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Player Tracking and Tactic Analysis in Basketball Video

Student: Tsung-Sheng Fu Advisor: Prof. Suh-Yin Lee

Institute of Multimedia Engineering

National Chiao Tung University

ABSTRACT

Thanks to the development of TV broadcasting technology, there are more and
more people watching basketball games. . Most. of us, however, do not know the
basketball sport very well. \We may scream for a buzzer beater three-point shot or
get excited about a slam dunk; but we do not exactly realize how a player gets rid of
defenders and makes shots. " There have been some researches on basketball video,
such as highlight extraction and scoreboard recognition, but they still cannot help
people further understand this sport. Therefore, we intend to design a system which
provides audience with further knowledge of basketball instead of superficial
information. In basketball games, people are most interested in scoring events.
Nevertheless, scoring is not that simple as it looks. It can be an abstruse subject
since basketball is a five-person sport and one player is not able to fight against the
opponent team. That is, it is difficult for an individual player to break the defense
and score by himself. Most shots are made through execution of tactics.
Consequently, our goal is to automatically identify tactics executed in basketball
games and bring audience the collected information so that they can learn more about
the basketball sport.

There is plenty of basketball tactics, and it is hard to model them by a single
i



algorithm. Hence, we focus on “screen,” which is widely used in most basketball
tactics. We detect and classify screens, and regard their patterns as certain tactics.
Our proposed system performs with the following steps.  First of all, we gather some
consistent information at the beginning of the game, including the floor color and the
jersey colors of the two teams. We first compute the camera calibration and generate
a court mask indicating the court region. Second, we calculate the dominant color
within the court region, which represents the floor color. Next, we obtain the
foreground objects by subtracting the floor from the court region. This procedure is
similar to a background subtraction mechanism. Finally, we divide the foreground
region into two clusters with color information. Thus, the two clusters denote the
jersey colors of the two teams respectively. © Since this information is consistent
through the entire game, we can utilize.it to reduce computational cost and accelerate
the computation in the following frames. During the game, we first distinguish
which team is on offense in‘each possession since we have to learn the behaviors of
offensive and defensive players respectively in order to identify tactics. Next, we
extract players of the two teams with the ‘previously obtained information and track
them. At the end of a possession, we identify what screens are set by the trajectories
of the players. Through our experiment, the accuracy of screen detection and
classification is satisfactory, which significantly helps analysis of basketball tactics.
The identified tactics are then inserted into a database from which audience can query

tactics they are interested in.

Keyword: basketball video, player tracking, tactic analysis, sports video analysis,

image processing
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Chapter 1. Introduction

There have been many researches on sports video analysis in the past decade.
However, not much research is focused on broadcast basketball video analysis.
Doing researches on basketball video, one may face some difficulties and challenges.
Most of all, basketball players occlude each other very often. As a result, it is
difficult to segment and track players correctly. Unfortunately, segmentation and
tracking are the soul of video analysis. In other words, unless we overcome the
occlusion problem, we are not able to analyze much content in basketball videos.
Chang et al. proposed a method [1, 50] that can accurately separate players of
different teams. This tremendously improved the possibility of basketball video
analysis because in basketball'games; in order to make wide-open shots, players of the
same team seldom stay together. On the other hand, the defensive players usually
stand next by his target to defend. That is, once we distinguish players of the two
teams, we can avoid most occlusions. ' Second, in order for the audience to see the
ball clearly, the camera usually follows the ball. This may lead to violent camera
motions since the ball moves fast. Consequently, the camera calibration is another
challenge. Farin et al. introduced a robust and efficient court model tracking
algorithm [2], which helps us use the frame coherence to obtain the camera calibration
with slight computational cost.

Besides, there is another question: what can we analyze in basketball videos?
Some researches focus on event detection and highlight extraction [3-6]; others are
interested in trajectory reconstruction [7]; still others concentrate on frame
information, including shot classification [8] and scoreboard recognition [9].

Nevertheless, recent researches consider more information in video clips than in
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basketball sport itself. Our goal is to bring the audience further knowledge about
basketball, or even to provide professional players and coaches with technical
information. To achieve this goal, we put most effort in verifying the tactics
executed in basketball games. Having surveyed hundreds of basketball tactics, we
discovered that there is one fundamental essence — screen. A screen is a blocking
move performed by an offensive player, by standing beside or behind a defender, in
order to free a teammate to shoot, to receive a pass, or to drive in to score.
Basketball tactics can be categorized by strategies which they are following and
players whom the tactics are set for.  Strategies include isolation, low-post, high-post,
mid-range, three-point, pick-and-roll, and pick-and-fade. Isolation means that the
team on offense tries to isolate a player and make a one-on-one attack. Low-post and
high-post indicate the location” where players ‘start attacks. Mid-range and
three-point are similar to low post and high post, describing the attack locations, but
they focus on the finish of attacks instead of the 'beginning. Pick-and-roll and
pick-and-fade strategies intend players to make open shots through screens. A tactic
sometimes does not follow a specific ‘strategy, and we categorize it as general.
Furthermore, once the strategy is decided, a player is expected to shoot the ball.
That is, tactic categories are then distinguished by the positions of players, namely,
point guard, shooting guard, small forward, power forward, and center. In general,
point guards (PG) organize the offense of a team; shooting guards (SG) are good
shooters from long range; small forwards (SF) have high speed so that they usually
drive in and break the defense of the opponent team; power forwards (PF) and centers
(C) are the tallest players of a team and they behave most near the basket. Through
our observation, most tactics consist of screens. Table 1.1 shows total number of
surveyed tactics and number of tactics using screens. According to Table 1.1, over

80% of tactics contain screens. In other words, most basketball tactics are composed
2



of different types of screens. Once we want to study a basketball tactic, we have to
learn what types of screens are used in it first. In this thesis, therefore, we are

focused on detecting screens and classifying their types.

Table 1.1: Tactic categories and number of tactics using screens.

Strategy \ Position PG SG SF PF C Overall
General 12/16 13/16 8/10 7/10 9/10 49/62
Isolation 8/16 10/16 7116 6/16 1/4 32/68
Low Post 5/7 11/16 12/16 10/16 14/16 52/71
High Post 4/5 5/8 4/6 7/8 7/11 27/38
Three Point 11/12 15/16 14/16 6/8 6/7 52/59
Mid Range 13/16 14/16 14/16 13/16 15/16 69/80
Pick and Roll 16/16 16/16 16/16 16/16 16/16 80/80
Pick and Fade 16/16 16/16 16/16 14/14 2/2 64/64
Overall 85/104 100/120 | 91/112 79/104 70/82 425/522

In Chapter 2, we review previous works “on-object tracking and some
applications in basketball video. 'In Chapter 3, we present our proposed system,
including player tracking and tactic analysis. = Chapter 4 shows our experimental

results. At last, we will discuss the conclusion and future work in Chapter 5.




Chapter 2. Related Work

In this chapter, we will briefly introduce the methods for object tracking, and

then show some recent researches on basketball video analysis.

2.1 Object Tracking

Object tracking is an important field in computer vision. When watching
videos, we can easily distinguish objects and tell their behavior through our
background knowledge. In computer vision, people want computers to recognize
what objects are in videos and how the objects-behave. Nevertheless, it is simple for
people but difficult for computers to realize the video contents. Thus, many methods

for object tracking have been-proposed, and are introduced in the following sections.

2.1.1 Object Detection

Before tracking objects, we have to extract objects either in every frame or when
they first appear in the video. That is, we will present the object detection methods
before we start to discuss the object tracking algorithms. The object detection
methods can be classified into four categories: point detectors, segmentation,
background subtraction, and supervised learning [13]. Table 2.1 shows the four

categories and their representative work, respectively.



Table 2.1: Object detection categories [13].

Categories Representative Work

Point detectors Moravec’s detector [14],
Harris detector [15],
Scale Invariant Feature Transform [16]

Segmentation Mean-shift [18],
Graph-cut [19]
Background modeling Mixture of Gaussians [21],

Eigenbackground [22],
Wall flower [23],
Dynamic texture background [24]

Supervised classifiers Support Vector Machine [25],
Neural Networks [26],
Adaptive boosting [27]

Point detectors are used to. find points of interest in images which have an
expressive texture in their respective region. To find points of interest, Moravec’s
operator [14] computes the variation of the image intensities within a 4-by-4 window
in the horizontal, vertical, diagonal; and anti-diagonal directions, and then chooses the
minimum of the four variations as representative values for the window. A point is
declared interesting if the intensity variation is a local maximum in a 12-by-12
window. The Harris detector [15] computes the first order image derivatives in
horizontal and vertical directions to emphasize the directional intensity variations, and
then construct a structure matrix S,,, over a small window around each pixel. The
points of interest are identified by thresholding R = det(S,,) — k - tr(S,,)?, where
det(S,,) represents the determinant of S,, and tr(S,,) denotes the trace of S,,,
after applying non-maxima suppression. Theoretically, the S,,, matrix is invariant
to both rotation and translation. However, it is not invariant to affine or projective
transformations. In order to provide robust detection of interest points under
different transformations, Lowe introduced the SIFT (Scale Invariant Feature
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Transform) method [16], which is confirmed outperforming most point detectors and
more tolerable to image deformations according to the survey by Mikolajczyk and
Schmid [17].

The objects we are interested in are usually moving objects in videos. Frame
difference is a typical method and is well studied since Jain and Nagel’s work [28].
However, differencing temporally adjacent frames cannot achieve robust results under
some circumstances. Thus, background subtraction became popular which builds a
representation of the scene called the background model and regards any significant
change in an image region from the background model as moving object. ~ Stauffer
and Grimson [21] use a mixture of Gaussians to model the pixel color. Each pixel is
classified based on whether the matched distribution represents the background
process. Instead of modeling the variation of “individual pixels, Oliver et al.
introduce an integral approach “using the eigenspace decomposition [22]. It first
forms a background matrix B of ‘dimension k x L from k input frames of
dimension n X m, where [ = nm.._The background is then determined by the most
descriptive eigenvectors.

Segmentation algorithms partition an image into regions of reasonable
homogeneity. The mean-shift [18] method is proposed to find clusters in the
spatial-color space, which is scalable to various other applications such as edge
detection, image regularization [30], and tracking [31]. Shi and Malik [19]
formulate image segmentation as a graph partitioning problem, where the vertices
(pixels) are partitioned into disjoint subgraphs (regions), and overcome the difficulty

of oversegmentation by the proposed normalized cut.
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Figure 2.1: Taxonomy of tracking methods [13].

2.1.2 Object Tracking

The goal of object tracking is to gather the trajectory of a specific object. Take
our system for example, since we intend to identify what tactics are executed, we have
to analyze how the players move. That'is, we must track players during the game in
order to obtain their trajectories. Tracking algorithms can be classified into three
main categories: point tracking, kernel tracking, and silhouette tracking. Figure 2.1
illustrates the taxonomy of tracking methods and Table 2.2 demonstrates their most
notable works.

Detected objects over a video clip can be represented by points, and the point
tracking finds the point correspondence across frames. Point tracking methods can
be divided into two categories: deterministic and statistical methods. Deterministic
methods define a cost of associating each object to a single object in two adjacent
frames using a set of motion constraints, which is usually a combination of the

constraints illustrated in Figure 2.2. Proximity assumes the location of the object
7



would not change notably from one frame to other. Maximum velocity defines an
upper bound on the object velocity and limits the possible correspondences to the
circular neighborhood around the object. Small velocity change assumes the
direction and speed of the object does not change drastically. Common motion
constrains the velocity of objects in a small neighborhood to be similar. Rigidity

assumes that objects in the 3D world are rigid, so the distance between any two points

on the actual object will remain unchanged.

Table 2.2: Tracking categories [13].

Categories

Representative Work

Point Tracking

Deterministic methods MGE tracker [32],
GOA tracker[33]

Statistical methods Kalman filter [34],
JPDAF [35],
PMHT [36]

Kernel Tracking

Template and density based
appearance models

Mean-shift [31],
KLT[37],
Layering [38]

Multi-view appearance models

Eigentracking [39],
SVM tracker [40]

Silhouette Tracking

Contour evolution

State space models [41],
Variational methods [42],
Heuristic methods [43]

Matching shapes

Hausdorff [44],
Hough transform [45],
Histogram [46]

Statistical methods consider the measurement and the model uncertainties during

object state estimation. State space approach is used to model the object properties




such as position, velocity, and acceleration. Measurements usually consist of the
object position in the image, which is obtained by a detection algorithm. The
Kalman filter [34] computes the covariance for state estimation while the particle
filter [47] uses the conditional state density to estimate the next state, which can be
regarded as the generalized Kalman filter since the Kalman filter concentrates on
estimating the state of a linear system where the state variables are assumed to be

normally distributed (Gaussian) and the particle filter deals with the non-Gaussian

state.
oe—x
----- x 'x
- x O
O/x e 4 .'L’. ) —O‘H S A % ° -
: o L—r
‘\‘x‘ % ® TR 0\‘74
x e Ot

(a) (b) (c) (d) (e)

Figure 2.2: Motion constraints [13]. ‘(a) Proximity. (b) -Maximum velocity. (c) Small
velocity-change. (d) Common motion. (e) Rigidity constraint.

Kernel refers to the object shape and appearance, and kernel tracking is typically
performed by computing the motion of the object, which is represented by a primitive
object region and generally in the form of parametric motion or the dense flow field
computed in subsequent frames. The major differences among kernel tracking
methods are the appearance representation used, the number of objects tracked, and
the method used to estimate the object motion. For instance, the mean-shift tracking
method [31] uses templates and density-based appearance models, while the SVM
tracker [40] tracks objects with multiview appearance models.

Objects may have complex shapes. Humans, for example, have head, arms, and

legs, and cannot be well described by simple geometric shapes. The aim of



silhouette-based methods is to provide an accurate shape description, and to find the
object region in each frame through an object model generated according to the
previous frames. One category of the silhouette-based methods is shape matching
[44-46], which can be performed similar to tracking based on template matching
where an object silhouette and its corresponding model is searched in the current
frame. The search is invoked by computing the similarity between the object and the
model generated from the hypothesized object silhouette according to the previous
frame. The other category of the silhouette-based methods is contour tracking
[41-43], which iteratively evolve an initial contour in the previous frame to its new
position in the current frame. Tracking by evolving a contour can be performed with
either state space models which model the ‘contour shape and motion or direct
evolution through minimizing ‘the contour energy using direct minimization

techniques such as gradient descent.

2.2 Applications in Basketball Video

As discussed in Chapter 1, basketball video analysis is not a common field due to
several difficulties and limitations. Fortunately, there are more and more new
methods proposed that help us overcome those obstacles and make basketball video
analysis much more practicable. We are going to introduce some recent researches
on basketball video analysis related to our work.

At first, we would like to introduce the work of Chen et el. [7]. Their research
has several notable contributions. First of all, they modify the shot classification
algorithm to basketball videos. Basketball shots can be classified into three types:
court shots, medium shot, and close-up shots or out-of-court shots. A court shot

displays a global view of the court. A medium shot focuses on an individual player,
10



who is usually the ball handler. A close-up shot shows the above-waist view of
players, and an out-of-court shot presents spectators, coaches, or other places out of
the court. Figure 2.3 shows examples of different shot types in a basketball game.
Obviously, court shot is the type that contains most information on the court and

should be retrieved.

Figure 2.3: Examples of shot types in.a basketball game [7]. (a) Court shot. (b) Court shot. (c)
Medium shot. (d) Medium shot. (e) Close-up:shot. (f) Out-of-court shot.

They divide frames into nine regions by employing Golden Section spatial
composition rule as Figure 2.4 shows, and count the number of pixels of the floor
color in each region to distinguish shot types. Second, they propose a new method
to obtain vertical information in order to form a nonsingular 3D-to-2D transformation.
In addition to the typical court lines (2D), they extract the top-border of the backboard
(3D) by scanning the baseline from the vanishing point. Figure 2.5 demonstrates the
method and Figure 2.6 illustrates the result. Last but not least, they reconstruct 3D
information from single view 2D video sequences. With the reconstructed 3D

information, they provide a trajectory-based high-level basketball video analysis as
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well.  The 3D ball trajectories facilitate automatic collection of game statistics about
shooting locations, from which people can learn the shooting tendency of an
individual player, or even a whole team. Figure 2.7 shows some experimental
results. In each image in Figure 2.7, blue circles are the ball positions over frames,
green circle represents the estimated shooting location, and the red squares show the

movements of corresponding points due to the camera motion.

1 2 3
4 5 6 '—‘-'9‘; ;
- - ¢ W— =
7 8 9 . S
(a) (b)

Figure 2.4: Example of Golden Section spatial composition [7]. (2) Frame regions. (b) Court
view. (€) Medium view.

= Ok :
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(a) (b) (©
Figure 2.5: Detection of backboard top-border [7]. () Detected court lines. (b) Computing
vanishing point. (c) Searching backboard top-border.
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Figure 2.7: Demonstration of shooting location estimation [7].

Besides, we highly praise the work of Chang et al. [1, 50] not only for their
contribution to basketball video analysis but also for their novel research on
basketball tactics. They propose a method that can gracefully extract players on the

court, which vastly improves the performance of object tracking in basketball videos.
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Figure 2.8: Example of the procedure [1]. (a) Original Frame. (b) Dominant color map. (c)
Court mask. (d) Removing foreground objects. (e) White pixel detection. (f) Camera

calibration.

At first, dominant (floor) color is obtained and a dominant color map is
generated. The court region can then be shown through largest connected
component analysis of the dominant color map. By utilizing this, foreground objects

(player candidates) are extracted. This can also be an additional constraint to white
14



line pixels for the sake of camera calibration since court lines are only located within
the court region. Figure 2.8 illustrates the procedure and the result of camera
calibration. Next, using color information and any clustering algorithm, foreground
region is separated into two clusters representing the jersey colors of the two teams.
That is, players of the two teams are recognized. Most important of all, they step
into a further field of tactic analysis. Their system informs the user when the
distribution of players satisfies the preset rules of the wide-open event. Although
their system does not explicitly imply what tactic has been executed, the user can
infer the tactic from how the wide-open event occurs. This inspires us to design a
system that identifies tactics executed in basketball games and keeps the patterns in
order for users to learn basketball. tactics. . Figure 2.9 demonstrates results of the

wide-open warning system.

.M"i SRnR —
Figure 2.9: Sample results of wide-open warning [1].
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Chapter 3. Proposed System Architecture

This chapter describes the details of our proposed system. First of all, we will
give an overview in Section 3.1. In Section 3.2, pre-processing is described. Next,
we explain our proposed scheme of player tracking during the game in Section 3.3.
At last, we will introduce our algorithm for tactic detection and classification in
Section 3.4. Note that the video clips we are using are manually segmented by
possessions instead of a whole game because our main purpose is to analyze the
tactics executed in possessions and automatic possession distinction is not our focus
here. Possession means control of the ball. When one team is on offense, we say
the team has the possession. Qne team loses possession if it makes a shot or the
opponent team gets the ball. ~That is, the period we are-interested in is from one team

first gets the ball until the team shoots the ball.

—
Pre-process M

e Floor color e Player tracking
* Jersey colors e Screen
* Possession detection
e Screen
classification
\_ J \_ W,

Figure 3.1: System overview.

3.1 Overview

The goal we are going to achieve is to analyze the tactics executed in basketball
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games. However, there are some obstacles blocking our way to this goal since
basketball tactics are complex. The position which a player plays, for instance, is
usually considered when setting tactics but difficult for computer to distinguish.
Fortunately, we have figured out that screen is a key to all basketball tactics as

mentioned in Chapter 1. Hence, screen verification is the core of our system.

Camera Calibration

Court Mask Generation

Dominant Color Map Generation

Player Extraction

Team Clustering

Player Classification

Possession Recognition

Figure 3.2: Flowchart of pre-processing.

Our system can be divided into two parts: pre-processing and analysis as shown
in Figure 3.1. Pre-processing is performed at the beginning of a video clip in order
to gather consistent information in this possession, such as floor color and jersey
colors. Since they are invariant during a possession, or even the whole game, we
only have to compute them once and for all. With these information gathered in
pre-processing, we can avoid computing them each frame and accelerate the
computation. As Figure 3.2 illustrates, we first compute the camera calibration and
generate a court mask which indicates the court region. Second, we can obtain the

floor color by calculating the color histogram and finding the dominant color within
17



the court region.  With the floor color, we can perform a background subtraction and
extract the foreground objects, that is, the players. Next, we cluster the players into
two teams according to their jersey colors. At last, we can realize which team is on

offense through the distance between the players and the basket.

Court Model Tracking

Court Mask Generation

Player Extraction

Player Classification

Player Tracking

Screen Detection

Screen Analysis

Figure 3.3: Flowchart of content analysis. The modules with shadows have the same
functionality as those in the pre-processing phase.

In the following frames, we track the players and also confirm if a screen is set.
We have to calculate the camera calibration at first, and then generate a new court
mask. Unlike the pre-processing phase, we can obtain current camera calibration
from previous frame. Next, we extract the players by the floor color and the jersey
colors obtained from the pre-processing. Now we can track the players and detect
screens with the positions of players. Once a screen is detected, we retain the state at
the moment for the sake of screen type classification. At the end of the possession,
we classify the type of the screen set in the possession according to the trajectories of

the players. Figure 3.3 shows the flowchart of the analysis phase.
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3.2 Pre-Processing

The reason why we perform the pre-processing is that there is some information
which will not change during a game, including the floor color and the jersey colors
of the two teams. If we repeatedly calculate the information in each frame and just
acquire the same result, it is nothing more than an impediment to efficiency.
Therefore, in order to reduce the computational cost, we prefer gather the information

once and for all.  The pre-processing is summarized in Figure 3.2.

3.2.1 Camera Calibration

Camera calibration describes how objects in the world coordinates are projected
onto the image coordinates. "_Since sport courts can be-.assumed to be planar, camera
calibration defines a plane-to-plane. mapping (a_homography) H from a position p
in the world coordinates to the image ‘coordinates p’. Writing positions as
homogeneous coordinates p = (x,y,1)T and p’ = (u,v,1)T, the transformation

Hp = p’ is defined in equation (1).

hoo ho1 hoz\ /x u' u
hio hiy h12> <J’> = 17') = <v> 1)
hao  ha1  hy 1 w' 1

Camera calibration plays an important role in our system since we do most
works under the real-world coordinates. The way we obtain the camera parameters
is based on the court lines in the frame. Hence, we first have to detect all white

pixels in the frame, which belong to the court lines. Second, we find the possible
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line candidates passing through those white pixels using Hough transform.  Next, we
filter some unreasonable line candidates out and fit the remaining for the real court
lines. Finally, we can obtain the camera parameters through the mapping between

the intersection points of the line candidates and those of the court lines.

Figure 3.4: Schematic, magnified view-of part of an input image containing a court line [2].

3.2.1.1 White Pixel Detection

The court lines are generally painted with white color. Accordingly, the first
filter is to confirm if the value of the R, G, B channels of a pixel are above a threshold
o; to guarantee the pixel is white since the (R, G, B) value of a white pixel is (255,
255, 255). Unfortunately, court lines are usually not the only white objects in a
frame and they will influence the line extraction seriously. Hence, other constraints
should be applied to the white pixels. Assuming that court lines are not wider than
T pixels in the frame, we verify if the brightness at a distance of 7 pixels from four
neighbors of the candidate pixel is considerably darker than the candidate pixel as
shown in Figure 3.4. Only if they are, the candidate pixel is classified as a white

pixel. We can formulate it as equation (2) [2].
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1;g(x.3’)_g(x:y—f)>Ud/\g(XIY)_g(x’Y+T)>Ud (2)
0, else

{Lg(x. V) —gx—1,y) >0 Agxy) — glx+1,y) > 0q

lxy) =

where [(x,y) indicates if a pixel at position (x,y) is a white pixel (I(x,y) = 1) or
not (I(x,y) = 0), g(x,y) is the luminance of a pixel at position (x,y), and g, is
the luminance difference threshold. In equation (2), the first line corresponds to the
test if darker pixels can be found at some horizontal distance, assuming that the court
line is mostly vertical. The second line performs the analogous test in the vertical
direction, assuming that the court line is almost horizontal.

Sometimes the white pixels in textured areas may pass the above white line test,
such as small white letters in advertisement logos, spectators dressed in white clothes,
or white areas in the stadium.” Therefore, we apply.an additional line-structure
constraint to eliminate those white pixels in the textured areas by observing the two
eigenvalues of the structure matrix'S which is computed over a small window of size

(2b + 1) around each candidate pixel (p,,p,) and defined by equation (3) [10].

Pxtb  Pytb

s= > > vty (Tg@ )’ ©

X=px—b y=py—b

Depending on the two eigenvalues of the matrix S, called A, and A, (1; = 4,), the
area can be classified into textured (both A; and A, are large), linear (1, > 4,), and
flat (both A; and A, are small). On the straight court lines, the linear case will
apply to retain the white pixels only if 1; > ad,. We find that when a = 4, most

linear cases can be recognized.
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3.2.1.2 Hough Line Extraction

In order to extract the court lines, we perform the standard Hough transform on
the detected white pixels. The parameter space (6,d) is used to represent a line,
where 6 is the angle between the line normal and the horizontal axis, and d is the

distance between the line and the origin.
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Figure 3.5: Hough transform diagram.

Figure 3.5 demonstrates how the Hough transform searches lines. Given three
points and we want to find a line passing through them. For each point, a number of
lines at different angles are plotted through it. In this example, we plot lines at an
interval of 30 degrees. For each plotted line, we compute its distance to the origin
and obtain an angle-distance pair representing this line. The results are shown in the
tables in Figure 3.5, and the corresponding accumulator matrix is shown in Table 3.1.
We can figure out that the parameter set (Angle, Distance) = (60, 81) appears most
frequently (three times). Thus, it is the line that we are looking for. Now come
back to our problem that we want to extract court line candidates from those detected
white pixels. Similarly, we construct an accumulator matrix for all (8,d) and

sample the accumulator matrix at a resolution of one degree for 8 and one pixel for
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d. By extracting the local maxima in the accumulator matrix, we can determine the

line candidates.

Table 3.1: Corresponding accumulator matrix to Figure 3.5.

Angle\Dist. | -40 | -20 | O 6 | 23 |40 | 41 | 50 | 57 | 60 | 70 | 75 | 80 | 81 | 90
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0

30 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

60 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0

90 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0

120 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
150 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

In addition, to obtain more precise line parameters, we refine them by
minimizing the distance between line pixel candidates and their nearest hough lines.

First, we re-parameterize a.line obtained from Hough transform by its normal

nz(nx,ny)T with |In|| =1 and the distance to the origin d. With the

parameters, the distance between.a ‘point with homogeneous coordinates in image
space p = (x,y,1)T and a line can be calculated by the dot product (n,,n,, —d) - p.

Next, we define a set L of court line pixels that are close to the line as equation (4)

[2].

L= {p = (x,y, 1)T|l(x,y) =1A ||(nx, ny,—d) . p|| < ar} 4

where o, is the largest distance constraint in order to discard line pixel candidates far
away from any hough line. Since the pixels in this set are supposed to be on the
same court line and we assume the refined line equation to be x-m, +y-m, =1,
we form an equation system and then solve it in the least squares sense as shown in

equation (5).
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Finally, the refined parameters are computed by d =1 /,/m,? + m,?, n, = m,d,
n, = m,d since the slope of the line is —m, /m,, and the slope of the line normal

is m, / m,.
3.2.1.3 Court Model Fitting

A court model consists of the lines that are drawn onto the ground to define the
playfield geometry. Basketball ‘court.model is illustrated in Figure 3.6 and the

dimensions are shown in Table 3:2.

Sideline

Half-colurt line

_ Restricted
Baseline :
area “._

Threg4point line

Figure 3.6: Basketball court model.
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Table 3.2: Basketball court dimensions.

Area Dimension (m)

Court length (sideline length) 28
Court width (baseline length) 15
3-point line distance from the basket 6.25
Free-throw line distance from the baseline 5.8
Basket distance from the baseline 1.2
Restricted area width Free-t-hrovxl/ line side 3

Baseline side 5

The camera calibration describes how those lines are projected from the world
coordinates onto the image coordinates. Therefore, in order to define the mapping,
the correspondence between a previously extracted hough line and the court line in
court model must be found.“. An-algorithm has been proposed to find the line
correspondence [2] and performs well in several kinds of sport videos such as tennis,
volleyball and soccer. They regard the-lines-determined by extracting the local
maxima in the accumulator matrix (mentioned.-in Section 3.2.1.2) that are above a
threshold o}, as court line candidates. The line candidates are then classified as two
sets: one contains the horizontal lines and the other consists of the vertical lines.
Next, they sort the line candidates according to their distances to the image boundary,
and can search for the correspondence between the candidate lines and the model
lines.  Nevertheless, when applying to basketball videos, we find that the
performance is not good as we expected. The major problem is: how to determine
the value of g,? The right column of Figure 3.7 shows some results of typical line
extraction method with different o, values. When the o3, value is small, there are
many unreasonable lines passing the test and viewed as court line candidates which

will disturb the line correspondence. On the other hand, when the g, value is large,
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we are not able to obtain sufficient lines to solve camera parameters. Most
important of all, whatever threshold we set, the free-throw line is always filtered out
because it is short. However, the free-throw line is not negligible since all the
corresponding points may locate on the baseline and it will lead to a singular solution

to the camera calibration without the free-throw line.

(€)

(f)

Figure 3.7: Sample results of line extraction. (a) Original frame. (b) Detected white pixels. (c)
Result using our method. The right column shows some results using typical method with
different thresholds o, of (d) 50 (e) 100 () 150.

To overcome such a difficulty, we propose a new method to find the line
correspondence in basketball video. We do not sample the entire accumulator matrix;

instead, we search each line within a specific range in order to gather all the necessary
26



lines. It is an experiential method, and the searching ranges are determined through

our observation and knowledge of basketball video.

(b)

Figure 3.8: Examples of basketball video frames. Solid red lines are baselines and solid

yellow lines are free-throw lines, and dotted lines are their normals respectively. (a) Left court.
(b) Right court.

Our main purpose is to discard noise white pixels outside the court region and extract
correct court lines. The court region Is determined by sideline and baseline.
Through Figure 3.8, we can realize that sideline and baseline are the longest
horizontal and vertical lines in the frame respectively.- Hence, our first step is to find
the longest horizontal and vertical lines. = For the longest vertical line, we extract the
local maximum in the accumulator matrix within the range of [0, 80] and [100, 180]
degrees. Remember that the parameters in Hough space are the distance between a
line and the origin, and the angle between the line normal and the horizontal axis.
That is, this ignores lines whose angle between the horizontal axis is within the range
of [-10, 10] degrees, namely, those almost horizontal lines. We obtain the longest
vertical line by eliminating horizontal lines instead of directly finding vertical lines
since it may not look that perpendicular on screen. Furthermore, the angle of
baseline also helps us distinguish whether it is the left court or right (see solid red
lines Figure 3.8). On the other hand, when extracting the longest horizontal line, we

just set the searching range to [80, 100] degrees since horizontal lines do not change
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significantly on screen.  With the longest vertical and horizontal line, that is, baseline
and sideline respectively, we filter those white pixels out which are outside the region
bounded by the two lines, and reconstruct the accumulator matrix from the remaining
white pixels. Next, we extract the longest two horizontal lines as edges of the
restricted area. Top edge and bottom edge are then distinguished by angles of the
two lines. Through Figure 3.8 we can find that bottom edge is always more
horizontal than top edge. At last, we have to find free-throw line. Please view
Figure 3.8 again. We mark the baseline with the solid red line and the free-through
line with the solid yellow line, and the dotted lines are their normals respectively.
We can clearly figure out that although they are both vertical lines in court model,
free-throw line always looks more perpendicular than baseline whichever side of
court is on screen because the.camera.-is usually set at the center of the court. Thus,
we set the searching range as [0, 8;,] degrees for right court and [6,,, 180] degrees for
left court in order to extract free-throw line.  Here, 8, .is the angle between baseline
normal and the horizontal axis.«< Since the remaining white pixels are guaranteed to
be within the court region, we can recognize those extracted lines as correct court
lines. In this way, we extract lines and find the correspondence at the same time
since we know exactly which line we are looking for. Finally, we compute the
intersection points and solve the equation system defined as equation (6) which is

rewritten from equation (1).

x1 y» 1 0 0 0 —x4x —x1y oo x'y
/ 0 0 0 x y 1 —yx —y’lyl\ Zm ( Y’l\
[x, vy, 1 0 0 0 —xbhx, —xbLy, || 02 x'y
I 0 0 0 x ¥y 1 =yLx -y.,» I Zi) :| Y% | (6)
kxn yw 1 0 0 0 —xhx, _x,nyn) Z;Z) kx:n)
0 0 0 Xn Yn 1 _y,nxn _y,n:)'n h21 Va
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Note that this makes use of the normalization h,, = 1. There are eight variables
hoo, ho1, ---» hz1 SO we need at least four points (n > 4) in order to form more than
eight equations. Here we use baseline, free-throw line and two edges of restricted
area to solve the equation system. Figure 3.7 (c) illustrates the result using our

method.

3.2.2 Court Mask Generation

In basketball video, most of important information is inside the court region. In
other words, court is our region of interest. In order to filter out noise and keep
significant information, we need a mask to indicate the court region, that is, the court
mask. With the previously computed camera calibration, we can project pixels from
image coordinates back to world coordinates and confirm whether they are located in

the court.  Figure 3.9 shows a sample result of the court mask.

(b)

Figure 3.9: Court mask. (a) Original frame. (b) Corresponding court mask.

3.2.3 Dominant Color Map Generation

In order to extract players, we have tried several methods [18, 21, 25].

Nevertheless, none of them performs well in basketball videos. The most serious
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obstacle is the camera motion.  For example, redundant moving pixels resulting from
the camera motion generate huge amount of noise when performing the frame
difference. For another example, the camera motion prevents us from obtaining a
consistent background image and extracting real moving objects. Therefore, a new
method is proposed to extract the players on the court by detecting objects with
different colors from the floor [1, 50].

The way we obtain the floor color is to find the dominant color within the court
region using the previously generated court mask. First of all, we calculate the color
histogram.  Since it has been proved in [11] that the performance in the YCbCr space
is better than that in the HSI space, we choose the YCbCr space and use the Cb and Cr
components to calculate the color histogram.. With the color histogram, we next find

peaks by the following steps

Step 1: Determine the ‘main peak bin Peak,, that is, the bin with the largest
value.

Step 2: Find the connected region around the main peak bin. Only bins with
value larger than a * value(Peak,) are considered.

Step 3. Compute the sum of the connected bins Sum,; and subtract the
connected region from the histogram. That is, we set the values of the bins of
the connected region to zero in order not to be considered again in the following
iterations.

Step 4: Repeat the above steps until there are no bins remaining.

After completing the procedure, we will have several peaks and their sums. Finally,
by sorting these peaks according to their sums, we can realize the dominant color. It

deserves to be mentioned that in a basketball court, there is a restricted area (see
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Figure 3.6), which is also called the painted area since it is usually painted with
different color from other parts of the court. That is, if we just recognize the largest
peak as the floor color, we will miss the restricted area. \We propose two ways to
solve this problem. One is to regard the largest two peaks as the floor color, and the
other is to run the procedure again with another mask indicating the restricted area.
Both methods have their pros and cons. The first one takes advantage of the
previous result but it fails when there are many players stay in the restricted area.
The second one can distinguish the players from the restricted area since it compares
the two series of sorted peaks and verifies which peak represents the restricted area.
Through our experiment, we prefer the first one because it has good performance and
does not require extra computation.. « Figure 3.10.(b) illustrates a sample result of the

dominant color map.

3.2.4 Player Extraction

With the court mask and the dominant color map, we can perform a
background-subtraction-like method to extract the foreground objects in the court
region. If the color of a pixel can be found in the dominant color map, the pixel
should be labeled as background; otherwise, it is a foreground pixel. After all pixels
are confirmed, we apply morphological operators in order to remove small objects
and gaps. Figure 3.10 (c) demonstrates a sample result of extracted foreground

objects.
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Figure 3.10: Object extraction. (a) Original frame. (b) Dominant color map. (¢) Foreground
objects.
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3.2.5 Team Clustering

Despite the fact that we have the foreground objects within the court region
extracted, we need more information to analyze the content. First of all, we have to
distinguish the jersey colors in order to separate the players of the two teams. We
use color information and k-means clustering to divide the foreground region into two
clusters representing the jersey colors of the two teams. In fact, we cannot have just
two clusters since there is some noise in the foreground region, the referees for
example, which enormously interferes with the cluster centroids and leads to a
miserable result of player classification. . Figure 3.11 shows experimental data about
the number of clusters and the performances.. Generally, the more the clusters, the
smaller the total distance between all data points and. their corresponding cluster
centroids, which can also "be regarded as the clustering error. However, the
computing time of the k-means-clustering is proportional to the number of clusters.
We discovered that the clustering error decreases most rapidly when there are six
clusters. The clustering errors almost converge when there are more than six clusters.
This fact is also adaptive to other video clips through our experiment. Thus, we
separate the foreground region into six clusters and view the largest two clusters as
the jersey colors of the two teams, and choose the YCbCr space since it performs

better than the RGB and HSI space through our experiment.
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Figure 3.11: K-means clustering. (a) Original frame. (b) Foreground objects. (c)

Experimental data with different color spaces and number of clusters. The horizontal axis
means the number of clusters and the vertical axis indicates the clustering error, and different
lines represent different color spaces.
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3.2.6 Player Classification

Having gathered the jersey colors of the two teams, we are going to classify
players of the two teams in this step. At first, we verify the pixels in the foreground
region which clusters they belong to by their colors by equation (7) where Centroid,
and Centroidg are the centroids of the largest two clusters from the Team Clustering

step, that is, the jersey colors of the two teams.

Clustery, ||color(x,y) — Centroid,|| < &,
cluster(x,y) = { Clusterg, ||color(x,y) — Centroidg|| < 6, @)
None, else

After clustering all foreground. pixels, we can generate two maps indicating the
players of the two teams as Figure 3.12 illustrates. ~Since we set a constraint to the
minimal distance between a color of a pixel and the cluster centroid which it belongs
to, we can remove those non-player objects such as the referees during clustering.
Also, we perform morphological operators t0 remove noise and gaps. At last, we

apply object segmentation and obtain all players.
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(c) (d)

Figure 3.12: Player classification. (a) Original-frame: (b) Foreground objects. (c) Players of
one team (red jerseys). (d) Players.of the other-team (white jerseys).

3.2.7 Possession Recognition

It is important to realize whichteam has the possession of the ball, or which team
is on offense, before tactic analysis. Typically, defenders are expected to stand
closer to the basket than the offensive player who he is guarding in basketball games
since the purpose of the team on defense is to prevent the opponent team from putting
the ball into the basket. Hence, we can make use of this feature to judge which team
is on offense. We first project all players back to the real-world court model with the
camera calibration. For each team, we compute the average distance between its
players and the basket. The team with shorter distance to the basket is recognized as
on defense. On the other hand, the team on offense is averagely farther away from

the basket.
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Algorithm 1: Possession Recognition

Input: positions of players of the two teams, represented by playersieqm, and
playersieqam,, and position of the basket
Output: the team on offense, team; or team,

local dist[2]
for i:=1 to 2 do
dist[i] :=0
for each player in playersieqm, do
dist[i] := dist[i] + dist(player, basket)
end for
dist[i] := dist[i] / |playersteami|
end for
if dist[1] > dist[2] then
return team,
else
return team,
end if

3.3 Content Analysis

In this section, we are going to explain how we gather information from each
frame during the game. With the consistent data from the pre-processing, we can
obtain the information we want simply and fast. Figure 3.3 gives a brief view about
our analysis mechanism. Remark that the modules in Figure 3.3 with shadows have
the same functionality as those in pre-processing. That is, we will perform Court

Mask Generation, Player Extraction, and Player Classification in analysis part as well.

3.3.1 Court Model Tracking

In basketball video, camera motion is usually wild in order to focus on the ball.
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Camera motion is made up of translation, rotation and zooming. Figure 3.13
illustrates an example of camera motion. Figure 3.13 (a) and (b) are from the same
video clip and taken by the same camera. In Figure 3.13 (a), the ball is around the
three-point line.  On the other hand, a player shoots the ball so that the ball is in the
basket in Figure 3.13 (b). It is obvious that camera motion is tremendous between
the two frames. Therefore, we have to update camera parameters every frame in

order to keep correct camera calibration.

Figure 3.13: Camera motion in basketball video, rotate and zoom in.

In fact, computing camera calibration is.quite a heavy load and it takes too much
time to do it every frame. Thus, a court model tracking algorithm has been
introduced in [2] in order to save the computing time. The algorithm starts from a
prediction to the camera parameters for the next frame. Next, white pixel detection
is performed to find line pixels. Those line pixels are then projected to real court
model using predicted camera calibration. Finally, camera calibration is refined by
minimizing distances between projected line pixels and their closest court lines.

Figure 3.14 demonstrates the idea of camera parameter prediction.
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frame t-1 frame t frame t+1

Figure 3.14: Predicting the camera parameters for frame t 4+ 1 based on the previously
computed parameters for frames t and t —1 [2].

As Figure 3.14 shows, the camera parameters for frame t is denoted by H,. First
of all, we want to compute the transform matrix-T, such that H, = T,H,_,.
According to Figure 3.14, T; can he easily obtained by T, = H.H7Y,. Similarly,
once we know the transform matrix T, we can obtain the camera parameters H;,,
for frame t + 1 from the previous camera parameters H, by H;,, = T, H;. We
suppose that the camera motion is stationary, and the transformation from frame t to
t + 1 is equivalent to that from frame t —1 to ¢t. That is, the predicted transform
matrix T,,, is assumed to be T,. Consequently, the predicted camera parameters
for frame t+ 1, namely H,,,, are computed by H,,,; = T, H,, which can be

rewritten as equation (8).

i:lt+1 = Hth_—11Ht (8)

Since the camera motion is usually slight between two adjacent frames, the prediction

provides a good initial estimation of the new camera parameters.
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Nevertheless, the predicted camera parameters still have to be adapted to the next
frame. First, we perform the white pixel detection again to extract the white line
pixel candidates as described in Section 3.2.1.1. Note that we have already obtained
a reliable initial estimation of the camera parameters and only a narrow neighbor is
considered. Therefore, the accuracy of the white pixel detection can be decreased by
disabling the line structure constraint for the sake of efficiency. Second, we project
all the white pixel candidates back to the real-world court model with the inverse of
the predicted camera parameter matrix determined by M = H;};. Pixels projected
to positions too far away from any court line are ignored, and the remaining pixels are
grouped with the closest court model line. Our target is to find a matrix minimizing

the distance between white pixels p; = (x;,¥;1)T and their corresponding court

model lines 1; = (nx;i,ny;i,—di)T. Here we define. an additional operator h(-)

which normalizes the homogeneous coordinates such that
h: (x,y,w) - (x/w,y/w,1). . The projection -error' D can be then formulated as

equation (9) [2].
D= Z[liTh(Mpi)]z 9)

The Levenberg-Marquardt algorithm [48, 49] is used to find the optimized M,
denoted by M*, which minimizes D, and we can obtain the refined camera

calibration by M*~".
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Algorithm 2: Court Model Tracking

Input: current frame f;,, court model, and previous camera parameters H;, H;_;
Output: current camera parameters H;, 4

/I predict
|00a| ﬁt-l—l = Hth__llHt

I/ refine
procedure projection_error(white_pixels, M)
local D:=0
for each p in white_pixels do
local p':= h(Mp)
local 1:= find_closest_court_line(p")
if 1 =nil then
continue
end if
D:=D + ("p")?
end for
return D
end

local M:=H;},

local white_pixels := white_pixel_detection(f;,1)

local M* := levenberg_marquardt(projection_error, white_pixels, M)
return M* ™"

3.3.2 Player Tracking

We use the Kalman filter [12] to track players. The Kalman filter is composed
of two steps: predict and correct. Figure 3.15 shows the complete operation of
Kalman filter. In Figure 3.15, a;, z;, c; are the system state, measurement, and
external control at the moment t respectively, where A, Z, C are the transition

matrices of them; Q@ and R are the noise covariance matrices of the process and the
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measurement respectively; E; is the error covariance and K, is the Kalman gain.

Measurement Update (“Correct”)
Time Update (“Predict”) (1) Compute the Kalman gain
(1) Project the state ahead Ky, = E,;ZT(ZE,;ZT +R) !
a, = AGy_1 + Ccy_1 (2) Update estimate with measurement z,
(2) Project the error covariance ahead ay = a; + Ky (z, — Zay)
E; = AE,_1AT +Q (3) Update the error covariance
Ex = (I — K 2)E;

Figure 3.15; Complete diagram of Kalman filter [12].

With the prediction of the trackers computed by the Kalman filter, we can choose the
nearest candidate as the measurement of a tracker. We also set a limitation that the
distance between the predicted state and the chosen measurement should never be
larger than a threshold &;. If there is no candidate that is close enough to the
predicted state, we regard the predicted state as measurement directly. Besides,
since all players are expected to stay in the court, once a tracker state is out of the
court, we mark it as missing. Every time a tracker misses, its search range is
increased by a multiplicand since the object may be occluded and so that the tracker
misses temporarily, and we hope that the tracker can keep tracking on the object when
it shows again. If a tracker consecutively misses for & frames, that is, the tracker is
outside the court for too many frames, it is terminated and no longer tracked. After
updating all trackers, there are some candidates tracked, and we add new trackers for

the untracked candidates.
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Algorithm 3: Player Tracking

Input: tracker list trackers and candidate list candidates
Output: none

Il Step 1: update trackers
for each tracker in trackers do
local prediction := predict(tracker)
local measurement
if Acandidate € candidates: dist(prediction, candidate) < §; then
measurement := candidate
set_tracked(candidate)
else
measurement := prediction
end if
correct(tracker, measurement)
if is_out_of_court_bound(measurement) then
increase_missing_count(tracker)
else
reset_missing_count(tracker)
end if
if missing_count(tracker) > &.then
terminate(tracker)
end if
end for
Il Step 2: create new trackers
for each candidate in candidates do
if not_tracked(candidate) then
add_tracker(trackers, candidate)
end if
end for

3.4 Tactic Analysis Algorithm

Before explaining our tactic analysis algorithm, we introduce the basis of
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basketball tactics first. As mentioned in Chapter 1, most basketball tactics consist of
screens, and we identify tactics by what and where screens are set. That is, if we
want to learn what tactics are executed, we have to realize what types of screens are

set.

1
O player Ihiulil'
A screen position

Figure 3.16: A sample basketball tactic.

Generally, screens can be classified as three major types: front-screen,
back-screen and down-screen. Figure 3.17, 3.18, and 3.19 illustrate the three screen
types respectively by displaying different moments of a screen: the beginnings of the
screens are shown in (b), the moments when the screens are being set are illustrated in
(c), the ends of the screens are demonstrated in (d), and (a) presents the overall
trajectories of the two players involved in the screen. In the three figures, players
with yellow circles on their heads are screeners, while players with cyan triangles are

their offensive teammates whom the screens are set for.
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(d)
Figure 3.17: Example of front-screen. (a) Trajectories. (b) Before screen. (c) Setting screen.
(d) After screen.
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(d)
Figure 3.18: Example of back-screen. (a) Trajectories. (b) Before screen. (c) Setting screen.
(d) After screen.

46



Figure 3.19: Example of down screen. (a) Trajectories. (b) Before screen. (c) Setting screen.
(d) After screen.
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In the front-screen, the screener is facing the defender that he is setting the screen on
(the two marked red players in Figure 3.17). In the back-screen, the screener sets the
screen on the back side of the defender, and the screener is usually facing away from
the basket (the two marked white players in Figure 3.18). In the down-screen, the
screener sets the screen usually down low for a player near the block, and is usually
facing the basket with his back to the ball (the two marked red players in Figure 3.19).
Figure 3.16 gives a sample tactic combined with the three types of screens. In
Figure 3.16, circles present players that are denoted by O; in the following paragraph,
and triangles indicate positions at which screens are set. At first, the player O; sets a
front-screen for O, who is the ball handler, and makes O; free to pass or shoot.
Then O3 moves to the low post and sets a down-screen for Os, who cuts outside for
the pass from O;. Concurrently, O, moves to the high post and sets a back-screen for
0O,, who goes back-door to the basket and makes a huge.threat to the opponent team.
Another example is the “pick and roll”; which is perhaps the most famous and widely
used basketball tactic. It usually starts with a back=screen for the ball handler. If
the defender tries to guard the ball handler, the screener can move toward the basket,
sometimes by a foot pivot, and now is open for a pass. Oppositely, if the defender
tries to guard the screener, the ball handler has an open shot. A screen is also called
a “pick” in basketball, and a foot pivot is a “roll” move. That is, the pick and roll
means that the screener slips behind the defender (roll) to accept a pass after a screen
(pick). There are some variations of the pick and roll, like the “pick and pop”, where
the screener moves for an open shot instead of rolling to the basket, or the “pick and
slip”, where the screener fakes setting a screen before slipping behind the defender to
accept the pass.

With the background knowledge of screens, we are going to describe our

proposed algorithm for screen analysis, including the screen detection during a
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possession and the screen classification at the end of a possession.

3.4.1 Screen Detection

Typically, in order to prevent the defensive players from helping their teammates,
the offensive players tend to make the space wider and seldom stay close to each other.
The only chance for an offensive player to stand next to his teammates is when a
tactic is to be executed. Therefore, we can initially determine whether there is any
screen based on the distance between two offensive players. Besides, since the
screens are set to block defenders, there must be at least one defensive player between
the screener and his teammate. That is, it can be an additional requirement to obtain
a more accurate result of the screen detection.. Furthermore, we can recognize who
is the screener through this fact. = Generally, the defender stays close to his target but
not side by side since the defender hasto prevent his target from driving to the basket.
On the other hand, the screener must make contact with the defender in order to block
the defender certainly. Accordingly, if we find that there are two offensive players
close to each other, and there is at least one defensive player between them, we can
certify that there is a screen and the screener is the offensive player who is closer to
the defensive player. Once a screen is detected, we retain the current states of the
screener and his teammate since we classify what type of screen they set via their

trajectories before and after the screen.
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Algorithm 4: Screen Detection

Input: offensive and defensive players, denoted by players,s; and playersg.s
Output: screener and screenee, which means the offensive player whom the
screener sets screen for

screener :=nil
screenee :=nil
if Aplayer; € players,ss, player; € playersyss: §; < dist(playeri,playerj) <
A; and i #j then
if 3defender € players,.y: dist(defender,player;) < &; or
dist(defender,playerj) < &, then
if dist(defender,player;) < dist(defender,playerj) then
screener = player;
screenee := player;
else
screener := player;
screenee := player;
end if
end if
end if

return screener, screenee

3.4.2 Screen Classification

We have introduced the essence of screens in the previous section. Thus, we
can observe that each screen type follows a specific pattern. A screener sets a
back-screen by moving from the low post to the high post, and his teammate drive to
the basket after the screen. The down-screen is set by a screener moving from the
high post to the low post. The front-screen is usually set around the three-point line
and the offensive player, who the screener is trying to free, moves to an open space

instead of driving to the basket. We therefore have to utilize the trajectories of the
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screener and his teammate to judge the screen type. Recall that we retain the state at
the moment that a screen is detected so that we can realize how the screener move
before the screen and what his teammate does after the screen by the initial and the
last state of the trajectory and the state when the screen is set. We denote the initial
position of the screener as p;ni:, the last position of the screener as p;,q:, the
position of the screener when the screen is set as Pgcreen, and those of his teammate
as P’ Plast aNd P'screen respectively.  Also, we denote the position of the
basket as ppqsker-  Accordingly, the only screen type that is set in the low post is the
down-screen. Hence, we can first confirm the down-screen if p;,;. Is farther away
from the basket than pg..en. The other two types are hard to distinguish through
the move of the screener since the screener acts similarly in the back-screen and the
front-screen, but we can still. discriminate them by the trajectory of the offensive
player whom the screener sets the screen for after the screen. We compute the angle
65 between two vectors. The first one-is the direction d,igyer = P'1ast — P'screen
which the offensive player moves in, and the other indicates the direction dj sker =
Poasket — P screen- This angle 6, tells us whether the offensive player tends to
move to the basket or not. If the offensive player attempts to drive to the basket, it is
a back-screen; otherwise, a front-screen is set. We formulate it as equation (10) and

demonstrate it in Figure 3.20.

(Down, if Ipbasket - pinitl > |pbasket - pscreenl

d -d

. — layer basket

Back, if cos 1( Py <6,
|dpiayer||dpasket |

ScreenType = 1 (10)

d, “dpask
Front, if cos‘1< player _basket ) > g,

|dplayer | |dbasket|

\Undefined, else
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Chapter 4. Experimental Results

In this chapter, we are going to show our experimental results of White Pixel
Detection, Camera Calibration, Player Extraction, Player Classification, Possession
Recognition, Player Tracking, and Tactic Analysis in the following sections.
Furthermore, the phenomena observation and discussion are also included. We use
three different games and manually extract ten possession clips with obvious tactic
execution from each game. That is, we have total of thirty video clips for test. All
of the three games are from 2008 Olympic Games. Game 1 is USA vs. AUS with
dimensions 720x416. Game 2 is ARG vs. USA with dimensions 640x352. Game 3
iIs USA vs. CHN with dimensions 640x352. Table 4.1 describes our video sources.
We randomly choose ten clips .as training data to train our parameters, and the

well-trained parameters are adaptive to-all of our testing-data.

Table4.1: Video-sources.

Game Source Width Height
Gamel 2008 Olympic Games USA vs. AUS 720 416
Game2 2008 Olympic Games ARG vs. USA 640 352
Game3 2008 Olympic Games USA vs. CHN 640 352

4.1 White Pixel Detection

In this section, we present and discuss the results of white pixel detection
with/without the line structure constraint. The value of color filtering threshold o
is 128, brightness difference o, is 20, court line width w is 3 pixels, and line
structure constraint window size b is 3 pixels. The parameters are mentioned in
Section 3.2.1.1. Table 4.2 gives our experiment configuration. Table 4.3 presents

the comparison of the number of white pixel candidates with/without the line structure
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constraint. Through Table 4.3, it is obvious that after applying the line structure
constraint, most of the non-line white pixel candidates, up to 61%, are filtered out.
Figure 4.1 shows some sample results of white line pixel detection. Figure 4.1 (a)
shows original frames, (b) illustrates sample results without the line structure
constraint, and (c) demonstrates sample results with the line structure constraint.
Those discarded pixels mostly come from spectators, the score board overlay, the

channel mark, and advertisement logos.

Table 4.2: Configuration for white pixel detection.

Parameter Symbol Value
Color filtering threshold o 128
Brightness difference 04 20
Court line width w 3 (pixels)

o

Line structure constraint 3 (pixels)
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Figure 4.1: Results of white pixel detection. (a) Original frame. (b) Without line structure
constraint. (¢) With line structure constraint.
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Table 4.3: Statistics of white pixel detection.

# of white pixel candidates # of white pixel
without line structure candidates with line Ratio of discarded
Clip constraint structure constraint candidates (%)
Gamel-1 11704 7391 36.851
Gamel-2 10985 7109 35.284
Gamel-3 10241 7019 31.462
Gamel-4 11996 7494 37.529
Gamel-5 10848 7135 34.228
Gamel-6 10394 7129 31412
Gamel-7 11272 7352 34.776
Gamel-8 11622 7156 38.427
Gamel-9 10023 6916 30.999
Gamel-10 10244 7300 28.739
Game2-1 7067 4089 42.140
Game2-2 9973 5719 42.655
Game2-3 8031 5277 34.292
Game2-4 9944 3862 61.163
Game2-5 7712 5553 27.995
Game2-6 9839 3842 60.951
Game2-7 8177 4567 44,148
Game2-8 8377 4092 51.152
Game2-9 8404 5297 36.970
Gamel-10 7636 4212 44.840
Game3-1 8069 5140 36.299
Game3-2 9200 5685 30.201
Game3-3 9784 5540 43.377
Game3-4 7901 5050 36.084
Game3-5 9717 5664 41.710
Game3-6 9734 5141 47.185
Game3-7 8077 5766 28.612
Game3-8 9788 5180 47.078
Game3-9 8970 5205 41.973
Game3-10 9372 5419 42.179
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4.2 Camera Calibration

In this section, we show some results of camera calibration, and some
demonstrations are shown in Figure 4.2, where black lines are court lines extracted by
our proposed method, and red lines represent real court model that is projected onto
image coordinate. In Figure 4.2 (3), (6), (7), bottom sideline and bottom edge of the
restricted area are used to calculate camera calibration and the results are correct.
Thus, we can figure out that our proposed method has the flexibility in using different
court lines to calculate camera calibration. Nevertheless, in Figure 4.2 (8), the
half-court line is projected to a wrong position due to some computational error. The
average projection error in Table 4.4 is computed by the distance between the position
which a manually pointed intersection of court lines is projected to and the
corresponding corner of court model.  Averagely the error is lesser than 0.06 meters.
Remark that court lines have width so'that when selecting ground truth, we may not
point the real intersection points-of the extracted courtlines. As a result, they are not
projected to the same positions as court model. Therefore, despite the fact that the

projection error is not zero, this result is satisfactory and convincible.

)

@

Figure 4.2: Results of camera calibration. (a) White line pixels. (b) Extracted court lines and
camera calibration.
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Figure 4.2: Results of camera calibration. (a) White line pixels. (b) Extracted court lines and

camera calibration. (cont’d)
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Table 4.4: Average projection error of camera calibration.

Clip Average projection error (meters)
Gamel-1 0.04
Gamel-2 0.019
Gamel-3 0.063
Gamel-4 0.02
Gamel-5 0.041
Gamel-6 0.021
Gamel-7 0.044
Gamel-8 0.146
Gamel-9 0.045

Gamel-10 0.048
Game2-1 0.03
Game2-2 0.5
Game2-3 0.084
Game2-4 0.075
Game2-5 0.018
Game2-6 0.077
Game2-7 0.449
Game2-8 0.086
Game2-9 0.131

Game2-10 0.104
Game3-1 0.037
Game3-2 0.064
Game3-3 0.132
Game3-4 0.052
Game3-5 0.396
Game3-6 0.088
Game3-7 0.028
Game3-8 0.079
Game3-9 0.125

Game3-10 0.024
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4.3 Player Extraction

Some sample results of foreground object extraction and the corresponding
dominant color map are shown in Figure 4.3. Figure 4.3 (a) shows original frames,
(b) demonstrates background region, that is, pixels with color that can be found in
dominant color map, and (c) illustrates extracted foreground objects. In order to
keep the jersey colors and exclude the other colors such as skins and shoes, we tend to
make the foreground object mask “smaller”. Hence, we perform a morphological
operation to erode the initial foreground object mask without dilating it. The major
problem of our player extraction method.-is that we only consider pixels within the
region of interest, that is, the.court region. Thus, when there are players standing
near court boundaries, their bodies may be cut. - This may affect the result of player
tracking, but due to our knowledge of basketball, those players standing near the court
boundaries usually do nothing butjust stay there‘and wait for passes. Also, when
standing near the court boundaries, they do not have space to be set screens or tactics
for. That is, their trajectories usually have nothing to do with our screen
classification algorithm and we can simply ignore them until they move closer to the

center of the court.
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Figure 4.3: Results of player extraction. (a) Original frame. (b) Dominant color map. (c)
Foreground objects.
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4.4 Player Classification

We demonstrate some results of player classification and discuss the phenomena
in this section. Through player classification, some noise with different colors from
the jersey colors of the two teams is removed, such as referees and logos on the floor
(see red circles in Figure 4.4 (1), (3), (7), (8), (9)). However, sometimes player
bodies are divided into parts by some small objects such as arms and numbers on
jerseys (see blue squares in Figure 4.4 (1), (3)). Even though we perform the
dilation operation and try to remove gaps, we are not able to completely cover all
situations. On the other hand, once we discover that there are two objects close to
each other, it is hard to judge whether they are two parts of a player or two different
players (see green triangles in“Figure 4.4 (4), (6), (8)). Our way to solve this
problem is to regard them as'different objects, and let the tracking procedure clarify if

they are the same object through-their trajectories.
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Figure 4.4: Results of player classification. (a) Original frame. (b) Player mask of team 1. (c)
Player mask of team 2.

63



4.5 Possession Recognition

In this section, we take Figure 4.4 for example and show the correspondence
between which team has the possession and the average distance between players of
that team and the basket in Table 4.5. Table 4.5 demonstrates the average distances
of the two teams in each row for Figure 4.4. For the team number and its jersey
color, see Figure 4.4. Figure 4.4 (a) also provides the ground truth of possession,

and we can verify that all of the results are correct.

Table 4.5: Statistical results of possession recognition.

Average distance of Average distance of

Figure 4.4 Team 1 (meters) Team 2 (meters) Possession
@ 7.207 4.795 Team 1 (green)
2 4.964 4.799 Team 1 (green)
3 7.485 6.447 Team 1 (green)
4) 7.832 4.559 Team 1 (black)
(5) 7.748 6.099 Team 1 (black)
(6) 5.499 7.031 Team 2 (white)
@) 4.453 7.555 Team 2 (white)
(8) 7.483 5.680 Team 1 (red)
9 5.577 5.062 Team 1 (red)

4.6 Player Tracking

Since the Kalman filter which we use to track players is a point tracking

mechanism, we can evaluate the performance with precision and recall measures

defined as [13]
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# of correct correspondences # of correct correspondences

recall =
# of established correspondences’ # of actual correspondences

precision =

Established correspondences represent total number of created trackers, and actual
correspondences denote number of object at the moment. In this experiment, the
tracker termination criterion & is 10 frames and the maximum distance for a valid
measurement &, is 0.6 meters. Remark that the world record of 100 meters race is
about 10 seconds, that is, the average velocity is 10 meters per second. Our video
sources have 30 frames per second, namely, the time period between two adjacent
frames is about 0.03 seconds. Accordingly, the fastest runner can move about 0.3
meters between two adjacent frames. Thus, it is our basis of &, and we set it for a
double value since players might. move to the opposite direction suddenly. Table 4.6
shows our configuration and. Table-4.7 -demonstrates-the evaluation performance.
We have total of 89.5% of-precision and 89.994% of recall. Most failures result
from occlusion and merging problem. Occlusion is always the most notorious
enemy of object tracking. Unfortunately, ocelusions occur frequently in basketball
video. Furthermore, it is difficult to predict trajectories of basketball players since
they usually change directions rapidly. As a consequence, occlusion cannot be
perfectly solved in basketball video. Besides, as mentioned in Section 4.4, player
bodies sometimes are divided into parts due to arms or numbers in jerseys.
Although we can tell duplicate objects by their trajectories, they already decrease the

performance of player tracking at the moment.

Table 4.6: Configuration of player tracking.

Parameter Symbol Value
Tracker termination criterion & 10 (frames)
Maximum distance threshold Ot 0.6 (m)
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Table 4.7: Performance of player tracking.

Clip # of frames Precision (%) Recall (%0)
Gamel-1 175 89.266 88.784
Gamel-2 175 76.386 79.940
Gamel-3 100 80.455 82.969
Gamel-4 119 81.529 82.077
Gamel-5 207 88.160 89.514
Gamel-6 101 84.832 85.362
Gamel-7 238 82.911 84.286
Gamel-8 186 86.023 85.179
Gamel-9 201 84.735 85.208

Gamel-10 232 89.177 90.340
Game2-1 132 89.675 89.303
Game2-2 241 87.262 86.940
Game2-3 182 92.830 93.595
Game2-4 133 86.801 88.795
Game2-5 157 88.641 88.180
Game2-6 198 88.150 86.647
Game2-7 145 92.697 94.036
Game2-8 151 90,361 91.489
Game2-9 181 86.882 87.531

Game2-10 194 93.484 92.273
Game3-1 150 94.262 94.456
Game3-2 150 93.284 94.429
Game3-3 100 91.398 90.563
Game3-4 241 92.009 92.842
Game3-5 245 99.194 97.270
Game3-6 151 92.557 94.018
Game3-7 138 92.497 93.975
Game3-8 219 93.242 94.167
Game3-9 205 92.336 92.790

Game3-10 210 97.020 96.324

Total 5257 89.500 89.994
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4.7 Tactic Analysis

We illustrate the results of our screen detection and classification algorithm, and
show the accuracy in this section. In this experiment, the minimum screen distance
& 1S 2 meters, the maximum screen distance A4, is 3 meters, and the angle between
moving direction and basket direction is 45 degrees. The screen distance can also be
regarded as the distance between a defender and his target, which is usually 2 to 3
meters, since the screener is almost at the same position as the defender. The
determination of 6, depends on user’s sensitivity to back-screens, and we find that
45 is a moderate value which can detect most back-screens without too many false
positives. Table 4.8 shows our configuration and Figure 4.5 illustrates some sample
results. In Figure 4.5, cyan triangles indicate screeners, and yellow circles represent
their offensive teammates. Figure 4.5 (a) demonstrates.the moment when a screen is
detected, and Figure 4.5 (b) shows the trajectories of the screener and his offensive
teammate with which we classify the screen type.. “In Figure 4.5 (1), the screener
moves from near the top sideline to the top of the three-point line and sets the screen,
and his offensive teammate moves from near the bottom sideline to the top sideline.
It should be a front-screen but the screener is closer to the basket when he sets the
screen than he starts to move. As a result, our algorithm regards it as a down-screen.
In Figure 4.5 (2), the screener moves from the free-throw line to the low-post, and his
offensive teammate tries to move to the three-point line. It is a special case since the
screener is setting the screen on the moving path of his offensive teammate instead of
standing next by the defender so that the screener is farther away to the defender than
his offensive teammate when the screen is detected, and our algorithm fails to
recognize the screener correctly. In Figure 4.5 (3), the screener sets the screen

around the free-throw line, and his offensive teammate drives to the basket. It is a
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typical back-screen and our algorithm identifies it correctly. In Figure 4.5 (4), the
screener moves from the restricted area to the free-throw line and sets the screen, and
his offensive teammate moves around the three-point line and reaches the free-throw
line at last.  Since the offensive player stops at the free-throw line without driving to
the basket, it is a front-screen and successfully classified by our algorithm. In Figure
4.5 (5), the screen is set near the top edge of the restricted area, and the offensive
player moves from outside the three-point line to the free-throw line. Although the
offensive player does not drive to the basket and it should be a front-screen, the angle
between his moving direction and the basket direction is small and our algorithm
mistakes the screen type. In Figure 4.5 (6), the screener moves along the baseline,
from under the basket to the bottom edge of the restricted area, and his offensive
teammate moves from the baseline to the free-throw line. It is correctly classified as
a front-screen. In Figure 4.5 (7), the screener moves from the free-throw line to the
top of the three-point line, and his offensive teammate drives to the basket after the
screen. It is also a standard back-screen. In_Figure 4.5 (8), the screener moves
down from the free-throw line, and his offensive teammate tries to pass through the
restricted area from the bottom sideline. This down-screen is correctly classified by
our algorithm. In Figure 4.5 (9), the screener moves up from near the free-throw line,
and his offensive teammate moves to the upper region. This is no doubt a
front-screen.  Table 4.9 demonstrates the results of our screen classification
algorithm using Figure 4.5. Table 4.10 shows the accuracy of screen detection.
Our screen detection algorithm detects over 96% of screen frames. Maost missing
frames result from beginnings and ends of screens since the two offensive players

move and the distance between them is hard to control.
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Table 4.8: Configuration of screen detection and classification.

Parameter Symbol Value
Minimum screen distance O 2 (m)
Maximum screen distance Ay 3 (m)
Angle between moving direction and basket direction 0, 45 (degree)

®

Figure 4.5: Results of tactic analysis. (a) Screen detection (b) Screen classification.
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Figure 4.5: Results of tactic analysis. (a) Screen detection (b) Screen classification. (cont’d)
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Figure 4.5: Results of tactic analysis. (a) Screen detection. (b) Screen classification. (cont’d)

Table 4.9: Corresponding results of screenclassification to Figure 4.5.

Figure 4.5 Real screen type Identified screen type
Q) Front-screen Down-screen
2 Down-screen Back-screen
3) Back-screen Back-screen
4) Front-screen Front-screen
5) Front-screen Back-screen
(6) Front-screen Front-screen
@) Back-screen Back-screen
(8) Down-screen Down-screen
9 Front-screen Front-screen
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Table 4.10: Accuracy of screen detection.

Clip # of real screen frames # of detected screen frames Accuracy (%)
Gamel-1 49 48 97.959
Gamel-2 39 37 94.872
Gamel-3 38 38 100
Gamel-4 42 39 92.857
Gamel-5 45 40 88.889
Gamel-6 36 35 97.222
Gamel-7 45 42 93.333
Gamel-8 44 42 95.455
Gamel-9 36 35 97.222
Gamel-10 33 30 90.909
Game2-1 37 35 94.595
Game2-2 43 41 95.349
Game2-3 35 34 97.143
Game2-4 38 37 97.368
Game2-5 44 44 100
Game2-6 38 36 94.734
Game2-7 31 31 100
Game2-8 48 47 97.917
Game2-9 42 40 95.238
Game2-10 38 34 89.474
Game3-1 47 45 95.745
Game3-2 36 36 100
Game3-3 35 33 94.286
Game3-4 48 48 100
Game3-5 33 30 90.909
Game3-6 33 32 96.970
Game3-7 43 40 93.023
Game3-8 39 39 100
Game3-9 41 40 97.561
Game3-10 32 31 96.875

Total 1179 1139 96.607
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Chapter 5. Conclusions

We have proposed a scheme that can detect and classify screens in basketball
games, which is the fundamental essence of basketball tactics. Through combining
screens and trajectories in each possession, our system is able to recognize what
tactics are executed. The collected tactics are then indexed so that users can query
the tactic that they are interested in.  Our system can also work with other researches
and lead to more applications. For instance, when combining the shooting location
estimation [7], we can speculate on the movement of the ball and obtain further
information about basketball tactics. It is difficult to tell who the ball handler is at
the beginning of a possession, and it prohibits us from tracking the ball as well.
Nevertheless, once we know the shooting-location, we can trace back how the ball is
passed to the shooter. For another instance, with the wide-open detection [1, 50], we
can verify whether the execution of atactic-is successful in making open shot since

tactics are set in order to make open shets, with-which the players score easily.
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Figure 5.1: Real game example. (a) Coach setting tactic. (b) Tactic execution.

Our system currently identifies tactics with the patterns of screens and

trajectories from video clips. That is, we do not know if the verified tactics are
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equivalent to those set by the coach. In fact, there are some factors affecting the
execution of tactics, such as the interference from the defensive players. Although
the team on offense sets tactics to block the defensive players, the opponent team has
its way to counter. Imagine that the ball handler is trying to pass the ball to a
teammate as the tactic indicates, but that teammate is being double teamed and is not
free to catch the pass. The ball handler therefore has no choice but to pass the ball to
another teammate. As a result, the behaviors of offensive players we see on the
screen may not follow the instructions from the coach, and the tactics identified by
our system may differ from those set by the coach. Figure 5.1 is a real example that
the tactic execution is different from the coach’s instruction. Hence, we want to add
coach’s instructions to our system .in‘the future.. With the real instruction, we not
only can verify the identified tactics but also figure out why the offensive players are
not able to implement the tactics.  First, we query the database with the real tactic
and obtain its pattern of screens and trajectories. - After.analyzing the behavior of the
players from the video clip, we.compare the resultwith the pattern of the real tactic
set by the coach. By searching the difference between the performance of the
players and the instruction of the coach, we can realize what keeps the team on
offense from executing the tactic successfully. Furthermore, we can speculate on the
strategy used by the team on defense, which is also an important issue that both
professional coaches and players are interested in. We hope to have the chance to
cooperate with basketball teams so that we can improve the proposed system with the

real information they provide.
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