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Incremental Maintenance of Topological Patterns in Large

Spatial-Temporal Database

Student: Chao-Ying Wu Advisor: Prof. Suh-Yin Lee

Institute of Multimedia Engineering

National Chiao Tung University

ABSTRACT

Spatial temporal data mining is an important research area with many interesting
topics, such as ecology analysis;.meteorology analysis, location-based analysis and so
forth. Most spatial temporal ‘databases are updating incrementally with time. Some
discovered topological patterns may be invalidated and some new topological patterns
may be introduced by the evolution of databases. \When new instances are inserted
into the database, we can re-mine topological patterns from scratch each time using
the existing static algorithms. Some researches on the maintenance of topological
patterns in an incremental manner are proposed. However, all static algorithms and
incremental algorithms are incompetent and not scalable.

In this thesis, an efficient algorithm, Inc_TMiner (Incremental Topology Miner)
is developed to incrementally maintain topological patterns from spatial-temporal
databases. The experimental results on synthetic datasets indicate that Inc_TMiner
significantly outperforms the static algorithms and the existing incremental algorithm
in execution time and possesses graceful scalability.

Keyword: data mining, incremental mining, topological pattern, collocation

pattern, spatial-temporal database.
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Chapter 1. Introduction

1.1 Introduction and Motivation

In recent years, spatial-temporal data mining has received considerable attentions. One
important research topic in spatial-temporal data mining is mining topological patterns, also
called colocation patterns. Mining topological patterns is an interesting and essential data
mining technique with broad applications, such as ecology analysis, location-based analysis
and meteorology analysis, to name a few. Many efficient algorithms [2, 3, 4, 5, 6, 7] proposed
so far have good performances of discovering topological patterns from static databases.

However, the assumption ofihaving a static database may not be considered in some
applications, since most databases usually grow incrementally over time in our daily life. Take
meteorology analysis as an example, weather usually changes every day, such as “in Taipei,
there was a typhoon yesterday, and- it is foggy in'the morning.” Moreover, meteorology
analysis requires up-to-date information. If we re-mine databases each time, it may take lots
of time when databases grow huge.

The existing static algorithms do not take the evolution of databases and the
maintenance of topological patterns into consideration. The results mined from the previous
database may be no longer valid since some topological patterns would become invalid and
some new topological patterns may be introduced with the evolution of databases.
Obviously, re-mining the updated databases from scratch each time is inefficient since it
wastes computational resources and neglect the previous mining results.

As far as we know, there have been few efficient methods which discuss the maintenance
of topological patterns mined from spatial temporal database in an incremental environment.

Some existing algorithms of maintaining topological patterns from spatial-temporal

1



databases in an incremental environment require to generate and to store a potentially large
number of candidate patterns. Moreover, the cost of managing the candidate patterns and
computing the frequent patterns is high. With this reason, we develop a new approach to
solve the drawbacks of the existing static algorithms and the existing incremental algorithms.

In this thesis, an efficient algorithm, Inc_TMiner, which represents Incremental

Topology Miner, is proposed to address the important problem and incrementally maintain

the discovered frequent topological patterns. Our contribution is listed as follows.

® \We use a Cube-Feature Index structure to record the instances count information of
a feature. Cube-Feature Index is a two hash-based index which is efficient to
determine the neighbor relationship among instances. With Cube-Feature Index, we

can retrieve the approximate feature counts of a topological pattern efficiently

® With the intention to store the neighbor relationship which we obtain from
Cube-Feature Index, weuse.the Star Neighborhood. Star Neighborhood is a table to
record the neighbor set of each instance. Moreover, it reduces the expensive cost of
join operations in discovering neighbor relationship among instances. When
incrementally maintain topological patterns, we may re-mine the original databases
to obtain accurate information in some cases. Instead of re-scanning instances from
the original database, we discover topological patterns through the Star
Neighborhood which eliminates the steps of re-finding the neighbor relationships

among instances.

® Inc_TMiner avoids re-mining updated databases from scratch each time.
Furthermore, Inc_TMiner is developed based on the pattern-growth method which

avoids generating numerous candidates. Our experiments indicate Inc_TMiner
2



significantly outperforms the prior static algorithms and the existing incremental

algorithm in execution time and possesses graceful scalability.

1.2 Outline of the Thesis

The remaining of this thesis is organized as follows. Chapter 2 and 3 provide the related
works and the problem statement respectively. Chapter 4 introduces the basic concept of
static algorithms, Topology Miner and Join-less Collocation Miner. Chapter 5 describes the
details of our proposed algorithm: Inc_TMiner. Chapter 6 presents the experiments and the

performance study. We make the conclusion of this thesis in Chapter 7.



Chapter 2. Related Works

Spatial-temporal data mining is an interesting topic and many algorithms have been
proposed for data analysis in spatial-temporal databases. For example, flow pattern mining
[10,11], collocation pattern mining[7,18,19,21], clustering mining [12,14] are interesting
topics in spatial temporal data mining. In this chapter, we review the related works of mining
topological patterns in spatial databases and spatial-temporal databases.

[1] proposes an algorithm to discover spatial association rules based on Apriori-like
manner. Spatial association rules can be considered as one kind of topological pattern: the
star-like patterns. Moreover, it converts the spatial dataset into transactions based on centric
reference feature model. [2] introduces an instance_ join-based algorithm for collocation
pattern mining which is similar 'to [1]. Join-based:method has expensive computation cost
and no scalability. [3] introduces a critical measurement, participation ratio which provides
precise information of collocation patterns. Moreover, it develops a Collocation Miner based
on the spatial join to retrieve instances in spatial databases. [4] introduces the partial-join
approach to eliminate the computation cost of discovering collocation patterns by designing
a cligue neighborhood model. However, the performance of partial-join approach depends
on the distribution of spatial datasets. [5] introduces the join-less approach for mining
collocation patterns. It designs a star neighborhood model which stores neighbor
information of each instance. It reduces the cost of expensive spatial join operations in
discovering neighbor relations.

[6] presents an algorithm to discover collocation patterns in spatial databases by
combining the discovery of spatial neighborhoods with the mining process. The algorithm
divides the extent of spatial temporal database and partitions the feature sets using a regular

grid. They introduce a hash-based spatial join algorithm to operate multi-feature sets.
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However, this algorithm is based on the candidate-maintenance-test method. When the
number of features increases, the performance of the algorithm dramatically decreases. [7]
develops the Topology Miner which focuses on mining collocation in static spatial-temporal
databases. Topology Miner designs a summary structure to record the instances’ count
information of a feature in a region within a time window. Furthermore, Topology Miner
avoids the generation of many candidates and multiple scans of the database. It discovers
the topological patterns follows the pattern growth method.

The incremental maintenance technique for mining association rules has received a lot
of attentions. [8] proposes FUP (Fast Update) algorithm which is the first incremental
maintenance technique for mining association rules in large databases. The information from
the previous mining data can be reused. Moreover, in discovering the new large item sets,
the number of candidate sets can'be pruned substantially. [9] proposes an algorithm, IMCP
(Incremental Maintenance for “Colocation Patterns), for incremental maintenance of
discovered spatial collocation patterns. IMCP is based.on Join-less method [5]. However,
IMCP still uses the candidate-maintenance-test method. The performance of IMCP decreases

when the number of the feature increases.



Chapter 3. Problem Definitions

Given a spatial-temporal database DB, a set of n features F= {f}, ..., f,} arranged in
lexicographic order. Let | = {i;...,i,;,} be a set of m instances in database DB, each
instancei has the following information <instance-ID, feature type, spatial-location, timeslot>,
denoted as < i.id,i.f,i.x,i.y,i.t >

In the spatial dimension, we define R as a neighborhood relationship over the location
of the instances in the database. Two instances i; and i, are said to be close to each other
if only if the geometric distance of two instances, as defined in Eq.(3-1) is less than or equal

toR.

Geogjst = \/(il.x — i3 %)%+ (.Y = i5.7)? (3-1)

In the temporal dimension, we define W as a closeness relationship over the
time-stamp of the instances in the databases. An instance i; is said to be close to another

instance i, if the temporal distance, as defined in Eq. (3-2) is less than or equal to W.

Temdist= |i1. t — iz. tl (3‘2)

A topological pattern S of k-length or k-pattern, denoted as S :{fy, ..., fx} is a set of
spatial temporal features arranged in lexicographic order. A pattern Q is said to be a

sub-pattern of the pattern Pif V f; € Q,f; € P, and P is a super-pattern of the pattern Q,

denoted as QXP.
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Figure 3-1: Examples of topological patterns

Two kinds of topological patterns: star-like patterns and clique-like patterns are
concerned. A topological pattern S is a star-like pattern if an instance with feature type f; of
S is located close to other instances, while other instances with other feature types are not
required to be close to each other. A star-like pattern is denoted as <f;: fi,.., fx>. Figure
3-1(a) shows an example of star-like patterns,i.e. <a:{ b, ¢, d}>. Nodes are instances with
feature types {a, b, ¢, d}, and an edge between two nodes indicate the two nodes are
neighbors.

A topological pattern S is a«clique-like pattern if and only if all instances with different
feature types are close to each other. A ‘clique-like pattern is denoted as <fy, f2, ..., fx>-
Figure (b) shows an example of clique-like patterns where the instances of the features <a, b,
¢, d> are close to each other.

Different from the measurement, support [5], the participation ratio [11] has been
introduced to be a crucial measurement for expressing the strength of collocation patterns in
the spatial database. The participation ratio, denoted as pr(f;,S), captures the probability
whenever an instance’s feature type f; participates in a pattern S. We define the equation

as follows:

# instances of f;in a colloation pattern S

pr(fi,S) = (3-3)

# instances of f;in the whole database



To show the strength of a topological pattern S, we define the prevalence of a pattern S,
denoted as prevalence (S), which is a minimum probability among all features of S. The

equation of prevalence is defined as follows.

prevalence (S) = min {pr(f;,S),V f; € S}. (3-4)



Chapter 4. Basic Concepts of the Static Algorithms

In this chapter, we discuss two static algorithms Topology Miner [7] and Join-less
Collocation Miner [2]. Both are efficient for mining topological patterns in the static spatial

temporal database.

4.1 Topology Miner

First, we present the basic concepts of Topology Miner [7] which is an efficient
algorithm to discover the topological patterns in spatial temporal database. Topology Miner
discovers the frequent topological patterns in the depth-first manner. This algorithm consists

of two phases:

® The First Phase: Topology Miner divides the space-time dimension into a set of
disjoint cubes. Then, it scansthe database to build a summary structure which is a
two hash-based indices structure. The summary structure stores the instances’

count information of features in a cube.

® The Second Phase: Topology Miner discovers the frequent topological patterns in
the depth-first manner by utilizing the count information stored in the summary

structure.



4.1.1 Summary Structure

Let DB be the spatial temporal database, R and W be the distance threshold and the

time window threshold. It divides the space-time dimensions into a set of disjoint cubes

{<Cx1y1: W1 > <Cx1y1, W2 >, ;<Cx1y1,Wq >,...

2-demension cells with width R

width Z.
2

2v2'

,<Cxp.yp» Wg>} Where {Cyqy1, .., Cxpyp} are

and {wy,w,, ...,w,} are 1-demension time periods with

For the instances in a cube <cyy i, W>, It is easier to determine their close neighbors,

which must be the instances in one of cubes <cy; ,;, Ws> in the set N, =

lxk =% |< 28 |y —yi| <2

CxkykoWt {< Cxi,yi,Ws >|

A |t-s| <2}. Topology Miner defines two units as a

neighborhood threshold. Figure 4<1 is-an example_.of the spatial temporal database with

R=45, W =90 mins. The space.is divided into 48 cells-and the time is divided into 8 time

periods.
tid | fid | position | time o
1 | £, |(68.185) [15:32:01
2 | f, [(200.180) | 9:05:31 fime ;
3 | 5 [(70.202) [15:45:01 A .
4 | f [(57.59) [19:25:31 | el e Funp | 1oioel
5 | S5 |(130,.120)]13:03:33 s |irco : p
6 | f5 [(235.200)| 9:25:31 - Ve le ]
7 | /3 |(240, 180)[11:19:07 | w,| HE I ot
8 | £ |(@63.15) [12:20:54 |, [ [ [FEStotf o<W aw A Y
9 | J, |(31.62) [19:05-45 ol 7 ."5 ]:E; > 4 ’
10 | /3 | (268, 28) |11:55:14 .: e RIS 3
11 [ S5 [(275.12) |11:29:54 "F_,.‘ 2y 2
12 -fl (123,125) 10:21:-43 1:; r* (&3 (83 7 v e ey pes =0
13 | f> |(135, 115)|14:05:26 A

(a) spatio-temporal db

(b) space-time view

Figure 4-1: An example of the spatial temporal database[7]

Topology Miner scans the spatial-temporal database to build the summary structure

10



which records the instances’ count information of features in a cube. In order to facilitate the
operations for retrieving the neighborhood instances and the instances’ count, it constructs
two hash-based indices, called FCI (Feature-Cube Index) and CFl (Cube-Feature-Index). Both
indices are two-level structures. CFl has a composite information (<cy; ,;, ws>, feature type).
Cxi,yi is the spatial location, and wy is the time period. The first level is used to index the
cube location with the identifier <c,; ,,;, ws>, and the second level indexes the feature type.
FCl has a composite information (feature type, <cy; i, Ws>). The first level indexes the feature
type, and the second level indexes cube location. It can retrieve the instances’ count of
features that occur in cube <cy;,;, Wws> with the information of CFl and determine the cubes
in which a feature occurs with FCI. Both can obtain instances’ count information in constant
time. Figure 4-2 is an example of the summary structure with the two indices CFl and FCI.
With these two indices, it can approximate the number.of instances of a topological pattern.
It considers two instances are near in the position if-and only if their cubes are neighbors.
Take feature f; as an example, through FCl, we know:.instances with feature f; occur in
two cubes, one is <c; 5, ws> withscount 1, another.is <cs 5, w;> with count 1. Topology Miner
can find the neighbors of these two instances through CFI, the instance occur in <c; 5, ws>
with feature f; has a neighbor instance occurred in <c; 5, ws> with feature f,, and the
feature count is 1. Similarly, the instance occurred in <css, w;> with feature f; has two
neighbor instances, one occurs in <cg 5, w; > with feature f,, and another occurs in <cg 5, w,>

with feature f5. Both the feature counts are 1.

11
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Figure 4-2: The summary structure with the two indices CFI and FCI [7].

4.1.2 Concept of Projected Database

Topology Miner constructs the projected database by utilizing the information of
instances’ count from the summary structure and discovers the frequent topological patterns
in the pattern growth method. The pattern growth method partitions the database into
subsets recursively. Moreover, it makes use of the Apriori property to prune the search space
and counts the frequent patterns in order to decide it can assemble longer patterns.

Topology Miner defines the projected database of a k-length topological pattern S=
{f1, ..., fi}, denoted as P;. P; is the collection of the entries <L,R,,>, the cube-list L, denoted
as (<Cx1,y1, W1>... <Cxiyks Wi>), is a list of cubes where the instances of the features in S
occur, all cubes in P.L must be neighbors. The feature list P;.R,, which has the format ( f.:

<Cxm,ym» Wm> ) Where the instances of the related feature f. are in the cube <Cy; ym, Win>.

12




R, is a pointer pointing to a list of features that are related to the pattern S. The feature list
stores the potential features that can be used to combine with S to generate longer patterns.

Figure 4-3 shows an example of the projected database of f;.

r:-clj: Wj} ™ {j;:{fl.ﬁ’ wj}}

{e55 Wy |1 (hcss W)

m:{cm, wE}]

Figure 4-3: The projected database of <f,>[7]

4.1.3 Construction of Projected Database

The first step of constructing the projected database Py, is to obtain the cube-lists of f;
from FCI. In this example, Topology Miner obtains two cube-lists of f; by scanning FCI, which
are Ly = (<c¢y5Ws>), Ly = (<c55W>). For each cube-list L in Pr,, Topology Miner
obtains its neighbor-set and the related features of each cube in neighbor set by scanning CFI.
Topology Miner generates the new entries P, -Rp, with the information of the related features
and the neighboring cubes.

For instance, One valid neighbor instance for L;: (< ¢y 5, Wws>) is in the cube < ¢; 5, ws>
with the related feature f,. Topology Miner adds the new entry (f;: <c¢;5,ws>) into
feature-list Ry, . Similarly, for L, : (< cs55,w;>), there are two valid neighbor instances, one
is in the cube< ¢4 5, w1 > with the related feature f, and another one is in the cube < ¢4 5, w,>
with the related feature f; , Topology Miner adds the new entries (f;: < cg 5, w;>) and (f3:
< Cg,5,W2>) into feature-list Ry, .

The projected database of a length-k pattern S, = {f1, ..., fk—1, fx} can be derived from
the projected database of its prefix S,_; = {fi, -, fxk—1}- , fr is a related feature of the

pattern Sy_,, Topology Miner obtains the related feature from Ps, _ .R,.

13



Topology Miner constructs the projected database F;, from F,  as follows. In the
projected database F;, , for each entry <L,R,>, Topology Miner can obtain an element of

the feature f; and a neighboring cube <y, ym, Wi,> from feature-list P, .

R,. Topology

Miner generates the new entry <L,R,> of F, . Topology Miner assigns Py, .L =P, LUy

Sk—1"
{<Cxmym Wm>}. Ps,.Rp is the subset of P, _ . R, and each element must be a neighbor of
the cube <y ym, Wim>.

Figure 4-4 shows an example of the projected database of the pattern <f;,f,> which is
derived from the projected database of the pattern <f;>. Both two entries contain a related
feature f, in Py . Hence, Topology Miner creates two entries for Py »~ , One
is Pey, r,5-L1 ={<(cy5,Ws) > <(c15 ws) >} and its feature list Pf, ¢ s.Rp is null since no

instances are neighbor instances of these two instances. Another is P.f, ¢<.L, ={<(c¢55,w;)

>, < (g5, W1) >}andits featurelistis Posl e S R, IS (f3: < Cg5, W2 >).

({cl 5 W=, ‘:Elj, wf} Im.e{!

E{'Es,i’ L {Ea:f 1"’-l}JI __.'U;:{cﬁ:ﬁ’ “’-2}}

Figure 4-4: The projected database of < f4,f. > [7]

4.1.4 Mining Topological Patterns

Two different kinds of patterns: star-like patterns and clique-like patterns are concerned.
Topology Miner can mine these two kinds of patterns from the projected database P, .

Mining star-like patterns. Topology Miner directly mines the projected database of the
features. For a feature f;, the feature f; are said to be one related feature of f; if only if the
participation ratio pr (f;, < fi,fj >) = min_prevalence. All the frequent related features
of f; form a star-like pattern: {f;: < fy1, ..., frm >} Figure 4-5 shows a star-like pattern S =

<fi:{f2, f3}> since pr (f2, < f1,f» >) =0.33 and pr (f3,< f1,f3 >) = 0.5 are greater than
14



min_prevalence 0.3.

ity dy)=2 .

A :> , is frequent w.r.1
il G, }: =1 J; 1s frequent w.r.1. f]
iy hdy)=12=05 = [, is frequent w.r.1. f]
mf, f ) =12=05;

Star-like pattern : S, = f: {f,. f;}

mining in f -projected database

Figure 4-5: An example of mining star-like patterns [7]

Mining clique-like patterns. The process is more complicated compared to star-like
patterns, the main goal is to check arelated feature f,, of S, which can be combined with
S, to generate a longer clique-like pattern S;,; = Si U {f,.}. It determines whether the
prevalence of Sy,; which is'the minimum participation‘ratio among all features of pattern
Sk+1 is greater than or equal to min_prevalence. Namely, Topology Miner needs to check
not only the related feature f,., but also all other features which occur in Sy, .

Let the set RF contains all related features in S and it arranges these features in
lexicographic order. For each feature f, in RF, Topology Miner first compute the
participation ratio pr (f;,Sks1) in the projected database Ps, . If pr (f, Sks1) =
min_prevalence, Topology Miner continues to compute the participation ratio pr (f;, Six+1)
for each f; € Sj. Otherwise, it removes the feature f,. since f,. cannot combine with Sy to
generate any frequent topological patterns.

Figure 4-5 shows an example of mining 2-clique-like patterns with min_prevalence 0.3. In
the projected database of f;, denoted as Pr;, two feature are the related features of f;. To
determine the pattern < f;, f, > is a frequent clique-like pattern, it needs to compute

prevalence of < f, f, >. Namely, it computes the participation ratio pr (f,, < f1, f> >) and
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pr (f1, < fi, f> >). In this example, there are six instances of f, in the database, and two
instances of f, participate in the pattern< f;, fo >.Hence, pr(f,, < fi, f> >) = 2/6. Similarly,
pr (fi, < f1, f> >) = 2/2. Finally the prevalence (< f;, f> >) = min {1, 0.33} =0.33 which is
greater than min_prevalence 0.3. Therefore, < f;, f, > is a frequent clique-like pattern.
Topology Miner continues to determine the frequency of the pattern < fi, f5, f3 >.
Similarly, it computes the prevalence of < f;, f,, f3 >. First, Topology Miner computes the
participation ratio of f5,pr (f3, < fi, f2, f3 >) = 1/2, is greater than min_prevalence 0.3, then
Topology Miner continues to compute each feature in pattern< f;, f, >. The participation
ratio of f, pr (f2, < fi, f2, f3s >) =1/2 which is also greater than 0.3. However, pr (f;, <
fi, f2, f3 >) = 1/6 is less than 0.3. Hence, < fi, f2, f3 > becomes infrequent. Figure 4-6

shows the process of mining clique-like'pattern ‘< fi, f>, f3 >.

prfy. <A H52)=12=05
prf. < ff>)=12=1 —, Stop
p',f_r':_ -=:1'1 ,*;__r;‘:-} =1/6=017<03

Figure 4-6: An example of mining clique-like patterns [7].

Figure 4-7 shows the framework of Topology Miner. The inputs are the spatial temporal
database DB, the distance threshold R, the time window threshold W, and the prevalence
threshold min_prevalence. It outputs the set of frequent star-like patterns and clique-like

patterns.
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Algorithm TopologyMiner

Input: D: the spatio-temporal database;
R, W: the distance and time window threshold;
minprev: prevalence threshold.
Output: &,C,G: the set of frequent star-like, clique and star-
clique patterns
1: Scan D and construct CFI and FCI with R and W,
2: RF = {all the features in D};
3 VfieD Fs; =1
4: for each feature f; in RF {
5 constructing the projected database of f;;
G RF; = {related features in Py, };
T for each related feature f; € RF; {
8: prj = pr(f;, (fi. f3)) and pri = pr(fi, (fi, fi))
9 compute pr; and pr; through CFI and FCI;

10: if(pr; < minprev||pr; < minprev)

11: RF; = RF:\{fi }

12: if(pr; = minprev) Fs; = Fa; U{f;};
13: if(pri = minprev) Fe; = Fa; U{f:};
14:

15: .:'E“: (fi: Fsg)

16: S=8uU{s5}h

17:}

18:for each feature f; in RF {
19:  for each feature f; € RF; {

20: S = (fi. f;)

21: C=CuU{S'}

22: construct Pgr based on Pf%,

23: RFgr = {rclatcd features in Pgr}:
24: call MmlngPDB(Pg; BRF g minprev);
25:

26:}

Procedure MiningPDB(Ps, RE, minprev)

1: for each feature f, in RF {
2: compute pr(fr-, SU{f-});

3: if pr(f-.SU {fr}) < minprev continue
4: else

5: flag = 1;

6: for each f; £ 5 {

T compute pr(fi, SU{f-});

B it(pr(fi, SU{f-}) < minprev)

O: flag = 0;

10: break;

11: }

12: if(flag) {

13: S'=S5u{f-};

14: C=Cu{s}

15: construct Pg, based on Ps;

16: RF g = {related features in Pgr};
17: call GenCenericPtns(8’, minprev);
18: MiningPDB(Pg+, RFgs, minprev)
19: }

20:

21:}

Procedure GenGenericPtn(C, minpreuv)

10 Fe=1;

2: for each feature f; € C {

3: get S € 8st. S.fi = fi

4: for each frequent related feature f. € 5. Fs
5: 1f (pr(fp C|fg) > minprev) Fa = FsU {f.};
6: i F

T Q l_J| {G}: o

8: }

Figure 4-7: The framework of Topology Miner [7].
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4.2 Join-less Collocation Miner

In this section, we present another static algorithm, Join-less Collocation Miner [5] which
is an efficient algorithm to discover the topological patterns in static spatial databases.
Join-less Collocation Miner proposes the concept of star neighborhood to materialize the
neighbor relationships without duplication of the neighbor relationships and loss of
collocation instances.

Join-less Collocation Miner uses an instance-look up method to reduce the computation
cost of identifying the instances of topological patterns. Moreover, it has a coarse pruning
step which can filter candidate patterns of topological patterns without finding exact the
instances of topological patterns.

In this algorithm, it uses candidate-maintenance-test method to generate candidate
patterns. It also makes use of Apriori property to prune the search space. Figure 4-8 is the

concept of candidate-maintenance-test'with Apriori property pruning.

fufa. /3| [Jufafa| |Jofsfs fz:fa:fd,*

fuf2 f3.fa

Figure 4-8: The concept of candidate-maintenance-test with Apriori Property pruning.
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4.2.1 Neighborhood Materialization

First, Join-less Collocation Miner proposes a method to materialize disjoint star neighbor

relationship as a framework for efficient collocation mining.

Definition 4.1 Given a spatial-temporal instance i; € DB with feature type f;j, the star
neighborhood of i; is defined as a set of spatial-temporal instances SN; =

{ij € DB |Gaise(ii, 1j) < R A Temgsc(is, i) < W, £ > £}

4 Circle : star neigborhood area T Center Neighborhood
¥ : star mighhormtalionshipof_." _ feature | instance instances
. fra |fraf,afqa
fl fpb |fibfrdfqb
fre [fyefyefia
fiod |f.df,a
fa |f,a
fob |f.b
JfZ fre |frc€ frafoc
fpd |f,d fib
fre |fe
fra |fs.a
i " ncighborhood arca of f3 [ fsb |Isb
e > fye |fse

Figure 4-9: An example to materialize star neighbor relationships [5]

The star neighbor of a center instance is the set of the center instance and instances in
its neighborhood whose feature types are greater than the feature type of the center
instance in a lexicographic order. Figure 4-9 shows an example to materialize star neighbor
relationship of a spatial dataset. The neighborhood areas of instances f;.a, f;.c, f,.d are
represented in dotted circles with distance threshold R as radius. The black solid lines in each
circle represent a star neighbor relationship with the center instances. f;.a has two

neighbor instances, f,.a, f3.a. The star neighborhood of f;.a is{f;.aq, f.a, f3.a}including
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the center instances f;. a. In the case of f;.c, three neighbor instances are
present, fi.d, f,.c,and f3.a. However, f;.d is notincluded in the star neighborhood set

of f;.c since we focus on relationships among different feature types.

Definition 4.2 Let | = {i4, ..., i, }< [ be a set of spatial instances whose feature types {f1,...,fx}
are different. If all instances in | are neighbors to center instance 04, | is called a star instance
of the topological pattern S = {fi,..., fi.}

Figure 4-9 shows the star neighborhood of fi.a is {fi.a , f,.a, f3.a }

{fi.a , f>.a, f3.a }is also one of star instances of {f1, 1>, f3}.

4.2.2 Join-less Collocation Mining-Algorithm

The join-less collocation ' miningalgorithm has three phases. The first phase
converts a spatial dataset into a set of disjoint star neighborhoods. The second phase
gathers the star instances of candidate patterns from the star neighborhood set, and
coarsely filters candidate patterns. The third phase filters instances from the star
instances, and finds prevalent topological patterns and generates co-location rules.
Figure 4-10 shows the pseudo code of Join-less Collocation Miner and Figure 4-11 is an
example of the process of mining colocation patterns. Join-less Collocation Miner

explains the algorithms with this example step by step.
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Algorithm 1 Join-less co-location mining algorithm

Inputs

F'=4fi.....fn}:a set of spatial feature types
S:a spatial dataset, H:a neighbor relationship
min_prev, min_cond_prob

Output

L set of all prevalent co-location rules with
participation index > min_prev and conditional
robability > min_cond_prob

fariables

T={T¢,....,17¢ }: a set of star neighborhoods
{’1.:a set of size k candidate co-locations

Sl :star instances of size k candi co-locations
('{; :clique instances of size k candi co-loccations
Pr.:a set of size k prevalent co-locations

H; :a set of size k co-location rules

Method

1) I'D=genstarmeighborhocods(f', S, H);

2) P =F; k= 2;

3) while (not empty /. ;) do

4) ('.=gen_candidate_co-locations (I, ) ;

5) for t ¢ 1 do

&) Silp=filter_star_instances ((y.t) ;

7) end do

8) if k = 2 then I = Sl

9] else do (', =select_coarse_prev_co-location
(', Sy, min_prev)
10) ('l =filter clique_instances ((';, 51 ) ;

11} end do

12) Hp=selectprev_co-location(Cy,Cly, minprev) ;
13} Hi=gen_co-location_rules (Mg, min_cond_prob) ;
14) k=k+1;

15) end do

16) return | J(Hz,... R);

Figure 4-10: The pseudo code of Join-less Collocation Miner[5]
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Phasel Level1 | Phasell Level 2 Level 3
Feature {1 Star Neighborhoods fi ft E .ﬂ E r f fx f;
fi-a fz.a fi.a fia | fia fia fiafsa J{;g }"_23 ?E »
fi.b fo.d fi.b fib | b fid /D ALD e s
fi-¢ fz¢ fia fic | fiic e fic fra ol e
—_—
fi-d fy.a fid fidfs.a 3/4 {3/5 2/3
4 . \ If « theeiliold, its pruned
Feature fa Star Neighborhoods fa
f.a f2a & L f -,L
f.b 2.0 .iz.i;‘ ig.a
facfra fic ;d fi.cfync
f-d fy.b e fod f.b
fa-e e
Feature f3 Star Neighborhoods fa
fi.a f. : Single instance Count
fa-b fac
fe | |
Phase Il [ ¥, £ R L fim +E 6 £
1@ fr.a frafia fchagl. f.a foa foua
f;_-b _rz.-d f]_,b ﬁ,b f;.Cf;.c ﬁ.h f‘z.d fJ'b :.:?:e .
fic e frcfra fdfsb fi-c fac fra e
min_prevalence:0.3 g A4 2/3 ik
FarticipatimInde: '''' g true porticipotion index

Figure 4-11: The process of mining topological patterns[5].

Convert a spatial dataset to a set of disjoint star neighborhoods (step 1): Given a
spatial dataset and a distance threshold, Join-less Collocation Miner finds all neighbor
instance pairs using a geometric method such as plane sweep, or a spatial query method
using quaternary tree or R-tree. The star neighborhoods are generated by grouping the

neighboring instances.

Generate candidate patterns (step 4): k-length candidate patterns are generated
from prevalent (k-1)-length topological patterns. Join-less Collocation Miner make use of
Apriori property to prune the impossible candidate patterns. If any subset of a candidate

pattern is not prevalent, the candidate pattern is impossible be frequent.
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Filter the star instances of a candidate pattern from the star neighborhood (step 5):
The star instances of a candidate pattern are gathered from the star neighborhoods
whose center instance feature is the same as the first feature of the candidate pattern.
For example, the instances of a candidate pattern {f,, f3} are gathered from the feature
f> star neighborhoods, and the instances of {f;, f5, f3} are gathered from the feature f;

star neighborhoods.

Select coarse prevalent topological patterns using their star instances (step 9): The
length 2 star instances are clique instances since our neighbor relationship is symmetric.
For length 3 or more, Join-less Collocation Miner requests to check if the star instance is
a clique instance. In order to reduce.computation cost, it has a coarse filtering step of
mining topological patterns. If the prevalence calculated from the star instances of a
candidate pattern is less than min-prevalence. The candidate pattern is pruned without

exact examination.

Filter instances of a topological pattern (step 10): From the star instances of a
candidate pattern, Join-less Collocation Miner filters its topological pattern instances by
looking up all the instances of the topological pattern of features except the first feature
of topological instances. For example, to examine the clique-like pattern of a star
instance {f;.q, f5.a, f3.a} of pattern {f;, f2, f3}, Join-less Collocation Miner only examine

the sub-instances {f,.a, f5.a } except f;.a.

Select prevalent topological patterns (step 12): The refinement filtering of
topological patterns is done by the participation ratio calculated from the instances of

topological patterns. Frequent topological patterns satisfy the min_prevalence.
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Chapter 5. Proposed Algorithm: Inc_TMiner

In this chapter, we discuss our algorithm Inc_TMiner for incremental maintenance
of topological patterns in spatial-temporal databases. First, we describe the basic definitions
of Inc_TMiner. Second, we present the concept of Inc_TMiner. Finally, we discuss the details

of the updating process of Inc_TMiner with examples.

5.1 Basic Definitions of Updated Database

In incremental environment, we have two different kinds of databases, the original
database DB and the incremental database db. Moreover, we separate the incremental
database into two parts: ‘the Non Cross database db,. and the Cross database

db.. i.e. db = db. + db,,. Figure 5-1 shows the classification of the databases.

DB’
(Updated)
Ve N
db
(Incremental)

DB
(Original)

dby
(Non_Cross)

Figure 5-1: The classification of the databases.

The Non_Cross database, denoted as db,,, is referred to as the set of new instances

which have no neighbor instances occurred in DB. The Cross database, denoted as db,, is the
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set of new instances which have neighbor instances existed in DB. Figure 5-2 shows the
concepts of Non_Cross database and Cross database in an updated topological spatial

temporal database.

a)
S
wn

1=
Q
3
]
Q
i
i

+

@

/

N

%
R ——

|
[ * | {z’ | |
EFE * "=
Original Database DB Incremental Database db

Figure 5-2: The concepts of Non_Cross database and Cross database

A database combining all the data instances from: DB and db is referred to as the
updated database DB’. An extended database ‘EDB is the set of instances from incremental
database db and instances in the original database DB which are neighbors of the instances

in db,. Figure 5-3 shows an example of the extended database EDB.

EDB

oo
X x|agl e
‘:' | I

|

Ne—k t*.::-{% !

Original Database DB N ,J Incremental Database db

Figure 5-3: An example of the extended database EDB
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In the extended database EDB, we have to modify the definition of the measurement of
discovering frequent topological patterns to avoid losing accurate count information.
Different from the prevalence in Eq.(3-4) which determines the minimum participation ratios
among all features of a pattern S, we define a new measurement, Max_PV(S) in Eq.(5-1)
which determines the maximum participation ratios among all features in a pattern S. If

Max_PV (S) < min_prevalence, pattern S is impossible to become frequent.

Max_PV (S) =max {pr(f;,S),V f; €S }. (5-1)

With the intention of incremental maintenance of topological patterns in spatial
temporal databases, we need to storeiimportant information from the previous results which
can be re-used. First, we store Frequent Pattern Set. (FPS) which is the set of frequent
patterns from the previous mining result. We also store the count information of each
frequent pattern in Count Information (Cl). There are three columns in Count Information:
Pattern Type, Status, and Count. Pattern Type shows the feature types involved in this
pattern. Status shows the frequency of this pattern. Count records the counts of each feature
in a frequent pattern. Figure 5-4 shows an example of Count Information. In the example,
<f1, [, f3>is a frequent pattern, and we mark the Status of < f;, f2, f3 > as Freq. Moreover,

we store the counts of each feature f;: 3, f5: 2, f5: 3.

Pattern Type Status Count
<fuf2f3> Freq f1:3f2:2 f3:3
<fufafe> InFreq

Figure 5-4: An example of count information CI
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Problem Statement: Consider a spatial-temporal database DB, the minimum prevalence
threshold min_prevalence, a frequent topological pattern set FPS from DB, and an
incremental database db. The problem of incremental maintenance of topological pattern is
to maintain the set of frequent topological pattern FPS’ in an updated database DB’ based on

the information of FPS instead of re-mining DB’ from scratch.

5.2 The Basic Concept of Inc_TMiner

We improve the efficiency of the existing algorithms. Hence, we design a new core
algorithm for Inc_TMiner which combines the advantages of Topology Miner and Join-less
Collocation Miner.

First, with the intention of.incremental maintenance of topological patterns, we need to
store the neighborhood relationships among instances. Therefore, we utilize the star
neighborhood based on the concept of star neighborhood in Join-less Collocation Miner. It
reduces the expensive cost of join operations in discovering topological patterns. Moreover,
when we incrementally maintain the discovered topological patterns, we may re-mine the
original database to retrieve accurate information in some cases. Instead of re-scanning the
original database, we discover patterns from the star neighborhood which is more efficient.

Figure 5-5 shows an example of the original database and its star neighborhood.
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Figure 5-5: An example of (a) the original database (b) star neighborhood.

In order to find neighbor instances efficiently, we design a Cube-Feature Index structure
based on the concept of summary structure in Topology Miner. Cube-Feature Index is built
with the composite key (<cxi,yl.,ws>,fl-), and its first level is used to index the cube with the
identifier <Cx,yp Ws> and its second level indexes the feature type f;. With this structure, we
can obtain the feature count occurred in a cube <cy, ,,,, Ws>. Moreover, it is easier to discover
the neighbor cubes of <c, ,,, Ws>and retrieve the neighbor instance counts.

Finally, we generate candidate patterns using lexicographic Pattern-Growth method
mentioned in Topology Miner. Pattern-Growth method is one of the most effective methods
for frequent pattern mining and superior to candidate-maintenance-test approach. We also

make use of Apriori property to prune the impossible candidate patterns.
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5.3 The Updating Process of Inc_TMiner

In this section, we discuss the updating process of Inc_TMiner. First, we discuss the
different cases when the database updated. Second, we give the details of our algorithm

with examples.

5.3.1 Cases of Updating Process

When an original database DB is updated to DB’, we have to check the extend database
EDB to update frequent patterns in FSP. There are several cases.
Case 1. If pattern S which appears in EDB_is frequent in DB, then we update the count
information Cl. It is easy to handle since we have already kept the count information from
the previous mining result.
Case 2. If pattern S which appears in EDB-is not frequent'in DB, then we check Max_PV (S) in
EDB. If Max_PV(S) is greater than or equal to min_prevalence, then we re-mine the original
database (Case 2.1). On the contrary, if Max_PV(S) < min_prevalence, then it is impossible

to become frequent in an updated database (Case 2.2) based on theorem 1.

Theorem 1. If a topological pattern S is not frequent in the original database DB and
Max_PV(S) < min_prevalence in EDB, it is impossible to become frequent in an updated

database DB'.

Proof: fnax is the feature with max participation ratio in pattern S in EDB.
Npg, Ngpg, Npp, are the numbers of fq Which participate in pattern S in DB,EDB,DB’
Npg, Ngpg, Npg, are the number of fq, in DB, EDB, DB’

As we know pattern S is not frequent in the original database DB.
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n .
—L8 <min_prevalence
Npp

npg <min_previence* Npg

Npg +Ngpg <min_prevalence* Npg +ngpp

NpB+NEDB

<min_prevalence+ngpg-min_prevalence * Ngpp
Npp+NEDB

n . .

2B <min_prevalence+ngpg-min_prevalence * N

N EDB EDB
DB/

If ngpp-min_prevalence * Ngpp <0, then IDE! impossible to be greater than or equal

DB/

to min_prevalence.

So ZEﬂ < min_prev, then pattern S is infrequent in the updated database.
EDB

Case 3. If pattern S which does:not appear in EDB-is frequent in DB, we re-calculate the
prevalence. Since we have already kept the count information, it is easy to compute the

prevalence.

5.3.2 Inc_TMiner Algorithm

The Inc_TMiner algorithm has three phases. First, we update the Star Neighborhood
and find the extended database in the Update phase. Second, the Star Mining phase
discovers star-like patterns and 2 clique-like patterns in the updated database. Finally,
the Clique-Mining phase is mining frequent clique-like patterns.

Figure 5-6 shows the framework of Inc_TMiner. It takes the Frequent Pattern Set FSP,
the Count Information CI, the Star Neighborhood SN from the previous mining result,
and the incremental database db as input. It outputs the set of frequent topological
patterns and Figure 5-7 shows the pseudo code of Inc_TMiner. We explain the process of

Inc_TMiner with an example step by step.
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Figure 5-6: The framework of Inc_TMiner.
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Algorithm: Inc TMiner

Input: db: the incremental database.

R, W: the distance and time window threshold.
min_prevalence: prevalence threshold.

FPS: The frequent topological pattern set.

CI: Count Information.

SN: Star Neighborhood

Output: FPS’: the frequent topological pattern set in updated database

L S U R S I

FSP'= @
Scan the incremental database db, and construct Cube Feature Index with R and W.
Update the Star Neighborhood SNV
Determine Extend database EDB
Scan EDB; update the count information of 2 clique-like patterns by scanning Star
Neighborhood SN.
Mining frequent Star-like patterns
Find frequent 2 clique-like patterns in EDB and add to clique pattern set C and FSP’
for each 2- clique-like pattern C; in C,
RF = {the related features of C;}
for each f, € RF.
S=G¢Uf,
Call Inc_PDB (FSPE, FSP’, CILSN,S, min_prevalence)
for each pattern S in FSP, but not appear in EDB
re-compute the prevalence of §

If the prevalence of pattern S =min prevalence, add to FSP’.

Procedure: Inc_PDB (FSP, FSP’, CI,SN,S, min_prevalence)

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

if pattern S 1s 1n FPS
Update the count information C7 of pattern C;
else re-mine the original database DB.
Sum two counts from DB and EDB
if the prevalence of pattern S =min_prevalence,
add to FSP".
RF’={ related features of S}
for each f,. in RF’
§’=SUf.
call Inc PDB (FSP ,FSP’,CI,SN,S’,min_prevalence)

Figure 5-7: The pseudo code of Inc_TMiner.
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€ The Update Phase:
Step I: Update the star neighborhood and determine the extended database EDB (Line
3-Line 4):

First, we update the star neighborhood when inserting the new instances and
determine the extended database EDB. Figure 5-8 shows an example of the updated
database DB’. We also mark the extended database EDB in this example. A special instance
fi-e which is an instance in the original database is also an instance in the extended

database, since f;.e isthe neighbor of f;.e and f,. e.which are instances in the Cross

database.
EDB
Original Database DB Incremental Database db :
I
fi.a fa.b f3-b *f2i fif I
! E—-—"‘—" fz |
3.0 |
f2.a g f3f :
f4 b fz.c f3 c 4_)" 1
f b f4- e |
1- I
[
f*l- a f‘]."d :
fz.d :
z.d fz e 1
[

Figure 5-8: An example of the updated database DB’ and the extend database EDB

Through the summary-structure, we discover the neighbor instances of new instances

{fi-f) f1-9 fore fo-fifo- 9 fo- ol fee, f5. fL 5.9, f35- I, fae e,

fa- f} which are inserted into the incremental database. We store these new instances and

the neighbor instances of these new instances in star neighborhood. Figure 5-9 is the star

33



neighborhood of the extended database.

Center Neighborhood Center Neighborhood
feature | instance instances feature | instance instances
fre |fyefycfod fye fie |fye
fi fif |fa.h f3f fof fs faf |fof
f19 |f2f f38 f3-&
fre |fsh f1.h
f2f |f39 fao | _[se

f f2.9 fof
2| fh
fri

Figure 5-9: The star neighborhood of the extended database.

€ The Star Mining Phase

Step II: Update the count information of 2 clique-like patterns and mine frequent

star -like patterns and 2 clique-like patterns. (Line 5-Line 7)

We can obtain the feature counts of 2 clique-like patterns directly from star

neighborhood. Therefore, we update.the feature counts of each 2 clique-like patterns in Cl
since we have already stored the count information from the previous result. For each

2-cligue-like pattern, we add the feature counts in extended database to the feature counts

in Cl.

Figure 5-10 shows the count information after database updated. Take pattern <f;, f,>
as an example, the feature counts of <f;, f,> in the original database are f;: 2, f,: 2 , and the

counts in the extended database are f;: 2 f,: 2. Therefore, the feature counts of <f;, f,>in

the updated database are f;: 4 f,: 4.
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<f3,fa> | Freq [3:2, f4:2 [32:f42 [3:4,f4:4

Figure 5-10: The count information after database updated

We mine star-like patterns by checking the counts of 2-clique-like patterns in Count

Information. We calculate the participation ratio pr (f, (fi, f;)) of each related feature f; of
the center feature f;, if the participation ratio of the feature f; is greater than or equal to

min_prevalence, then this feature is one of star features of f;. Take the center feature f; as

an example, the participation ratio of each related features which are pr(f,, <f1,/2>)

=0.44, pr(f3, <f1,f3>) =0.75 and pr(f3, <f1,f4>) =0.83 are greater than min_prevalence 0.35,

the star pattern of f; is<fi: fa fa, fa>.

After mining frequent star-like patterns, we continue to discover frequent 2-clique-like
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patterns. Figure 5-11 shows an example of mining 2-clique-like patterns, in this example,
<f1,f4> is frequent in the original database since the participation ratios are pr(fy, (f1,f))
=3/4, pr(f1, (f1,f4)) =2/5 and the prevalence of <f;,f,> is min {2/5, 3/4} = 0.4 which is greater
than min_prevalence 0.35.In the updated database, the prevalence of <f;,f,> changes to min
{3/7, 5/6} =0.42 since the participation ratios are pr(f,, <f1,f1>) =5/6, pr(f1, <f1,f2>) =3/7.
<f1,fa> is still frequent after database updated.

Original Database DB Incremental Database db

f1-a f?—b—"{s.b ®fa.i

3.0

f2.@
—dfa4b fac [3<
fl'y‘ - ~
f‘\ fl d
]
IS'd - Y
z-d ® [ f2.9

Pattern | Status | Count in DB | Count in EDB | Count in DB’ Status in DB’
<fuf2>| Freq | f1:2,f2:2 | f1:2,f5:2 f1:4,f2:4 Freq
<fi.f3>| Freq | f1:3,f3:3 | f1:3,f3:3 f1:6,f3:6 Freq
<fufa>| Freq | f1:2, f4:3 | f1:1,f4:2 f1:3,f4:5 Freq
<faf3>| Freq | f2:4,f3:4 | [2:2,f3:2 f2:6,f3:6 Freq
<fofs>| Freq | f2:2,f4:2 | f,:0,f4:0 f2:2,f4:2 Infreq
<fa.fs>| Freq | f3:2,f4:2 | f32:f4:2 f3:4,f4:4 Infreq

Figure 5-11: An example of count information after the Star Mining Phase.

€ (Clique Mining Phase

Step [II: Extend each frequent 2-clique-like pattern in EDB by the pattern growth method.

(Line 8- Line 11)

As we already know the frequent 2 clique-like patterns in the updated database are

{<fi.f2> <f1.f3> <f1.fa> <f2.f3>, <f3,f4>}, we extend each 2-clique-like pattern in EDB by
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the pattern growth method, and also make the use of Apriori property to prune the

impossible candidate patterns. For each extended pattern S,, we check whether the

extended pattern S, isin FPS, then we handle the extended pattern S, in different cases

to determine the pattern is frequent in the updated database.

Step IV: (Case 1) If an extended pattern S, is in FPS, then we update the count

information of S, (Line 1 - Line 2 in the Inc_PDB Procedure)

In this example, we extend the frequent pattern <f;,f,> to <f3,f,,f3>. Because

<f1,f2,f5> is already in FPS, we have already stored the count information, the feature

counts of <f3,f,,f3> in the updated database is the sum of the feature counts in Cland the

feature counts in EDB. Then we calculate the prevalence of <f;,f,,f5> is min {3/7,3/9,3/8}

= 0.33 which is less than min_prevalence 0.35 . Hence, <f;,f,f3> becomes infrequent in

the updated database. Figure.5-12 shows the process of determining the frequency of

pattern <fi,f3,f3>

Original Database DB

Incremental Database db

N
fi.a fa.b L3P /2 f1-
- S \ 3.——"“ f2-h
" * f3.e
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fl-b ! ! ,- d 4
foa ‘\ S f3-h - = %19
¥ ~_fd fio \
fs'd ® \ ’l
2-d * fic fog <tz
Pattern Status Count in DB Count in EDB Count in DB’ Status in DB’
<fuf2f3>| Freq | [1:2,[2:2, [3:2 | f1:1,f2:1, f3:1 | f1:3,f2:3, f3:3 Infreq

Figure 5-12: The process of determining the frequency of pattern <f4,f,.f3>
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Step V :( Case 2) If the extended pattern S, is not in FPS, we re-mine the original
database. (Line 3- Line 4 in the Inc_PDB Procedure)

If an extended pattern S, is not in FPS, we did not keep any count information
about this pattern, so we have to check the Max_PV (S,) in EDB. In this example, <f3,f5,f4>
is not in FPS, and the feature counts of <f;,f3,f4>in EDBare f;:2 f3:2 f;: 2. The Max_PV
(<f1,f3,fa>) is max {2/2, 2/4, 2/2} =1 which is greater than min_prevalence 0.35. It meets the
condition of case 2.1. Therefore, we re-mine the original database, we obtain the feature
countsinDBas f;:1 f5:1f,:1. Then sum the counts in EDB and in DB, we obtain the
feature counts in DB’ fi:3 f3:3 f4: 3. Finally we calculate the prevalence of <f;,f3,f,> is min
{3/7,3/8,3/6}=0.375 > 0.35. We determine <f;;f3,f.> is a frequent pattern after database

updated. Figure 5-13 shows the process of determining the frequency of pattern <f;,f3,f4>.

Original Database DB Incremental Database db
.b ofa,.i -
Foo fub L il - h
7’ 1 f‘.e I \|
f‘.c . \
RN f 58.f
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f1d f3.9
°
®* fic f2.9 fa.e f2f
Pattern Status Count in DB Count in EDB Count in DB’ Status in DB’

<fvf3.fs> | Infreq f1:2,f3:2, f4:2 | f1:3,f3:3,f4:3 Freq

Figure 5-13: The process of determining the frequency of pattern <f,fs.f4>
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Step VI: (Case 3) for each pattern S is in FPS, but not appears in EDB, we re-calculate the

prevalence. (Line 13 - Line 15)

The topological pattern S does not appear in EDB, but S is frequent in DB, then it is

possible to become frequent in DB’. We check the prevalence due to the change of the

number of f; in the updated database. In this example, <f,, f5, f4> does not appear in EDB,

but it is a frequent pattern in FPS, so we re-calculate the prevalence. The prevalence of

<f5, f3, f4>in DB is min {2/5, 2/4, 2/4} =0.4, and changes to min {2/9, 2/8,2/6}=0.22 in DB".

<f,, f3, f4> becomes infrequent after database updated. Figure 5-14 shows the process of

determining the frequency of pattern <f,f5,f4>

Original Database DB

Incremental Database db
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Pattern Status Count in DB Count in EDB Count in DB’ Status in DB’
<fofsfa>| Freq | f2:2,f3:2, f4:2 f2:2, f3:2, f4:2 Infreq

Figure 5-14: The process of determining the frequency of pattern <f,,f3,f4>

Finally, we discover that the frequent patterns in the updated database are {<f;,f,>,

<f1,f3> <f1.fa> <fo.f3> <f3.f2>,<f1,f3,f2>}. Figure 5-15 shows the flowchart of

Inc_TMiner.
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Figure 5-15: The flowchart of Inc_TMiner.
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Chapter 6. Experimental results and performance study

To evaluate the performance of Inc_TMiner, two topological pattern mining algorithms
based on static databases, Topology Miner [7], Join-less Colocation Miner [5], and one
incremental spatial-temporal topological pattern maintaining algorithm IMCP based on
Join-less Colocation Miner method are implemented for comparison. All algorithms are
implemented in C++ language and tested on an Intel Centrino 1.3 GHz U7300 with 2 GB of
main memory running Windows 7 system. We test the performance on synthetic databases

with different parameters setting.
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6.1 Data Generator

Parameter Meaning Default

The number of points in the spatial temporal
N 300k
database

| The ratio of incremental dataset over the spatial
Incre_Ratio 0.1
temporal dataset

| The ratio of cross instances over total instances in
Cross_Ratio | 0.1
incremental dataset

L The number of feature in the longest pattern 10
The number of confident feature in the longest

m pattern 8

n The number of noise feature 2

H Percentage of the points with the noise features 0.2

© Minimum prevalence threshold 0.05

Maximum difference between prevalence of the
Amax 0.08
longest patterns and ©

‘ Minimum difference between prevalence of the
Amin -0.023
longest patterns and ©

R Distance Threshold 100
A Time Window threshold 10
The x-and y- extent of the spatial temporal
Map 10000

database
T The extent of the time dimension 4000

Figure 6-1: Parameters of synthetic data generator

We extend the synthetic data generator used for mining topological pattern in static
spatial-temporal databases [7]. Figure 6-1 shows the parameters setting of incremental

spatial-temporal data generator.
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In our experiments, we set N as the number of instances in an incremental spatial
temporal database. Incre_Ratio divides the spatial-temporal database into two parts, the
original database and the incremental database. N*(1-Incre_Ratio) is the size of the original
database DB and N*Incre_Ratio is the size of the incremental database db. Moreover, we
divide the incremental database into the Non-Cross database and the Cross database by
Cross Ratio. The size of Non_Cross database is N*Incre_Ratio*(1-Cross_Ratio), and the size of
the Cross database is N*Incre_Ratio*Cross_Ratio.

In each database we divide the instances by several parameters. First, we set L as the
number of features which appear in the longest pattern and m is the number of features
which are confident in the longest pattern. The confident features should participate in the
frequent patterns. n is the number«of noise features, and H is the percentage of noise
instances in the database. N*(1-Incre_Ratio)*H is the number of noise instances in the
original database. We assign these instances to noise features uniformly. The rest of
instances are assigned to non-noise features uniformly. © is min_prevalence. (Amax +O)
is the percentage of confident instances which appear in the longest pattern. The number of
instances N;, which must appear in the longest pattern of a feature f; in the original
database is (A max +©)* N*(1-Incre_Ratio)*(1-H) /L. For other features, the participation
ratio is (A min +©) and the number of instances in the longest pattern in the original
database is (A min +©)* N*(1-Incre_Ratio)*(1-H) /L.

We divide the spatial-temporal space by the cube-size with the spatial distance value %

T_units

and temporal distance value . First, we generate a center instances (x., y,, t.) randomly,

then we generate the instances around a circle with a radius r. the location coordinate is

2T 2T
N .

. 2 . . . :
(x; +r*sin—,y. + r * cos Fn), the temporal coordinate is t. + T_unit  sincos—. We
i i

4

confirm all instances in the cube will participate in the longest pattern. We mark the cubes

which intersect the cylinder. The centered of circle of cylinder is radius r and the height of
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the cylinder is 2*T_unit. No other longest pattern instance can generate in this circle. After
generating instances of each feature which participate in the frequent pattern, the process is

end. We generate the remaining instances randomly on the space.

6.2 Performance

In this section, we discuss the performance of Inc_TMiner. As to the comparison of
Inc_TMiner, we implement the other three algorithms, Topology Miner and Join-less
Collocation Miner and IMCP.

With the intention to show the efficiency of Inc_TMiner, we vary Cross_Ratio,
Incre_Ratio and prevalence threshold to_measure the execution times and memory usage of
the four algorithms. We also show scalability of Inc_TMiner by vary the data size of the

spatial temporal databases.

6.2.1 Effect of Cross Ratio

We study the performance of the four algorithms by varying Cross_Ratio from 0.05 to 0.5.
Figure 6-2 shows the effect of Cross_Ratio of the four algorithms v.s. the execution times.
When Cross_Ratio increases, the number of instances in the cross database also increases.
The execution times of the four algorithms also increase since more computations are
required for higher interaction relations between the original database and the incremental
database. However, Inc_TMiner still outperforms other algorithms and has a better

performance when Cross_Ratio is small.
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Figure 6-2: The effect of Cross Ratio

6.2.2 Effect of Incre Ratio

We evaluate the performance of the fouralgorithms-by varying the Inc_Ratio from 0.05
to 0.5. The results of the four algorithms-shown in Figure 6-3 indicate Inc_TMiner
outperforms the other three algorithms. When the Inc_Ratio increases, the number of
instances in the incremental database also increases, the four algorithms require more time
to discover topological patterns. When Inc_Ratio is in lower value, both the incremental
algorithms require less time compared to the static algorithms, since the size of the
incremental database in the updated database is smaller. The experiment shows Inc_TMiner

is more efficient than the other three algorithms, especially in small Inc_Ratio.
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Figure 6-3: The effect of Incre Ratio

6.2.3 Effect of Data Size

We study the effect of the number of instances N in the updated database. Figure 6-4
shows the results of the four algorithms with varing the number of instances from 100k to
1000k. Figure 6-5 depicts the performance_of -two incremental algorithms. Both incremetal
miners significantly outperform the static algorithms, especially when the number of
instances is greater than 500k, since the static algorithms regiure to re-mine the updated
databases which are much larger than the incremental databases. When the number of
instances increases, Inc_TMiner requires less time to discover topological patterns compared
to the other three algorithms. Moreover, Inc_TMiner outperforms IMCP, since Inc_TMiner
discovers frequent topological patterns in the depth-first method and maintains the
corresponding projected databases. Figure 6-6 shows the effect of data size versus memory
usage. When data size increases, the memory usage also increases. Incremental algorithms
are less effective than static algorithms because the incremetnal algorithms require to keep

some extra information count information, frequent pattern set to efficiently maintain
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topological patterns. Moreover, both Inc_TMiner and Topology Miner use the projected

database to facilitate the mining performance which also require extra memory storage.
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Figure 6-4: The effect of Data Size v.s. Runtime
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Figure 6-6: The effect of Data Size v.s. Memory Usage

6.2.4 Effect of Prevalence Threshold

Finally, we test the performance of min_prevalence by varying the value from 0.01 to
0.3. Figure 6-7 shows the performance of the four algorithms. When the min_prevalence
increases, the execution times of ‘the four algorithms decreases as expected since when the
prevalence threshold increases, more topological patterns become infrequent. As a result,
both static algorithms require more time to discover topological patterns than the
incremental algorithms. Moreover, in the comparison of two incremental algorithms,
Inc_TMiner takes less time than IMCP which is based on the candidate-maintenance-test
method. Figure 6-8 shows the memory usage of the four algorithms. When min_prevalence
increases, the memory usages of the four algorithms decrease since more topological

patterns become infrequent.
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Chapter 7. Conclusion

In this thesis, we investigate the issues for incremental maintenance of topological
patterns in large spatial temporal databases. We propose an efficient algorithm Inc_TMiner
by exploring techniques to maintain discovered topological patterns in spatial-temporal
databases in an incremental environment.

We improve the efficiency of the existing static algorithms, Topology Miner and Join-less
Collocation Miner. We use Cube-Feature Index as a summary structure which is efficient to
determine the neighbor relationships among instances and approximate the feature count in
a cube. With the intention of storing the neighbor relationship we obtain from Cube-Feature
Index structure, we utilize star neighborhood which materializes the neighbor set of each
instance. Instead of re-scanning the original databases and re-find the neighbor relationship
among instance, we retrieve-the neighbor set of an instances from star neighborhood. For
incremental maintenance of topological patterns, we store the previous mining results which
can be re-used. We store frequent patterns.in”FPS and record the feature counts of the
frequent patterns in count information Cl.

Inc_TMiner discovers patterns in the Pattern-Growth method which is superior to the
candidate-maintenance—test approach. Moreover, it utilizes the concept of the projected
database which partitions the databases into subset recursively. It also makes use of the
Apriori property to prune the impossible candidate patterns.

Inc_TMiner efficiently maintain topological patterns in incremental environment
without re-mining the updated database. Compared to the existing incremental algorithm
IMCP and the prior static algorithms Topology Miner and Join-less Collocation Miner, the
experiments show that the Inc_TMiner is efficient and scalable compared with than the

other three algorithms.
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