

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

籃 球 影 片 中 的 球 員 追 蹤 與 戰 術 分 析

Player Tracking and Tactic Analysis in Basketball Video

研 究 生：伏宗勝

指導教授：李素瑛 教授

中 華 民 國 一 百 年 三 月

籃 球 影 片 中 的 球 員 追 蹤 與 戰 術 分 析

Player Tracking and Tactic Analysis in Basketball Video

研 究 生：伏宗勝 Student：Tsung-Sheng Fu

指導教授：李素瑛 Advisor：Suh-Yin Lee

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

January 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年三月

i

籃球影片中的球員追蹤與戰術分析

研究生：伏宗勝 指導老師：李素瑛 教授

國立交通大學多媒體工程研究所

摘 要

 隨著電視轉播技術的發展，越來越多人觀賞籃球比賽，但是大多數的人對於

籃球知識並不是非常了解。我們也許會因為球員投進壓哨三分球而尖叫，或為一

個強力灌籃而興奮，但是不見得知道球員是如何擺脫防守者進行投籃。目前已經

有一些籃球影片內容的研究，例如精采畫面擷取和記分板辨識，但是這些仍然無

法幫助觀眾對於籃球有更深入的了解。所以我們希望能設計一個系統來提供觀眾

一些比較深入的籃球知識，而不只是表面上的資訊。籃球比賽中，觀眾最有興趣

的就是得分。但是得分背後的戰術是一門很深奧的學問，因為籃球是一項五個人

的運動，不可能只靠一個球員去對抗另外一隊，也就是說單一球員很難靠他自己

擊潰對方的防守並且進行得分。大部分的得分都是經由執行戰術而來的。所以我

們的目標就是自動辨認出籃球比賽中執行的戰術，並且把這些收集來的資訊帶給

觀眾，讓他們能更了解籃球這項運動；甚至可以提供教練和球員，作為他們訓練

及了解敵隊的攻防策略之用。

 籃球戰術種類眾多，很難用單一演算法一以概之，因此我們著重於大多數戰

術中都會使用的「掩護」，加以偵測並且分類，藉此分析出戰術執行的模式。我

們開發的系統執行步驟如下。在比賽一開始先收集整場比賽都不會變的資訊，包

含球場地板顏色以及兩隊球衣顏色。首先我們計算攝影機的參數，並且產生一張

ii

表示球場範圍的遮罩。第二步我們在球場範圍內計算出現次數最多的顏色，也代

表著地板顏色。接著利用背景相減法，我們可以從球場範圍減去地板得到前景物

體。最後我們利用顏色資訊將前景分成兩群，分別代表著兩支球隊的球衣顏色。

因為這些資訊在整場比賽中都不會改變，所以我們可以利用它們降低往後的計算

量，並且提升系統效能。在比賽中，針對每一次球權先分辨哪一隊是進攻方，了

解雙方球員的行為模式才能判斷執行的戰術。利用先前得到的資訊並追蹤雙方球

員的軌跡。在一波進攻結束的時候，根據追蹤到的雙方球員軌跡來判斷執行的掩

護。經由實驗結果，我們開發的系統對於掩護的偵測和分類準確度相當令人滿意，

因此在戰術分析上也有著顯著的幫助。這些被辨識出來的戰術會存入資料庫，於

是觀眾就可以查詢他們有興趣的戰術並且學習。

關鍵字：籃球影片、球員追蹤、戰術分析、運動影片分析、影像處理

iii

Player Tracking and Tactic Analysis in Basketball Video

Student: Tsung-Sheng Fu Advisor: Prof. Suh-Yin Lee

Institute of Multimedia Engineering

National Chiao Tung University

ABSTRACT

Thanks to the development of TV broadcasting technology, there are more and

more people watching basketball games. Most of us, however, do not know the

basketball sport very well. We may scream for a buzzer beater three-point shot or

get excited about a slam dunk, but we do not exactly realize how a player gets rid of

defenders and makes shots. There have been some researches on basketball video,

such as highlight extraction and scoreboard recognition, but they still cannot help

people further understand this sport. Therefore, we intend to design a system which

provides audience with further knowledge of basketball instead of superficial

information. In basketball games, people are most interested in scoring events.

Nevertheless, scoring is not that simple as it looks. It can be an abstruse subject

since basketball is a five-person sport and one player is not able to fight against the

opponent team. That is, it is difficult for an individual player to break the defense

and score by himself. Most shots are made through execution of tactics.

Consequently, our goal is to automatically identify tactics executed in basketball

games and bring audience the collected information so that they can learn more about

the basketball sport.

There is plenty of basketball tactics, and it is hard to model them by a single

iv

algorithm. Hence, we focus on “screen,” which is widely used in most basketball

tactics. We detect and classify screens, and regard their patterns as certain tactics.

Our proposed system performs with the following steps. First of all, we gather some

consistent information at the beginning of the game, including the floor color and the

jersey colors of the two teams. We first compute the camera calibration and generate

a court mask indicating the court region. Second, we calculate the dominant color

within the court region, which represents the floor color. Next, we obtain the

foreground objects by subtracting the floor from the court region. This procedure is

similar to a background subtraction mechanism. Finally, we divide the foreground

region into two clusters with color information. Thus, the two clusters denote the

jersey colors of the two teams respectively. Since this information is consistent

through the entire game, we can utilize it to reduce computational cost and accelerate

the computation in the following frames. During the game, we first distinguish

which team is on offense in each possession since we have to learn the behaviors of

offensive and defensive players respectively in order to identify tactics. Next, we

extract players of the two teams with the previously obtained information and track

them. At the end of a possession, we identify what screens are set by the trajectories

of the players. Through our experiment, the accuracy of screen detection and

classification is satisfactory, which significantly helps analysis of basketball tactics.

The identified tactics are then inserted into a database from which audience can query

tactics they are interested in.

Keyword: basketball video, player tracking, tactic analysis, sports video analysis,

image processing

v

Acknowledgement

First of all, I greatly appreciate my advisor, Prof. Suh-Yin Lee. Not only for her

kind guidance, but also for her sincere help whenever I am troubled or upset. Next, I

would like to thank my seniors Hua-Tsung Chen, Hui-Zhen Gu and Min-Chun Hu for

their graceful ideas, precious experience and technical assists. Besides, I am grateful

to my colleagues for their inspiration. Also, I have to thank my brother Kuang-Yu

Fu, who is an expert in basketball and teaches me a lot. Last but not least, I

appreciate my parents Hai-Ju Fu and Hsiao-Li Tung. Without their support and

encouragement, I am not able to complete this achievement. I devoutly dedicate this

thesis to them.

vi

Table of Contents

Chapter 1. Introduction .. 1

Chapter 2. Related Work .. 4

2.1 Object Tracking .. 4

2.1.1 Object Detection ... 4

2.1.2 Object Tracking ... 7

2.2 Applications in Basketball Video ... 10

Chapter 3. Proposed System Architecture ... 16

3.1 Overview .. 16

3.2 Pre-Processing.. 19

3.2.1 Camera Calibration ... 19

3.2.1.1 White Pixel Detection .. 20

3.2.1.2 Hough Line Extraction ... 22

3.2.1.3 Court Model Fitting ... 24

3.2.2 Court Mask Generation ... 29

3.2.3 Dominant Color Map Generation ... 29

3.2.4 Player Extraction ... 31

3.2.5 Team Clustering .. 33

3.2.6 Player Classification ... 35

3.2.7 Possession Recognition ... 36

3.3 Content Analysis .. 37

3.3.1 Court Model Tracking ... 37

3.3.2 Player Tracking ... 41

3.4 Tactic Analysis Algorithm .. 43

3.4.1 Screen Detection ... 49

3.4.2 Screen Classification ... 50

Chapter 4. Experimental Results.. 53

4.1 White Pixel Detection .. 53

4.2 Camera Calibration .. 57

4.3 Player Extraction .. 60

4.4 Player Classification .. 62

4.5 Possession Recognition .. 64

4.6 Player Tracking .. 64

4.7 Tactic Analysis ... 67

Chapter 5. Conclusions .. 73

Bibliography .. 75

vii

List of Figures

Figure 2.1: Taxonomy of tracking methods [13]. ... 7

Figure 2.2: Motion constraints [13]. (a) Proximity. (b) Maximum velocity. (c) Small

velocity-change. (d) Common motion. (e) Rigidity constraint. 9

Figure 2.3: Examples of shot types in a basketball game [7]. (a) Court shot. (b) Court

shot. (c) Medium shot. (d) Medium shot. (e) Close-up shot. (f) Out-of-court shot. ... 11

Figure 2.4: Example of Golden Section spatial composition [7]. (a) Frame regions. (b)

Court view. (c) Medium view. .. 12

Figure 2.5: Detection of backboard top-border [7]. (a) Detected court lines. (b)

Computing vanishing point. (c) Searching backboard top-border. 12

Figure 2.6: Detection of court lines and corresponding points [7]. 13

Figure 2.7: Demonstration of shooting location estimation [7]. 13

Figure 2.8: Example of the procedure [1]. (a) Original Frame. (b) Dominant color map.

(c) Court mask. (d) Removing foreground objects. (e) White pixel detection. (f)

Camera calibration. .. 14

Figure 2.9: Sample results of wide-open warning [1]. ... 15

Figure 3.1: System overview. ... 16

Figure 3.2: Flowchart of pre-processing. ... 17

Figure 3.3: Flowchart of content analysis. The modules with shadows have the same

functionality as those in the pre-processing phase. .. 18

Figure 3.4: Schematic, magnified view of part of an input image containing a court

line [2]. ... 20

Figure 3.5: Hough transform diagram. .. 22

Figure 3.6: Basketball court model. ... 24

Figure 3.7: Sample results of line extraction. (a) Original frame. (b) Detected white

pixels. (c) Result using our method. The right column shows some results using

typical method with different thresholds 𝜎𝑕 of (d) 50 (e) 100 (f) 150. 26

Figure 3.8: Examples of basketball video frames. Solid red lines are baselines and

solid yellow lines are free-throw lines, and dotted lines are their normals respectively.

(a) Left court. (b) Right court. .. 27

Figure 3.9: Court mask. (a) Original frame. (b) Corresponding court mask. 29

Figure 3.10: Object extraction. (a) Original frame. (b) Dominant color map. (c)

Foreground objects. ... 32

Figure 3.11: K-means clustering. (a) Original frame. (b) Foreground objects. (c)

Experimental data with different color spaces and number of clusters. The horizontal

axis means the number of clusters and the vertical axis indicates the clustering error,

viii

and different lines represent different color spaces. ... 34

Figure 3.12: Player classification. (a) Original frame. (b) Foreground objects. (c)

Players of one team (red jerseys). (d) Players of the other team (white jerseys)........ 36

Figure 3.13: Camera motion in basketball video, rotate and zoom in......................... 38

Figure 3.14: Predicting the camera parameters for frame 𝑡 + 1 based on the

previously computed parameters for frames 𝑡 and 𝑡 − 1 [2]. 39

Figure 3.15: Complete diagram of Kalman filter [12]. ... 42

Figure 3.16: A sample basketball tactic. .. 44

Figure 3.17: Example of front-screen. (a) Trajectories. (b) Before screen. (c) Setting

screen. (d) After screen. ... 45

Figure 3.18: Example of back-screen. (a) Trajectories. (b) Before screen. (c) Setting

screen. (d) After screen. ... 46

Figure 3.19: Example of down screen. (a) Trajectories. (b) Before screen. (c) Setting

screen. (d) After screen. ... 47

Figure 3.20: Diagram of screen classification. ... 52

Figure 4.1: Results of white pixel detection. (a) Original frame. (b) Without line

structure constraint. (c) With line structure constraint. .. 55

Figure 4.2: Results of camera calibration. (a) White line pixels. (b) Extracted court

lines and camera calibration. ... 57

Figure 4.3: Results of player extraction. (a) Original frame. (b) Dominant color map. (c)

Foreground objects. ... 61

Figure 4.4: Results of player classification. (a) Original frame. (b) Player mask of team

1. (c) Player mask of team 2. .. 63

Figure 4.5: Results of tactic analysis. (a) Screen detection (b) Screen classification. .. 69

Figure 5.1: Real game example. (a) Coach setting tactic. (b) Tactic execution. 73

file:///D:/thesis/paper/thesis_final.docx%23_Toc288819133
file:///D:/thesis/paper/thesis_final.docx%23_Toc288819133
file:///D:/thesis/paper/thesis_final.docx%23_Toc288819136

ix

List of Tables

Table 1.1: Tactic categories and number of tactics using screens. 3

Table 2.1: Object detection categories [13]. .. 5

Table 2.2: Tracking categories [13]. ... 8

Table 3.1: Corresponding accumulator matrix to Figure 3.5. 23

Table 3.2: Basketball court dimensions. .. 25

Table 4.1: Video sources. ... 53

Table 4.2: Configuration for white pixel detection. ... 54

Table 4.3: Statistics of white pixel detection. .. 56

Table 4.4: Average projection error of camera calibration. ... 59

Table 4.5: Statistical results of possession recognition. .. 64

Table 4.6: Configuration of player tracking. ... 65

Table 4.7: Performance of player tracking. .. 66

Table 4.8: Configuration of screen detection and classification. 69

Table 4.9: Corresponding results of screen classification to Figure 4.5. 71

Table 4.10: Accuracy of screen detection. ... 72

1

Chapter 1. Introduction

There have been many researches on sports video analysis in the past decade.

However, not much research is focused on broadcast basketball video analysis.

Doing researches on basketball video, one may face some difficulties and challenges.

Most of all, basketball players occlude each other very often. As a result, it is

difficult to segment and track players correctly. Unfortunately, segmentation and

tracking are the soul of video analysis. In other words, unless we overcome the

occlusion problem, we are not able to analyze much content in basketball videos.

Chang et al. proposed a method [1, 50] that can accurately separate players of

different teams. This tremendously improved the possibility of basketball video

analysis because in basketball games, in order to make wide-open shots, players of the

same team seldom stay together. On the other hand, the defensive players usually

stand next by his target to defend. That is, once we distinguish players of the two

teams, we can avoid most occlusions. Second, in order for the audience to see the

ball clearly, the camera usually follows the ball. This may lead to violent camera

motions since the ball moves fast. Consequently, the camera calibration is another

challenge. Farin et al. introduced a robust and efficient court model tracking

algorithm [2], which helps us use the frame coherence to obtain the camera calibration

with slight computational cost.

Besides, there is another question: what can we analyze in basketball videos?

Some researches focus on event detection and highlight extraction [3-6]; others are

interested in trajectory reconstruction [7]; still others concentrate on frame

information, including shot classification [8] and scoreboard recognition [9].

Nevertheless, recent researches consider more information in video clips than in

2

basketball sport itself. Our goal is to bring the audience further knowledge about

basketball, or even to provide professional players and coaches with technical

information. To achieve this goal, we put most effort in verifying the tactics

executed in basketball games. Having surveyed hundreds of basketball tactics, we

discovered that there is one fundamental essence – screen. A screen is a blocking

move performed by an offensive player, by standing beside or behind a defender, in

order to free a teammate to shoot, to receive a pass, or to drive in to score.

Basketball tactics can be categorized by strategies which they are following and

players whom the tactics are set for. Strategies include isolation, low-post, high-post,

mid-range, three-point, pick-and-roll, and pick-and-fade. Isolation means that the

team on offense tries to isolate a player and make a one-on-one attack. Low-post and

high-post indicate the location where players start attacks. Mid-range and

three-point are similar to low post and high post, describing the attack locations, but

they focus on the finish of attacks instead of the beginning. Pick-and-roll and

pick-and-fade strategies intend players to make open shots through screens. A tactic

sometimes does not follow a specific strategy, and we categorize it as general.

Furthermore, once the strategy is decided, a player is expected to shoot the ball.

That is, tactic categories are then distinguished by the positions of players, namely,

point guard, shooting guard, small forward, power forward, and center. In general,

point guards (PG) organize the offense of a team; shooting guards (SG) are good

shooters from long range; small forwards (SF) have high speed so that they usually

drive in and break the defense of the opponent team; power forwards (PF) and centers

(C) are the tallest players of a team and they behave most near the basket. Through

our observation, most tactics consist of screens. Table 1.1 shows total number of

surveyed tactics and number of tactics using screens. According to Table 1.1, over

80% of tactics contain screens. In other words, most basketball tactics are composed

3

of different types of screens. Once we want to study a basketball tactic, we have to

learn what types of screens are used in it first. In this thesis, therefore, we are

focused on detecting screens and classifying their types.

Table 1.1: Tactic categories and number of tactics using screens.

Strategy \ Position PG SG SF PF C Overall

General 12/16 13/16 8/10 7/10 9/10 49/62

Isolation 8/16 10/16 7/16 6/16 1/4 32/68

Low Post 5/7 11/16 12/16 10/16 14/16 52/71

High Post 4/5 5/8 4/6 7/8 7/11 27/38

Three Point 11/12 15/16 14/16 6/8 6/7 52/59

Mid Range 13/16 14/16 14/16 13/16 15/16 69/80

Pick and Roll 16/16 16/16 16/16 16/16 16/16 80/80

Pick and Fade 16/16 16/16 16/16 14/14 2/2 64/64

Overall 85/104 100/120 91/112 79/104 70/82 425/522

In Chapter 2, we review previous works on object tracking and some

applications in basketball video. In Chapter 3, we present our proposed system,

including player tracking and tactic analysis. Chapter 4 shows our experimental

results. At last, we will discuss the conclusion and future work in Chapter 5.

4

Chapter 2. Related Work

In this chapter, we will briefly introduce the methods for object tracking, and

then show some recent researches on basketball video analysis.

2.1 Object Tracking

 Object tracking is an important field in computer vision. When watching

videos, we can easily distinguish objects and tell their behavior through our

background knowledge. In computer vision, people want computers to recognize

what objects are in videos and how the objects behave. Nevertheless, it is simple for

people but difficult for computers to realize the video contents. Thus, many methods

for object tracking have been proposed, and are introduced in the following sections.

2.1.1 Object Detection

 Before tracking objects, we have to extract objects either in every frame or when

they first appear in the video. That is, we will present the object detection methods

before we start to discuss the object tracking algorithms. The object detection

methods can be classified into four categories: point detectors, segmentation,

background subtraction, and supervised learning [13]. Table 2.1 shows the four

categories and their representative work, respectively.

5

Table 2.1: Object detection categories [13].

Categories Representative Work

Point detectors Moravec’s detector [14],

Harris detector [15],

Scale Invariant Feature Transform [16]

Segmentation Mean-shift [18],

Graph-cut [19]

Background modeling Mixture of Gaussians [21],

Eigenbackground [22],

Wall flower [23],

Dynamic texture background [24]

Supervised classifiers Support Vector Machine [25],

Neural Networks [26],

Adaptive boosting [27]

 Point detectors are used to find points of interest in images which have an

expressive texture in their respective region. To find points of interest, Moravec’s

operator [14] computes the variation of the image intensities within a 4-by-4 window

in the horizontal, vertical, diagonal, and anti-diagonal directions, and then chooses the

minimum of the four variations as representative values for the window. A point is

declared interesting if the intensity variation is a local maximum in a 12-by-12

window. The Harris detector [15] computes the first order image derivatives in

horizontal and vertical directions to emphasize the directional intensity variations, and

then construct a structure matrix 𝐒𝑚 over a small window around each pixel. The

points of interest are identified by thresholding 𝑅 = 𝑑𝑒𝑡(𝐒𝑚) − 𝑘 ∙ 𝑡𝑟(𝐒𝑚)
2, where

𝑑𝑒𝑡(𝐒𝑚) represents the determinant of 𝐒𝑚 and 𝑡𝑟(𝐒𝑚) denotes the trace of 𝐒𝑚,

after applying non-maxima suppression. Theoretically, the 𝐒𝑚 matrix is invariant

to both rotation and translation. However, it is not invariant to affine or projective

transformations. In order to provide robust detection of interest points under

different transformations, Lowe introduced the SIFT (Scale Invariant Feature

6

Transform) method [16], which is confirmed outperforming most point detectors and

more tolerable to image deformations according to the survey by Mikolajczyk and

Schmid [17].

 The objects we are interested in are usually moving objects in videos. Frame

difference is a typical method and is well studied since Jain and Nagel’s work [28].

However, differencing temporally adjacent frames cannot achieve robust results under

some circumstances. Thus, background subtraction became popular which builds a

representation of the scene called the background model and regards any significant

change in an image region from the background model as moving object. Stauffer

and Grimson [21] use a mixture of Gaussians to model the pixel color. Each pixel is

classified based on whether the matched distribution represents the background

process. Instead of modeling the variation of individual pixels, Oliver et al.

introduce an integral approach using the eigenspace decomposition [22]. It first

forms a background matrix 𝐁 of dimension 𝑘 × 𝑙 from 𝑘 input frames of

dimension 𝑛 × 𝑚, where 𝑙 = 𝑛𝑚. The background is then determined by the most

descriptive eigenvectors.

 Segmentation algorithms partition an image into regions of reasonable

homogeneity. The mean-shift [18] method is proposed to find clusters in the

spatial-color space, which is scalable to various other applications such as edge

detection, image regularization [30], and tracking [31]. Shi and Malik [19]

formulate image segmentation as a graph partitioning problem, where the vertices

(pixels) are partitioned into disjoint subgraphs (regions), and overcome the difficulty

of oversegmentation by the proposed normalized cut.

7

Figure 2.1: Taxonomy of tracking methods [13].

2.1.2 Object Tracking

 The goal of object tracking is to gather the trajectory of a specific object. Take

our system for example, since we intend to identify what tactics are executed, we have

to analyze how the players move. That is, we must track players during the game in

order to obtain their trajectories. Tracking algorithms can be classified into three

main categories: point tracking, kernel tracking, and silhouette tracking. Figure 2.1

illustrates the taxonomy of tracking methods and Table 2.2 demonstrates their most

notable works.

Detected objects over a video clip can be represented by points, and the point

tracking finds the point correspondence across frames. Point tracking methods can

be divided into two categories: deterministic and statistical methods. Deterministic

methods define a cost of associating each object to a single object in two adjacent

frames using a set of motion constraints, which is usually a combination of the

constraints illustrated in Figure 2.2. Proximity assumes the location of the object

Object
Tracking

Point Tracking

Deterministic

Probabilistic

Kernel
Tracking

Multi-view
Based

View
Subspace

Classifier
Template

Based

Silhouette
Tracking

Contour
Evolution

State Space
Methods

Direct
Minimization

Variationaly
Approach

Heuristic
Approach

Shape
Matching

8

would not change notably from one frame to other. Maximum velocity defines an

upper bound on the object velocity and limits the possible correspondences to the

circular neighborhood around the object. Small velocity change assumes the

direction and speed of the object does not change drastically. Common motion

constrains the velocity of objects in a small neighborhood to be similar. Rigidity

assumes that objects in the 3D world are rigid, so the distance between any two points

on the actual object will remain unchanged.

Table 2.2: Tracking categories [13].

Categories Representative Work

Point Tracking

Deterministic methods MGE tracker [32],

GOA tracker [33]

Statistical methods Kalman filter [34],

JPDAF [35],

PMHT [36]

Kernel Tracking

Template and density based

appearance models

Mean-shift [31],

KLT [37],

Layering [38]

Multi-view appearance models Eigentracking [39],

SVM tracker [40]

Silhouette Tracking

Contour evolution State space models [41],

Variational methods [42],

Heuristic methods [43]

Matching shapes Hausdorff [44],

Hough transform [45],

Histogram [46]

Statistical methods consider the measurement and the model uncertainties during

object state estimation. State space approach is used to model the object properties

9

such as position, velocity, and acceleration. Measurements usually consist of the

object position in the image, which is obtained by a detection algorithm. The

Kalman filter [34] computes the covariance for state estimation while the particle

filter [47] uses the conditional state density to estimate the next state, which can be

regarded as the generalized Kalman filter since the Kalman filter concentrates on

estimating the state of a linear system where the state variables are assumed to be

normally distributed (Gaussian) and the particle filter deals with the non-Gaussian

state.

Figure 2.2: Motion constraints [13]. (a) Proximity. (b) Maximum velocity. (c) Small

velocity-change. (d) Common motion. (e) Rigidity constraint.

 Kernel refers to the object shape and appearance, and kernel tracking is typically

performed by computing the motion of the object, which is represented by a primitive

object region and generally in the form of parametric motion or the dense flow field

computed in subsequent frames. The major differences among kernel tracking

methods are the appearance representation used, the number of objects tracked, and

the method used to estimate the object motion. For instance, the mean-shift tracking

method [31] uses templates and density-based appearance models, while the SVM

tracker [40] tracks objects with multiview appearance models.

 Objects may have complex shapes. Humans, for example, have head, arms, and

legs, and cannot be well described by simple geometric shapes. The aim of

10

silhouette-based methods is to provide an accurate shape description, and to find the

object region in each frame through an object model generated according to the

previous frames. One category of the silhouette-based methods is shape matching

[44-46], which can be performed similar to tracking based on template matching

where an object silhouette and its corresponding model is searched in the current

frame. The search is invoked by computing the similarity between the object and the

model generated from the hypothesized object silhouette according to the previous

frame. The other category of the silhouette-based methods is contour tracking

[41-43], which iteratively evolve an initial contour in the previous frame to its new

position in the current frame. Tracking by evolving a contour can be performed with

either state space models which model the contour shape and motion or direct

evolution through minimizing the contour energy using direct minimization

techniques such as gradient descent.

2.2 Applications in Basketball Video

 As discussed in Chapter 1, basketball video analysis is not a common field due to

several difficulties and limitations. Fortunately, there are more and more new

methods proposed that help us overcome those obstacles and make basketball video

analysis much more practicable. We are going to introduce some recent researches

on basketball video analysis related to our work.

 At first, we would like to introduce the work of Chen et el. [7]. Their research

has several notable contributions. First of all, they modify the shot classification

algorithm to basketball videos. Basketball shots can be classified into three types:

court shots, medium shot, and close-up shots or out-of-court shots. A court shot

displays a global view of the court. A medium shot focuses on an individual player,

11

who is usually the ball handler. A close-up shot shows the above-waist view of

players, and an out-of-court shot presents spectators, coaches, or other places out of

the court. Figure 2.3 shows examples of different shot types in a basketball game.

Obviously, court shot is the type that contains most information on the court and

should be retrieved.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.3: Examples of shot types in a basketball game [7]. (a) Court shot. (b) Court shot. (c)

Medium shot. (d) Medium shot. (e) Close-up shot. (f) Out-of-court shot.

They divide frames into nine regions by employing Golden Section spatial

composition rule as Figure 2.4 shows, and count the number of pixels of the floor

color in each region to distinguish shot types. Second, they propose a new method

to obtain vertical information in order to form a nonsingular 3D-to-2D transformation.

In addition to the typical court lines (2D), they extract the top-border of the backboard

(3D) by scanning the baseline from the vanishing point. Figure 2.5 demonstrates the

method and Figure 2.6 illustrates the result. Last but not least, they reconstruct 3D

information from single view 2D video sequences. With the reconstructed 3D

information, they provide a trajectory-based high-level basketball video analysis as

12

well. The 3D ball trajectories facilitate automatic collection of game statistics about

shooting locations, from which people can learn the shooting tendency of an

individual player, or even a whole team. Figure 2.7 shows some experimental

results. In each image in Figure 2.7, blue circles are the ball positions over frames,

green circle represents the estimated shooting location, and the red squares show the

movements of corresponding points due to the camera motion.

(a)

(b)

(c)

Figure 2.4: Example of Golden Section spatial composition [7]. (a) Frame regions. (b) Court

view. (c) Medium view.

(a)

(b)

(c)

Figure 2.5: Detection of backboard top-border [7]. (a) Detected court lines. (b) Computing

vanishing point. (c) Searching backboard top-border.

13

Figure 2.6: Detection of court lines and corresponding points [7].

Figure 2.7: Demonstration of shooting location estimation [7].

 Besides, we highly praise the work of Chang et al. [1, 50] not only for their

contribution to basketball video analysis but also for their novel research on

basketball tactics. They propose a method that can gracefully extract players on the

court, which vastly improves the performance of object tracking in basketball videos.

14

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.8: Example of the procedure [1]. (a) Original Frame. (b) Dominant color map. (c)

Court mask. (d) Removing foreground objects. (e) White pixel detection. (f) Camera

calibration.

At first, dominant (floor) color is obtained and a dominant color map is

generated. The court region can then be shown through largest connected

component analysis of the dominant color map. By utilizing this, foreground objects

(player candidates) are extracted. This can also be an additional constraint to white

15

line pixels for the sake of camera calibration since court lines are only located within

the court region. Figure 2.8 illustrates the procedure and the result of camera

calibration. Next, using color information and any clustering algorithm, foreground

region is separated into two clusters representing the jersey colors of the two teams.

That is, players of the two teams are recognized. Most important of all, they step

into a further field of tactic analysis. Their system informs the user when the

distribution of players satisfies the preset rules of the wide-open event. Although

their system does not explicitly imply what tactic has been executed, the user can

infer the tactic from how the wide-open event occurs. This inspires us to design a

system that identifies tactics executed in basketball games and keeps the patterns in

order for users to learn basketball tactics. Figure 2.9 demonstrates results of the

wide-open warning system.

Figure 2.9: Sample results of wide-open warning [1].

16

Chapter 3. Proposed System Architecture

This chapter describes the details of our proposed system. First of all, we will

give an overview in Section 3.1. In Section 3.2, pre-processing is described. Next,

we explain our proposed scheme of player tracking during the game in Section 3.3.

At last, we will introduce our algorithm for tactic detection and classification in

Section 3.4. Note that the video clips we are using are manually segmented by

possessions instead of a whole game because our main purpose is to analyze the

tactics executed in possessions and automatic possession distinction is not our focus

here. Possession means control of the ball. When one team is on offense, we say

the team has the possession. One team loses possession if it makes a shot or the

opponent team gets the ball. That is, the period we are interested in is from one team

first gets the ball until the team shoots the ball.

Figure 3.1: System overview.

3.1 Overview

The goal we are going to achieve is to analyze the tactics executed in basketball

Pre-process

• Floor color

• Jersey colors

• Possession

Analyze

• Player tracking

• Screen
detection

• Screen
classification

17

games. However, there are some obstacles blocking our way to this goal since

basketball tactics are complex. The position which a player plays, for instance, is

usually considered when setting tactics but difficult for computer to distinguish.

Fortunately, we have figured out that screen is a key to all basketball tactics as

mentioned in Chapter 1. Hence, screen verification is the core of our system.

Figure 3.2: Flowchart of pre-processing.

Our system can be divided into two parts: pre-processing and analysis as shown

in Figure 3.1. Pre-processing is performed at the beginning of a video clip in order

to gather consistent information in this possession, such as floor color and jersey

colors. Since they are invariant during a possession, or even the whole game, we

only have to compute them once and for all. With these information gathered in

pre-processing, we can avoid computing them each frame and accelerate the

computation. As Figure 3.2 illustrates, we first compute the camera calibration and

generate a court mask which indicates the court region. Second, we can obtain the

floor color by calculating the color histogram and finding the dominant color within

Camera Calibration

Court Mask Generation

Dominant Color Map Generation

Player Extraction

Team Clustering

Player Classification

Possession Recognition

18

the court region. With the floor color, we can perform a background subtraction and

extract the foreground objects, that is, the players. Next, we cluster the players into

two teams according to their jersey colors. At last, we can realize which team is on

offense through the distance between the players and the basket.

Figure 3.3: Flowchart of content analysis. The modules with shadows have the same

functionality as those in the pre-processing phase.

In the following frames, we track the players and also confirm if a screen is set.

We have to calculate the camera calibration at first, and then generate a new court

mask. Unlike the pre-processing phase, we can obtain current camera calibration

from previous frame. Next, we extract the players by the floor color and the jersey

colors obtained from the pre-processing. Now we can track the players and detect

screens with the positions of players. Once a screen is detected, we retain the state at

the moment for the sake of screen type classification. At the end of the possession,

we classify the type of the screen set in the possession according to the trajectories of

the players. Figure 3.3 shows the flowchart of the analysis phase.

Court Model Tracking

Court Mask Generation

Player Extraction

Player Classification

Player Tracking

Screen Detection

Screen Analysis

19

3.2 Pre-Processing

The reason why we perform the pre-processing is that there is some information

which will not change during a game, including the floor color and the jersey colors

of the two teams. If we repeatedly calculate the information in each frame and just

acquire the same result, it is nothing more than an impediment to efficiency.

Therefore, in order to reduce the computational cost, we prefer gather the information

once and for all. The pre-processing is summarized in Figure 3.2.

3.2.1 Camera Calibration

Camera calibration describes how objects in the world coordinates are projected

onto the image coordinates. Since sport courts can be assumed to be planar, camera

calibration defines a plane-to-plane mapping (a homography) 𝐇 from a position 𝐩

in the world coordinates to the image coordinates 𝐩′ . Writing positions as

homogeneous coordinates 𝐩 = (𝑥, 𝑦, 1)T and 𝐩′ = (𝑢, 𝑣, 1)T , the transformation

𝐇𝐩 = 𝐩′ is defined in equation (1).

 (

𝑕00 𝑕01 𝑕02
𝑕10 𝑕11 𝑕12
𝑕20 𝑕21 𝑕22

)(
𝑥
𝑦
1
) = (

𝑢′
𝑣′
𝑤′
) = (

𝑢
𝑣
1
) (1)

Camera calibration plays an important role in our system since we do most

works under the real-world coordinates. The way we obtain the camera parameters

is based on the court lines in the frame. Hence, we first have to detect all white

pixels in the frame, which belong to the court lines. Second, we find the possible

20

line candidates passing through those white pixels using Hough transform. Next, we

filter some unreasonable line candidates out and fit the remaining for the real court

lines. Finally, we can obtain the camera parameters through the mapping between

the intersection points of the line candidates and those of the court lines.

Figure 3.4: Schematic, magnified view of part of an input image containing a court line [2].

3.2.1.1 White Pixel Detection

The court lines are generally painted with white color. Accordingly, the first

filter is to confirm if the value of the R, G, B channels of a pixel are above a threshold

𝜎𝑙 to guarantee the pixel is white since the (R, G, B) value of a white pixel is (255,

255, 255). Unfortunately, court lines are usually not the only white objects in a

frame and they will influence the line extraction seriously. Hence, other constraints

should be applied to the white pixels. Assuming that court lines are not wider than

𝜏 pixels in the frame, we verify if the brightness at a distance of 𝜏 pixels from four

neighbors of the candidate pixel is considerably darker than the candidate pixel as

shown in Figure 3.4. Only if they are, the candidate pixel is classified as a white

pixel. We can formulate it as equation (2) [2].

21

𝑙(𝑥, 𝑦) = {

1, 𝑔(𝑥, 𝑦) − 𝑔(𝑥 − 𝜏, 𝑦) > 𝜎𝑑 ∧ 𝑔(𝑥, 𝑦) − 𝑔(𝑥 + 𝜏, 𝑦) > 𝜎𝑑
1, 𝑔(𝑥, 𝑦) − 𝑔(𝑥, 𝑦 − 𝜏) > 𝜎𝑑 ∧ 𝑔(𝑥, 𝑦) − 𝑔(𝑥, 𝑦 + 𝜏) > 𝜎𝑑
0, else

 (2)

where 𝑙(𝑥, 𝑦) indicates if a pixel at position (𝑥, 𝑦) is a white pixel (𝑙(𝑥, 𝑦) = 1) or

not (𝑙(𝑥, 𝑦) = 0), 𝑔(𝑥, 𝑦) is the luminance of a pixel at position (𝑥, 𝑦), and 𝜎𝑑 is

the luminance difference threshold. In equation (2), the first line corresponds to the

test if darker pixels can be found at some horizontal distance, assuming that the court

line is mostly vertical. The second line performs the analogous test in the vertical

direction, assuming that the court line is almost horizontal.

 Sometimes the white pixels in textured areas may pass the above white line test,

such as small white letters in advertisement logos, spectators dressed in white clothes,

or white areas in the stadium. Therefore, we apply an additional line-structure

constraint to eliminate those white pixels in the textured areas by observing the two

eigenvalues of the structure matrix S which is computed over a small window of size

(2𝑏 + 1) around each candidate pixel (𝑝𝑥, 𝑝𝑦) and defined by equation (3) [10].

𝐒 = ∑ ∑ 𝛻𝑔(𝑥, 𝑦) ∙ (𝛻𝑔(𝑥, 𝑦))
T

𝑝𝑦+𝑏

𝑦=𝑝𝑦−𝑏

𝑝𝑥+𝑏

𝑥=𝑝𝑥−𝑏

 (3)

Depending on the two eigenvalues of the matrix S, called 𝜆1 and 𝜆2 (𝜆1 ≥ 𝜆2), the

area can be classified into textured (both 𝜆1 and 𝜆2 are large), linear (𝜆1 ≫ 𝜆2), and

flat (both 𝜆1 and 𝜆2 are small). On the straight court lines, the linear case will

apply to retain the white pixels only if 𝜆1 > 𝛼𝜆2. We find that when 𝛼 = 4, most

linear cases can be recognized.

22

3.2.1.2 Hough Line Extraction

 In order to extract the court lines, we perform the standard Hough transform on

the detected white pixels. The parameter space (𝜃, 𝑑) is used to represent a line,

where 𝜃 is the angle between the line normal and the horizontal axis, and 𝑑 is the

distance between the line and the origin.

Figure 3.5: Hough transform diagram.

 Figure 3.5 demonstrates how the Hough transform searches lines. Given three

points and we want to find a line passing through them. For each point, a number of

lines at different angles are plotted through it. In this example, we plot lines at an

interval of 30 degrees. For each plotted line, we compute its distance to the origin

and obtain an angle-distance pair representing this line. The results are shown in the

tables in Figure 3.5, and the corresponding accumulator matrix is shown in Table 3.1.

We can figure out that the parameter set (Angle, Distance) = (60, 81) appears most

frequently (three times). Thus, it is the line that we are looking for. Now come

back to our problem that we want to extract court line candidates from those detected

white pixels. Similarly, we construct an accumulator matrix for all (𝜃, 𝑑) and

sample the accumulator matrix at a resolution of one degree for 𝜃 and one pixel for

23

𝑑. By extracting the local maxima in the accumulator matrix, we can determine the

line candidates.

Table 3.1: Corresponding accumulator matrix to Figure 3.5.

Angle\Dist. -40 -20 0 6 23 40 41 50 57 60 70 75 80 81 90

0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0

30 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

60 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0

90 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0

120 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

150 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

In addition, to obtain more precise line parameters, we refine them by

minimizing the distance between line pixel candidates and their nearest hough lines.

First, we re-parameterize a line obtained from Hough transform by its normal

𝐧 = (𝑛𝑥, 𝑛𝑦)
T

 with ‖𝐧‖ = 1 and the distance to the origin 𝑑 . With the

parameters, the distance between a point with homogeneous coordinates in image

space 𝐩 = (𝑥, 𝑦, 1)T and a line can be calculated by the dot product (𝑛𝑥 , 𝑛𝑦, −𝑑) ⋅ 𝐩.

Next, we define a set 𝐿 of court line pixels that are close to the line as equation (4)

[2].

 𝐿 = {𝐩 = (𝑥, 𝑦, 1)T|𝑙(𝑥, 𝑦) = 1 ∧ ‖(𝑛𝑥, 𝑛𝑦, −𝑑) ⋅ 𝐩‖ < 𝜎𝑟} (4)

where 𝜎𝑟 is the largest distance constraint in order to discard line pixel candidates far

away from any hough line. Since the pixels in this set are supposed to be on the

same court line and we assume the refined line equation to be 𝑥 ∙ 𝑚𝑥 + 𝑦 ∙ 𝑚𝑦 = 1,

we form an equation system and then solve it in the least squares sense as shown in

equation (5).

24

 (

𝑥1 𝑦1
𝑥2 𝑦2
⋮
𝑥|𝐿|

⋮
𝑦|𝐿|

)(
𝑚𝑥

𝑚𝑦
) = (

1
1
⋮
1

) (5)

Finally, the refined parameters are computed by 𝑑 = 1 ∕ √𝑚𝑥
2 +𝑚𝑦

2, 𝑛𝑥 = 𝑚𝑥𝑑,

𝑛𝑦 = 𝑚𝑦𝑑 since the slope of the line is −𝑚𝑥 ∕ 𝑚𝑦, and the slope of the line normal

is 𝑚𝑦 ∕ 𝑚𝑥.

3.2.1.3 Court Model Fitting

 A court model consists of the lines that are drawn onto the ground to define the

playfield geometry. Basketball court model is illustrated in Figure 3.6 and the

dimensions are shown in Table 3.2.

Figure 3.6: Basketball court model.

Sideline

Baseline
Basket

Restricted

area

Half-court line

Free-throw line

Three-point line

25

Table 3.2: Basketball court dimensions.

Area Dimension (m)

Court length (sideline length) 28

Court width (baseline length) 15

3-point line distance from the basket 6.25

Free-throw line distance from the baseline 5.8

Basket distance from the baseline 1.2

Restricted area width
Free-throw line side 3.6

Baseline side 5

The camera calibration describes how those lines are projected from the world

coordinates onto the image coordinates. Therefore, in order to define the mapping,

the correspondence between a previously extracted hough line and the court line in

court model must be found. An algorithm has been proposed to find the line

correspondence [2] and performs well in several kinds of sport videos such as tennis,

volleyball and soccer. They regard the lines determined by extracting the local

maxima in the accumulator matrix (mentioned in Section 3.2.1.2) that are above a

threshold 𝜎ℎ as court line candidates. The line candidates are then classified as two

sets: one contains the horizontal lines and the other consists of the vertical lines.

Next, they sort the line candidates according to their distances to the image boundary,

and can search for the correspondence between the candidate lines and the model

lines. Nevertheless, when applying to basketball videos, we find that the

performance is not good as we expected. The major problem is: how to determine

the value of 𝜎ℎ? The right column of Figure 3.7 shows some results of typical line

extraction method with different 𝜎ℎ values. When the 𝜎ℎ value is small, there are

many unreasonable lines passing the test and viewed as court line candidates which

will disturb the line correspondence. On the other hand, when the 𝜎ℎ value is large,

26

we are not able to obtain sufficient lines to solve camera parameters. Most

important of all, whatever threshold we set, the free-throw line is always filtered out

because it is short. However, the free-throw line is not negligible since all the

corresponding points may locate on the baseline and it will lead to a singular solution

to the camera calibration without the free-throw line.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 3.7: Sample results of line extraction. (a) Original frame. (b) Detected white pixels. (c)

Result using our method. The right column shows some results using typical method with

different thresholds 𝜎ℎ of (d) 50 (e) 100 (f) 150.

 To overcome such a difficulty, we propose a new method to find the line

correspondence in basketball video. We do not sample the entire accumulator matrix;

instead, we search each line within a specific range in order to gather all the necessary

27

lines. It is an experiential method, and the searching ranges are determined through

our observation and knowledge of basketball video.

(a) (b)

Figure 3.8: Examples of basketball video frames. Solid red lines are baselines and solid

yellow lines are free-throw lines, and dotted lines are their normals respectively. (a) Left court.

(b) Right court.

Our main purpose is to discard noise white pixels outside the court region and extract

correct court lines. The court region is determined by sideline and baseline.

Through Figure 3.8, we can realize that sideline and baseline are the longest

horizontal and vertical lines in the frame respectively. Hence, our first step is to find

the longest horizontal and vertical lines. For the longest vertical line, we extract the

local maximum in the accumulator matrix within the range of [0, 80] and [100, 180]

degrees. Remember that the parameters in Hough space are the distance between a

line and the origin, and the angle between the line normal and the horizontal axis.

That is, this ignores lines whose angle between the horizontal axis is within the range

of [-10, 10] degrees, namely, those almost horizontal lines. We obtain the longest

vertical line by eliminating horizontal lines instead of directly finding vertical lines

since it may not look that perpendicular on screen. Furthermore, the angle of

baseline also helps us distinguish whether it is the left court or right (see solid red

lines Figure 3.8). On the other hand, when extracting the longest horizontal line, we

just set the searching range to [80, 100] degrees since horizontal lines do not change

𝜃𝑏 𝜃𝑏 𝜃 𝜃

28

significantly on screen. With the longest vertical and horizontal line, that is, baseline

and sideline respectively, we filter those white pixels out which are outside the region

bounded by the two lines, and reconstruct the accumulator matrix from the remaining

white pixels. Next, we extract the longest two horizontal lines as edges of the

restricted area. Top edge and bottom edge are then distinguished by angles of the

two lines. Through Figure 3.8 we can find that bottom edge is always more

horizontal than top edge. At last, we have to find free-throw line. Please view

Figure 3.8 again. We mark the baseline with the solid red line and the free-through

line with the solid yellow line, and the dotted lines are their normals respectively.

We can clearly figure out that although they are both vertical lines in court model,

free-throw line always looks more perpendicular than baseline whichever side of

court is on screen because the camera is usually set at the center of the court. Thus,

we set the searching range as [0, 𝜃𝑏] degrees for right court and [𝜃𝑏, 180] degrees for

left court in order to extract free-throw line. Here, 𝜃𝑏 is the angle between baseline

normal and the horizontal axis. Since the remaining white pixels are guaranteed to

be within the court region, we can recognize those extracted lines as correct court

lines. In this way, we extract lines and find the correspondence at the same time

since we know exactly which line we are looking for. Finally, we compute the

intersection points and solve the equation system defined as equation (6) which is

rewritten from equation (1).

(

𝑥1 𝑦1 1 0 0 0 −𝑥′1𝑥1 −𝑥′1𝑦1
0 0 0 𝑥1 𝑦1 1 −𝑦′1𝑥1 −𝑦′1𝑦1
𝑥2 𝑦2 1 0 0 0 −𝑥′2𝑥2 −𝑥′2𝑦2
0 0 0 𝑥2 𝑦2 1 −𝑦′2𝑥2 −𝑦′2𝑦2

⋮
𝑥𝑛 𝑦𝑛 1 0 0 0 −𝑥′𝑛𝑥𝑛 −𝑥′𝑛𝑦𝑛
0 0 0 𝑥𝑛 𝑦𝑛 1 −𝑦′𝑛𝑥𝑛 −𝑦′𝑛𝑦𝑛)

(

𝑕00
𝑕01
𝑕02
𝑕10
𝑕11
𝑕12
𝑕20
𝑕21)

=

(

𝑥′1
𝑦′1
𝑥′2
𝑦′2
⋮
𝑥′𝑛
𝑦′𝑛)

 (6)

29

Note that this makes use of the normalization 𝑕22 = 1. There are eight variables

𝑕00, 𝑕01, … , 𝑕21 so we need at least four points (𝑛 ≥ 4) in order to form more than

eight equations. Here we use baseline, free-throw line and two edges of restricted

area to solve the equation system. Figure 3.7 (c) illustrates the result using our

method.

3.2.2 Court Mask Generation

 In basketball video, most of important information is inside the court region. In

other words, court is our region of interest. In order to filter out noise and keep

significant information, we need a mask to indicate the court region, that is, the court

mask. With the previously computed camera calibration, we can project pixels from

image coordinates back to world coordinates and confirm whether they are located in

the court. Figure 3.9 shows a sample result of the court mask.

(a)

(b)

Figure 3.9: Court mask. (a) Original frame. (b) Corresponding court mask.

3.2.3 Dominant Color Map Generation

 In order to extract players, we have tried several methods [18, 21, 25].

Nevertheless, none of them performs well in basketball videos. The most serious

30

obstacle is the camera motion. For example, redundant moving pixels resulting from

the camera motion generate huge amount of noise when performing the frame

difference. For another example, the camera motion prevents us from obtaining a

consistent background image and extracting real moving objects. Therefore, a new

method is proposed to extract the players on the court by detecting objects with

different colors from the floor [1, 50].

 The way we obtain the floor color is to find the dominant color within the court

region using the previously generated court mask. First of all, we calculate the color

histogram. Since it has been proved in [11] that the performance in the YCbCr space

is better than that in the HSI space, we choose the YCbCr space and use the Cb and Cr

components to calculate the color histogram. With the color histogram, we next find

peaks by the following steps

Step 1: Determine the main peak bin 𝑃𝑒𝑎𝑘1, that is, the bin with the largest

value.

Step 2: Find the connected region around the main peak bin. Only bins with

value larger than 𝛼 ∗ 𝑣𝑎𝑙𝑢𝑒(𝑃𝑒𝑎𝑘1) are considered.

Step 3: Compute the sum of the connected bins 𝑆𝑢𝑚1 and subtract the

connected region from the histogram. That is, we set the values of the bins of

the connected region to zero in order not to be considered again in the following

iterations.

Step 4: Repeat the above steps until there are no bins remaining.

After completing the procedure, we will have several peaks and their sums. Finally,

by sorting these peaks according to their sums, we can realize the dominant color. It

deserves to be mentioned that in a basketball court, there is a restricted area (see

31

Figure 3.6), which is also called the painted area since it is usually painted with

different color from other parts of the court. That is, if we just recognize the largest

peak as the floor color, we will miss the restricted area. We propose two ways to

solve this problem. One is to regard the largest two peaks as the floor color, and the

other is to run the procedure again with another mask indicating the restricted area.

Both methods have their pros and cons. The first one takes advantage of the

previous result but it fails when there are many players stay in the restricted area.

The second one can distinguish the players from the restricted area since it compares

the two series of sorted peaks and verifies which peak represents the restricted area.

Through our experiment, we prefer the first one because it has good performance and

does not require extra computation. Figure 3.10 (b) illustrates a sample result of the

dominant color map.

3.2.4 Player Extraction

 With the court mask and the dominant color map, we can perform a

background-subtraction-like method to extract the foreground objects in the court

region. If the color of a pixel can be found in the dominant color map, the pixel

should be labeled as background; otherwise, it is a foreground pixel. After all pixels

are confirmed, we apply morphological operators in order to remove small objects

and gaps. Figure 3.10 (c) demonstrates a sample result of extracted foreground

objects.

32

(a)

(b)

(c)

Figure 3.10: Object extraction. (a) Original frame. (b) Dominant color map. (c) Foreground

objects.

33

3.2.5 Team Clustering

 Despite the fact that we have the foreground objects within the court region

extracted, we need more information to analyze the content. First of all, we have to

distinguish the jersey colors in order to separate the players of the two teams. We

use color information and k-means clustering to divide the foreground region into two

clusters representing the jersey colors of the two teams. In fact, we cannot have just

two clusters since there is some noise in the foreground region, the referees for

example, which enormously interferes with the cluster centroids and leads to a

miserable result of player classification. Figure 3.11 shows experimental data about

the number of clusters and the performances. Generally, the more the clusters, the

smaller the total distance between all data points and their corresponding cluster

centroids, which can also be regarded as the clustering error. However, the

computing time of the k-means clustering is proportional to the number of clusters.

We discovered that the clustering error decreases most rapidly when there are six

clusters. The clustering errors almost converge when there are more than six clusters.

This fact is also adaptive to other video clips through our experiment. Thus, we

separate the foreground region into six clusters and view the largest two clusters as

the jersey colors of the two teams, and choose the YCbCr space since it performs

better than the RGB and HSI space through our experiment.

34

(a)

(b)

(c)

Figure 3.11: K-means clustering. (a) Original frame. (b) Foreground objects. (c)

Experimental data with different color spaces and number of clusters. The horizontal axis

means the number of clusters and the vertical axis indicates the clustering error, and different

lines represent different color spaces.

35

3.2.6 Player Classification

 Having gathered the jersey colors of the two teams, we are going to classify

players of the two teams in this step. At first, we verify the pixels in the foreground

region which clusters they belong to by their colors by equation (7) where 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐴

and 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐵 are the centroids of the largest two clusters from the Team Clustering

step, that is, the jersey colors of the two teams.

 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑥, 𝑦) = {
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴, ‖𝑐𝑜𝑙𝑜𝑟(𝑥, 𝑦) − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐴‖ < 𝛿𝑐
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐵, ‖𝑐𝑜𝑙𝑜𝑟(𝑥, 𝑦) − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐵‖ < 𝛿𝑐
𝑁𝑜𝑛𝑒, else

 (7)

After clustering all foreground pixels, we can generate two maps indicating the

players of the two teams as Figure 3.12 illustrates. Since we set a constraint to the

minimal distance between a color of a pixel and the cluster centroid which it belongs

to, we can remove those non-player objects such as the referees during clustering.

Also, we perform morphological operators to remove noise and gaps. At last, we

apply object segmentation and obtain all players.

36

(a)

(b)

(c)

(d)

Figure 3.12: Player classification. (a) Original frame. (b) Foreground objects. (c) Players of

one team (red jerseys). (d) Players of the other team (white jerseys).

3.2.7 Possession Recognition

 It is important to realize which team has the possession of the ball, or which team

is on offense, before tactic analysis. Typically, defenders are expected to stand

closer to the basket than the offensive player who he is guarding in basketball games

since the purpose of the team on defense is to prevent the opponent team from putting

the ball into the basket. Hence, we can make use of this feature to judge which team

is on offense. We first project all players back to the real-world court model with the

camera calibration. For each team, we compute the average distance between its

players and the basket. The team with shorter distance to the basket is recognized as

on defense. On the other hand, the team on offense is averagely farther away from

the basket.

37

Algorithm 1: Possession Recognition

Input: positions of players of the two teams, represented by 𝑝𝑙𝑎𝑦𝑒𝑟𝑠𝑡𝑒𝑎𝑚1
 and

𝑝𝑙𝑎𝑦𝑒𝑟𝑠𝑡𝑒𝑎𝑚2
, and position of the basket

Output: the team on offense, 𝑡𝑒𝑎𝑚1 or 𝑡𝑒𝑎𝑚2

local 𝑑𝑖𝑠𝑡[2]

for 𝑖 ∶= 1 to 2 do

 𝑑𝑖𝑠𝑡[𝑖] ∶= 0

for each 𝑝𝑙𝑎𝑦𝑒𝑟 in 𝑝𝑙𝑎𝑦𝑒𝑟𝑠𝑡𝑒𝑎𝑚𝑖
 do

 𝑑𝑖𝑠𝑡[𝑖] ∶= 𝑑𝑖𝑠𝑡[𝑖] + 𝑑𝑖𝑠𝑡(𝑝𝑙𝑎𝑦𝑒𝑟, 𝑏𝑎𝑠𝑘𝑒𝑡)

 end for

 𝑑𝑖𝑠𝑡[𝑖] ∶= 𝑑𝑖𝑠𝑡[𝑖] ∕ |𝑝𝑙𝑎𝑦𝑒𝑟𝑠𝑡𝑒𝑎𝑚𝑖
|

end for

if 𝑑𝑖𝑠𝑡[1] > 𝑑𝑖𝑠𝑡[2] then

 return 𝑡𝑒𝑎𝑚1

else

 return 𝑡𝑒𝑎𝑚2

end if

3.3 Content Analysis

 In this section, we are going to explain how we gather information from each

frame during the game. With the consistent data from the pre-processing, we can

obtain the information we want simply and fast. Figure 3.3 gives a brief view about

our analysis mechanism. Remark that the modules in Figure 3.3 with shadows have

the same functionality as those in pre-processing. That is, we will perform Court

Mask Generation, Player Extraction, and Player Classification in analysis part as well.

3.3.1 Court Model Tracking

 In basketball video, camera motion is usually wild in order to focus on the ball.

38

Camera motion is made up of translation, rotation and zooming. Figure 3.13

illustrates an example of camera motion. Figure 3.13 (a) and (b) are from the same

video clip and taken by the same camera. In Figure 3.13 (a), the ball is around the

three-point line. On the other hand, a player shoots the ball so that the ball is in the

basket in Figure 3.13 (b). It is obvious that camera motion is tremendous between

the two frames. Therefore, we have to update camera parameters every frame in

order to keep correct camera calibration.

(a) (b)

Figure 3.13: Camera motion in basketball video, rotate and zoom in.

In fact, computing camera calibration is quite a heavy load and it takes too much

time to do it every frame. Thus, a court model tracking algorithm has been

introduced in [2] in order to save the computing time. The algorithm starts from a

prediction to the camera parameters for the next frame. Next, white pixel detection

is performed to find line pixels. Those line pixels are then projected to real court

model using predicted camera calibration. Finally, camera calibration is refined by

minimizing distances between projected line pixels and their closest court lines.

Figure 3.14 demonstrates the idea of camera parameter prediction.

39

Figure 3.14: Predicting the camera parameters for frame 𝑡 + 1 based on the previously

computed parameters for frames 𝑡 and 𝑡 − 1 [2].

As Figure 3.14 shows, the camera parameters for frame 𝑡 is denoted by 𝐇𝑡. First

of all, we want to compute the transform matrix 𝐓𝑡 such that 𝐇𝑡 = 𝐓𝑡𝐇𝑡−1 .

According to Figure 3.14, 𝐓𝑡 can be easily obtained by 𝐓𝑡 = 𝐇𝑡𝐇𝑡−1
−1 . Similarly,

once we know the transform matrix 𝐓𝑡+1, we can obtain the camera parameters 𝐇𝑡+1

for frame 𝑡 + 1 from the previous camera parameters 𝐇𝑡 by 𝐇𝑡+1 = 𝐓𝑡+1𝐇𝑡. We

suppose that the camera motion is stationary, and the transformation from frame 𝑡 to

𝑡 + 1 is equivalent to that from frame 𝑡 − 1 to 𝑡. That is, the predicted transform

matrix 𝐓̂𝑡+1 is assumed to be 𝐓𝑡. Consequently, the predicted camera parameters

for frame 𝑡 + 1, namely 𝐇̂𝑡+1, are computed by 𝐇̂𝑡+1 = 𝐓̂𝑡+1𝐇𝑡 , which can be

rewritten as equation (8).

 𝐇̂𝑡+1 = 𝐇𝑡𝐇𝑡−1
−1 𝐇𝑡 (8)

Since the camera motion is usually slight between two adjacent frames, the prediction

provides a good initial estimation of the new camera parameters.

𝐇𝑡−1

𝐇𝑡

𝐇̂𝑡+1

𝐓𝑡 = 𝐇𝑡𝐇𝑡−1
−1 𝐓̂𝑡+1

40

Nevertheless, the predicted camera parameters still have to be adapted to the next

frame. First, we perform the white pixel detection again to extract the white line

pixel candidates as described in Section 3.2.1.1. Note that we have already obtained

a reliable initial estimation of the camera parameters and only a narrow neighbor is

considered. Therefore, the accuracy of the white pixel detection can be decreased by

disabling the line structure constraint for the sake of efficiency. Second, we project

all the white pixel candidates back to the real-world court model with the inverse of

the predicted camera parameter matrix determined by 𝐌 = 𝐇̂𝑡+1
−1 . Pixels projected

to positions too far away from any court line are ignored, and the remaining pixels are

grouped with the closest court model line. Our target is to find a matrix minimizing

the distance between white pixels 𝐩𝑖 = (𝑥𝑖, 𝑦𝑖 , 1)
T and their corresponding court

model lines 𝐥𝑖 = (𝑛𝑥;𝑖, 𝑛𝑦;𝑖, −𝑑𝑖)
T

. Here we define an additional operator 𝑕(∙)

which normalizes the homogeneous coordinates such that

𝑕: (𝑥, 𝑦, 𝑤) → (𝑥 𝑤⁄ , 𝑦 𝑤⁄ , 1). The projection error 𝐷 can be then formulated as

equation (9) [2].

 𝐷 =∑[𝐥𝑖
T𝑕(𝐌𝐩𝑖)]

2

𝑖

 (9)

The Levenberg-Marquardt algorithm [48, 49] is used to find the optimized 𝐌,

denoted by 𝐌∗ , which minimizes 𝐷 , and we can obtain the refined camera

calibration by 𝐌∗−1.

41

Algorithm 2: Court Model Tracking

Input: current frame 𝑓𝑡+1, court model, and previous camera parameters 𝐇𝑡, 𝐇𝑡−1

Output: current camera parameters 𝐇𝑡+1

// predict

local 𝐇̂𝑡+1 ∶= 𝐇𝑡𝐇𝑡−1
−1 𝐇𝑡

// refine

procedure 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛_𝑒𝑟𝑟𝑜𝑟(𝑤𝑕𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙𝑠,𝐌)

 local 𝐷 ∶= 0

 for each 𝐩 in 𝑤𝑕𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙𝑠 do

 local 𝐩′ ∶= 𝑕(𝐌𝐩)

 local 𝐥 ∶= 𝑓𝑖𝑛𝑑_𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑐𝑜𝑢𝑟𝑡_𝑙𝑖𝑛𝑒(𝐩′)

 if 𝐥 = 𝑛𝑖𝑙 then

 continue

 end if

 𝐷 ∶= 𝐷 + (𝐥T𝐩′)2

 end for

 return 𝐷

end

local 𝐌 ∶= 𝐇̂𝑡+1
−1 ,

local 𝑤𝑕𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙𝑠 ∶= 𝑤𝑕𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝑓𝑡+1)

local 𝐌∗ ∶= 𝑙𝑒𝑣𝑒𝑛𝑏𝑒𝑟𝑔_𝑚𝑎𝑟𝑞𝑢𝑎𝑟𝑑𝑡(𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛_𝑒𝑟𝑟𝑜𝑟, 𝑤𝑕𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙𝑠,𝐌)

return 𝐌∗−1

3.3.2 Player Tracking

We use the Kalman filter [12] to track players. The Kalman filter is composed

of two steps: predict and correct. Figure 3.15 shows the complete operation of

Kalman filter. In Figure 3.15, 𝑎̂𝑡, 𝑧𝑡, 𝑐𝑡 are the system state, measurement, and

external control at the moment 𝑡 respectively, where 𝐴, 𝑍, 𝐶 are the transition

matrices of them; 𝑄 and 𝑅 are the noise covariance matrices of the process and the

42

measurement respectively; 𝐸𝑡 is the error covariance and 𝐾𝑡 is the Kalman gain.

Figure 3.15: Complete diagram of Kalman filter [12].

With the prediction of the trackers computed by the Kalman filter, we can choose the

nearest candidate as the measurement of a tracker. We also set a limitation that the

distance between the predicted state and the chosen measurement should never be

larger than a threshold 𝛿𝑡. If there is no candidate that is close enough to the

predicted state, we regard the predicted state as measurement directly. Besides,

since all players are expected to stay in the court, once a tracker state is out of the

court, we mark it as missing. Every time a tracker misses, its search range is

increased by a multiplicand since the object may be occluded and so that the tracker

misses temporarily, and we hope that the tracker can keep tracking on the object when

it shows again. If a tracker consecutively misses for 𝜀𝑓 frames, that is, the tracker is

outside the court for too many frames, it is terminated and no longer tracked. After

updating all trackers, there are some candidates tracked, and we add new trackers for

the untracked candidates.

Time Update (“Predict”)

𝑎̂𝑘
− = 𝐴𝑎̂𝑘−1 + 𝐶𝑐𝑘−1

𝐸𝑘
− = 𝐴𝐸𝑘−1𝐴

𝑇 + 𝑄

(1) Project the state ahead

(2) Project the error covariance ahead

Measurement Update (“Correct”)

𝐾𝑘 = 𝐸𝑘
−𝑍𝑇(𝑍𝐸𝑘

−𝑍𝑇 + 𝑅)−1

𝑎̂𝑘 = 𝑎̂𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝑍𝑎̂𝑘

−)

𝐸𝑘 = (𝐼 − 𝐾𝑘𝑍)𝐸𝑘
−

(1) Compute the Kalman gain

(2) Update estimate with measurement 𝑧𝑘

(3) Update the error covariance

43

Algorithm 3: Player Tracking

Input: tracker list 𝑡𝑟𝑎𝑐𝑘𝑒𝑟𝑠 and candidate list 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

Output: none

// Step 1: update trackers

for each 𝑡𝑟𝑎𝑐𝑘𝑒𝑟 in 𝑡𝑟𝑎𝑐𝑘𝑒𝑟𝑠 do

 local 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∶= 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑡𝑟𝑎𝑐𝑘𝑒𝑟)

 local 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

 if ∃𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠: 𝑑𝑖𝑠𝑡(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) < 𝛿𝑡 then

 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 ∶= 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

 𝑠𝑒𝑡_𝑡𝑟𝑎𝑐𝑘𝑒𝑑(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)

 else

 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 ∶= 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

 end if

 𝑐𝑜𝑟𝑟𝑒𝑐𝑡(𝑡𝑟𝑎𝑐𝑘𝑒𝑟,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)

 if 𝑖𝑠_𝑜𝑢𝑡_𝑜𝑓_𝑐𝑜𝑢𝑟𝑡_𝑏𝑜𝑢𝑛𝑑(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡) then

 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒_𝑚𝑖𝑠𝑠𝑖𝑛𝑔_𝑐𝑜𝑢𝑛𝑡(𝑡𝑟𝑎𝑐𝑘𝑒𝑟)

 else

 𝑟𝑒𝑠𝑒𝑡_𝑚𝑖𝑠𝑠𝑖𝑛𝑔_𝑐𝑜𝑢𝑛𝑡(𝑡𝑟𝑎𝑐𝑘𝑒𝑟)

 end if

 if 𝑚𝑖𝑠𝑠𝑖𝑛𝑔_𝑐𝑜𝑢𝑛𝑡(𝑡𝑟𝑎𝑐𝑘𝑒𝑟) > 𝜀𝑓 then

 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒(𝑡𝑟𝑎𝑐𝑘𝑒𝑟)

 end if

end for

// Step 2: create new trackers

for each 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do

 if 𝑛𝑜𝑡_𝑡𝑟𝑎𝑐𝑘𝑒𝑑(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) then

 𝑎𝑑𝑑_𝑡𝑟𝑎𝑐𝑘𝑒𝑟(𝑡𝑟𝑎𝑐𝑘𝑒𝑟𝑠, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)

 end if

end for

3.4 Tactic Analysis Algorithm

 Before explaining our tactic analysis algorithm, we introduce the basis of

44

basketball tactics first. As mentioned in Chapter 1, most basketball tactics consist of

screens, and we identify tactics by what and where screens are set. That is, if we

want to learn what tactics are executed, we have to realize what types of screens are

set.

Figure 3.16: A sample basketball tactic.

Generally, screens can be classified as three major types: front-screen,

back-screen and down-screen. Figure 3.17, 3.18, and 3.19 illustrate the three screen

types respectively by displaying different moments of a screen: the beginnings of the

screens are shown in (b), the moments when the screens are being set are illustrated in

(c), the ends of the screens are demonstrated in (d), and (a) presents the overall

trajectories of the two players involved in the screen. In the three figures, players

with yellow circles on their heads are screeners, while players with cyan triangles are

their offensive teammates whom the screens are set for.

player

screen position

45

 (a)

 (b)

 (c)

 (d)

Figure 3.17: Example of front-screen. (a) Trajectories. (b) Before screen. (c) Setting screen.

(d) After screen.

46

 (a)

 (b)

 (c)

 (d)

Figure 3.18: Example of back-screen. (a) Trajectories. (b) Before screen. (c) Setting screen.

(d) After screen.

47

 (a)

 (b)

 (c)

 (d)

Figure 3.19: Example of down screen. (a) Trajectories. (b) Before screen. (c) Setting screen.

(d) After screen.

48

In the front-screen, the screener is facing the defender that he is setting the screen on

(the two marked red players in Figure 3.17). In the back-screen, the screener sets the

screen on the back side of the defender, and the screener is usually facing away from

the basket (the two marked white players in Figure 3.18). In the down-screen, the

screener sets the screen usually down low for a player near the block, and is usually

facing the basket with his back to the ball (the two marked red players in Figure 3.19).

Figure 3.16 gives a sample tactic combined with the three types of screens. In

Figure 3.16, circles present players that are denoted by Oi in the following paragraph,

and triangles indicate positions at which screens are set. At first, the player O3 sets a

front-screen for O1, who is the ball handler, and makes O1 free to pass or shoot.

Then O3 moves to the low post and sets a down-screen for O5, who cuts outside for

the pass from O1. Concurrently, O4 moves to the high post and sets a back-screen for

O2, who goes back-door to the basket and makes a huge threat to the opponent team.

Another example is the “pick and roll”, which is perhaps the most famous and widely

used basketball tactic. It usually starts with a back-screen for the ball handler. If

the defender tries to guard the ball handler, the screener can move toward the basket,

sometimes by a foot pivot, and now is open for a pass. Oppositely, if the defender

tries to guard the screener, the ball handler has an open shot. A screen is also called

a “pick” in basketball, and a foot pivot is a “roll” move. That is, the pick and roll

means that the screener slips behind the defender (roll) to accept a pass after a screen

(pick). There are some variations of the pick and roll, like the “pick and pop”, where

the screener moves for an open shot instead of rolling to the basket, or the “pick and

slip”, where the screener fakes setting a screen before slipping behind the defender to

accept the pass.

 With the background knowledge of screens, we are going to describe our

proposed algorithm for screen analysis, including the screen detection during a

49

possession and the screen classification at the end of a possession.

3.4.1 Screen Detection

 Typically, in order to prevent the defensive players from helping their teammates,

the offensive players tend to make the space wider and seldom stay close to each other.

The only chance for an offensive player to stand next to his teammates is when a

tactic is to be executed. Therefore, we can initially determine whether there is any

screen based on the distance between two offensive players. Besides, since the

screens are set to block defenders, there must be at least one defensive player between

the screener and his teammate. That is, it can be an additional requirement to obtain

a more accurate result of the screen detection. Furthermore, we can recognize who

is the screener through this fact. Generally, the defender stays close to his target but

not side by side since the defender has to prevent his target from driving to the basket.

On the other hand, the screener must make contact with the defender in order to block

the defender certainly. Accordingly, if we find that there are two offensive players

close to each other, and there is at least one defensive player between them, we can

certify that there is a screen and the screener is the offensive player who is closer to

the defensive player. Once a screen is detected, we retain the current states of the

screener and his teammate since we classify what type of screen they set via their

trajectories before and after the screen.

50

Algorithm 4: Screen Detection

Input: offensive and defensive players, denoted by 𝑝𝑙𝑎𝑦𝑒𝑟𝑠𝑜𝑓𝑓 and 𝑝𝑙𝑎𝑦𝑒𝑟𝑠𝑑𝑒𝑓

Output: 𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑟 and 𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑒, which means the offensive player whom the

screener sets screen for

𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑟 ∶= 𝑛𝑖𝑙

𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑒 ∶= 𝑛𝑖𝑙

if ∃𝑝𝑙𝑎𝑦𝑒𝑟𝑖 ∈ 𝑝𝑙𝑎𝑦𝑒𝑟𝑠𝑜𝑓𝑓 , 𝑝𝑙𝑎𝑦𝑒𝑟𝑗 ∈ 𝑝𝑙𝑎𝑦𝑒𝑟𝑠𝑜𝑓𝑓: 𝛿𝑠 < 𝑑𝑖𝑠𝑡(𝑝𝑙𝑎𝑦𝑒𝑟𝑖, 𝑝𝑙𝑎𝑦𝑒𝑟𝑗) <

𝛥𝑠 and 𝑖 ≠ 𝑗 then

if ∃𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑟 ∈ 𝑝𝑙𝑎𝑦𝑒𝑟𝑠𝑑𝑒𝑓: 𝑑𝑖𝑠𝑡(𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑟, 𝑝𝑙𝑎𝑦𝑒𝑟𝑖) < 𝛿𝑠 or

𝑑𝑖𝑠𝑡(𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑟, 𝑝𝑙𝑎𝑦𝑒𝑟𝑗) < 𝛿𝑠 then

if 𝑑𝑖𝑠𝑡(𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑟, 𝑝𝑙𝑎𝑦𝑒𝑟𝑖) < 𝑑𝑖𝑠𝑡(𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑟, 𝑝𝑙𝑎𝑦𝑒𝑟𝑗) then

𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑟 ∶= 𝑝𝑙𝑎𝑦𝑒𝑟𝑖

𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑒 ∶= 𝑝𝑙𝑎𝑦𝑒𝑟𝑗

else

𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑟 ∶= 𝑝𝑙𝑎𝑦𝑒𝑟𝑗

𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑒 ∶= 𝑝𝑙𝑎𝑦𝑒𝑟𝑖

end if

 end if

end if

return 𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑟, 𝑠𝑐𝑟𝑒𝑒𝑛𝑒𝑒

3.4.2 Screen Classification

 We have introduced the essence of screens in the previous section. Thus, we

can observe that each screen type follows a specific pattern. A screener sets a

back-screen by moving from the low post to the high post, and his teammate drive to

the basket after the screen. The down-screen is set by a screener moving from the

high post to the low post. The front-screen is usually set around the three-point line

and the offensive player, who the screener is trying to free, moves to an open space

instead of driving to the basket. We therefore have to utilize the trajectories of the

51

screener and his teammate to judge the screen type. Recall that we retain the state at

the moment that a screen is detected so that we can realize how the screener move

before the screen and what his teammate does after the screen by the initial and the

last state of the trajectory and the state when the screen is set. We denote the initial

position of the screener as 𝐩𝑖𝑛𝑖𝑡 , the last position of the screener as 𝐩𝑙𝑎𝑠𝑡 , the

position of the screener when the screen is set as 𝐩𝑠𝑐𝑟𝑒𝑒𝑛, and those of his teammate

as 𝐩′
𝑖𝑛𝑖𝑡

, 𝐩′𝑙𝑎𝑠𝑡 and 𝐩′𝑠𝑐𝑟𝑒𝑒𝑛 respectively. Also, we denote the position of the

basket as 𝐩𝑏𝑎𝑠𝑘𝑒𝑡. Accordingly, the only screen type that is set in the low post is the

down-screen. Hence, we can first confirm the down-screen if 𝐩𝑖𝑛𝑖𝑡 is farther away

from the basket than 𝐩𝑠𝑐𝑟𝑒𝑒𝑛. The other two types are hard to distinguish through

the move of the screener since the screener acts similarly in the back-screen and the

front-screen, but we can still discriminate them by the trajectory of the offensive

player whom the screener sets the screen for after the screen. We compute the angle

𝜃𝑠 between two vectors. The first one is the direction 𝐝𝑝𝑙𝑎𝑦𝑒𝑟 = 𝐩′𝑙𝑎𝑠𝑡 − 𝐩′𝑠𝑐𝑟𝑒𝑒𝑛

which the offensive player moves in, and the other indicates the direction 𝐝𝑏𝑎𝑠𝑘𝑒𝑡 =

𝐩𝑏𝑎𝑠𝑘𝑒𝑡 − 𝐩′𝑠𝑐𝑟𝑒𝑒𝑛. This angle 𝜃𝑠 tells us whether the offensive player tends to

move to the basket or not. If the offensive player attempts to drive to the basket, it is

a back-screen; otherwise, a front-screen is set. We formulate it as equation (10) and

demonstrate it in Figure 3.20.

 𝑆𝑐𝑟𝑒𝑒𝑛𝑇𝑦𝑝𝑒 =

{

𝐷𝑜𝑤𝑛, if |𝐩𝑏𝑎𝑠𝑘𝑒𝑡 − 𝐩𝑖𝑛𝑖𝑡| > |𝐩𝑏𝑎𝑠𝑘𝑒𝑡 − 𝐩𝑠𝑐𝑟𝑒𝑒𝑛|

𝐵𝑎𝑐𝑘, if 𝑐𝑜𝑠−1 (
𝐝𝑝𝑙𝑎𝑦𝑒𝑟 ∙ 𝐝𝑏𝑎𝑠𝑘𝑒𝑡

|𝐝𝑝𝑙𝑎𝑦𝑒𝑟||𝐝𝑏𝑎𝑠𝑘𝑒𝑡|
) < 𝜃𝑠

𝐹𝑟𝑜𝑛𝑡, if 𝑐𝑜𝑠−1 (
𝐝𝑝𝑙𝑎𝑦𝑒𝑟 ∙ 𝐝𝑏𝑎𝑠𝑘𝑒𝑡

|𝐝𝑝𝑙𝑎𝑦𝑒𝑟||𝐝𝑏𝑎𝑠𝑘𝑒𝑡|
) ≥ 𝜃𝑠

𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, else

 (10)

52

Figure 3.20: Diagram of screen classification.

Screener
moves to the

basket?

Offensive
player moves
to the basket?

Front-screen Back-screen

Down-screen

Yes No

Yes No

53

Chapter 4. Experimental Results

 In this chapter, we are going to show our experimental results of White Pixel

Detection, Camera Calibration, Player Extraction, Player Classification, Possession

Recognition, Player Tracking, and Tactic Analysis in the following sections.

Furthermore, the phenomena observation and discussion are also included. We use

three different games and manually extract ten possession clips with obvious tactic

execution from each game. That is, we have total of thirty video clips for test. All

of the three games are from 2008 Olympic Games. Game 1 is USA vs. AUS with

dimensions 720x416. Game 2 is ARG vs. USA with dimensions 640x352. Game 3

is USA vs. CHN with dimensions 640x352. Table 4.1 describes our video sources.

We randomly choose ten clips as training data to train our parameters, and the

well-trained parameters are adaptive to all of our testing data.

Table 4.1: Video sources.

Game Source Width Height

Game1 2008 Olympic Games USA vs. AUS 720 416

Game2 2008 Olympic Games ARG vs. USA 640 352

Game3 2008 Olympic Games USA vs. CHN 640 352

4.1 White Pixel Detection

 In this section, we present and discuss the results of white pixel detection

with/without the line structure constraint. The value of color filtering threshold 𝜎𝑙

is 128, brightness difference 𝜎𝑑 is 20, court line width 𝑤 is 3 pixels, and line

structure constraint window size 𝑏 is 3 pixels. The parameters are mentioned in

Section 3.2.1.1. Table 4.2 gives our experiment configuration. Table 4.3 presents

the comparison of the number of white pixel candidates with/without the line structure

54

constraint. Through Table 4.3, it is obvious that after applying the line structure

constraint, most of the non-line white pixel candidates, up to 61%, are filtered out.

Figure 4.1 shows some sample results of white line pixel detection. Figure 4.1 (a)

shows original frames, (b) illustrates sample results without the line structure

constraint, and (c) demonstrates sample results with the line structure constraint.

Those discarded pixels mostly come from spectators, the score board overlay, the

channel mark, and advertisement logos.

Table 4.2: Configuration for white pixel detection.

Parameter Symbol Value

Color filtering threshold 𝜎𝑙 128

Brightness difference 𝜎𝑑 20

Court line width 𝑤 3 (pixels)

Line structure constraint 𝑏 3 (pixels)

55

(a) (b) (c)

Figure 4.1: Results of white pixel detection. (a) Original frame. (b) Without line structure

constraint. (c) With line structure constraint.

56

Table 4.3: Statistics of white pixel detection.

Clip

of white pixel candidates

without line structure

constraint

of white pixel

candidates with line

structure constraint

Ratio of discarded

candidates (%)

Game1-1 11704 7391 36.851

Game1-2 10985 7109 35.284

Game1-3 10241 7019 31.462

Game1-4 11996 7494 37.529

Game1-5 10848 7135 34.228

Game1-6 10394 7129 31.412

Game1-7 11272 7352 34.776

Game1-8 11622 7156 38.427

Game1-9 10023 6916 30.999

Game1-10 10244 7300 28.739

Game2-1 7067 4089 42.140

Game2-2 9973 5719 42.655

Game2-3 8031 5277 34.292

Game2-4 9944 3862 61.163

Game2-5 7712 5553 27.995

Game2-6 9839 3842 60.951

Game2-7 8177 4567 44.148

Game2-8 8377 4092 51.152

Game2-9 8404 5297 36.970

Game1-10 7636 4212 44.840

Game3-1 8069 5140 36.299

Game3-2 9200 5685 30.201

Game3-3 9784 5540 43.377

Game3-4 7901 5050 36.084

Game3-5 9717 5664 41.710

Game3-6 9734 5141 47.185

Game3-7 8077 5766 28.612

Game3-8 9788 5180 47.078

Game3-9 8970 5205 41.973

Game3-10 9372 5419 42.179

57

4.2 Camera Calibration

 In this section, we show some results of camera calibration, and some

demonstrations are shown in Figure 4.2, where black lines are court lines extracted by

our proposed method, and red lines represent real court model that is projected onto

image coordinate. In Figure 4.2 (3), (6), (7), bottom sideline and bottom edge of the

restricted area are used to calculate camera calibration and the results are correct.

Thus, we can figure out that our proposed method has the flexibility in using different

court lines to calculate camera calibration. Nevertheless, in Figure 4.2 (8), the

half-court line is projected to a wrong position due to some computational error. The

average projection error in Table 4.4 is computed by the distance between the position

which a manually pointed intersection of court lines is projected to and the

corresponding corner of court model. Averagely the error is lesser than 0.06 meters.

Remark that court lines have width so that when selecting ground truth, we may not

point the real intersection points of the extracted court lines. As a result, they are not

projected to the same positions as court model. Therefore, despite the fact that the

projection error is not zero, this result is satisfactory and convincible.

(1)

(2)

 (a) (b)

Figure 4.2: Results of camera calibration. (a) White line pixels. (b) Extracted court lines and

camera calibration.

58

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

 (a) (b)

Figure 4.2: Results of camera calibration. (a) White line pixels. (b) Extracted court lines and

camera calibration. (cont’d)

59

Table 4.4: Average projection error of camera calibration.

Clip Average projection error (meters)

Game1-1 0.04

Game1-2 0.019

Game1-3 0.063

Game1-4 0.02

Game1-5 0.041

Game1-6 0.021

Game1-7 0.044

Game1-8 0.146

Game1-9 0.045

Game1-10 0.048

Game2-1 0.03

Game2-2 0.5

Game2-3 0.084

Game2-4 0.075

Game2-5 0.018

Game2-6 0.077

Game2-7 0.449

Game2-8 0.086

Game2-9 0.131

Game2-10 0.104

Game3-1 0.037

Game3-2 0.064

Game3-3 0.132

Game3-4 0.052

Game3-5 0.396

Game3-6 0.088

Game3-7 0.028

Game3-8 0.079

Game3-9 0.125

Game3-10 0.024

60

4.3 Player Extraction

 Some sample results of foreground object extraction and the corresponding

dominant color map are shown in Figure 4.3. Figure 4.3 (a) shows original frames,

(b) demonstrates background region, that is, pixels with color that can be found in

dominant color map, and (c) illustrates extracted foreground objects. In order to

keep the jersey colors and exclude the other colors such as skins and shoes, we tend to

make the foreground object mask “smaller”. Hence, we perform a morphological

operation to erode the initial foreground object mask without dilating it. The major

problem of our player extraction method is that we only consider pixels within the

region of interest, that is, the court region. Thus, when there are players standing

near court boundaries, their bodies may be cut. This may affect the result of player

tracking, but due to our knowledge of basketball, those players standing near the court

boundaries usually do nothing but just stay there and wait for passes. Also, when

standing near the court boundaries, they do not have space to be set screens or tactics

for. That is, their trajectories usually have nothing to do with our screen

classification algorithm and we can simply ignore them until they move closer to the

center of the court.

61

(a) (b) (c)

Figure 4.3: Results of player extraction. (a) Original frame. (b) Dominant color map. (c)

Foreground objects.

62

4.4 Player Classification

 We demonstrate some results of player classification and discuss the phenomena

in this section. Through player classification, some noise with different colors from

the jersey colors of the two teams is removed, such as referees and logos on the floor

(see red circles in Figure 4.4 (1), (3), (7), (8), (9)). However, sometimes player

bodies are divided into parts by some small objects such as arms and numbers on

jerseys (see blue squares in Figure 4.4 (1), (3)). Even though we perform the

dilation operation and try to remove gaps, we are not able to completely cover all

situations. On the other hand, once we discover that there are two objects close to

each other, it is hard to judge whether they are two parts of a player or two different

players (see green triangles in Figure 4.4 (4), (6), (8)). Our way to solve this

problem is to regard them as different objects, and let the tracking procedure clarify if

they are the same object through their trajectories.

63

 (1)

 (2)

 (3)

(4)

(5)

(6)

(7)

(8)

(9)

 (a) (b) (c)

Figure 4.4: Results of player classification. (a) Original frame. (b) Player mask of team 1. (c)

Player mask of team 2.

64

4.5 Possession Recognition

 In this section, we take Figure 4.4 for example and show the correspondence

between which team has the possession and the average distance between players of

that team and the basket in Table 4.5. Table 4.5 demonstrates the average distances

of the two teams in each row for Figure 4.4. For the team number and its jersey

color, see Figure 4.4. Figure 4.4 (a) also provides the ground truth of possession,

and we can verify that all of the results are correct.

Table 4.5: Statistical results of possession recognition.

Figure 4.4

Average distance of

Team 1 (meters)

Average distance of

Team 2 (meters) Possession

(1) 7.207 4.795 Team 1 (green)

(2) 4.964 4.799 Team 1 (green)

(3) 7.485 6.447 Team 1 (green)

(4) 7.832 4.559 Team 1 (black)

(5) 7.748 6.099 Team 1 (black)

(6) 5.499 7.031 Team 2 (white)

(7) 4.453 7.555 Team 2 (white)

(8) 7.483 5.680 Team 1 (red)

(9) 5.577 5.062 Team 1 (red)

4.6 Player Tracking

 Since the Kalman filter which we use to track players is a point tracking

mechanism, we can evaluate the performance with precision and recall measures

defined as [13]

65

precision =
of correct correspondences

of established correspondences
, recall =

of correct correspondences

of actual correspondences

Established correspondences represent total number of created trackers, and actual

correspondences denote number of object at the moment. In this experiment, the

tracker termination criterion 𝜀𝑓 is 10 frames and the maximum distance for a valid

measurement 𝛿𝑡 is 0.6 meters. Remark that the world record of 100 meters race is

about 10 seconds, that is, the average velocity is 10 meters per second. Our video

sources have 30 frames per second, namely, the time period between two adjacent

frames is about 0.03 seconds. Accordingly, the fastest runner can move about 0.3

meters between two adjacent frames. Thus, it is our basis of 𝛿𝑡 and we set it for a

double value since players might move to the opposite direction suddenly. Table 4.6

shows our configuration and Table 4.7 demonstrates the evaluation performance.

We have total of 89.5% of precision and 89.994% of recall. Most failures result

from occlusion and merging problem. Occlusion is always the most notorious

enemy of object tracking. Unfortunately, occlusions occur frequently in basketball

video. Furthermore, it is difficult to predict trajectories of basketball players since

they usually change directions rapidly. As a consequence, occlusion cannot be

perfectly solved in basketball video. Besides, as mentioned in Section 4.4, player

bodies sometimes are divided into parts due to arms or numbers in jerseys.

Although we can tell duplicate objects by their trajectories, they already decrease the

performance of player tracking at the moment.

Table 4.6: Configuration of player tracking.

Parameter Symbol Value

Tracker termination criterion 𝜀𝑓 10 (frames)

Maximum distance threshold 𝛿𝑡 0.6 (m)

66

Table 4.7: Performance of player tracking.

Clip # of frames Precision (%) Recall (%)

Game1-1 175 89.266 88.784

Game1-2 175 76.386 79.940

Game1-3 100 80.455 82.969

Game1-4 119 81.529 82.077

Game1-5 207 88.160 89.514

Game1-6 101 84.832 85.362

Game1-7 238 82.911 84.286

Game1-8 186 86.023 85.179

Game1-9 201 84.735 85.208

Game1-10 232 89.177 90.340

Game2-1 132 89.675 89.303

Game2-2 241 87.262 86.940

Game2-3 182 92.830 93.595

Game2-4 133 86.801 88.795

Game2-5 157 88.641 88.180

Game2-6 198 88.150 86.647

Game2-7 145 92.697 94.036

Game2-8 151 90.361 91.489

Game2-9 181 86.882 87.531

Game2-10 194 93.484 92.273

Game3-1 150 94.262 94.456

Game3-2 150 93.284 94.429

Game3-3 100 91.398 90.563

Game3-4 241 92.009 92.842

Game3-5 245 99.194 97.270

Game3-6 151 92.557 94.018

Game3-7 138 92.497 93.975

Game3-8 219 93.242 94.167

Game3-9 205 92.336 92.790

Game3-10 210 97.020 96.324

Total 5257 89.500 89.994

67

4.7 Tactic Analysis

 We illustrate the results of our screen detection and classification algorithm, and

show the accuracy in this section. In this experiment, the minimum screen distance

𝛿𝑠 is 2 meters, the maximum screen distance 𝛥𝑠 is 3 meters, and the angle between

moving direction and basket direction is 45 degrees. The screen distance can also be

regarded as the distance between a defender and his target, which is usually 2 to 3

meters, since the screener is almost at the same position as the defender. The

determination of 𝜃𝑠 depends on user’s sensitivity to back-screens, and we find that

45 is a moderate value which can detect most back-screens without too many false

positives. Table 4.8 shows our configuration and Figure 4.5 illustrates some sample

results. In Figure 4.5, cyan triangles indicate screeners, and yellow circles represent

their offensive teammates. Figure 4.5 (a) demonstrates the moment when a screen is

detected, and Figure 4.5 (b) shows the trajectories of the screener and his offensive

teammate with which we classify the screen type. In Figure 4.5 (1), the screener

moves from near the top sideline to the top of the three-point line and sets the screen,

and his offensive teammate moves from near the bottom sideline to the top sideline.

It should be a front-screen but the screener is closer to the basket when he sets the

screen than he starts to move. As a result, our algorithm regards it as a down-screen.

In Figure 4.5 (2), the screener moves from the free-throw line to the low-post, and his

offensive teammate tries to move to the three-point line. It is a special case since the

screener is setting the screen on the moving path of his offensive teammate instead of

standing next by the defender so that the screener is farther away to the defender than

his offensive teammate when the screen is detected, and our algorithm fails to

recognize the screener correctly. In Figure 4.5 (3), the screener sets the screen

around the free-throw line, and his offensive teammate drives to the basket. It is a

68

typical back-screen and our algorithm identifies it correctly. In Figure 4.5 (4), the

screener moves from the restricted area to the free-throw line and sets the screen, and

his offensive teammate moves around the three-point line and reaches the free-throw

line at last. Since the offensive player stops at the free-throw line without driving to

the basket, it is a front-screen and successfully classified by our algorithm. In Figure

4.5 (5), the screen is set near the top edge of the restricted area, and the offensive

player moves from outside the three-point line to the free-throw line. Although the

offensive player does not drive to the basket and it should be a front-screen, the angle

between his moving direction and the basket direction is small and our algorithm

mistakes the screen type. In Figure 4.5 (6), the screener moves along the baseline,

from under the basket to the bottom edge of the restricted area, and his offensive

teammate moves from the baseline to the free-throw line. It is correctly classified as

a front-screen. In Figure 4.5 (7), the screener moves from the free-throw line to the

top of the three-point line, and his offensive teammate drives to the basket after the

screen. It is also a standard back-screen. In Figure 4.5 (8), the screener moves

down from the free-throw line, and his offensive teammate tries to pass through the

restricted area from the bottom sideline. This down-screen is correctly classified by

our algorithm. In Figure 4.5 (9), the screener moves up from near the free-throw line,

and his offensive teammate moves to the upper region. This is no doubt a

front-screen. Table 4.9 demonstrates the results of our screen classification

algorithm using Figure 4.5. Table 4.10 shows the accuracy of screen detection.

Our screen detection algorithm detects over 96% of screen frames. Most missing

frames result from beginnings and ends of screens since the two offensive players

move and the distance between them is hard to control.

69

Table 4.8: Configuration of screen detection and classification.

Parameter Symbol Value

Minimum screen distance 𝛿𝑠 2 (m)

Maximum screen distance 𝛥𝑠 3 (m)

Angle between moving direction and basket direction 𝜃𝑠 45 (degree)

(1)

(2)

(3)

 (a) (b)

Figure 4.5: Results of tactic analysis. (a) Screen detection (b) Screen classification.

70

 (4)

 (5)

 (6)

 (7)

 (a) (b)

Figure 4.5: Results of tactic analysis. (a) Screen detection (b) Screen classification. (cont’d)

71

 (8)

 (9)

 (a) (b)

Figure 4.5: Results of tactic analysis. (a) Screen detection. (b) Screen classification. (cont’d)

Table 4.9: Corresponding results of screen classification to Figure 4.5.

Figure 4.5 Real screen type Identified screen type

(1) Front-screen Down-screen

(2) Down-screen Back-screen

(3) Back-screen Back-screen

(4) Front-screen Front-screen

(5) Front-screen Back-screen

(6) Front-screen Front-screen

(7) Back-screen Back-screen

(8) Down-screen Down-screen

(9) Front-screen Front-screen

72

Table 4.10: Accuracy of screen detection.

Clip # of real screen frames # of detected screen frames Accuracy (%)

Game1-1 49 48 97.959

Game1-2 39 37 94.872

Game1-3 38 38 100

Game1-4 42 39 92.857

Game1-5 45 40 88.889

Game1-6 36 35 97.222

Game1-7 45 42 93.333

Game1-8 44 42 95.455

Game1-9 36 35 97.222

Game1-10 33 30 90.909

Game2-1 37 35 94.595

Game2-2 43 41 95.349

Game2-3 35 34 97.143

Game2-4 38 37 97.368

Game2-5 44 44 100

Game2-6 38 36 94.734

Game2-7 31 31 100

Game2-8 48 47 97.917

Game2-9 42 40 95.238

Game2-10 38 34 89.474

Game3-1 47 45 95.745

Game3-2 36 36 100

Game3-3 35 33 94.286

Game3-4 48 48 100

Game3-5 33 30 90.909

Game3-6 33 32 96.970

Game3-7 43 40 93.023

Game3-8 39 39 100

Game3-9 41 40 97.561

Game3-10 32 31 96.875

Total 1179 1139 96.607

73

Chapter 5. Conclusions

 We have proposed a scheme that can detect and classify screens in basketball

games, which is the fundamental essence of basketball tactics. Through combining

screens and trajectories in each possession, our system is able to recognize what

tactics are executed. The collected tactics are then indexed so that users can query

the tactic that they are interested in. Our system can also work with other researches

and lead to more applications. For instance, when combining the shooting location

estimation [7], we can speculate on the movement of the ball and obtain further

information about basketball tactics. It is difficult to tell who the ball handler is at

the beginning of a possession, and it prohibits us from tracking the ball as well.

Nevertheless, once we know the shooting location, we can trace back how the ball is

passed to the shooter. For another instance, with the wide-open detection [1, 50], we

can verify whether the execution of a tactic is successful in making open shot since

tactics are set in order to make open shots, with which the players score easily.

(a) (b)

Figure 5.1: Real game example. (a) Coach setting tactic. (b) Tactic execution.

 Our system currently identifies tactics with the patterns of screens and

trajectories from video clips. That is, we do not know if the verified tactics are

74

equivalent to those set by the coach. In fact, there are some factors affecting the

execution of tactics, such as the interference from the defensive players. Although

the team on offense sets tactics to block the defensive players, the opponent team has

its way to counter. Imagine that the ball handler is trying to pass the ball to a

teammate as the tactic indicates, but that teammate is being double teamed and is not

free to catch the pass. The ball handler therefore has no choice but to pass the ball to

another teammate. As a result, the behaviors of offensive players we see on the

screen may not follow the instructions from the coach, and the tactics identified by

our system may differ from those set by the coach. Figure 5.1 is a real example that

the tactic execution is different from the coach’s instruction. Hence, we want to add

coach’s instructions to our system in the future. With the real instruction, we not

only can verify the identified tactics but also figure out why the offensive players are

not able to implement the tactics. First, we query the database with the real tactic

and obtain its pattern of screens and trajectories. After analyzing the behavior of the

players from the video clip, we compare the result with the pattern of the real tactic

set by the coach. By searching the difference between the performance of the

players and the instruction of the coach, we can realize what keeps the team on

offense from executing the tactic successfully. Furthermore, we can speculate on the

strategy used by the team on defense, which is also an important issue that both

professional coaches and players are interested in. We hope to have the chance to

cooperate with basketball teams so that we can improve the proposed system with the

real information they provide.

75

Bibliography

[1] M.-H. Chang, M.-C Tien, J.-L. Wu, “WOW: Wild-Open Warning for Broadcast

Basketball Video Based on Player Trajectory,” in Proceedings of the ACM

International Conference of Multimedia, pp. 821-824, 2009.

[2] D. Farin, S. Krabbe, P. H. N. d. With, W. Effelsberg, “Robust Camera Calibration

for Sport Videos Using Court Models,” in Proceedings of Storage and Retrieval

Methods and Applications for Multimedia, pp. 80-91, 2004.

[3] G.-G. Lee, H.-K. Kim, W.-Y. Kim, “Highlight Generation for Basketball Video

Using Probabilistic Excitement,” in Proceedings of the IEEE International

Conference on Multimedia and Expo, pp. 318-321, 2009.

[4] L. Li, Y. Chen, W. Hu, W. Li, X. Zhang, “Recognition of Semantic Basketball

Events Based on Optical Flow Patterns,” in Proceedings of the International

Symposium on Visual Computing, pp. 480-488, 2009.

[5] Y. Zhang, C. Xu, Y. Rui, J. Wang, H. Lu, “Semantic Event Extraction from

Basketball Games Using Multi-Modal Analysis,” in Proceedings of the IEEE

International Conference on Multimedia and Expo, pp. 2190-2193, 2007.

[6] W. Kim, H. Kong, J. Choi, K. Kim, P. Kim, “Event Detection from Basketball

Video Using Audio Information,” in Proceedings of the International Conference

on Artificial Intelligence, pp. 716-721, 2002.

[7] H.-T. Chen, M.-C. Tien, Y.-W. Chen, W.-J. Tsai, S.-Y. Lee, “Physics-Based Ball

Tracking and 3D Trajectory Reconstruction with Applications to Shooting

Location Estimation in Basketball Video,” Journal of Visual Communication and

Image Representation, vol. 20, no. 3, pp. 204-216, 2009.

[8] M.-C. Tien, H.-T. Chen, Y.-W. Chen, M.-H. Hsiao, S.-Y. Lee, “Shot

Classification of Basketball Videos and Its Application in Shooting Position

Extraction,” in Proceedings of the International Conference on Acoustics, Speech

and Signal Processing, pp. 1085-1088, 2007.

[9] G. Miao, G. Zhu, S. Jiang, Q. Huang, C. Xu, W. Gao, “A Real-Time Score

Detection and Recognition Approach for Broadcast Basketball Video,” in

Proceedings of the IEEE International Conference on Multimedia and Expo, pp.

1691-1694, 2007.

[10] B. Jahne, “Digital Image Processing,” Springer Verlag, 2002.

[11] Y. Liu, S. Jiang, Q. Ye, W. Gao, Q. Huang, “Playfield Detection Using Adaptive

GMM and Its Application,” in Proceedings of the IEEE International Conference

on Acoustics, Speech, and Signal Processing, vol. 2, pp. 421-424, 2005.

76

[12] G. Welch, G. Bishop, “An Introduction to the Kalman Filter,” Technical Report

TR95-041, University of North Carolina at Chapel Hill, 1995.

[13] A. Yilmaz, O. Javed, M. Shah, “Object Tracking: A Survey,” ACM Computing

Surveys, vol. 38, no. 4, 2006.

[14] H. Moravec, “Visual Mapping by a Robot Rover,” in Proceedings of the

International Joint Conference on Artificial Intelligence, pp. 598-600, 1979.

[15] C. Harris, M. Stephens, “A Combined Corner and Edge Detector,” in 4th Alvey

Vision Conference, pp. 147-151, 1988.

[16] D. G. Lowe, “Distinctive Image Features from Scale-invariant Keypoints,”

International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

[17] K. Mikolajczyk, C. Schmid, “A Performance Evaluation of Local Descriptors,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 257-263, 2003.

[18] D. Comaniciu, P. Meer, “Mean Shift Analysis and Applications,” in Proceedings

of the IEEE International Conference on Computer Vision, pp. 1197-1203, 1999.

[19] J. Shi, J. Malik, “Normalized Cuts and Image Segmentation,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888-905, 2000.

[20] V. Caselles, R. Kimmel, G. Sapiro, “Geodesic Active Contours,” in Proceedings

of IEEE International Conference on Computer Vision, pp. 694-699, 1995.

[21] C. Stauffer, W. E. L. Grimson, “Learning Patterns of Activity Using Real-Time

Tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

22, no. 8, pp. 747-757, 2000.

[22] N. Oliver, B. Rosario, A. Pentland, “A Bayesian Computer Vision System for

Modeling Human Interactions,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 22, no. 8, pp. 831-843, 2000.

[23] K. Toyama, J. Krumm, B. Brumitt, B. Meyers, “Wallflower: Principles and

Practice of Background Maintenance,” in Proceedings of the IEEE International

Conference on Computer Vision, pp. 255-261, 1999.

[24] A. Monnet, A. Mittal, N. Paragios, V. Ramesh, “Background Modeling and

Subtraction of Dynamic Scenes,” in Proceedings of the IEEE International

Conference on Computer Vision, pp. 1305-1312, 2003.

[25] C. Papageorgiou, M. Oren, T. Poggio, “A General Framework for Object

Detection,” in Proceedings of the IEEE International Conference on Computer

Vision, pp. 555-562, 1998.

[26] H. A. Rowley, S. Baluja, T. Kanade, “Neural Network-Based Face Detection,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 1,

pp. 23-38, 1998.

[27] P. A. Viola, M. J. Jones, D. Snow, “Detecting Pedestrians Using Patterns of

77

Motion and Appearance,” in Proceedings of the IEEE International Conference

on Computer Vision, pp. 734-741, 2003.

[28] R. Jain, H. Nagel, “On the Analysis of Accumulative Difference Pictures from

Image Sequences of Real World Scenes,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 1, no. 2, pp. 206-214, 1979.

[29] C. R. Wren, A. Azarbayejani, T. Darrell, A. Pentland, “Pfinder: Real-Time

Tracking of the Human Body,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 19, no. 7, pp. 780-785, 1997.

[30] D. Comaniciu, P. Meer, “Mean Shift: A Robust Approach Toward Feature Space

Analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

24, no. 5, pp. 603-619, 2002.

[31] D. Comaniciu, V. Ramesh, P. Meer, “Kernel-Based Object Tracking,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp.

564-575, 2003.

[32] V. Salari, I. K. Sethi, “Feature Point Correspondence in the Presence of

Occlusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 12, no. 1, pp. 87-91, 1990.

[33] C. J. Veenman, M. J. T. Reinders, E. Backer, “Resolving Motion Correspondence

for Densely Moving Points,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 23, no. 1, pp. 54-72, 2001.

[34] T. Broida, R. Chellappa, “Estimation of Object Motion Parameters from Noisy

Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

8, no. 1, pp. 90-99, 1986.

[35] Y. Bar-Shalom, T. Foreman, “Tracking and Data Association,” Academic Press

Inc., 1988.

[36] R. L. Streit, T. E. Luginbuhl, “Maximum Likelihood Method for Probabilistic

Multi-hypothesis Tracking,” in Proceedings of the International Society for

Optical Engineering, vol. 2235, pp. 394-405, 1994.

[37] J. Shi, C. Tomasi, “Good Features to Track,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 593-600, 1994.

[38] H. Tao, H. S. Sawhney, R. Kumar, “Object Tracking with Bayesian Estimation of

Dynamic Layer Representations,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 24, no. 1, pp. 75-89, 2002.

[39] M. J. Black, A. D. Jepson, “EigenTracking: Robust Matching and Tracking of

Articulated Objects Using a View-Based Representation,” International Journal

of Computer Vision, vol. 26, no. 1, pp. 63-84, 1998.

[40] S. Avidan, “Support Vector Tracking,” in Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, pp. 184-191, 2001.

78

[41] M. Isard, A. Blake, “CONDENSATION – Conditional Density Propagation for

Visual Tracking,” International Journal of Computer Vision, vol. 29, no. 1, pp.

5-28, 1998.

[42] M. Bertalmio, G. Sapiro, G. Randall, “Morphing Active Contours,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 7, pp.

733-737, 2000.

[43] R. Ronfard, “Region-based Strategies for Active Contour Models,” International

Journal of Computer Vision, vol. 13, no. 2, pp. 229-251, 1994.

[44] D. Huttenlocher, J. Noh, W. Rucklidge, “Tracking Nonrigid Objects in Complex

Scenes,” in Proceedings of the IEEE International Conference on Computer

Vision, pp. 93-101, 1993.

[45] K. Sato, J. K. Aggarwal, “Temporal Spatio-velocity Transform and Its

Application to Tracking and Interaction,” Computer Vision and Image

Understanding, vol. 96, no. 2, pp. 100-128, 2004.

[46] J. Kang, I. Cohen, G. G. Medioni, “Object Reacquisition Using Invariant

Appearance Model,” in Proceedings of the International Conference on Pattern

Recognition, pp. 759-762, 2004.

[47] G. Kitagawa, “Non-Gaussian State-Space Modeling of Nonstationary Time

Series,” Journal of the American Statistical Association, vol. 82, no. 400, pp.

1032-1041, 1987.

[48] K. Levenberg, “A Method for the Solution of Certain Non-Linear Problems in

Least Squares,” The Quarterly of Applied Mathematics, vol. 2, pp. 164-168,

1944.

[49] D. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear

Parameters,” SIAM Journal on Applied Mathematics, vol. 11, pp. 431-441, 1963.

[50] M.-C. Hu, M.-S. Chang, J.-L. Wu, L. Chi, “Robust Camera Calibration and

Player Tracking in Broadcast Basketball Video,” IEEE Transactions on

Multimedia, 2010.

