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Probabilistic Modeling of Dynamic Traffic Flow between
Non-Overlapping FOVs

Student : Wei-Chen Chiu Advisors : Prof. Jen-Hui Chuang,
Prof. Sheng-Jyh Wang

Institute of Multimedia Engineering
National Chiao Tung University

ABSTRACT

The ability to infer the traffic status across multiple cameras allows the
extended use of existing vision-based surveillance systems to global traffic
monitoring. In this paper, we propose an efficient algorithm to probabilistically
model the dynamic traffic flow between non-overlapping FOVs. By assuming
the transition time of object moving-across-cameras follows a global model and
consecutively estimate the model parameters, we may infer the time-varying
traffic status in the unseen region. In principle, the parameters of the transition
time model can be estimated if the object correspondence between
non-overlapping FOVs is known. However, object correspondence itself is still
an unsolved problem in computer vision. In this paper, we model object
correspondence and the parameters estimation as a unified problem in a
proposed Expectation-Maximization (EM) based framework. By treating object
correspondence as a latent random variable, the proposed framework can
iteratively search for the optimal object correspondence and model parameters.
Experimental results on real data show the accuracy of dynamic model

estimation and the beneficial inference of the traffic status.

Keywords: Traffic flow, Non-overlapping FOVs
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1 Introduction

With the rapid development of economy, the increasingly serious problem of traf-
fic system is becoming one of the crucial factors for the growth of national econ-
omy. As the urgent requirement of road using comes up, Intelligent Transport
System (ITS) emerges to address the problems of road safety and congestion.
ITS varies in the technologies applied, from basic management systems such as
car navigation and traffic signal control system, to monitoring applications, such
as security CCTV systems and to more advanced applications like prediction of
transit vehicle arrival time. However, no matter what kind of application it is, the
most commonly used quantity for the performance assessment of ITS is traffic
flow. Hence, the modeling of traffic flow has become a key ingredient of ITS.

The traffic flow research has:been widely-discussed and studied for over 70
years. Among them, the development of traffic flow theory provides a tool to help
transportation engineers understand and-express the characteristics of traffic state.
The basic idea of traffic flow theory is to model the microscopic and macroscopic
relationships among traffic stream variables, including speed, flow and concen-
tration (density). Many models have been proposed as analytical techniques such
as traffic stream models including Greeshield’s model and Edie’s model, shock
wave analysis, deterministic and stochastic queuing theories, and capacity analy-
sis [1, 2, 3, 4]. Moreover, to make I'TS more efficient, dynamic traffic flow model
has gained popularity. The term “dynamic” here is to describe the traffic state
changes caused by stochastic traffic flow uncertainties, such as traffic jams, acci-
dents, weather condition, queue length in front of a traffic light, etc.

Consider an easier traffic flow modeling problem between two separate re-
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Figure 1.1: A simple case: monitor traffic between two regions.

gions, as shown in Figure 1.1. Given a vehicle moving from one region toward
another, its traveling time may increase due to a heavy traffic state associated with

an accident or traffic jam, or decrease in off—peak hours or due to other phenom-

Y, - q.

ena associated with smooth trafﬁc ﬂowrlHenqe 1nstead of using lots of variables

to model the traffic flow, we Can 1n,fersthe trafﬁq state by observing the “delay

g .l

times” or “transition time” of ob]eets movmg ae-ross different regions.

Inspired by this intuitive idea, r;lla.lny "research works and applications focus
on dealing with the relevant problem of “delay times.” For example, in [S] and [6]
Francesco Viti et al. claimed that the transition time of vehicles in urban networks
is determined half by the driving time and half by the delay at intersections that
mainly depends on the arrival time, queue length and the signal frequency. Hence,
they proposed a probabilistic model for delay times at controlled intersection. In
addition, another major topic of ITS about the prediction of transit vehicle arrival
time is also based on the concept of the delay modeling. In [7, 8, 9, 10], Dailey

et al. presented an algorithm to predict transit vehicle arrival time by using an

automatic vehicle location system (AVLS) to collect data that include time and
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Figure 1.2: Overview of Dailey’s System [8].
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Figure 1.3: A GPS-based AVLS for-bifs arrival time prediction.
location pairs. The data are used with historical statistics in an optimal filtering
framework to predict future arrivals. An overview of their system is shown in
Figure 1.2.

There are still lots of methods trying to provide an accurate prediction of
transit vehicle arrival times. For instance, in [11], Steven et al. used artificial neu-
ral networks (ANNS) trained with historical AVLS data to do dynamic prediction;
in [12], the authors used support vector machines (SVM) instead. An example of
GPS—based AVLS for bus arrival time prediction is illustrated in Figure 1.3.

However, all the methods mentioned above suffers from drawbacks of being

expensive in installation and maintenance because they are highly dependent upon
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Figure 1.4: Overview of Beymer’s system [15].

AVLS, which generally costs a lot. Besides, due to the privacy issue, promoting
those AVLS-based applications is not as easy as it appears. Fortunately, in recent
years, as a result of rising deniand for security, many surveillance cameras have
been installed in major intersections and'some regions of interest, and the number
of cameras is growing rapidly. This trend enables the development of another
form of ITS technologies — “vision—based traffic surveillance system.” This kind
of system has the features of relatively low installation cost, easy operation and
less traffic disruption during maintenance in contrast to AVLS [13, 14].

Actually, many image processing and computer vision techniques for the
analysis of traffic flow video sequences have been widely used for road traffic
monitoring and traffic data collection. Considerable amount of improvements
have also been made [14]. For example, in [15, 16] Beymer et al. developed
a feature based tracking approach for the task of tracking vehicle under conges-
tion. By tracking individual vehicles, the system can measure conventional traffic

parameters as well as new metrics suitable for improved automated surveillance.



Figure 1.5: Results of Beymer’s system [15]. (a) Sample feature tracks. (b) Sample feature groups.

Figure 1.4 shows an overview of their system. Some results are shown in Fig-
ure 1.5. In [17], the authors used probabilistic line feature grouping algorithm to
perform model-based 3-D vehicle detectlon and description. With the tracking

algorithm based on the zero—mean correlatlon matchmg, their approach provides
HAIY

o= i f e
a method for vehicles monltormg The ﬂow dlagr.'am and a result of their system

|.__. b ]

——

are shown in Figure 1.6. i

Nevertheless, almost all exis}i'ﬁg'visioﬁ;iaased traffic surveillance systems
are constrained by cameras’ field of views (FOVs). Moreover, these systems only
concern about the visible information in the video sequences and only indicate
the “local” traffic status at the camera location. However, for a camera surveil-
lance system that covers a wide area, it is not always possible to have overlapping
views; the observed regions can be widely separated in time and space. As shown
in Figure 1.7, cameras only have “local “information from their FOVs. Without
the traffic status in the unseen region between non—overlapping cameras, we can-
not infer a “global” traffic flow. Hence, under the condition that most existing

cameras’ FOVs are non—overlapping, if we want to build a practical vision—based

wide—area surveillance system for traffic flow monitoring, we have to estimate the
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traffic state in the unseen reglons betw,,g.en_’ FOV 5.

In this thesis, our main objectlv"e is 't_exmnd existing vision—based surveil-
lance systems from local-range momltc;mg toward global-range monitoring of
traffic flow by inferring the traffic state between non—overlapping FOVs. The key
barrier we will meet is having no visual information of the road, which links the
non—overlapping FOVs, to observe the traffic state directly. In general, if we can
identify the same vehicle across cameras (e.g., using license plate recognition), it
will be easy to achieve our objective. However, there is no guarantee that we can
always achieve the correspondences of objects across cameras. Hence, instead
of solving the problem by identifying the same vehicle across cameras, here we
propose a different method.

We first assume that the transition time of most vehicles across two non—

overlapping FOVs satisfies a global distribution model. Accordingly, if we have
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Figure 1.7: An example of traffic surveillance system with non—overlapping cameras.

the prior knowledge of the global transition—time distribution, we may infer the

rough correspondence among our targets:: Unfortunately, that prior knowledge

is not available in this problem: Frof:/another point of view, every correspon-
ity B > e

dence of vehicles can be treated -_a's an Q;H:sérva-t'ion-,'from the global transition—time

' —
N 3 -y

model. By collecting these ol)-;"é{\l._:é-lﬁbfléI-g.f'-géf:'respondence, we can derive the
global model. Again, we do not ha;/é any information about correspondences.
Hence, in our system, we exploit the physical dependence between the corre-
spondences of buses and the global transition—time distribution, and formulate
the object correspondence and the parameters estimation for the transition—time
distribution as a unified problem in a proposed Expectation—-Maximization (EM)
based framework. By treating object correspondence as a latent random variable,
the optimized solution can be found through iterations.

As for, the transition—time model, since it may might vary with time due

to dynamic changes of traffic state, a sequential EM are used to adapt to such

changes over time. A simple interface of our system is shown in Figure 1.8. Such
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Figure 1.8: A simple interface of proposed system. It provides the information of the time—variant traffic state
between non—overlapping FOVs.

a system can also be combined with the map services, such as Google Map or the

CCTYV Live—cam service on sorr{q--imﬁoﬁéﬁt"ttafﬁc spots, so that users can fetch

the current traffic state from thc_a,_"_I'ntelrnEeJ'Li Y

This thesis is organized él_s- fo_llqu's". In Cl_réipter 2, we will first introduce

Lt =

some related works and mathelri.'aticél.l _techni;qu'és. In Chapter 3, we will present
the proposed algorithm for modeling the dynamic changes of traffic state between
non—overlapping FOVs. Some experimental results are shown in Chapter 4. Fi-

nally, we give our conclusion in Chapter 5.



2 Related Work

In this chapter, we will first introduce a few related researches on surveillance sys-
tems with non—overlapping cameras. Since in the proposed method we use some
mathematical techniques such as Monte Carlo Markov Chain and Expectation—
Maximization, we will also give some brief introductions of these mathematical

techniques.
2.1 Surveillance systems with non—overlapping cameras

In general, the key problem of surveillance systems with non—overlapping cam-
eras is to build the relationships between objects moving through different FOVs,
1.e., the association of objects across cameras. Once the association is established
for all objects, problems such-as;co—operative object tracking, object counting,
and monitoring of objects activities become €asier to resolve.

In [18, 19], Javed et al. proposedia method to establish the correspondence
between observations across cameras. During a training phase, they manually es-
tablished the correspondence to discover the relationships between cameras. They
took the locations of exits and entrances between cameras, directions of move-
ment, and the average transition time across cameras as space—time clues. Also
they learned the inter-camera illumination for modeling the changes of appearance
of objects across cameras as appearance clues. With these clues, tracks of targets
moving through FOVs are corresponded by maximizing the posterior probability.
Some results of their approach are shown in Figure 2.1.

The method proposed in [20] by Song et al. used feature matching for object

tracking in a camera network. They treated similarities between features (ap-
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Figure 2.2: The framework of Song’s system, redrawed from [20].

pearance and biometric) as random variables, whose probability distribution were
created via supervised learning. By building the feature graph containing the fea-
ture vector and similarity score observed over space and time, tracks of people
can be found as the optimal paths in this graph. Besides, to deal with the interde-
pendence between features, they add a-path smoothness function to correct wrong
correspondences and adjust the tracking result.- The framework of their system is
shown in Figure 2.2.

Some works have been focused on the recovery of object tracks as well as
the estimation of poses between cameras with non-overlapping FOVs. Rahimi
et al., in [21], presented an approach that reconstructed the trajectory of a target
across non—overlapping cameras and simultaneously computed external calibra-
tion parameters. Each camera is assumed to measure the location and velocity of
a moving target within its field of view with respect to the camera’s ground-plane
coordinate system. With the assumption that the target’s dynamic state of loca-
tion and velocity evolves according to linear Gaussian Markov dynamics, they

recover the target’s trajectory and the calibration parameters of the cameras using

11
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Figure 2.3: An example from [21].(a )Ground truth of sensor locations and targets’ trajectories. (b) After 9 iter-

ations. Blue denotes the recovered trajectories. Darker gray squares are estimated sensor locations. (c) After 67
iterations.
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maximum a posterior (MAP) estimation. Figure 2.3 shows an example of their
algorithm.

In [22], Sheikh et al. presented a unified framework for the association of
multiple objects across multiple cameras in planar scenes. They modeled the
scene as a plane in 3-D space and used homographies to describe the relation-
ships between cameras. For object motion, they made an assumption that the
object trajectory can be described by a polynomial kinetic model. With such an
assumption, their system is able to recover object associations, inter—camera trans-
formations and canonical trajectories across cameras, irrespective of whether the
cameras are stationary or dynamic, or whether the fields of view are overlapping
or not as long as the kinetic model is valid. Then they recovered the assignment
of associations, while simultaneously ,computing the maximum likelihood esti-
mates of the inter—camera homographies-and the trajectory parameters by using
the Expectation Maximization algorithm.-An example of object association across
multiple non—overlapping cameras 1s‘'shown in Figure 2.4.

Instead of using the appearance feature or object motion model to directly in-
fer the correspondence of objects across non—overlapping cameras, some research
works try to recover the topology of a number of cameras based on co—occurrence
of entries and exits. During the process of topology recovering, some indirect
information about the correspondence of objects can also be extracted. In [23],
Makris et al. assumed a single mode transition time distribution between FOV's
and exhaustively search for the location of the mode by applying cross—correlation
to the arrival and departure time of objects across cameras. Their method assumes
all departures and arrivals within a time window are implicitly having one—to—one

correspondences. The transition—time distribution obtained from the correspon-

13
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Figure 2.5: Cross—correlation functions and transition probability functions for selected pairs of entry/exit zones.
Time is measured in seconds. Red line indicates the ‘peak ‘detection threshold, while the black line indicates the
level of cross—correlation if the zones were uncorrelated [23].

dences is examined for a peak by thresholding based on the mean and standard
deviation. Figure 2.5 shows examples of cross—correlation function and transition
probability function for selected pairs of entry/exit zones.

Markis’ approach has been extended by Stauffer [24] and Tieu et al. [25] by
providing a more rigorous definition of transition based on statistical significance.
Stauffer tested the hypothesis that the correlation between exit and entry events
that may or may not contain valid object transitions is similar to the expected
correlation when there are no valid transitions. Tieu et al. also presented that the

method of [23] suffers from the assumption of unimodal transition distribution,

15
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Figure 2.6: Transition distributions obtained using correlation with different time windows all fail to match the
simulated multi-modal distribution (dashed plot).In addition, there is no clear maximum peak indicating statistical
dependence [25].

as shown in Figure 2.6. Unlike using cross—correlation in [23], their approaches
used information—theoretic mutual information or entropy to compute statistical
dependence between observations across cameras.

However, most of the features or models used in the above methods are in-
sufficient in real life scenario for traffic flow surveillance. For example, in the
wide—area surveillance, the appearance modelr may become invalid because the
observation may occupy only a few: pixelstor looks very different from different
viewing angles of cameras ,or under sudden lighting changes. Likewise, for ve-
hicles in the real life traffic which might contain complicated behavior patterns
such as car—following and queuing, the aforementioned object motion won’t be
able to provide accurate descriptions. Moreover, due to the dynamic changes of
real life traffic, the transition—time distribution may not be correctly found by
cross—correlation or by maximizing the dependence between observations in two

cameras.

2.2 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) method is a general computing technique

that is often applied to solving integration and optimization problems in large

16



dimensional spaces. As a result, it has been widely used in machine learning,
physics, chemistry, biology statistics, and computer science. MCMC can be re-
garded as a strategy for sampling from some complex distributions of interest. It
is named after the fact that the next sample is randomly generate from the previ-
ous sample by following a Markov chain mechanism, under which the transition
probabilities between sample values are only a function of the most recent sample
values. This mechanism can facilitate the chain to spend more time in more im-
portant regions [26]. In the literature, different algorithms of MCMC have already

been well developed. We will introduce two commonly used ones in this section.
2.2.1 The Metropolis—Hastings algorithm

One original motivation for applying MCMC comes from the attempt to handle
the situations when we cannot . directly draw samples from some complex proba-
bility distributions. Metropolis—Hastings-(MH) algorithm provides a general ap-
proach for obtaining a sequence of random-samples from those distributions. The
sequence can then be used to approximate the distribution (i.e., to generate a his-
togram). This algorithm is the most popular MCMC method [27, 28]. Many
practical MCMC algorithms can be interpreted as special cases or extensions of
this algorithm [29].

Suppose our goal is to draw samples from a probability distribution p(x), MH
algorithm creates a Markov chain for sampling a candidate value x* given the cur-
rent value x according to a proposal distribution ¢(x*|x). This new candidate is ac-
cepted with acceptance probability A(z, z*) = min{1, [p(x)q(z*|z)] " tp(z*)q(x|x*)};
otherwise, the current value of z is retained. The pseudo—code of MH algorithm

is listed in Figure 2.7.

17



Algorithm 1 Metropolis—Hastings algorithm
0)

Initialize z

fori =0to N —1do
Sample u from U (0, 1)
Sample z* from g(z*|z)

. i * . (z*)g(z' |z*
if u<A(z®, 2*) = min{1, ;(Ei:(i)))qq((r*|-‘;c(i)))} then

:L,(z'+1) — 2t
else
x(z‘.+1) _ :C(z'.)
end if
end for

Figure 2.7: Metropolis—Hastings algorithm.

The main idea of MH algorithm is to simulate sampling from the target dis-
tribution p(z) by sampling from another easy—to—sample proposal distribution
q(z*|z). Hence, the more g(x*|#) matches-the shape of p(x), the better MH al-
gorithm works. Besides, the termi[p(z)g(z*|x)] "tp(z*)q(x|2*) in the acceptance
probability give us a measure about how much the Markov chain would like to
move toward the candidate value x*.

As shown in Figure 2.8, the authors in [29] give an example of running the
MH algorithm based on a Gaussian proposal distribution ¢(z*|z(®") = N (2, 100)
and a bimodal target distribution p(z)  0.3exp(—0.22?)+0.7exp(—0.2(z—10)?)
for 5000 iterations. As expected, the histogram of the samples approximates the

target distribution.
2.2.2 The Gibbs sampler

Gibbs sampler [30], is a special case of the Metropolis—Hastings algorithm [26].
It is an algorithm to generate a sequence of samples from the joint probability

distribution of two or more random variables. The key to the Gibbs sampler is that
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Figure 2.8: Target distribution and histogram'of the MCMC samples at different iteration points [29].

one only considers univariate conditional distributions — the distribution when all

of the random variables but one are kept fixed. Hence, this method is applicable

when the joint distribution is not known explicitly but the univariate conditional

distribution of each random variable is known.

Suppose we have an n—dimensional vector x and the expression for the full

univariate conditional distribution p(x;|z_;)

= p(xj|zy, ..

By taking the following proposal distribution for j = 1,...,n

g(z*|zW) =

19
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Algorithm 2 Gibbs sampler.

Initialize T(0,1:n)
for: =0to N —1do

Sample 2™ ~ p(ay 287, 2. ... 2
Sample 2™ ~ plzalel ™.z, )
Sample $§i+1) ~ p(x; |£Ui LR xngll),mgﬁl ..... :cg(ff))
Sample zi/ T ~ p(:cn|:c.(f+1).xg+l) ..... :Unlfll))
end for

Figure 2.9: Gibbs sampler.

The corresponding acceptance probability is:

() p(z*)q(z]z*)
A(z", x*) = mindly g (x*\x(l))} (2.2)

N 0]
P )p(;|275)

(
“p(rt )p(x;\x*_j)
(

}

Hence, the acceptance probability for each new candidate random value x* is
one. In other words, each new proposal sample is always accepted. The pseudo—

code of Gibbs sampling is presented in Figure 2.9.
2.3 Expectation—-Maximization

The Expectation Maximization algorithm (Hartley, 1958 [31]; Dempster et al.,
1977 [32]; McLachlan and Krishnan, 1997 [33]) performs maximum likelihood
estimation for parameters in probabilistic models, where the model depends on

some unobserved variables. EM is an iterative optimization method consisting of
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an expectation (E) step, which finds the distribution of the unobserved variables,
given the known values for the observed variables and the current estimate of the
parameters; and a maximization (M) step, which computes the parameters which
maximize the expected likelihood found in the E step, under the assumption that
the distribution found in E step is correct. These parameters are again used to
determine the distribution of the unobserved variables in the next E step [34]. To
understand the EM algorithm, we give a simple description of EM in the follow-
ing.

Suppose that we have observed the value of some random variable, Z, but
not the value of another latent variable, Y. The joint probability for these two
variables is parameterized using 0, as P(y, z|0). We want to find the maximum
likelihood estimate for the parameter ¢ 0f.a medel for Y and Z, but this prob-
lem cannot be easily solved directly. Alternatively, the corresponding problem in
which Y is also known would be mote tractable.

The basic idea of this problem'is to'maximize the log likelihood of the pa-

rameter 6, given the data z, by marginalizing over the latent variable Y:
0 = 1 P 0 2.3
arg max og; (y, 216) (2.3)

= argmax log P(z|6)
= arg max L(6).

This gives the intuition behind the EM algorithm: alternate between esti-
mating the unknowns 6 and estimating the hidden variable Y. The EM algorithm
starts with some initial guess at the maximum likelihood parameters, 6 and then
proceeds to iteratively generate successive estimates, 81, 8(2) .. by repeatedly
applying the following two steps, fort = 1,2, ...
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— E Step: Compute a distribution P® over the range of Y such that

PW(y) = P(y|z,007Y).
— M step: Set 0) to the 6 that maximizes F 5, [log P(y, z|0)].

Here E5[-] denotes the expectation with respect to the distribution P over the
range of Y [35]. As shown by Dempster, et al. [32], EM algorithm has the prop-
erty of increasing the likelihood L(#), or leave it unchanged, at each step. In fact,
although an EM iteration does not decrease the observed data likelihood func-
tion, it is not guaranteed to converge to a maximum likelihood estimate. For most
models, the algorithm may converge to a local maximum of L(f#). Actually, we
may also view EM algorithm as two alternating maximization steps for the same

function F'(P, #) which is defined.as follows:
F(P,0) = Epllog Py, 210)} + H(P), (24)

where H(P) = —Ej[log P(y)]"is:the entropy.of the distribution P. Hence, an

iteration of EM algorithm can be expressed in terms of the function F' as follows:
— E Step: Set P to the P that maximizes F (P, 01).
— M step: Set ) to the 6 that maximizes F(P®), 4).

Once the EM iterations have been expressed in this form, it is clear to tell that the

algorithm will eventually converge to the value P* and 6* that locally maximize

F(P,0) [35].
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3 Proposed Method

In this chapter, we present an algorithm to infer the traffic state between non—
overlapping FOVs by modeling the traffic flow with a transition—time distribution
which may change dynamically. We first introduce the targets selected for the
analysis of traffic status in our system. By utilizing the specific motion pattern of
the targets of interest, we can reduce the complexity of traffic flow analysis and
improve the system performance. Then we will describe the traffic flow model
of our system in Section 3.2. In Section 3.3, the problem formulation and our
algorithm are presented. In Figure 3.1, we show the flowchart of the proposed
system.

We have conducted some experiments based on a real life traffic environ-
ment. Two cameras are installed to-monitortwo-separate regions, which are linked
by a road with some intersections in—between. More detailed description of the

setting of our experimental environmentand-setting in the next chapter.
3.1 Selected Target

In order to monitor the traffic state between two non—overlapping FOVs linked
by a road, we need to observe and analyze objects(cars) moving between the two
FOVs. In general, however, since there may be intersections along the road, vehi-
cles may leave or enter the road in—between. This circumstance will complicate
the whole problem since we may have to identify the objects that leave halfway
and ignore them in the traffic analysis. Accordingly, to alleviate the potential
difficulty of analysis incurred by this case, we prefer to infer the traffic state be-

tween non—overlapping FOVs by choosing the vehicles are more likely to have
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Figure 3.1: The block diagram of the proposed system.

fixed route (e.g., bus) across FOVsasiour main targets. Although we still cannot
guarantee that all the buses seen in one FOV will definitely show up in another,
this target selection can indeed improve the aceuracy of our analysis. By selecting
buses in the traffic videos obtained from two FOVs, we record the entry/exit times
of all the buses in the regions of interest. A result of the target selection is shown

in Figure 3.2.
3.2 Traffic Flow Model

From a microscopic point of view, every vehicle has its own behavior pattern,
which is affected by individual driver. However, if observed from a macroscopic
point of view, one may find that most vehicles typically follow a global trend that
is affected by the interactions among vehicles such as car—following and queuing.
Hence, the main assumption of our proposed method is that the transition time
of most vehicles across two non—overlapping FOV's will satisfy a global distribu-
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distribution because this model is general an_d;»tan well approximate a lot of con-
tinuous functions under normal COHdltlénS. Some examples of distributions in the
real life traffic are shown in Figure 3.3, in which we can see that the distributions
can be well modeled by GMM. With the assumption of GMM model, our objec-
tive is to derive the parameters of this global transition time model to describe
the traffic state. Moreover, since traffic flow state may dynamically change over

time, we divide the timeline into many overlapped time—windows to analyze the

transition time distributions at different times of the day, as shown in Figure 3.4.
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Figure 3.3: Some examples of distributions in the real life traffic.
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Figure 3.4: Division the imeline of the-day into overlapped time—windows.

3.3 Problem Formulation

Before discussing how to determine the'GMM parameters, we first consider two
problem from two opposite viewing angles in the following paragraphs. First,
suppose that we have the prior knowledge of the global transition—time distri-
bution, we may infer the rough correspondence among buses. That is, we can
approximately determine how the buses in two FOVs match one another. On the
other hand, if we know how the buses in two FOVs match one another and thus
the transition time of each correspondence, the global transition time distribution
can be derived. Hence, in our system, we exploit this physical dependence be-
tween the correspondences of buses and the global transition—time distribution,
and proposed a new solution to monitor the traffic between FOVs. Note that it

1s reasonable to assume that the traffic statuses on different sides of the road are
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independent of each other. Without loss of generality, we only discuss the traffic
problems in a single side.

To determine the model parameters and to further infer the traffic state within
a time window, we formulate the problem as an optimization process expressed as
follows:

O = argmgxp(@w), (3.1)

where Z = ({m}nr, {yn} n) represents the combination of observations, includ-
ing the exit time set (1, T2, ..., Tm, - .., L)) and the entry time set (y1, Yo, - - - , Yn,
..,yn) of all the buses in two non—overlapping FOVs, as shown in Figure 3.2.
However, it is difficult to build the probability model P(©|Z) in Equation 3.1,
owing to the lack of physical connection between © and Z. To compensate the
physical gap between parameters ©.and our observations Z, we introduce the cor-
respondences between the exititime {x,,} 1 and entry time {y, } 5 as an unknown
random variable C' = {c¢;,, () = yn } m» Where e, (.) indicates the entry time v,
that an exit time z,, will correspond to. Therefore, if a bus leaves one FOV at
Tm, travels through the road, and then enters another FOV at v,,, we can express
this correspondence by {z,,, ¢;,(z,,) = yn}. The transition time of this corre-
spondence is t,, = ¢p,(Ty,) — T, Figure 3.5 shows the schematic diagram of
Tm, Yn, Cm(.), and t,,. By collecting all the transition times of each correspon-
dence into a data set T = {t,, } »s, we may estimate the model parameters O.
The problem of the above formulation is that we do not have the measure-
ment of C' and we cannot derive the © directly. Hence, we treat the correspon-

dence C as a latent variable and reformulate Equation 3.1 as Equatiion 3.2 by
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Figure 3.5: The schematic diagram of x,,, yn, ¢m(.), and t,,

marginalizing out every possible correspondence C'.

O* = arg maxz n(©,C12). (3.2)

ﬁ..-- .H"q.

Although a direct approach to SQIV‘ pg thms 0pt1m1zat10n problem is generally

intractable, the Expectation Max1m1,zat«10n algorIthm provides a mean to do the

, | Y _|

maximization by iteratively calctplatmg the foﬂowmg two steps:

TERER AN

1. E Step: Calculate the expected log likelihood function Q(©):
= log(p(2,C|©)p(C|Z,0). (3.3)
c

where the expectation is taken with respect to the posterior distribution p(C|Z,

©(d)) over all possible correspondences C, given the data Z and the ©(°/4)

at the previous time step.
2. M step: Find the Maximum Likelihood estimate ©("**) by maximizing Q(O):
o) — arg max Q(O). (3.4)
However in the E step, the expectation is difficult to compute since the number

of possible correspondences explode combinatorially. A solution is to introduce
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Algorithm 3 Gibbs sampler in proposed method.

Initialize c{), |

forr =0to R — 1do

Sample c-(lrﬂ) ~ plcy \c(;)._ cér) o) 0).

Sample ¢y T ~ peo|c TV e ). @),

Sample c§r+1) ~ p(cﬂc&rﬂ) e cg-rjllj._ 051)1 e, Q).
Sample ciy T ~ ple YT 0).

end for

Figure 3.6: Gibbs sampler in the proposed method.

Markov chain Monte Carlo (MCMC) to sample from the posterior probability
distribution p(C|Z, ©°4)) and replace the expectation in the E step over all pos-
sible correspondences with MCMC samples.’ - More formally, this can be justi-
fied in the context of a Monte-Carlo EM or MCEM. The sampling method we
use here is the Gibbs sampling. In.ous-setting, it is prefered that the entry/exit
times are having one—to—one correspondences, but still allow the possibility that
one entry time could be matched with more than one exit times. Therefore,
p(cj\cgrﬂ), e CECJEl), 057217 e cg\?, ©), the conditional probability of ¢; given
the other correspondences {¢,, } 172; and global transition time distribution O, will
be proportional to the likelihood of transition time ¢; = ¢;(x;) — x; determined
by O, while the conditional probability may decrease if the exit time y,, = ¢;(x;)
has been matched with others (see the algorithm in Figure 3.6). A simple example
of the process in Gibbs sampling is shown in Figure 3.7. By performing sampling
R times, it will generate a sequence of C'. Since we expect that the correct C' will

have a much higher likelihood than others, we will choose the best sampling result

to enter the M step in the EM algorithm.
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Figure 3.7: A simple example of the Gibbs sampling. (a) In the beginning, for sampling c;, there are four can-
didates: ¢1(z1) = y1, c1(x1) = ya, c1(x1) = y3, c1(x1) = y4 and therefore four possible transition times:
t1—1, t1—2, t1—3, t1_4. For every transition time we can measure its likelihood to the distribution ©. The Gibbs
sampling will sample c; according to the probability proportional to these likelihoods. Here we assume the Gibbs
sampling chooses ¢1(x1) = y2. (b) Given the distribution © and the existing correspondence, we want to de-
termine co. The same method is used to measure the conditional probability of every candidate of co. However,
because co(x2) = yo has been mapped by ¢ (z1) = y2, we will give ca(x3) = y2 a penalty to lower down its
probability for the preference of 1-to—1 correspondence. Accordingly the Gibbs sampling chooses ca(22) = 1.
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With the correspondences C' = {¢;, }as from the Gibbs sampling, we can
calculate all the transition times {t,, = ¢;, (%) — @, }ar Of buses traveling across
two non-overlapping FOVs. In the M step, from {t,,}s;, we will derive the pa-
rameters O of the global transition time distribution. Assume we use a GMM with
K Gaussians to approximate the global transition time distribution, then the dis-
tribution © will be parameterized by the weight w;, the mean 1, and the variance
032- of the jth Gaussian, with ;7 = 1, ..., K. To estimate these parameters given the
transition times {t,, } s, we can use a standard EM algorithm designed for GMM

that is based on the following iteration formulae:

w{ Y Z P(jltm) (3.5)
m 1
M .
) 2 DGl
MaRE = (3.6)

(r—i—l) m=1 — (3.7)

where

) "), 60
P(jltn) = —2— Plbldiny 05 ) (3.8)

,2“’ Ptk 1 ,a,i>>

A demonstration of the M step is shown in Figure 3.8.

The global transition—time distribution parameterized by {w;, y;, ajz} K dis-
covered in the M step will be propagated into the E step of the next EM iteration.
After a few iterations, the EM algorithm will converge to a maxima of p(©|7).
The proposed EM algorithm for traffic state monitoring within a time—window is

shown in Figure 3.9.
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Figure 3.9: Proposed Expectation-Maximization algorithm for simultaneously estimating object correspondence
and the parameters of the transition time distribution.
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Figure 3.10: Initialization of the EM algorithm for the first time-window. We start the EM iteration by initial-
izing the global transition—time distribution © with the Gaussian mixture model of K equal weighting, broadly
separated, and wide—bandwidth Gaussians. We assume this initialization of GMM can cover most regions of the
transition time.

3.4 Initialization

In this paper, we divide the timeline into several overlapped time—windows to han-
dle the dynamic changes of the traffie: flow; as shown in Figure 3.4, and apply the
proposed EM algorithm to every time—window. An important step for performing
the proposed EM algorithm in each time—window is the initial setting. For the first
time—window, we start the EM iteration by initializing the global transition—time
distribution © with the Gaussian mixture model of K equal weighting, broadly
separated, and wide—bandwidth Gaussians, as shown in Figure 3.10. We assume
this initialization of GMM can cover most regions of the transition time.

On the other hand, for the initial setting of the subsequent time—windows,
since they are partially overlapped with the previous ones, we would like to prop-
agate some information from the previous window into the current window as the
initial condition. Hence, we have two choices for the initialization — propagating

either the parameters of the Gaussian mixture model or the correspondences from
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Figure 3.11: A possible situation for the current tilme—window+and the previous one — the transition—time distri-
bution of the current time—window is more widespread then it of the previous window. The increased range of the
transition—time is caused from the data in the non—overlapped:subsection which is new to the last time window
(noted with the blue bounding—box), and the GMM of the previous'time—window only has the information of the
overlapped subsection in current time—window (noted with the purple’bounding—box).

the previous window. Considera possible sitiation wherein the transition—time
distribution of the current time—window is more widespread than that of the pre-
vious one, as shown in Figure 3.11. The increased range of the transition time
due to the new data (marked with the blue bounding—box) is not covered by the
GMM of the previous time—window (marked with the purple bounding—box). As
aresult, if we start the EM iterations by initializing the parameters of GMM which
are propagated from the previous time window, the algorithm may only cover the
partial range of the transition time and lead to incorrect result.

Therefore, for the EM initialization of the subsequent time—windows, in ad-
dition to propagate the correspondences of the overlapped subsections from the
previous window into the current window and use them as the initial conditions,

for the data in the non—overlapped subsection which is new to the last time win-
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Figure 3.12: Initialization of the EM for the following time—windows. We propagate the correspondences of the
overlapped subsection from the previous window into the current window, and randomly assign the correspon-
dences of the new data in the non—overlapped subsection.

dow, we randomly assign the correspondences within this period. That is, we start
the EM iterations by initializing the correspondences C' which consist of both the
propagated and the randomly assigned correspondences, as shown in Figure 3.12.
This method for initialization helps the algorithm to maintain some information
from the previous time—window, while still have the ability to extract useful infor-

mation from the new data.
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4 Experiment and Results

Out experimental environment is shown in Figure 4.1. We mounted two cameras
at the Mackay Memorial Hospital and the overpass in front of National Tsing Hua
University. In Figure 4.1, we can see that FOVs of these two cameras are non-
overlapped and these two scenes are linked by Kuang Fu Road (indicated by the
red line). Besides, there are three intersections and some bus stops along the road
between these two FOVs. This makes the traffic situations more complicated.
The traffic videos were taken from about 9:45 in the morning till 19:00 in the
afternoon. We divide the time-line into 34 overlapped time—windows. The length
of each time—window is 60 minutes, with 45 minutes overlapped with the previous
window, as shown in Figure 4.2

We first check the traffic: videos and manually select frames that contain
buses. All the entry/exit times of busesrarerecorded. Then we apply the proposed
EM algorithm for each time—window. " Here we use a Gaussian mixture model
with 3 Gaussians to model the transition—time distribution. For the first time—
window, the parameters of the GMM are initialized with 1 = {50, 150, 250},
o? = {200,200, 200} and w = {0.33,0.33,0.33}. Then the initialization for EM
in all the other time—windows follows the method we described in Section 3.4.
Figure 4.3, Figure 4.4, and Figure 4.5 show the computed transition—time distri-
butions and the ground—truths in different time—windows. We can see that the
distribution calculated by our algorithm is reasonably similar to the ground truth.

Here we also give some results by applying the method in [25] to our experi-
mental data, as shown in Figure 4.6. We can see that the results are not as accurate

as ours. The reason is that in our method we use a stronger assumption about the
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Figure 4.1: The experimental environment: monitor t}le Irafﬁc between two non—overlapping FOVs at Mackay

Memorial Hospital and the NTHU overpass. ;.-'cf‘_’,- R La .,
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Figure 4.2: We divide the timeline into 34 overlapped time—windows. The length of each time—window is 60
minutes, with 45 minutes overlapped with the previous window.
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Figure 4.3: The transition—time distribution from time—window # 01 to time—window # 12.

(a) Time—window 09 : 45 ~ 10 : 45. (b) Time—window 10 : 00 ~ 11 : 00. (¢) Time-window 10 : 15 ~ 11 : 15.
(d) Time—window 10 : 30 ~ 11 : 30. (e) Time—window 10 : 45 ~ 11 : 45. (f) Time—-window 11 : 00 ~ 12 : 00.
(g) Time-window 11 : 15 ~ 12 : 15. (h) Time—window 11 : 30 ~ 12 : 30. (i) Time—-window 11 : 45 ~ 12 : 45.
(j) Time—window 12 : 00 ~ 13 : 00. (k) Time—window 12 : 15 ~ 13 : 15. (I) Time—window 12 : 30 ~ 13 : 30.
(z—axis: transition time; y—axis: milli-probability).
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Figure 4.4: The transition—time distribution from time—window # 13 to time—window # 24.

(a) Time—window 12 : 45 ~ 13 : 45. (b) Time—window 13 : 00 ~ 14 : 00. (¢) Time—window 13 : 15 ~ 14 : 15.
(d) Time—window 13 : 30 ~ 14 : 30. (e¢) Time—window 13 : 45 ~ 14 : 45. (f) Time—window 14 : 00 ~ 15 : 00.
(g) Time-window 14 : 15 ~ 15 : 15. (h) Time—window 14 : 30 ~ 15 : 30. (i) Time-window 14 : 45 ~ 15 : 45.
(j) Time—window 15 : 00 ~ 16 : 00. (k) Time—window 15 : 15 ~ 16 : 15. (1) Time—window 15 : 30 ~ 16 : 30.
(z—axis: transition time; y—axis: milli-probability).



Algo. Algo. Algo.
* : Truth | ° ‘ : Truth b E Truth
16 16 16
1 14 14 :
2 2 2
10 10 10
s s s
8 8 8 .
4 : 4 4 :
2 2 2
00 50 100 150 200 250 300 50 400 00 50 100 150 200 250 300 350 400 00 50 100 150 200 250 300 350 400
(@ (b) (©)
20 20 2
Algo. Algo. Algo.
b Truth | * Truth | ° Truth
I 1 1
1 : 1 14 .
12 : 12 2 :
10 10 10
s s 3
s s s
4 4 4
2 2 2
Du 50 100 150 200 250 80O 850 400 OU 50 100 150 200 250 80O, 850 400 OU 50 100 150 200 250 80O, 850 400
@ A1 TR ®
20 20 _ 20
Algo. Algo. Algo.
* Truth | ° Truth | ° Truth
1 1 1
1 14 14
2 : 2 2 :
10 10 10
s s s
B B s
4 4 4
2 2 2 8
00 50 100 150 200 250 300 350 400 00 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
() () @)
20
Algo.
15 J\ Truth
1
14 .
2
10 :
s !
s
B
2
00 50 100 150 200 250 300 350 400
)

Figure 4.5: The transition—time distribution from time—window # 25 to time—window # 34.

(a) Time—window 15 : 45 ~ 16 : 45. (b) Time—window 16 : 00 ~ 17 : 00. (¢) Time—window 16 : 15 ~ 17 : 15.
(d) Time—window 16 : 30 ~ 17 : 30. (e¢) Time—window 16 : 45 ~ 17 : 45. (f) Time—window 17 : 00 ~ 18 : 00.
(g) Time-window 17 : 15 ~ 18 : 15. (h) Time—window 17 : 30 ~ 18 : 30. (i) Time-window 17 : 45 ~ 18 : 45.
(j) Time-window 18 : 00 ~ 19 : 00.

(z—axis: transition time; y—axis: milli-probability).
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Figure 4.6: Some results from applying the method in [25] to our experimental data. (a) Time-window 12 : 00 ~
13 : 00. (b) Time—window 12 : 15 ~ 13 : 15. (¢) Time—window 17 : 00 ~ 18 : 00.

characteristics of the real life traffic while the method in [25] only depends on
the weaker minimum entropy assumption about the transition time distribution.
For example, in Figure 4.6(c), the distribution of the ground truth has a wider
range and thus has a larger entropy, valtie than that of the distribution found by the
algorithm in [25].

To infer the traffic flow state, we can first use the average transition time of
the last 15—minute observation within each time-~window as a statistic to represent
the state. As shown in Figure 4.7, the chart of the traffic—flow state may give us
the direct message about how the traffic dynamically changes over time. For in-
stance, we may probably guess that the increase of the average transition time at
about 12:00 is due to the lunch—time traffic, which is always a rush hour. More-
over, we could also express the traffic flow state by classifying the traffic changes
as “stable”, “increasing”, and “decreasing,” as shown in Figure 4.8. This figure
indicates how the traffic changes with respect to the previous stage. This kind of
description is much more user—friendly.

In addition to the aforementioned setting of the time—line division and the ini-

tialization method, here we provide some examples of different settings to support
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that our setting is reasonable. In the first example of different settings, we divide
the time—line into 60—minute time—windows with 30 minutes overlapped with the
previous window. For the EM initialization of the following time—windows, we
propagate the parameters of GMM from the previous window. Figure 4.9 shows
the transition—time distributions of some time—windows. We can see that the com-
puted transition—time distributions cannot adapt quickly enough to the changes of
the ground truth. One reason for this phenomenon is due to the problem of initial-
ization we presented in Figure 3.11. Moreover, since the information propagated
from the previous window only dominates 50% of the data in the processing win-
dow, the degree of change for the transition—time distribution might be too big to
be tracked by the algorithm. Then, in the second example of different setting, we
use the same time—windows as i1l the fizst.example; and for the EM initialization
of the following time—windows, we follows the method described in Section 3.4.
Figure 4.10 shows the transition=time distributions of the time—windows which
are the same as those in Figure 4.9.""We'can see that even there are some im-
provement in Figures 4.9(b), 4.9(d), and 4.9(e), the problem of miss—tracking still
exists, as shown in Figure 4.9(c). Hence, in our experiment, we choose to di-
vide the timeline into time—windows with much more overlaps with the previous

time-window.
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Figure 4.7: Traffic flow state expressed by the average transition time of the last 15—minute observation within
each time—window. The red line is computed by our proposed method; The blue line is from the ground truth.
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Figure 4.8: Express the traffic flow state by classifying the traffic changes as “stable”, “increasing”, and “decreas-
ing.” (Green color: stable traffic; Red color: increasing traffic flow; Blue color: decreasing traffic flow).
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Figure 4.9: Some transition—time distributions from the first example of different setting. Each time—windows is 60
minutes long including 30 minutes overlapped with the previous window. The EM initialization of the following
time—windows is with the parameters of GMM propagated from the previous window.

(a) Time—window 10 : 45 ~ 11 : 45. (b) Time—window 11 : 15 ~ 12 : 15. (c) Time—-window 11 : 45 ~ 12 : 45.
(d) Time-window 12 : 15 ~ 13 : 15. (e) Time—window 12 : 45 ~ 13 : 45. (f) Time-window 13 : 15 ~ 14 : 15.
(z—axis: transition time; y—axis: milli-probability).
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Figure 4.10: Some transition—time distributions from the second example of different setting. Each time—windows
is 60 minutes long including 30 minutes overlapped with the previous window. The EM initialization of the
following time—windows follows the method described in Section 3.4.
(a) Time—window 10 : 45 ~ 11 : 45. (b) Time—window 11 : 15 ~ 12 : 15. (¢) Time—window 11 : 45 ~ 12 : 45.
(d) Time-window 12 : 15 ~ 13 : 15. (e) Time—-window 12 : 45 ~ 13 : 45. (f) Time-window 13 : 15 ~ 14 : 15.
(z—axis: transition time; y—axis: milli-probability).
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5 Conclusion

We propose an efficient method to probabilistically model the dynamic traffic flow
between non—overlapping FOVs. Unlike previous works, our approach does not
attempt to directly build the object correspondence across non—overlapping cam-
eras. Instead, we model object correspondence and the parameters estimation of
the transition time model as a unified problem. By building the physical con-
nection between the transition time model and the object correspondence, the
proposed EM—-based framework can iteratively determine the optimal object cor-
respondence and the model parameters. In addition, by dividing the time—line
into many overlapped time—windows, our method can sequentially infer the time—
varying traffic flow and recognize the dynamic changes of the traffic status over
time. Moreover, our system is-efficient and may provide a new thinking to well
utilize the existing surveillance'cameras forwide—area traffic monitoring. The ex-
periments have shown that our approach performs well in a complicated traffic

environment in real life.
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