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摘 要       

在延伸現有視覺監視系統至全面性交通監控的過程中，如何推斷多

攝影機間之交通狀況是一項非常重要的課題。在本論文中，我們提出

一個於非重疊攝影機間之機率式交通流量建模的有效方法。基於物體

於攝影機間移動時其移動時間會符合某總體模型之假設，並藉由連續

估計此模型之參數，我們可以推斷出在不可視區域中之動態交通狀況。

原則上如果我們知道攝影機間之移動物體的對應關係，則移動時間的

總體模型的參數即可被估計出來。然而尋找物體間之對應關係在電腦

視覺領域中仍然是一個懸而未決的問題。在本文中，我們將非重疊攝

影機間物體對應關係之建立與總體移動時間模型之參數估計視為一個

統整性的最佳化問題，並利用期望值最大化演算法來反覆尋找最佳的

物體對應關係以及總體模型之參數解。在實際場景中的實驗結果證明

了我們的方法能有效地估計出總體移動時間模型之參數並準確推斷出

動態的交通情況。 

 

 

關鍵字：交通流量，非重疊攝影機  
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ABSTRACT 

The ability to infer the traffic status across multiple cameras allows the 

extended use of existing vision-based surveillance systems to global traffic 

monitoring. In this paper, we propose an efficient algorithm to probabilistically 

model the dynamic traffic flow between non-overlapping FOVs. By assuming 

the transition time of object moving across cameras follows a global model and 

consecutively estimate the model parameters, we may infer the time-varying 

traffic status in the unseen region. In principle, the parameters of the transition 

time model can be estimated if the object correspondence between 

non-overlapping FOVs is known. However, object correspondence itself is still 

an unsolved problem in computer vision. In this paper, we model object 

correspondence and the parameters estimation as a unified problem in a 

proposed Expectation-Maximization (EM) based framework. By treating object 

correspondence as a latent random variable, the proposed framework can 

iteratively search for the optimal object correspondence and model parameters. 

Experimental results on real data show the accuracy of dynamic model 

estimation and the beneficial inference of the traffic status. 

Keywords: Traffic flow, Non-overlapping FOVs 
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1 Introduction

With the rapid development of economy, the increasingly serious problem of traf-

fic system is becoming one of the crucial factors for the growth of national econ-

omy. As the urgent requirement of road using comes up, Intelligent Transport

System (ITS) emerges to address the problems of road safety and congestion.

ITS varies in the technologies applied, from basic management systems such as

car navigation and traffic signal control system, to monitoring applications, such

as security CCTV systems and to more advanced applications like prediction of

transit vehicle arrival time. However, no matter what kind of application it is, the

most commonly used quantity for the performance assessment of ITS is traffic

flow. Hence, the modeling of traffic flow has become a key ingredient of ITS.

The traffic flow research has been widely discussed and studied for over 70

years. Among them, the development of traffic flow theory provides a tool to help

transportation engineers understand and express the characteristics of traffic state.

The basic idea of traffic flow theory is to model the microscopic and macroscopic

relationships among traffic stream variables, including speed, flow and concen-

tration (density). Many models have been proposed as analytical techniques such

as traffic stream models including Greeshield’s model and Edie’s model, shock

wave analysis, deterministic and stochastic queuing theories, and capacity analy-

sis [1, 2, 3, 4]. Moreover, to make ITS more efficient, dynamic traffic flow model

has gained popularity. The term “dynamic” here is to describe the traffic state

changes caused by stochastic traffic flow uncertainties, such as traffic jams, acci-

dents, weather condition, queue length in front of a traffic light, etc.

Consider an easier traffic flow modeling problem between two separate re-

1



Figure 1.1: A simple case: monitor traffic between two regions.

gions, as shown in Figure 1.1. Given a vehicle moving from one region toward

another, its traveling time may increase due to a heavy traffic state associated with

an accident or traffic jam, or decrease in off–peak hours or due to other phenom-

ena associated with smooth traffic flow. Hence, instead of using lots of variables

to model the traffic flow, we can infer the traffic state by observing the “delay

times” or “transition time” of objects moving across different regions.

Inspired by this intuitive idea, many research works and applications focus

on dealing with the relevant problem of “delay times.” For example, in [5] and [6]

Francesco Viti et al. claimed that the transition time of vehicles in urban networks

is determined half by the driving time and half by the delay at intersections that

mainly depends on the arrival time, queue length and the signal frequency. Hence,

they proposed a probabilistic model for delay times at controlled intersection. In

addition, another major topic of ITS about the prediction of transit vehicle arrival

time is also based on the concept of the delay modeling. In [7, 8, 9, 10], Dailey

et al. presented an algorithm to predict transit vehicle arrival time by using an

automatic vehicle location system (AVLS) to collect data that include time and

2



Figure 1.2: Overview of Dailey’s System [8].

Figure 1.3: A GPS–based AVLS for bus arrival time prediction.

location pairs. The data are used with historical statistics in an optimal filtering

framework to predict future arrivals. An overview of their system is shown in

Figure 1.2.

There are still lots of methods trying to provide an accurate prediction of

transit vehicle arrival times. For instance, in [11], Steven et al. used artificial neu-

ral networks (ANNS) trained with historical AVLS data to do dynamic prediction;

in [12], the authors used support vector machines (SVM) instead. An example of

GPS–based AVLS for bus arrival time prediction is illustrated in Figure 1.3.

However, all the methods mentioned above suffers from drawbacks of being

expensive in installation and maintenance because they are highly dependent upon

3



Figure 1.4: Overview of Beymer’s system [15].

AVLS, which generally costs a lot. Besides, due to the privacy issue, promoting

those AVLS–based applications is not as easy as it appears. Fortunately, in recent

years, as a result of rising demand for security, many surveillance cameras have

been installed in major intersections and some regions of interest, and the number

of cameras is growing rapidly. This trend enables the development of another

form of ITS technologies – “vision–based traffic surveillance system.” This kind

of system has the features of relatively low installation cost, easy operation and

less traffic disruption during maintenance in contrast to AVLS [13, 14].

Actually, many image processing and computer vision techniques for the

analysis of traffic flow video sequences have been widely used for road traffic

monitoring and traffic data collection. Considerable amount of improvements

have also been made [14]. For example, in [15, 16] Beymer et al. developed

a feature based tracking approach for the task of tracking vehicle under conges-

tion. By tracking individual vehicles, the system can measure conventional traffic

parameters as well as new metrics suitable for improved automated surveillance.

4



(a) (b)

Figure 1.5: Results of Beymer’s system [15]. (a) Sample feature tracks. (b) Sample feature groups.

Figure 1.4 shows an overview of their system. Some results are shown in Fig-

ure 1.5. In [17], the authors used probabilistic line feature grouping algorithm to

perform model–based 3–D vehicle detection and description. With the tracking

algorithm based on the zero–mean correlation matching, their approach provides

a method for vehicles monitoring. The flow diagram and a result of their system

are shown in Figure 1.6.

Nevertheless, almost all existing vision–based traffic surveillance systems

are constrained by cameras’ field of views (FOVs). Moreover, these systems only

concern about the visible information in the video sequences and only indicate

the “local” traffic status at the camera location. However, for a camera surveil-

lance system that covers a wide area, it is not always possible to have overlapping

views; the observed regions can be widely separated in time and space. As shown

in Figure 1.7, cameras only have “local ”information from their FOVs. Without

the traffic status in the unseen region between non–overlapping cameras, we can-

not infer a “global” traffic flow. Hence, under the condition that most existing

cameras’ FOVs are non–overlapping, if we want to build a practical vision–based

wide–area surveillance system for traffic flow monitoring, we have to estimate the

5



(a)

(b)

Figure 1.6: (a) Flow diagram of Kim’s system. (b) An example tracking result [17].

traffic state in the unseen regions between FOVs.

In this thesis, our main objective is to extend existing vision–based surveil-

lance systems from local–range monitoring toward global–range monitoring of

traffic flow by inferring the traffic state between non–overlapping FOVs. The key

barrier we will meet is having no visual information of the road, which links the

non–overlapping FOVs, to observe the traffic state directly. In general, if we can

identify the same vehicle across cameras (e.g., using license plate recognition), it

will be easy to achieve our objective. However, there is no guarantee that we can

always achieve the correspondences of objects across cameras. Hence, instead

of solving the problem by identifying the same vehicle across cameras, here we

propose a different method.

We first assume that the transition time of most vehicles across two non–

overlapping FOVs satisfies a global distribution model. Accordingly, if we have

6



Figure 1.7: An example of traffic surveillance system with non–overlapping cameras.

the prior knowledge of the global transition–time distribution, we may infer the

rough correspondence among our targets. Unfortunately, that prior knowledge

is not available in this problem. From another point of view, every correspon-

dence of vehicles can be treated as an observation from the global transition–time

model. By collecting these observations of correspondence, we can derive the

global model. Again, we do not have any information about correspondences.

Hence, in our system, we exploit the physical dependence between the corre-

spondences of buses and the global transition–time distribution, and formulate

the object correspondence and the parameters estimation for the transition–time

distribution as a unified problem in a proposed Expectation–Maximization (EM)

based framework. By treating object correspondence as a latent random variable,

the optimized solution can be found through iterations.

As for, the transition–time model, since it may might vary with time due

to dynamic changes of traffic state, a sequential EM are used to adapt to such

changes over time. A simple interface of our system is shown in Figure 1.8. Such

7



Figure 1.8: A simple interface of proposed system. It provides the information of the time–variant traffic state
between non–overlapping FOVs.

a system can also be combined with the map services, such as Google Map or the

CCTV Live–cam service on some important traffic spots, so that users can fetch

the current traffic state from the Internet.

This thesis is organized as follows. In Chapter 2, we will first introduce

some related works and mathematical techniques. In Chapter 3, we will present

the proposed algorithm for modeling the dynamic changes of traffic state between

non–overlapping FOVs. Some experimental results are shown in Chapter 4. Fi-

nally, we give our conclusion in Chapter 5.
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2 Related Work

In this chapter, we will first introduce a few related researches on surveillance sys-

tems with non–overlapping cameras. Since in the proposed method we use some

mathematical techniques such as Monte Carlo Markov Chain and Expectation–

Maximization, we will also give some brief introductions of these mathematical

techniques.

2.1 Surveillance systems with non–overlapping cameras

In general, the key problem of surveillance systems with non–overlapping cam-

eras is to build the relationships between objects moving through different FOVs,

i.e., the association of objects across cameras. Once the association is established

for all objects, problems such as co–operative object tracking, object counting,

and monitoring of objects activities become easier to resolve.

In [18, 19], Javed et al. proposed a method to establish the correspondence

between observations across cameras. During a training phase, they manually es-

tablished the correspondence to discover the relationships between cameras. They

took the locations of exits and entrances between cameras, directions of move-

ment, and the average transition time across cameras as space–time clues. Also

they learned the inter-camera illumination for modeling the changes of appearance

of objects across cameras as appearance clues. With these clues, tracks of targets

moving through FOVs are corresponded by maximizing the posterior probability.

Some results of their approach are shown in Figure 2.1.

The method proposed in [20] by Song et al. used feature matching for object

tracking in a camera network. They treated similarities between features (ap-

9



(a)

(b)

Figure 2.1: Two results from [18].
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Figure 2.2: The framework of Song’s system, redrawed from [20].

pearance and biometric) as random variables, whose probability distribution were

created via supervised learning. By building the feature graph containing the fea-

ture vector and similarity score observed over space and time, tracks of people

can be found as the optimal paths in this graph. Besides, to deal with the interde-

pendence between features, they add a path smoothness function to correct wrong

correspondences and adjust the tracking result. The framework of their system is

shown in Figure 2.2.

Some works have been focused on the recovery of object tracks as well as

the estimation of poses between cameras with non-overlapping FOVs. Rahimi

et al., in [21], presented an approach that reconstructed the trajectory of a target

across non–overlapping cameras and simultaneously computed external calibra-

tion parameters. Each camera is assumed to measure the location and velocity of

a moving target within its field of view with respect to the camera’s ground-plane

coordinate system. With the assumption that the target’s dynamic state of loca-

tion and velocity evolves according to linear Gaussian Markov dynamics, they

recover the target’s trajectory and the calibration parameters of the cameras using

11



(a) (b)

(c)

Figure 2.3: An example from [21].(a )Ground truth of sensor locations and targets’ trajectories. (b) After 9 iter-
ations. Blue denotes the recovered trajectories. Darker gray squares are estimated sensor locations. (c) After 67
iterations.
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maximum a posterior (MAP) estimation. Figure 2.3 shows an example of their

algorithm.

In [22], Sheikh et al. presented a unified framework for the association of

multiple objects across multiple cameras in planar scenes. They modeled the

scene as a plane in 3–D space and used homographies to describe the relation-

ships between cameras. For object motion, they made an assumption that the

object trajectory can be described by a polynomial kinetic model. With such an

assumption, their system is able to recover object associations, inter–camera trans-

formations and canonical trajectories across cameras, irrespective of whether the

cameras are stationary or dynamic, or whether the fields of view are overlapping

or not as long as the kinetic model is valid. Then they recovered the assignment

of associations, while simultaneously computing the maximum likelihood esti-

mates of the inter–camera homographies and the trajectory parameters by using

the Expectation Maximization algorithm. An example of object association across

multiple non–overlapping cameras is shown in Figure 2.4.

Instead of using the appearance feature or object motion model to directly in-

fer the correspondence of objects across non–overlapping cameras, some research

works try to recover the topology of a number of cameras based on co–occurrence

of entries and exits. During the process of topology recovering, some indirect

information about the correspondence of objects can also be extracted. In [23],

Makris et al. assumed a single mode transition time distribution between FOVs

and exhaustively search for the location of the mode by applying cross–correlation

to the arrival and departure time of objects across cameras. Their method assumes

all departures and arrivals within a time window are implicitly having one–to–one

correspondences. The transition–time distribution obtained from the correspon-

13



(a)

(b)

Figure 2.4: Object association across multiple non–overlapping cameras [22]. (a) Initialization. (b) Converged
solution with trajectories from two cameras merged into one.
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Figure 2.5: Cross–correlation functions and transition probability functions for selected pairs of entry/exit zones.
Time is measured in seconds. Red line indicates the peak detection threshold, while the black line indicates the
level of cross–correlation if the zones were uncorrelated [23].

dences is examined for a peak by thresholding based on the mean and standard

deviation. Figure 2.5 shows examples of cross–correlation function and transition

probability function for selected pairs of entry/exit zones.

Markis’ approach has been extended by Stauffer [24] and Tieu et al. [25] by

providing a more rigorous definition of transition based on statistical significance.

Stauffer tested the hypothesis that the correlation between exit and entry events

that may or may not contain valid object transitions is similar to the expected

correlation when there are no valid transitions. Tieu et al. also presented that the

method of [23] suffers from the assumption of unimodal transition distribution,
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Figure 2.6: Transition distributions obtained using correlation with different time windows all fail to match the
simulated multi–modal distribution (dashed plot).In addition, there is no clear maximum peak indicating statistical
dependence [25].

as shown in Figure 2.6. Unlike using cross–correlation in [23], their approaches

used information–theoretic mutual information or entropy to compute statistical

dependence between observations across cameras.

However, most of the features or models used in the above methods are in-

sufficient in real life scenario for traffic flow surveillance. For example, in the

wide–area surveillance, the appearance model may become invalid because the

observation may occupy only a few pixels or looks very different from different

viewing angles of cameras ,or under sudden lighting changes. Likewise, for ve-

hicles in the real life traffic which might contain complicated behavior patterns

such as car–following and queuing, the aforementioned object motion won’t be

able to provide accurate descriptions. Moreover, due to the dynamic changes of

real life traffic, the transition–time distribution may not be correctly found by

cross–correlation or by maximizing the dependence between observations in two

cameras.

2.2 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) method is a general computing technique

that is often applied to solving integration and optimization problems in large
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dimensional spaces. As a result, it has been widely used in machine learning,

physics, chemistry, biology statistics, and computer science. MCMC can be re-

garded as a strategy for sampling from some complex distributions of interest. It

is named after the fact that the next sample is randomly generate from the previ-

ous sample by following a Markov chain mechanism, under which the transition

probabilities between sample values are only a function of the most recent sample

values. This mechanism can facilitate the chain to spend more time in more im-

portant regions [26]. In the literature, different algorithms of MCMC have already

been well developed. We will introduce two commonly used ones in this section.

2.2.1 The Metropolis–Hastings algorithm

One original motivation for applying MCMC comes from the attempt to handle

the situations when we cannot directly draw samples from some complex proba-

bility distributions. Metropolis–Hastings (MH) algorithm provides a general ap-

proach for obtaining a sequence of random samples from those distributions. The

sequence can then be used to approximate the distribution (i.e., to generate a his-

togram). This algorithm is the most popular MCMC method [27, 28]. Many

practical MCMC algorithms can be interpreted as special cases or extensions of

this algorithm [29].

Suppose our goal is to draw samples from a probability distribution p(x), MH

algorithm creates a Markov chain for sampling a candidate value x∗ given the cur-

rent value x according to a proposal distribution q(x∗|x). This new candidate is ac-

cepted with acceptance probabilityA(x, x∗) = min{1, [p(x)q(x∗|x)]−1p(x∗)q(x|x∗)};

otherwise, the current value of x is retained. The pseudo–code of MH algorithm

is listed in Figure 2.7.
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Figure 2.7: Metropolis–Hastings algorithm.

The main idea of MH algorithm is to simulate sampling from the target dis-

tribution p(x) by sampling from another easy–to–sample proposal distribution

q(x∗|x). Hence, the more q(x∗|x) matches the shape of p(x), the better MH al-

gorithm works. Besides, the term [p(x)q(x∗|x)]−1p(x∗)q(x|x∗) in the acceptance

probability give us a measure about how much the Markov chain would like to

move toward the candidate value x∗.

As shown in Figure 2.8, the authors in [29] give an example of running the

MH algorithm based on a Gaussian proposal distribution q(x∗|x(i)) = N(x(i), 100)

and a bimodal target distribution p(x) ∝ 0.3exp(−0.2x2)+0.7exp(−0.2(x−10)2)

for 5000 iterations. As expected, the histogram of the samples approximates the

target distribution.

2.2.2 The Gibbs sampler

Gibbs sampler [30], is a special case of the Metropolis–Hastings algorithm [26].

It is an algorithm to generate a sequence of samples from the joint probability

distribution of two or more random variables. The key to the Gibbs sampler is that
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Figure 2.8: Target distribution and histogram of the MCMC samples at different iteration points [29].

one only considers univariate conditional distributions — the distribution when all

of the random variables but one are kept fixed. Hence, this method is applicable

when the joint distribution is not known explicitly but the univariate conditional

distribution of each random variable is known.

Suppose we have an n–dimensional vector x and the expression for the full

univariate conditional distribution p(xj|x−j) = p(xj|x1, . . . , xj−1, xj+1, . . . , xn).

By taking the following proposal distribution for j = 1, . . . , n

q(x∗|x(i)) =

 p(x∗j |x
(i)
−j) If x∗−j = x

(i)
−j

0 Otherwise.
(2.1)
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Figure 2.9: Gibbs sampler.

The corresponding acceptance probability is:

A(x(i), x∗) = min{1, p(x
∗)q(x(i)|x∗)

p(x(i))q(x∗|x(i))
} (2.2)

= min{1,
p(x∗)p(x

(i)
j |x

(i)
−j)

p(x(i))p(x∗j |x∗−j)
}

= min{1,
p(x∗−j)

p(x
(i)
−j)
}

= 1

Hence, the acceptance probability for each new candidate random value x∗ is

one. In other words, each new proposal sample is always accepted. The pseudo–

code of Gibbs sampling is presented in Figure 2.9.

2.3 Expectation–Maximization

The Expectation Maximization algorithm (Hartley, 1958 [31]; Dempster et al.,

1977 [32]; McLachlan and Krishnan, 1997 [33]) performs maximum likelihood

estimation for parameters in probabilistic models, where the model depends on

some unobserved variables. EM is an iterative optimization method consisting of
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an expectation (E) step, which finds the distribution of the unobserved variables,

given the known values for the observed variables and the current estimate of the

parameters; and a maximization (M) step, which computes the parameters which

maximize the expected likelihood found in the E step, under the assumption that

the distribution found in E step is correct. These parameters are again used to

determine the distribution of the unobserved variables in the next E step [34]. To

understand the EM algorithm, we give a simple description of EM in the follow-

ing.

Suppose that we have observed the value of some random variable, Z, but

not the value of another latent variable, Y . The joint probability for these two

variables is parameterized using θ, as P (y, z|θ). We want to find the maximum

likelihood estimate for the parameter θ of a model for Y and Z, but this prob-

lem cannot be easily solved directly. Alternatively, the corresponding problem in

which Y is also known would be more tractable.

The basic idea of this problem is to maximize the log likelihood of the pa-

rameter θ, given the data z, by marginalizing over the latent variable Y :

θ∗ = arg max
θ

log
∑
Y

P (y, z|θ) (2.3)

= arg max
θ

logP (z|θ)

= arg max
θ
L(θ).

This gives the intuition behind the EM algorithm: alternate between esti-

mating the unknowns θ and estimating the hidden variable Y . The EM algorithm

starts with some initial guess at the maximum likelihood parameters, θ(0), and then

proceeds to iteratively generate successive estimates, θ(1), θ(2), . . . by repeatedly

applying the following two steps, for t = 1, 2, . . .
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– E Step: Compute a distribution P̃ (t) over the range of Y such that

P̃ (t)(y) = P (y|z, θ(t−1)).

– M step: Set θ(t) to the θ that maximizes EP̃ (t)[logP (y, z|θ)].

Here EP̃ [· ] denotes the expectation with respect to the distribution P̃ over the

range of Y [35]. As shown by Dempster, et al. [32], EM algorithm has the prop-

erty of increasing the likelihood L(θ), or leave it unchanged, at each step. In fact,

although an EM iteration does not decrease the observed data likelihood func-

tion, it is not guaranteed to converge to a maximum likelihood estimate. For most

models, the algorithm may converge to a local maximum of L(θ). Actually, we

may also view EM algorithm as two alternating maximization steps for the same

function F (P̃ , θ) which is defined as follows:

F (P̃ , θ) = EP̃ [logP (y, z|θ)] +H(P̃ ), (2.4)

where H(P̃ ) = −EP̃ [log P̃ (y)] is the entropy of the distribution P̃ . Hence, an

iteration of EM algorithm can be expressed in terms of the function F as follows:

– E Step: Set P̃ (t) to the P̃ that maximizes F (P̃ , θ(t−1)).

– M step: Set θ(t) to the θ that maximizes F (P̃ (t), θ).

Once the EM iterations have been expressed in this form, it is clear to tell that the

algorithm will eventually converge to the value P̃ ∗ and θ∗ that locally maximize

F (P̃ , θ) [35].
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3 Proposed Method

In this chapter, we present an algorithm to infer the traffic state between non–

overlapping FOVs by modeling the traffic flow with a transition–time distribution

which may change dynamically. We first introduce the targets selected for the

analysis of traffic status in our system. By utilizing the specific motion pattern of

the targets of interest, we can reduce the complexity of traffic flow analysis and

improve the system performance. Then we will describe the traffic flow model

of our system in Section 3.2. In Section 3.3, the problem formulation and our

algorithm are presented. In Figure 3.1, we show the flowchart of the proposed

system.

We have conducted some experiments based on a real life traffic environ-

ment. Two cameras are installed to monitor two separate regions, which are linked

by a road with some intersections in–between. More detailed description of the

setting of our experimental environment and setting in the next chapter.

3.1 Selected Target

In order to monitor the traffic state between two non–overlapping FOVs linked

by a road, we need to observe and analyze objects(cars) moving between the two

FOVs. In general, however, since there may be intersections along the road, vehi-

cles may leave or enter the road in–between. This circumstance will complicate

the whole problem since we may have to identify the objects that leave halfway

and ignore them in the traffic analysis. Accordingly, to alleviate the potential

difficulty of analysis incurred by this case, we prefer to infer the traffic state be-

tween non–overlapping FOVs by choosing the vehicles are more likely to have
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Figure 3.1: The block diagram of the proposed system.

fixed route (e.g., bus) across FOVs as our main targets. Although we still cannot

guarantee that all the buses seen in one FOV will definitely show up in another,

this target selection can indeed improve the accuracy of our analysis. By selecting

buses in the traffic videos obtained from two FOVs, we record the entry/exit times

of all the buses in the regions of interest. A result of the target selection is shown

in Figure 3.2.

3.2 Traffic Flow Model

From a microscopic point of view, every vehicle has its own behavior pattern,

which is affected by individual driver. However, if observed from a macroscopic

point of view, one may find that most vehicles typically follow a global trend that

is affected by the interactions among vehicles such as car–following and queuing.

Hence, the main assumption of our proposed method is that the transition time

of most vehicles across two non–overlapping FOVs will satisfy a global distribu-
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Figure 3.2: A result of target selection. We choose buses as our targets and record the exit time ({xm}m=1∼M )
and entry time ({yn}n=1∼N ) of them.

tion model. Here we use the Gaussian mixture model (GMM) to approximate this

distribution because this model is general and can well approximate a lot of con-

tinuous functions under normal conditions. Some examples of distributions in the

real life traffic are shown in Figure 3.3, in which we can see that the distributions

can be well modeled by GMM. With the assumption of GMM model, our objec-

tive is to derive the parameters of this global transition time model to describe

the traffic state. Moreover, since traffic flow state may dynamically change over

time, we divide the timeline into many overlapped time–windows to analyze the

transition time distributions at different times of the day, as shown in Figure 3.4.
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Figure 3.3: Some examples of distributions in the real life traffic.

Figure 3.4: Division the timeline of the day into overlapped time–windows.

3.3 Problem Formulation

Before discussing how to determine the GMM parameters, we first consider two

problem from two opposite viewing angles in the following paragraphs. First,

suppose that we have the prior knowledge of the global transition–time distri-

bution, we may infer the rough correspondence among buses. That is, we can

approximately determine how the buses in two FOVs match one another. On the

other hand, if we know how the buses in two FOVs match one another and thus

the transition time of each correspondence, the global transition time distribution

can be derived. Hence, in our system, we exploit this physical dependence be-

tween the correspondences of buses and the global transition–time distribution,

and proposed a new solution to monitor the traffic between FOVs. Note that it

is reasonable to assume that the traffic statuses on different sides of the road are
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independent of each other. Without loss of generality, we only discuss the traffic

problems in a single side.

To determine the model parameters and to further infer the traffic state within

a time window, we formulate the problem as an optimization process expressed as

follows:

Θ∗ = arg max
Θ

p(Θ|Z), (3.1)

where Z = ({xm}M , {yn}N) represents the combination of observations, includ-

ing the exit time set (x1, x2, . . . , xm, . . . , xM ) and the entry time set (y1, y2, . . . , yn,

. . . , yN ) of all the buses in two non–overlapping FOVs, as shown in Figure 3.2.

However, it is difficult to build the probability model P (Θ|Z) in Equation 3.1,

owing to the lack of physical connection between Θ and Z. To compensate the

physical gap between parameters Θ and our observations Z, we introduce the cor-

respondences between the exit time {xm}M and entry time {yn}N as an unknown

random variable C = {cm(xm) = yn}M , where cm(.) indicates the entry time yn

that an exit time xm will correspond to. Therefore, if a bus leaves one FOV at

xm, travels through the road, and then enters another FOV at yn, we can express

this correspondence by {xm, cm(xm) = yn}. The transition time of this corre-

spondence is tm = cm(xm) − xm. Figure 3.5 shows the schematic diagram of

xm, yn, cm(.), and tm. By collecting all the transition times of each correspon-

dence into a data set T = {tm}M , we may estimate the model parameters Θ.

The problem of the above formulation is that we do not have the measure-

ment of C and we cannot derive the Θ directly. Hence, we treat the correspon-

dence C as a latent variable and reformulate Equation 3.1 as Equatiion 3.2 by
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Figure 3.5: The schematic diagram of xm, yn, cm(.), and tm.

marginalizing out every possible correspondence C.

Θ∗ = arg max
Θ

∑
C

p(Θ, C|Z). (3.2)

Although a direct approach to solving this optimization problem is generally

intractable, the Expectation Maximization algorithm provides a mean to do the

maximization by iteratively calculating the following two steps:

1. E Step: Calculate the expected log likelihood function Q(Θ):

Q(Θ) =
∑
C

log(p(Z,C|Θ))p(C|Z,Θ(old)). (3.3)

where the expectation is taken with respect to the posterior distribution p(C|Z,

Θ(old)) over all possible correspondences C, given the data Z and the Θ(old)

at the previous time step.

2. M step: Find the Maximum Likelihood estimate Θ(new) by maximizing Q(Θ):

Θ(new) = arg max
Θ

Q(Θ). (3.4)

However in the E step, the expectation is difficult to compute since the number

of possible correspondences explode combinatorially. A solution is to introduce

28



Figure 3.6: Gibbs sampler in the proposed method.

Markov chain Monte Carlo (MCMC) to sample from the posterior probability

distribution p(C|Z,Θ(old)) and replace the expectation in the E step over all pos-

sible correspondences with MCMC samples. More formally, this can be justi-

fied in the context of a Monte Carlo EM or MCEM. The sampling method we

use here is the Gibbs sampling. In our setting, it is prefered that the entry/exit

times are having one–to–one correspondences, but still allow the possibility that

one entry time could be matched with more than one exit times. Therefore,

p(cj|c(r+1)
1 , . . . , c

(r+1)
j−1 , c

(r)
j+1, . . . , c

(r)
M ,Θ), the conditional probability of cj given

the other correspondences {cm}M 6=j and global transition time distribution Θ, will

be proportional to the likelihood of transition time tj = cj(xj) − xj determined

by Θ, while the conditional probability may decrease if the exit time yn = cj(xj)

has been matched with others (see the algorithm in Figure 3.6). A simple example

of the process in Gibbs sampling is shown in Figure 3.7. By performing sampling

R times, it will generate a sequence of C. Since we expect that the correct C will

have a much higher likelihood than others, we will choose the best sampling result

to enter the M step in the EM algorithm.
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(a)

(b)

Figure 3.7: A simple example of the Gibbs sampling. (a) In the beginning, for sampling c1, there are four can-
didates: c1(x1) = y1, c1(x1) = y2, c1(x1) = y3, c1(x1) = y4 and therefore four possible transition times:
t1−1, t1−2, t1−3, t1−4. For every transition time we can measure its likelihood to the distribution Θ. The Gibbs
sampling will sample c1 according to the probability proportional to these likelihoods. Here we assume the Gibbs
sampling chooses c1(x1) = y2. (b) Given the distribution Θ and the existing correspondence, we want to de-
termine c2. The same method is used to measure the conditional probability of every candidate of c2. However,
because c2(x2) = y2 has been mapped by c1(x1) = y2, we will give c2(x2) = y2 a penalty to lower down its
probability for the preference of 1–to–1 correspondence. Accordingly the Gibbs sampling chooses c2(x2) = y1.
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With the correspondences C = {cm}M from the Gibbs sampling, we can

calculate all the transition times {tm = cm(xm)− xm}M of buses traveling across

two non–overlapping FOVs. In the M step, from {tm}M , we will derive the pa-

rameters Θ of the global transition time distribution. Assume we use a GMM with

K Gaussians to approximate the global transition time distribution, then the dis-

tribution Θ will be parameterized by the weight wj , the mean µj , and the variance

σ2
j of the jth Gaussian, with j = 1, . . . , K. To estimate these parameters given the

transition times {tm}M , we can use a standard EM algorithm designed for GMM

that is based on the following iteration formulae:

w
(r+1)
j =

1

n

M∑
m=1

P (j|tm) (3.5)

µ
(r+1)
j =

M∑
m=1

P (j|tm)tm

M∑
m=1

P (j|tm)

(3.6)

σ
2(r+1)
j =

M∑
m=1

P (j|tm)(tm − µ(t+1)
j )2

M∑
m=1

P (j|tm)

(3.7)

where

P (j|tm) =
w

(r)
j p(tm|j;µ(r)

j , σ
(r)
j )

K∑
k=1

w
(r)
k p(tm|k;µ

(r)
k , σ

(r)
k )

. (3.8)

A demonstration of the M step is shown in Figure 3.8.

The global transition–time distribution parameterized by {wj, µj, σ2
j}K dis-

covered in the M step will be propagated into the E step of the next EM iteration.

After a few iterations, the EM algorithm will converge to a maxima of p(Θ|Z).

The proposed EM algorithm for traffic state monitoring within a time–window is

shown in Figure 3.9.
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Figure 3.8: A demonstration of the M step. With the transition times calculated from the correspondence from the
Gibbs sampling, we use the EM algorithm to estimate the parameters of the GMM in order to model the transition
time distribution.

Figure 3.9: Proposed Expectation–Maximization algorithm for simultaneously estimating object correspondence
and the parameters of the transition time distribution.
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Figure 3.10: Initialization of the EM algorithm for the first time–window. We start the EM iteration by initial-
izing the global transition–time distribution Θ with the Gaussian mixture model of K equal weighting, broadly
separated, and wide–bandwidth Gaussians. We assume this initialization of GMM can cover most regions of the
transition time.

3.4 Initialization

In this paper, we divide the timeline into several overlapped time–windows to han-

dle the dynamic changes of the traffic flow, as shown in Figure 3.4, and apply the

proposed EM algorithm to every time–window. An important step for performing

the proposed EM algorithm in each time–window is the initial setting. For the first

time–window, we start the EM iteration by initializing the global transition–time

distribution Θ with the Gaussian mixture model of K equal weighting, broadly

separated, and wide–bandwidth Gaussians, as shown in Figure 3.10. We assume

this initialization of GMM can cover most regions of the transition time.

On the other hand, for the initial setting of the subsequent time–windows,

since they are partially overlapped with the previous ones, we would like to prop-

agate some information from the previous window into the current window as the

initial condition. Hence, we have two choices for the initialization – propagating

either the parameters of the Gaussian mixture model or the correspondences from
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Figure 3.11: A possible situation for the current time–window and the previous one — the transition–time distri-
bution of the current time–window is more widespread then it of the previous window. The increased range of the
transition–time is caused from the data in the non–overlapped subsection which is new to the last time window
(noted with the blue bounding–box), and the GMM of the previous time–window only has the information of the
overlapped subsection in current time–window (noted with the purple bounding–box).

the previous window. Consider a possible situation wherein the transition–time

distribution of the current time–window is more widespread than that of the pre-

vious one, as shown in Figure 3.11. The increased range of the transition time

due to the new data (marked with the blue bounding–box) is not covered by the

GMM of the previous time–window (marked with the purple bounding–box). As

a result, if we start the EM iterations by initializing the parameters of GMM which

are propagated from the previous time window, the algorithm may only cover the

partial range of the transition time and lead to incorrect result.

Therefore, for the EM initialization of the subsequent time–windows, in ad-

dition to propagate the correspondences of the overlapped subsections from the

previous window into the current window and use them as the initial conditions,

for the data in the non–overlapped subsection which is new to the last time win-
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Figure 3.12: Initialization of the EM for the following time–windows. We propagate the correspondences of the
overlapped subsection from the previous window into the current window, and randomly assign the correspon-
dences of the new data in the non–overlapped subsection.

dow, we randomly assign the correspondences within this period. That is, we start

the EM iterations by initializing the correspondences C which consist of both the

propagated and the randomly assigned correspondences, as shown in Figure 3.12.

This method for initialization helps the algorithm to maintain some information

from the previous time–window, while still have the ability to extract useful infor-

mation from the new data.
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4 Experiment and Results

Out experimental environment is shown in Figure 4.1. We mounted two cameras

at the Mackay Memorial Hospital and the overpass in front of National Tsing Hua

University. In Figure 4.1, we can see that FOVs of these two cameras are non-

overlapped and these two scenes are linked by Kuang Fu Road (indicated by the

red line). Besides, there are three intersections and some bus stops along the road

between these two FOVs. This makes the traffic situations more complicated.

The traffic videos were taken from about 9:45 in the morning till 19:00 in the

afternoon. We divide the time–line into 34 overlapped time–windows. The length

of each time–window is 60 minutes, with 45 minutes overlapped with the previous

window, as shown in Figure 4.2

We first check the traffic videos and manually select frames that contain

buses. All the entry/exit times of buses are recorded. Then we apply the proposed

EM algorithm for each time–window. Here we use a Gaussian mixture model

with 3 Gaussians to model the transition–time distribution. For the first time–

window, the parameters of the GMM are initialized with µ = {50, 150, 250},

σ2 = {200, 200, 200} and w = {0.33, 0.33, 0.33}. Then the initialization for EM

in all the other time–windows follows the method we described in Section 3.4.

Figure 4.3, Figure 4.4, and Figure 4.5 show the computed transition–time distri-

butions and the ground–truths in different time–windows. We can see that the

distribution calculated by our algorithm is reasonably similar to the ground truth.

Here we also give some results by applying the method in [25] to our experi-

mental data, as shown in Figure 4.6. We can see that the results are not as accurate

as ours. The reason is that in our method we use a stronger assumption about the
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Figure 4.1: The experimental environment: monitor the traffic between two non–overlapping FOVs at Mackay
Memorial Hospital and the NTHU overpass.

Figure 4.2: We divide the timeline into 34 overlapped time–windows. The length of each time–window is 60
minutes, with 45 minutes overlapped with the previous window.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.3: The transition–time distribution from time–window # 01 to time–window # 12.
(a) Time–window 09 : 45 ∼ 10 : 45. (b) Time–window 10 : 00 ∼ 11 : 00. (c) Time–window 10 : 15 ∼ 11 : 15.
(d) Time–window 10 : 30 ∼ 11 : 30. (e) Time–window 10 : 45 ∼ 11 : 45. (f) Time–window 11 : 00 ∼ 12 : 00.
(g) Time–window 11 : 15 ∼ 12 : 15. (h) Time–window 11 : 30 ∼ 12 : 30. (i) Time–window 11 : 45 ∼ 12 : 45.
(j) Time–window 12 : 00 ∼ 13 : 00. (k) Time–window 12 : 15 ∼ 13 : 15. (l) Time–window 12 : 30 ∼ 13 : 30.
(x–axis: transition time; y–axis: milli–probability).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.4: The transition–time distribution from time–window # 13 to time–window # 24.
(a) Time–window 12 : 45 ∼ 13 : 45. (b) Time–window 13 : 00 ∼ 14 : 00. (c) Time–window 13 : 15 ∼ 14 : 15.
(d) Time–window 13 : 30 ∼ 14 : 30. (e) Time–window 13 : 45 ∼ 14 : 45. (f) Time–window 14 : 00 ∼ 15 : 00.
(g) Time–window 14 : 15 ∼ 15 : 15. (h) Time–window 14 : 30 ∼ 15 : 30. (i) Time–window 14 : 45 ∼ 15 : 45.
(j) Time–window 15 : 00 ∼ 16 : 00. (k) Time–window 15 : 15 ∼ 16 : 15. (l) Time–window 15 : 30 ∼ 16 : 30.
(x–axis: transition time; y–axis: milli–probability).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 4.5: The transition–time distribution from time–window # 25 to time–window # 34.
(a) Time–window 15 : 45 ∼ 16 : 45. (b) Time–window 16 : 00 ∼ 17 : 00. (c) Time–window 16 : 15 ∼ 17 : 15.
(d) Time–window 16 : 30 ∼ 17 : 30. (e) Time–window 16 : 45 ∼ 17 : 45. (f) Time–window 17 : 00 ∼ 18 : 00.
(g) Time–window 17 : 15 ∼ 18 : 15. (h) Time–window 17 : 30 ∼ 18 : 30. (i) Time–window 17 : 45 ∼ 18 : 45.
(j) Time–window 18 : 00 ∼ 19 : 00.
(x–axis: transition time; y–axis: milli–probability).
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(a) (b) (c)

Figure 4.6: Some results from applying the method in [25] to our experimental data. (a) Time–window 12 : 00 ∼
13 : 00. (b) Time–window 12 : 15 ∼ 13 : 15. (c) Time–window 17 : 00 ∼ 18 : 00.

characteristics of the real life traffic while the method in [25] only depends on

the weaker minimum entropy assumption about the transition time distribution.

For example, in Figure 4.6(c), the distribution of the ground truth has a wider

range and thus has a larger entropy value than that of the distribution found by the

algorithm in [25].

To infer the traffic flow state, we can first use the average transition time of

the last 15–minute observation within each time–window as a statistic to represent

the state. As shown in Figure 4.7, the chart of the traffic–flow state may give us

the direct message about how the traffic dynamically changes over time. For in-

stance, we may probably guess that the increase of the average transition time at

about 12:00 is due to the lunch–time traffic, which is always a rush hour. More-

over, we could also express the traffic flow state by classifying the traffic changes

as “stable”, “increasing”, and “decreasing,” as shown in Figure 4.8. This figure

indicates how the traffic changes with respect to the previous stage. This kind of

description is much more user–friendly.

In addition to the aforementioned setting of the time–line division and the ini-

tialization method, here we provide some examples of different settings to support
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that our setting is reasonable. In the first example of different settings, we divide

the time–line into 60–minute time–windows with 30 minutes overlapped with the

previous window. For the EM initialization of the following time–windows, we

propagate the parameters of GMM from the previous window. Figure 4.9 shows

the transition–time distributions of some time–windows. We can see that the com-

puted transition–time distributions cannot adapt quickly enough to the changes of

the ground truth. One reason for this phenomenon is due to the problem of initial-

ization we presented in Figure 3.11. Moreover, since the information propagated

from the previous window only dominates 50% of the data in the processing win-

dow, the degree of change for the transition–time distribution might be too big to

be tracked by the algorithm. Then, in the second example of different setting, we

use the same time–windows as in the first example; and for the EM initialization

of the following time–windows, we follows the method described in Section 3.4.

Figure 4.10 shows the transition–time distributions of the time–windows which

are the same as those in Figure 4.9. We can see that even there are some im-

provement in Figures 4.9(b), 4.9(d), and 4.9(e), the problem of miss–tracking still

exists, as shown in Figure 4.9(c). Hence, in our experiment, we choose to di-

vide the timeline into time–windows with much more overlaps with the previous

time-window.
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Figure 4.7: Traffic flow state expressed by the average transition time of the last 15–minute observation within
each time–window. The red line is computed by our proposed method; The blue line is from the ground truth.

Figure 4.8: Express the traffic flow state by classifying the traffic changes as “stable”, “increasing”, and “decreas-
ing.” (Green color: stable traffic; Red color: increasing traffic flow; Blue color: decreasing traffic flow).

(a) (b) (c)

(d) (e) (f)

Figure 4.9: Some transition–time distributions from the first example of different setting. Each time–windows is 60
minutes long including 30 minutes overlapped with the previous window. The EM initialization of the following
time–windows is with the parameters of GMM propagated from the previous window.
(a) Time–window 10 : 45 ∼ 11 : 45. (b) Time–window 11 : 15 ∼ 12 : 15. (c) Time–window 11 : 45 ∼ 12 : 45.
(d) Time–window 12 : 15 ∼ 13 : 15. (e) Time–window 12 : 45 ∼ 13 : 45. (f) Time–window 13 : 15 ∼ 14 : 15.
(x–axis: transition time; y–axis: milli–probability).
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(a) (b) (c)

(d) (e) (f)

Figure 4.10: Some transition–time distributions from the second example of different setting. Each time–windows
is 60 minutes long including 30 minutes overlapped with the previous window. The EM initialization of the
following time–windows follows the method described in Section 3.4.
(a) Time–window 10 : 45 ∼ 11 : 45. (b) Time–window 11 : 15 ∼ 12 : 15. (c) Time–window 11 : 45 ∼ 12 : 45.
(d) Time–window 12 : 15 ∼ 13 : 15. (e) Time–window 12 : 45 ∼ 13 : 45. (f) Time–window 13 : 15 ∼ 14 : 15.
(x–axis: transition time; y–axis: milli–probability).
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5 Conclusion

We propose an efficient method to probabilistically model the dynamic traffic flow

between non–overlapping FOVs. Unlike previous works, our approach does not

attempt to directly build the object correspondence across non–overlapping cam-

eras. Instead, we model object correspondence and the parameters estimation of

the transition time model as a unified problem. By building the physical con-

nection between the transition time model and the object correspondence, the

proposed EM–based framework can iteratively determine the optimal object cor-

respondence and the model parameters. In addition, by dividing the time–line

into many overlapped time–windows, our method can sequentially infer the time–

varying traffic flow and recognize the dynamic changes of the traffic status over

time. Moreover, our system is efficient and may provide a new thinking to well

utilize the existing surveillance cameras for wide–area traffic monitoring. The ex-

periments have shown that our approach performs well in a complicated traffic

environment in real life.
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