 3.7 Stroke Simplification 21

Figure 3.14: Stroke pair candidate without full overlap.

According to the drawing principles summarized by Fu et al. [FZLM11], artists mostly draw

from rough to fine. They start with a rough sketch and then gradually refine the drawing strokes.

So we prefer to delete the short and minor strokes first. That is, the strokes with small weights.

We calculate the weight sums of the points on a stroke l and average it with the length of the

stroke llength as followed:

w̄l =
1

llength

∑
∀p∈l

w(p, σ). (3.31)

For a stroke pair, we will choose the smaller value of the strokes to represent the weight of the

stroke pair. And we sort the strokes in increasing order of the weight. Then we can combine the

strokes with small weight first.

The grouping of the strokes can be separated into two problems. First, we need to decide

whether we need the classification of the contour and hatching and how to combine the contour

and hatching. Second, the strokes should be combined by “two to one” or “many to one” or

“many to many”.

At first, we want to use percentage of overlapping to classify the contour and hatching but

failed. We observed that the hatchings overlap a lot so we classify the strokes with high per-

centage of overlapping as hatching and that with low percentage of overlapping as contour. A

stroke in the gray area between the two gaps will be classified by the distance and add it into

the closest group. There is another condition for the hatching group. The hatching group must

have three or more strokes, otherwise it is a contour group.

In this failed method, we combine the hatching group by deleting some of the strokes in the

group. Our goal is to decrease the density of the hatching group. But we use a simple method.

For each pair of hatching strokes, we choose one of the strokes to be the new stroke. The parent

21

Research Method 3.7 Stroke Simplification 22

Figure 3.15: Problem of the order of combination.

pointer will point to the new stroke too. If one of the stroke l1 has been simplified and another

stroke l2 is not simplified, l2’s parent pointer will point to the l1’s parent. Therefore, there will

be only under half of the strokes left.

Although we believe that the contour and hatching need to be processed differently, we find

out that our classification of the contour and hatching is still very weak. Especially for the short

hatchings, we can not calculate the percentage of overlapping precisely. Finally, we give up this

classification method.

The next problem is combining the strokes by “two to one” or “many to one” or “many to

many”. “Two to one” is the easiest way to combine the stroke. But the order of the combination

will influence the result. After some combinations, some of the strokes may not be combined

as in Figure 3.15. At first, l1 and l2 can be combined together and l2 and l3 can be combined

together too. After the combination of l1 and l2, l3 can not be combined with the new stroke.

“Many to one” can be considered the best path for all the strokes in the group. But it is hard

to guarantee that there should be only one stroke after combination. Orbay and Kara [OK11]

used lots of steps to eliminate this problem. Although they give many successive cases, we are

still not sure if they will fail in other cases. “Many to many” also can be considered the path for

all the strokes in the group. The problem is to decide the start and the end of the stroke. In the

worst case, the number of the strokes may increase.

We choose the “two to one” method to combine the strokes because it is the easy and steady.

22

Research Method 3.7 Stroke Simplification 23

Figure 3.16: Cases of combination.

According to the order of stroke pair as we mentioned above, we will combine the stroke pairs

one by one. For each stroke pair, we need to check their end point-stroke point pairs again. By

the point pairs, we will classify them into three cases as in Figure 3.16. In addition, we still need

to check the orientation and distance of the overlapping area as we mentioned above.

Case A is that the two strokes only have two point pairs and the end points belong to dif-

ferent stroke as shown in Figure 3.16(a). We will get two sequences of the points in the over-

lap area. The sequence of points are the end point to the point of recorded index. Then we

will interpolate the points of two sequences. For two sequences P = {p1,p2,p3, ..., pn} and

Q = {q1,q2, q3, ..., qm}, we will choose the sequences with more points. For example, if

n > m, we choose P as a base and for each pi ∈ P we find the closest point qpi = qj on Q and

interpolate them as shown in Figure 3.17. The point positions and radiuses of the new stroke in

the overlapping area are calculated by

pnewi =
n− i

n
pi +

i

n
qpi , (3.32)

where 0 ≤ i ≤ n − 1. It is also a simplified method because we did not derive the sequence

of point pair for the P and Q. The points outside of overlapping area are still at the position as

23

Research Method 3.7 Stroke Simplification 24

Figure 3.17: Interpolation of Case A.

they are on the old strokes. If the radius r < 1, we set r = 1 to prevent the stroke from too thin

for drawing. We need to subdivide the stroke and calculate the tangent for the new stroke for

the next stroke combination.

The radius should be related to the old positions before stroke translation and every point

should record the farthest combined point during the combination. And the radius should vary

smoothly between points. However, we did not finish this part. We just interpolate the radius.

In Case B (Figure 3.16(b)), we only choose the stroke which is not fully overlapped to be the

new stroke. In Case C (Figure 3.16(c)), we are free to choose any one of the strokes as the new

stroke. After the combination of each stroke pair, we will change the parent pointer to point the

new stroke. We will update the average weight w̄l for the stroke pairs after each combination

and then sort them in increasing order and choose the first pair in the list for pair combination.

We repeat this process until all of the stroke pairs are processed. When all stroke pair candidates

are processed, we complete the simplification.

24

Research Method 3.8 Discussion 25

Figure 3.18: (a) l is not an ε-line. (b) l is an ε-line [BTS05].

3.8 Discussion

There are several previous work discussing line drawing simplification in the context of

Non-Photorealistic Rendering (NPR). We will discuss the differences with their work in this

section.

Barla et al. proposed the concept of ε-line [BTS05]. They cluster the original curves into

consistent groups. Each group can be replaced by an ε-line. An ε-line is a line that does not

fold onto itself at the scale ε (see Figure 3.18). Each point of the ε-line has no point along the

normal at a distance less than ε that also belongs to the same line.

After they split the initial lines into ε-lines, they will find the pair of ε-lines. They have

observed that only five kinds of combination for the paths can be combined as a new line (see

Figure 3.5). The pair of ε-lines will be clustered as ε-groups.

An ε-group is a group of ε-lines that can be converted to an ε-line at the scale of ε, as shown

in Figure 3.19. They will calculate the error for each pair of ε-lines. It is defined by the spatial

error and other attributes of the lines such as color. The constraint will be set in order to forbid

clustering if the line attributes are too different. They build a graph, each node represents an

ε-line and each edge represents the error between two ε-lines. Then, they use a greedy algorithm

to choose the edge of the smallest error at each clustering step. The algorithm stops when no

more clusters can be created. In practice, they use two standards, namely pre-defined strategies

to choose the new line. The average line interpolates all the original line in the cluster for the

25

Research Method 3.8 Discussion 26

Figure 3.19: ε-group [BTS05].

contour. The most significant line is one of the original lines chosen according to an application-

defined priority measure (base on length, nature...) for the hatching.

Shesh and Chen presented an efficient and dynamic line simplification [SC08]. They define

a parameter δ as the maximum distance between two strokes and a parameter ρ as the percentage

of overlapping between two strokes. They also define a value tomeasure how “near”, how “local

parallel” and how similar in the color of stroke pairs. They use an s-spanner [GGN06] to find the

point pairing. They build the spanner by 2D points on the screen. Given the distance δ, querying

the s-spanner will return all pairs of points that are within a distance δ. Then they will built two

tables C(p, S) and Q(S, T) from all the pairs returned by the spanner. C(p, S) maintains the

“closest” points in every stroke S to a given point p. Q(S, T)maintains the geometric likelihood

that stroke S and T will be paired together. They pair stroke S with a stroke T if ρ percent of

the points of S are paired to some points in T with comparable corresponding local gradient.

However, if multiple strokes have sufficient overlapping with a single stroke S, only the first

stroke (in the order of the time they were created) will be paired with the stroke S during that

frame. After they pair the strokes, they will parameterize [Gos00] and sort [KDMF03] the points

in S and T into a common domain. And use Rational Gaussian Curve [Gos95] for interpolation.

However, they encountered a problem when some of the lines are drawn too long and winding.

So they segment such strokes by monitoring abrupt curvature changes if need.

Orbay and Kara proposed a new method not only simplifies the sketches but also beautifies

them [OK11]. They used a trainable stroke clustering which uses the neural network that first

takes the input of the feature extracted from the stroke and then decide whether the two strokes

should be grouped together. Their feature contains three parts: remoteness (shortest distance

26

Research Method 3.8 Discussion 27

Figure 3.20: (a) original strokes (b) bifurcation points [OK11].

between two strokes), misalignment (tangent vectors at the points of minimum distance) and

discontinuity (the likelihood of one stroke naturally continuing another one). After the neural

network finished the bottom-up stroke fusion, they will do the top-down stroke group fission.

They split the curves by calculating the minimum spanning tree (MST) [Kru56, Pri57] of the

point set. Only three significant branches will be considered if the point has more than three

branches. The bifurcation points (see Figure 3.20) are identified as those having a BLmin

BLmax
> ε,

whereBLmin andBLmax are the minimum andmaximum cumulative branch lengths emanating

from the point, and ε is the threshold 0.05 in their implementation. For n bifurcation points, this

results in 1 + 2n distinct point groups. The next step is merging the selective branches. For

each point group, they identify the stroke that contributes the most number of points to that

group (or multiple if tie) as illustrated in Figure 3.21(a). They use these strokes as the natural

“skeleton” and use the tangents of these strokes’ end point to decide the natural combination

among the branches (see Figure 3.21(b)). In the end, for n number of bifurcation points, 1 + n

final stroke clusters are generated (see Figure 3.21(c)). At this point, each cluster is just a set

of unorganized coordinate points. They reorder the point by Laplacian Eigenmaps [BN03] as

shown in Figure 3.22. Last, they beautify the reordered points by curve fitting and smoothing.

They use a technique similar to moving least squares [Lee00]. Finally, the parameterization will

be calculated (see Figure 3.23). The user may select to fit a cubic B-spline to the entire point

set when desired. They employ a modified error function that incorporates the stylus pressure.

27

Research Method 3.8 Discussion 28

Figure 3.21: (a) natural skeleton (b) natural combination (c) final stroke clusters [OK11].

Figure 3.22: Laplacian eigenmaps [OK11].

Figure 3.23: Locally quadratic curve is fit to a fixed number of points. (a) The original point xp,

yp is projected parallel to the local coordinate frame. (b) Curve parameterization is computed

after the point placements [OK11].

28

Research Method 3.8 Discussion 29

The only thing in common is that every method uses the feature of the strokes to find the

stroke pairs. The spatial error, angular error and the continuity are mostly used. Some of the

methods use other attributes such as color. The detail calculations are different. For stroke

combination, every method uses different ways of combining the strokes.

However, the ε-line can not fold onto itself. The method of Barla et al.[BTS05] can not deal

with the folding or self-intersecting curves. Shesh and Chen’s concept of overlapping [SC08]

can be weak because the contour curves may not overlap that much. For the method of Orbay

and Kara [OK11], they focus on the contour of sketches and did not mention the hatching. They

use the neutral network, which need the training and their “many to many” combination method

relies on the stability of the guarantee that there should be only one stroke after the combination.

29

C H A P T E R 4

Results

In this chapter, we present the experiment results of the stroke simplification. We present

some experimental results with different parameters. Then we show the final results and com-

pare the results of our algorithm to the results of the algorithm proposed by Barla et al. [BTS05]

and Shesh and Chen [SC08]. We also list the computation time of the stroke translation, the

stroke pairing and combination, and the total time.

All experiments are performed on Intel Core CPU i5-3450 3.1GHz × 4 cores with 8G ram,

using NVIDIA Geforce GTX 560 graphics hardware. The operation system is Windows 7 x64.

All results are rendered in 512 × 512 resolution.

4.1 Stroke Translation

There are two steps for the stroke translation. First, draw all of the strokes to the texture

and do the low-pass filter using Gaussian kernel. Users can define the size of the filter. The

size should cover the thickest part of the overwriting strokes. The results of using the filter size

δf = 5, 10, and 15 are shown in Figure 4.1. In Figure 4.1(a), the center of the feature strokes is

not lighter than the other pixels. Use δf = 10 or 15 will be better.

30

Results 4.1 Stroke Translation 31

(a) δf = 5 (b) δf = 10 (c) δf = 15

Figure 4.1: Results of using Gaussian low-pass filter with different filter size.

(a) δtranslation = 5 (b) δtranslation = 10 (c) δtranslation = 15

Figure 4.2: Stroke translation results with different moving distance.

We choose δf = 10 to continue the next step. The second step is to translate the strokes. We

move the strokes to the position of the highest weight in the limited range. The limited range

should cover the thickest part of the overwriting strokes too. The limited offset of stroke moving

distance with δtranslation = 5, 10, and 15 will produce the results shown in Figure 4.2. In Figure

4.2(c), strokes are moved too far. Use δtranslation = 5 or 10 will be better.

With stroke translation, we can centralize the strokes and we define smaller and more ap-

propriate spatial error δs for our final results.

31

Results 4.2 Experiment with Different Parameters 32

(a) δcurvature = 1 (b) δcurvature = 3 (c) δcurvature = 10

Figure 4.3: Results with different curvature limit.

4.2 Experiment with Different Parameters

The user-defined parameters are curvature limit δcurvature, filter size δf , stroke moving dis-

tance δtranslation, spatial error δs, and angular error δa. Each of them has influence on the results.

The curvature limit δcurvature influences on how many strokes we will have after segmenta-

tion. We want to segment the strokes if they are too zigzag or winding, but the best δcurvature

differs from model to model.

As shown in Figure 4.3, a too small δcurvature will result in too many shattered strokes, on

the other hand, a too big δcurvature can not segment the zigzag strokes as desired.

The filter size δf determines the weight map of the result. Not only the stroke translation but

also the combination order will be based on the weight map. We use two models to demonstrate

the results. One model has stroke translation and one has not. The results of using δf = 5, 7,

and 10 are shown in Figures 4.4 and 4.5. The results are very similar but still have some slight

differences.

An appropriate filter size should allow the center of the strokes obtain the highest weight.

It should blur the strokes to the thick stroke that the artists want to present. We can also see

that even without the stroke translation, the weight map for combination order still influence the

results.

32

Results 4.2 Experiment with Different Parameters 33

(a) δf = 5 (b) δf = 7 (c) δf = 10

Figure 4.4: Results with different filter size with stroke translation.

(a) δf = 5 (b) δf = 7 (c) δf = 10

Figure 4.5: Results with different filter size without stroke translation.

33

Results 4.2 Experiment with Different Parameters 34

(a) δtranslation = 0 (b) δtranslation = 10 (c) δtranslation = 15

Figure 4.6: Results with different stroke moving distance.

(a) δs = 5 (b) δs = 10 (c) δs = 15

Figure 4.7: Results with different spatial error.

The stroke moving distance δtranslation determines the effect of stroke translation. As we

mentioned before, a good stroke translation can allow us define a smaller and more appropriate

spatial error δs for the final results. We choose δtranslation = 0, 10, and 15 to demonstrate the

results as shown in Figure 4.6.

If the δtranslation is too small (see Figure 4.6(a)), we can not combine the strokes with small

δs. If the δtranslation is too big (see Figure 4.6(c)), the original line drawing will be destroyed as

Gandhi’s eyes. The stroke translation also avoid the new stroke to be attracted apart from the

center of thick stroke that the artists desire. We also can avoid the problem of combination order

as shown in Figure 3.15. We use this method to get the advantage of the combination method

of “many to one” or “many to many”. It is the most important part of our algorithm.

The spatial error δs is the maximum distance of the stroke combination after the stroke trans-

lation. The results using δs = 5, 10, and 15 pixels are shown in Figure 4.7.

A too small δs fails to combine strokes that are expected to be combined (see Figure 4.7(a)).

34

Results 4.3 Simplification Results and Comparison 35

(a) δa = 30 (b) δa = 60 (c) δa = 90

Figure 4.8: Results with different angular error.

A too big δs can combine too many strokes than necessary and destroys the drawing such as the

lion’s jaw (see Figure 4.7(c)).

The angular error δa is the maximum difference of the angle for the stroke combination. The

results using δa = 30, 60, and 90 degrees are shown in Figure 4.8. The δa should be around 30

degrees. Most of the artists will not draw two strokes having more than 30 degrees difference

and expect to link them together. However, with higher degree difference, we can combine more

strokes.

4.3 Simplification Results and Comparison

In this section, we compare our simplification results to the ones proposed by Barla et al.

[BTS05] and Shesh and Chen [SC08]. Barla et al. used the definition of ε-line to combine the

strokes. Shesh and Chen [SC08] found the point pairs and used the percentage of overlapping

to combine the strokes. We do not use the special definition nor the overlapping percentage

to justify if the strokes should be combined or not. Instead, we find the end point-stroke point

pairs to combine the strokes. Moreover, we use the filter result to centralize the strokes in some

overwriting cases, making us easier to combine the strokes. We do not use the attribute of the

color, neither.

In Figure 4.9, we do not compute the new radius by the points’ distance. So the stroke’s

35

Results 4.3 Simplification Results and Comparison 36

(a) Original (b) Our result (c) Result of Barla et al. [BTS05]

Figure 4.9: Simplification results of lion.

(a) Original (b) Our result (c) Result of Barla et al. [BTS05]

Figure 4.10: Simplification results of woman.

points’ radiuses remain the same as original. We obtain a better combination at the lion’s jaw

and front leg. With stroke translation, we can combine the fur and the stroke of the jaw better.

The strokes of the lionȷ s back are not combined well. We think it is due to the order of

combination.

In Figure 4.10, we do not use the stroke translation. It is because this drawing does not have

overwriting strokes. We get better combinations at left breast, left sleeve, the creases of the pants

and waist. However, the crease of the cloth near the stomach and armpit are a little strange. The

strokes are very close to each other but they are not combined. We think it is due to problems

on the full overlap check.

In Figure 4.11, we do not use the stroke translation, neither. The picture has color but Barla

et al. did not use the color attribute in their result. We obtain a better result for the house and

the grass. But some of the long lines break at some places on the river or the road in front of the

house. We think it is because the original strokes are too short and are combined based on case

36

Results 4.3 Simplification Results and Comparison 37

(a) Original (b) Our result (c) Part of the Result of Barla et al.

[BTS05]

Figure 4.11: Simplification results of passage.

(a) Original (b) Our result (c) Result of Shesh and Chen

[SC08]

Figure 4.12: Simplification results of Gandhi.

B or case C. So we delete some of the short strokes and make the space bigger than the spatial

error. The roof of the house still has some strokes. They should be combined together but they

are not.

In Figure 4.12, although we use stroke translation to gather the strokes, we encounter a

strange problem as we mentioned above. Even the strokes are very close to each other but they

are not combined together. We still obtain better results at the shoulder, the neck and the glasses.

But the contour of the head is not combined as expected.

In Figure 4.13, we use segmentation to segment the long zigzag strokes as Shesh and Chen

did. But we do not use the color attribute in the combination error. We use stroke translation to

move the hatching together. So we can get a clear result that does not have hatching everywhere.

However, the contour are still remained with too many strokes. It should be the problem that

we mentioned above and we are still trying to find why. Other test results are shown in Figures

37

Results 4.3 Simplification Results and Comparison 38

(a) Original (b) Our result (c) Result of Shesh and Chen

[SC08]

Figure 4.13: Simplification results of lamp.

4.14 to 4.17.

The original strokes number Noriginal and the number after segmentation Nsegmentation and

the final number Nfinal of the strokes are shown in Table 4.1.

The stroke translation time Tt, the stroke pairing and combination time Tc and the total time

Ttotal are shown in Table 4.2. Even if we do not do the stroke translation, we still need to draw

the strokes to the texture for computing the weight order of the stroke combination. With bigger

filter size, we also take more time to compute. And more strokes need more time to combine.

Finally, Table 4.3 shows the parameters we use for all of the testing results.

The experiments with different parameters use the same parameters as the final comparison

results except the given different parameters. For example, the experiments of δcurvature are the

lamps shown in Figure 4.3, and their parameters are the same as the final comparison results

shown in Figure 4.13. Only the parameters of δcurvature are different from Figures 4.3(a) to (c).

38

Results 4.3 Simplification Results and Comparison 39

(a) Original (b) Our result

Figure 4.14: Simplification result of bird.

(a) Original (b) Our result

Figure 4.15: Simplification result of hand.

(a) Original (b) Our result

Figure 4.16: Simplification result of house.

39

Results 4.3 Simplification Results and Comparison 40

(a) Original (b) Our result

Figure 4.17: Simplification result of houses.

Drawing Noriginal Nsegmentation Nfinal

Lion 103 105 25

Woman 321 321 65

Passage 532 532 183

Gandhi 205 285 79

Lamp 406 983 179

Bird 48 48 18

Hand 171 172 45

House 648 648 290

Houses 867 867 259

Table 4.1: Stroke numbers of different drawings.

40

Results 4.3 Simplification Results and Comparison 41

Drawing Tt (sec) Tc (sec) Ttotal (sec)

Lion 0.10 0.14 0.25

Woman 0.06 1.23 1.31

Passage 0.11 5.83 5.98

Gandhi 0.19 1.09 1.31

Lamp 0.53 30.31 30.90

Bird 0.08 0.00 0.08

Hand 0.02 0.04 0.07

House 0.08 0.17 0.26

Houses 0.03 0.87 0.90

Table 4.2: Computation time of different drawings.

Drawing δcurvature δf δtranslation δa δs

Lion 20.0 10 10.0 70.0 10.0

Woman 2.0 5 10.0 90.0 8.0

Passage 2.0 10 10.0 60.0 6.0

Gandhi 2.5 10 10.0 30.0 10.0

Lamp 3.0 10 13.0 30.0 10.0

Bird 32.0 10 5.0 30.0 8.0

Hand 22.0 5 5.0 90.0 8.0

House 12.0 10 5.0 60.0 5.0

Houses 32.0 5 5.0 30.0 11.0

Table 4.3: Parameters of the results.

41

C H A P T E R 5

Conclusions

We give a brief summary and conclusion of our stroke simplification algorithm in this chap-

ter. We also propose several directions of the future work.

5.1 Summary

We have proposed a novel algorithm to simplify the line drawing. We calculate the tangent

and curvature of the input strokes as stroke features. Then we segment the strokes based on the

curvature and produce the strokes that are easier to be combined. After segmentation, the end

points can have more appropriate tangent to present the orientation of the strokes. We apply the

stroke translation to centralize the strokes. We then draw the strokes to the texture and apply a

low-pass Gaussian filter. The strokes will be translated to the position of highest weight based

on a weight map of the filtering results.

Then we pair the strokes based on the end points’ position and tangent. We calculate the end

points’ spatial error and angular error with other stroke’s points. After checking the conditions

of combination, we pair and combine the strokes. The combination is ordered according to the

weight of the strokes. At each combination step, we only deal with two strokes. We combine the

42

Conclusions 5.2 Future Works 43

Figure 5.1: Problem of full overlap check.

pairs in an increasing order of the weight. By this simple algorithm, we can obtain a simplified

line drawing.

5.2 Future Works

The combination process seems lack of some conditions, since we can not combine the

strokes even if the strokes are very close to each other. Obviously, these phenomena are due to

the check of full overlapping between two strokes. If we neglect this limit, some of the results

will lose some strokes at strange place. But in the model “Gandhi”, combination can be done

better as shown in Figure 5.1. We are still finding the lacking conditions.

Although we can simplify the strokes with the proposed simple algorithm, we have to use

many user-defined parameters. The users need to try and error to get the best result. They need

to know the meaning of each parameter. We also have not found the best simplification order.

Furthermore, we still can not simplify the strokes locally. Last, too many strokes will result in

a very long computation time.

In the future, we need to solve the above three problems. We need to build a level-of-detail

(LOD) structure and reduce the parameters. It should be a graph in which the points are the

strokes and the edges are the error. We need to update the error after each stroke combination.

We need to find an easy and fast method for the error updating. We need to find the better order

43

Conclusions 44

of simplification. If the graph is built, this will be easy and just simplify from the smallest error

edge. With the density measure, we may control the local simplification. We can also find some

methods to reduce the computation time. We need to find the correct and faster method to find

the series of point pairs to combine the stroke pairs. The calculation of the radius of new stroke

is not finished. We have found the central of the thick stroke where the artists want but we did

not calculate the radius of the thick stroke. If we have a new method to classify the contour and

hatching, we may get the better results. We use the isotropic filter kernel for our simplification.

There are some papers discussed the anisotropic filter [KKD09], and it may produce the better

result if we use it.

There are many applications of the stroke simplification algorithm for line drawing. We can

apply them to the animation or storyboard. With a series of line drawings, we may find a better

way to simplify the strokes. There is another application. We can use the artist drew line-art to

guide the simplification of the sketch. We can use the technique such as stroke corresponding

[LCY+11]. Wemay use a database of line-art to simplify the sketch. We can learnmore about the

drawing style of artists and the style of the strokes. Moreover, the beautification and smoothing

of the stroke simplification can let the result be closer to the line-art.

44

Bibliography

[Bau94] T. Baudel. A mark-based interaction paradigm for free-hand drawing. In Proceed-

ings of the 7th Annual ACMSymposium onUser Interface Software and Technology,

pages 185–192, 1994.

[BN03] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and

data representation. Neural Computation, 15(6):1373–1396, 2003.

[BTS05] P. Barla, J. Thollot, and F. X. Sillion. Geometric clustering for line drawing simpli-

fication. In Proc. Eurographics Symp. Rendering, pages 183–192, 2005.

[CDF+06] F. Cole, D. DeCarlo, A. Finkelstein, K. Kin, K. Morley, and A. Santella. Directing

gaze in 3d models with stylized focus. In Eurographics Symposium on Rendering,

volume 2, 2006.

[DS00] O. Deussen and T. Strothotte. Computer-generated pen-and-ink illustration of trees.

In Proceedings of the 27th Annual Conference on Computer Graphics and Interac-

tive Techniques, pages 13–18, 2000.

[FZLM11] Hongbo Fu, Shizhe Zhou, Ligang Liu, and Niloy Mitra. Animated construction of

line drawings. ACMTrans. Graph. (Proceedings of ACM SIGGRAPHASIA), 30(6):

133, 2011.

[GDS04] S. Grabli, F. Durand, and F.X. Sillion. Density measure for line-drawing simplifi-

45

BIBLIOGRAPHY 46

cation. In Computer Graphics and Applications, 2004. PG 2004. Proceedings. 12th

Pacific Conference on, pages 309–318, 2004.

[GGN06] J. Gao, L.J. Guibas, and A. Nguyen. Deformable spanners and applications. Com-

putational Geometry, 35(1):2–19, 2006.

[Gos95] A.A. Goshtasby. Geometric modelling using rational gaussian curves and surfaces.

Computer-Aided Design, 27(5):363–375, 1995.

[Gos00] A.A. Goshtasby. Grouping and parameterizing irregularly spaced points for curve

fitting. ACM Transactions on Graphics, 19(3):185–203, 2000.

[Her02] A. Hertzmann. Stroke-based rendering. SIGGRAPH, 2002.

[IMKT97] T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka. Interactive beautification:

A technique for rapid geometric design. In Proceedings of the 10th Annual ACM

Symposium on User Interface Software and Technology, pages 105–114, 1997.

[KDMF03] R.D. Kalnins, P.L. Davidson, L. Markosian, and A. Finkelstein. Coherent stylized

silhouettes. ACM Transactions on Graphics, 22(3):856–861, 2003.

[KDS06] L.B. Kara, C.M. DȷEramo, and K. Shimada. Pen-based styling design of 3d ge-

ometry using concept sketches and template models. In Proceedings of the 2006

ACM Symposium Solid and Physical Modeling, volume 6, pages 149–160, 2006.

[KKD09] J.E. Kyprianidis, H. Kang, and J. Döllner. Image and video abstraction by

anisotropic kuwahara filtering. In Computer Graphics Forum, volume 28, pages

1955–1963, 2009.

[Kru56] J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman

problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

[LCY+11] Dongquan Liu, Quan Chen, Jun Yu, Huiqin Gu, Dacheng Tao, and Hock Soon Seah.

Stroke correspondence construction using manifold learning. Comput. Graph. Fo-

rum, 30(8):2194–2207, 2011.

46

BIBLIOGRAPHY 47

[Lee00] I.K. Lee. Curve reconstruction from unorganized points. Computer Aided Geomet-

ric Design, 17(2):161–177, 2000.

[OK11] G. Orbay and L.B. Kara. Beautification of design sketches using trainable stroke

clustering and curve fitting. Visualization and Computer Graphics, IEEE Transac-

tions on, 17(5):694–708, 2011.

[PHWF01] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-time hatching. In Pro-

ceedings of the 28th Annual Conference on Computer Graphics and Interactive

Techniques, page 581, 2001.

[Pri57] R.C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, 36(6):1389–1401, 1957.

[PS95] B. Preim and T. Strothotte. Tuning rendered line-drawings. In Proceedings of

Winter School in Computer Graphics–The third Central European Conference on

Computer Graphicsȷ95, pages 227–237, 1995.

[PSNW07] R. Pusch, F. Samavati, A. Nasri, and B. Wyvill. Improving the sketch-based inter-

face. The Visual Computer, 23(9):955–962, 2007.

[Ros94] P.L. Rosin. Grouping curved lines. In 5th British Machine Vision Conf, pages 265–

274, 1994.

[Sau92] E. Saund. Labeling of curvilinear structure across scales by token grouping. InCom-

puter Vision and Pattern Recognition, 1992. Proceedings CVPR’92., 1992 IEEE

Computer Society Conference on, pages 257–263, 1992.

[SC08] A. Shesh and B. Chen. Efficient and dynamic simplification of line drawings. Com-

puter Graphics Forum, 27(2):537–545, 2008.

[WM04] B. Wilson and K.L. Ma. Rendering complexity in computer-generated pen-and-

ink illustrations. In Proceedings of the 3rd International Symposium on Non-

photorealistic Animation and Rendering, pages 129–137, 2004.

47

	論文封面
	thesis

