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大型時空資料庫中拓撲樣式探勘之漸進式維護 

研究生：吳昭瑩 指導老師：李素瑛 教授 

 

國立交通大學多媒體工程研究所 

 

 

摘要 

 在許多空間時間資料庫的生活應用，例如環境生態分析、氣象分析、位置基

礎分析，大都隨著時間變化做增量的更新。當資料庫增量更新後，有些已發現的

拓撲樣式會無效，而有些新的拓撲樣式會出現。 

當新的事件加入資料庫，假如每一次的更新都必須重新探勘拓撲樣式，將是

一件既沒效率且不切實際的工作。儘管最近有學者提出維護拓撲樣式的方法，而

且我們也可以應用既有探勘靜態資料庫的演算法重新探勘更新後的資料庫。然而，

既存的演算法並不是非常有效率。 

在大型時空資料庫中拓撲樣式探勘之漸進式維護是一件艱鉅的工作，因為拓

撲樣式探勘相較一般項目集樣式是比較複雜的。在這篇論文，我們提出一個演算

法，Inc_TMiner，主要是設計在增量的時空資料庫中維護拓撲樣式。在合成資料

的實驗結果顯示 Inc_TMiner 在執行時間優於之前的漸進式演算法，也優於利用

現有探勘靜態資料庫的演算法重新探勘更新後的資料庫。 

 

關鍵字：資料探勘, 增量式探勘, 拓撲樣式, 時間樣式, 時空資料庫. 
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ABSTRACT 

Spatial temporal data mining is an important research area with many interesting 

topics, such as ecology analysis, meteorology analysis, location-based analysis and so 

forth. Most spatial temporal databases are updating incrementally with time. Some 

discovered topological patterns may be invalidated and some new topological patterns 

may be introduced by the evolution of databases. When new instances are inserted 

into the database, we can re-mine topological patterns from scratch each time using 

the existing static algorithms. Some researches on the maintenance of topological 

patterns in an incremental manner are proposed. However, all static algorithms and 

incremental algorithms are incompetent and not scalable.  

In this thesis, an efficient algorithm, Inc_TMiner (Incremental Topology Miner) 

is developed to incrementally maintain topological patterns from spatial-temporal 

databases. The experimental results on synthetic datasets indicate that Inc_TMiner 

significantly outperforms the static algorithms and the existing incremental algorithm 

in execution time and possesses graceful scalability. 

Keyword: data mining, incremental mining, topological pattern, collocation 

pattern, spatial-temporal database. 
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Chapter 1. Introduction 

 

1.1 Introduction and Motivation 
 

In recent years, spatial-temporal data mining has received considerable attentions.  One 

important research topic in spatial-temporal data mining is mining topological patterns, also 

called colocation patterns. Mining topological patterns is an interesting and essential data 

mining technique with broad applications, such as ecology analysis, location-based analysis 

and meteorology analysis, to name a few. Many efficient algorithms [2, 3, 4, 5, 6, 7] proposed 

so far have good performances of discovering topological patterns from static databases.  

However, the assumption of having a static database may not be considered in some 

applications, since most databases usually grow incrementally over time in our daily life. Take 

meteorology analysis as an example, weather usually changes every day, such as “in Taipei, 

there was a typhoon yesterday, and it is foggy in the morning.” Moreover, meteorology 

analysis requires up-to-date information. If we re-mine databases each time, it may take lots 

of time when databases grow huge.  

The existing static algorithms do not take the evolution of databases and the 

maintenance of topological patterns into consideration. The results mined from the previous 

database may be no longer valid since some topological patterns would become invalid and 

some new topological patterns may be introduced with the evolution of databases. 

Obviously, re-mining the updated databases from scratch each time is inefficient since it 

wastes computational resources and neglect the previous mining results. 

As far as we know, there have been few efficient methods which discuss the maintenance 

of topological patterns mined from spatial temporal database in an incremental environment. 

Some existing algorithms of maintaining topological patterns from spatial-temporal 
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databases in an incremental environment require to generate and to store a potentially large 

number of candidate patterns. Moreover, the cost of managing the candidate patterns and 

computing the frequent patterns is high. With this reason, we develop a new approach to 

solve the drawbacks of the existing static algorithms and the existing incremental algorithms.  

In this thesis, an efficient algorithm, Inc_TMiner, which represents Incremental 

Topology Miner

 

, is proposed to address the important problem and incrementally maintain 

the discovered frequent topological patterns. Our contribution is listed as follows.  

 We use a Cube-Feature Index structure to record the instances count information of 

a feature. Cube-Feature Index is a two hash-based index which is efficient to 

determine the neighbor relationship among instances. With Cube-Feature Index, we 

can retrieve the approximate feature counts of a topological pattern efficiently  

 

 With the intention to store the neighbor relationship which we obtain from 

Cube-Feature Index, we use the Star Neighborhood. Star Neighborhood is a table to 

record the neighbor set of each instance. Moreover, it reduces the expensive cost of 

join operations in discovering neighbor relationship among instances. When 

incrementally maintain topological patterns, we may re-mine the original databases 

to obtain accurate information in some cases. Instead of re-scanning instances from 

the original database, we discover topological patterns through the Star 

Neighborhood which eliminates the steps of re-finding the neighbor relationships 

among instances.  

 

 Inc_TMiner avoids re-mining updated databases from scratch each time. 

Furthermore, Inc_TMiner is developed based on the pattern-growth method which 

avoids generating numerous candidates. Our experiments indicate Inc_TMiner 
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significantly outperforms the prior static algorithms and the existing incremental 

algorithm in execution time and possesses graceful scalability.  

 

1.2 Outline of the Thesis 
 

The remaining of this thesis is organized as follows. Chapter 2 and 3 provide the related 

works and the problem statement respectively. Chapter 4 introduces the basic concept of 

static algorithms, Topology Miner and Join-less Collocation Miner. Chapter 5 describes the 

details of our proposed algorithm: Inc_TMiner. Chapter 6 presents the experiments and the 

performance study. We make the conclusion of this thesis in Chapter 7. 
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Chapter 2. Related Works 

 

Spatial-temporal data mining is an interesting topic and many algorithms have been 

proposed for data analysis in spatial-temporal databases. For example, flow pattern mining 

[10,11], collocation pattern mining[7,18,19,21], clustering mining [12,14] are interesting 

topics in spatial temporal data mining. In this chapter, we review the related works of mining 

topological patterns in spatial databases and spatial-temporal databases. 

[1] proposes an algorithm to discover spatial association rules based on Apriori-like 

manner. Spatial association rules can be considered as one kind of topological pattern: the 

star-like patterns. Moreover, it converts the spatial dataset into transactions based on centric 

reference feature model. [2] introduces an instance join-based algorithm for collocation 

pattern mining which is similar to [1]. Join-based method has expensive computation cost 

and no scalability. [3] introduces a critical measurement, participation ratio which provides 

precise information of collocation patterns. Moreover, it develops a Collocation Miner based 

on the spatial join to retrieve instances in spatial databases. [4] introduces the partial-join 

approach to eliminate the computation cost of discovering collocation patterns by designing 

a clique neighborhood model. However, the performance of partial-join approach depends 

on the distribution of spatial datasets. [5] introduces the join-less approach for mining 

collocation patterns. It designs a star neighborhood model which stores neighbor 

information of each instance. It reduces the cost of expensive spatial join operations in 

discovering neighbor relations.  

[6] presents an algorithm to discover collocation patterns in spatial databases by 

combining the discovery of spatial neighborhoods with the mining process. The algorithm 

divides the extent of spatial temporal database and partitions the feature sets using a regular 

grid. They introduce a hash-based spatial join algorithm to operate multi-feature sets. 
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However, this algorithm is based on the candidate-maintenance-test method. When the 

number of features increases, the performance of the algorithm dramatically decreases. [7] 

develops the Topology Miner which focuses on mining collocation in static spatial-temporal 

databases. Topology Miner designs a summary structure to record the instances’ count 

information of a feature in a region within a time window. Furthermore, Topology Miner 

avoids the generation of many candidates and multiple scans of the database. It discovers 

the topological patterns follows the pattern growth method.  

The incremental maintenance technique for mining association rules has received a lot 

of attentions. [8] proposes FUP (Fast Update) algorithm which is the first incremental 

maintenance technique for mining association rules in large databases. The information from 

the previous mining data can be reused. Moreover, in discovering the new large item sets, 

the number of candidate sets can be pruned substantially. [9] proposes an algorithm, IMCP 

(Incremental Maintenance for Colocation Patterns), for incremental maintenance of 

discovered spatial collocation patterns. IMCP is based on Join-less method [5]. However, 

IMCP still uses the candidate-maintenance-test method. The performance of IMCP decreases 

when the number of the feature increases. 
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Chapter 3. Problem Definitions 

 

Given a spatial-temporal database DB, a set of n features F= {𝑓1, … , 𝑓𝑛} arranged in 

lexicographic order. Let I = {𝑖1 … , 𝑖𝑚 } be a set of m instances in database DB, each 

instance𝑖 has the following information <instance-ID, feature type, spatial-location, timeslot>, 

denoted as < 𝑖. 𝑖𝑑, 𝑖. 𝑓, 𝑖. 𝑥, 𝑖.𝑦, 𝑖. 𝑡 >.  

In the spatial dimension, we define R as a neighborhood relationship over the location 

of the instances in the database. Two instances 𝑖1 and 𝑖2 are said to be close to each other 

if only if the geometric distance of two instances, as defined in Eq.(3-1) is less than or equal 

to R. 

 

Geodist =  �(𝑖1.𝑥 − 𝑖2. 𝑥)2 + (𝑖1.𝑦 − 𝑖2.𝑦)2                 (3-1) 

 

 In the temporal dimension, we define W as a closeness relationship over the 

time-stamp of the instances in the databases. An instance 𝑖1 is said to be close to another 

instance 𝑖2 if the temporal distance, as defined in Eq. (3-2) is less than or equal to W.  

 

𝑇𝑒𝑚𝑑𝑖𝑠𝑡= |𝑖1. 𝑡 − 𝑖2. 𝑡|                                    (3-2) 

 

A topological pattern S of k-length or k-pattern, denoted as S :{𝑓1, … , 𝑓𝑘} is a set of 

spatial temporal features arranged in lexicographic order. A pattern Q is said to be a 

sub-pattern of the pattern P if  ∀ 𝑓𝑖  ∈ 𝑄 , 𝑓𝑖 ∈ P, and P is a super-pattern of the pattern Q, 

denoted as Q≼P. 
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Figure 3-1: Examples of topological patterns 

 

Two kinds of topological patterns: star-like patterns and clique-like patterns are 

concerned. A topological pattern S is a star-like pattern if an instance with feature type 𝑓𝑖  of 

S is located close to other instances, while other instances with other feature types are not 

required to be close to each other. A star-like pattern is denoted as <𝑓𝑖: 𝑓1, . . ,𝑓𝑘>. Figure 

3-1(a) shows an example of star-like patterns, i.e. <a :{ b, c, d}>. Nodes are instances with 

feature types {a, b, c, d}, and an edge between two nodes indicate the two nodes are 

neighbors.  

A topological pattern S is a clique-like pattern if and only if all instances with different 

feature types are close to each other. A clique-like pattern is denoted as <𝑓1, 𝑓2, … ,𝑓𝑘>. 

Figure (b) shows an example of clique-like patterns where the instances of the features <a, b, 

c, d> are close to each other.  

Different from the measurement, support [5], the participation ratio [11] has been 

introduced to be a crucial measurement for expressing the strength of collocation patterns in 

the spatial database. The participation ratio, denoted as  𝑝𝑟(𝑓𝑖 , 𝑆), captures the probability 

whenever an instance’s feature type 𝑓𝑖  participates in a pattern S. We define the equation 

as follows:   

 

𝑝𝑟(𝑓𝑖, 𝑆) = # 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑓𝑖 𝑖𝑛 𝑎 𝑐𝑜𝑙𝑙𝑜𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑆
# 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑓𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

                     (3-3) 



 

8 
 

 

To show the strength of a topological pattern S, we define the prevalence of a pattern S, 

denoted as prevalence (S), which is a minimum probability among all features of S. The 

equation of prevalence is defined as follows. 

 

prevalence (S) = min { 𝑝𝑟(𝑓𝑖 , 𝑆),∀ 𝑓𝑖 ∈ 𝑆}.                          (3-4) 
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Chapter 4. Basic Concepts of the Static Algorithms 

 

 In this chapter, we discuss two static algorithms Topology Miner [7] and Join-less 

Collocation Miner [2]. Both are efficient for mining topological patterns in the static spatial 

temporal database. 

 

4.1 Topology Miner 

 

 First, we present the basic concepts of Topology Miner [7] which is an efficient 

algorithm to discover the topological patterns in spatial temporal database. Topology Miner 

discovers the frequent topological patterns in the depth-first manner. This algorithm consists 

of two phases:  

 

 The First Phase: Topology Miner divides the space-time dimension into a set of 

disjoint cubes. Then, it scans the database to build a summary structure which is a 

two hash-based indices structure. The summary structure stores the instances’ 

count information of features in a cube.  

 

 The Second Phase: Topology Miner discovers the frequent topological patterns in 

the depth-first manner by utilizing the count information stored in the summary 

structure.  
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4.1.1 Summary Structure 
 

Let DB be the spatial temporal database, R and W be the distance threshold and the 

time window threshold. It divides the space-time dimensions into a set of disjoint cubes 

{<𝑐𝑥1,𝑦1,𝑤1 >, <𝑐𝑥1,𝑦1,𝑤2 >, …,<𝑐𝑥1,𝑦1,𝑤𝑞 >,… ,<𝑐𝑥𝑝,𝑦𝑝,𝑤𝑞>} where {𝑐𝑥1,𝑦1, … , 𝑐𝑥𝑝,𝑦𝑝} are 

2-demension cells with width 𝑅
2√2

, and {𝑤1,𝑤2, … ,𝑤𝑞} are 1-demension time periods with 

width 𝑊
2

. 

For the instances in a cube <𝑐𝑥𝑘,𝑦𝑘,𝑤𝑡>, It is easier to determine their close neighbors, 

which must be the instances in one of cubes <𝑐𝑥𝑖,𝑦𝑖,𝑤𝑠> in the set 𝑁𝑐𝑥𝑘,𝑦𝑘,𝑤𝑡= {< 𝑐𝑥𝑖,𝑦𝑖,𝑤𝑠 >| 

|𝑥𝑘 − 𝑥𝑖|≤  2  ˄  |𝑦𝑘 − 𝑦𝑖 |≤2  ˄  |t-s| ≤2}. Topology Miner defines two units as a 

neighborhood threshold. Figure 4-1 is an example of the spatial temporal database with 

R=45, W =90 mins. The space is divided into 48 cells and the time is divided into 8 time 

periods.  

 

 
Figure 4-1: An example of the spatial temporal database[7] 

 

  Topology Miner scans the spatial-temporal database to build the summary structure 
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which records the instances’ count information of features in a cube. In order to facilitate the 

operations for retrieving the neighborhood instances and the instances’ count, it constructs 

two hash-based indices, called FCI (Feature-Cube Index) and CFI (Cube-Feature-Index). Both 

indices are two-level structures. CFI has a composite information (<𝑐𝑥𝑖,𝑦𝑖,𝑤𝑠>, feature type). 

𝑐𝑥𝑖,𝑦𝑖 is the spatial location, and 𝑤𝑠 is the time period. The first level is used to index the 

cube location with the identifier <𝑐𝑥𝑖,𝑦𝑖,𝑤𝑠>, and the second level indexes the feature type. 

FCI has a composite information (feature type, <𝑐𝑥𝑖,𝑦𝑖,𝑤𝑠>). The first level indexes the feature 

type, and the second level indexes cube location. It can retrieve the instances’ count of 

features that occur in cube <𝑐𝑥𝑖,𝑦𝑖,𝑤𝑠> with the information of CFI and determine the cubes 

in which a feature occurs with FCI. Both can obtain instances’ count information in constant 

time. Figure 4-2 is an example of the summary structure with the two indices CFI and FCI. 

With these two indices, it can approximate the number of instances of a topological pattern. 

It considers two instances are near in the position if and only if their cubes are neighbors. 

Take feature 𝑓1 as an example, through FCI, we know instances with feature 𝑓1 occur in 

two cubes, one is <𝑐1,5,𝑤5> with count 1, another is <𝑐5,5,𝑤1> with count 1. Topology Miner 

can find the neighbors of these two instances through CFI, the instance occur in <𝑐1,5,𝑤5> 

with feature 𝑓1 has a neighbor instance occurred in <𝑐1,5,𝑤5> with feature 𝑓2, and the 

feature count is 1. Similarly, the instance occurred in <𝑐5,5,𝑤1> with feature 𝑓1 has two 

neighbor instances, one occurs in <𝑐6,5,𝑤1> with feature 𝑓2, and another occurs in <𝑐6,5,𝑤2> 

with feature 𝑓3. Both the feature counts are 1. 



 

12 
 

 

Figure 4-2: The summary structure with the two indices CFI and FCI [7]. 

 

4.1.2 Concept of Projected Database 
 

Topology Miner constructs the projected database by utilizing the information of 

instances’ count from the summary structure and discovers the frequent topological patterns 

in the pattern growth method. The pattern growth method partitions the database into 

subsets recursively. Moreover, it makes use of the Apriori property to prune the search space 

and counts the frequent patterns in order to decide it can assemble longer patterns.  

Topology Miner defines the projected database of a k-length topological pattern S= 

{𝑓1, … ,𝑓𝑘}, denoted as 𝑃𝑠. 𝑃𝑠 is the collection of the entries <L,𝑅𝑝>, the cube-list L, denoted 

as (<𝑐𝑥1,𝑦1,𝑤1>… <𝑐𝑥𝑘,𝑦𝑘, w𝑘>), is a list of cubes where the instances of the features in S 

occur, all cubes in 𝑃𝑠.L must be neighbors. The feature list 𝑃𝑠.𝑅𝑝 which has the format ( 𝑓𝑟: 

<𝑐𝑥𝑚,𝑦𝑚,𝑤𝑚> ) where the instances of the related feature 𝑓𝑟 are in the cube <𝑐𝑥𝑚,𝑦𝑚,𝑤𝑚>. 



 

13 
 

𝑅𝑝 is a pointer pointing to a list of features that are related to the pattern S. The feature list 

stores the potential features that can be used to combine with S to generate longer patterns. 

Figure 4-3 shows an example of the projected database of 𝑓1. 

 

 
Figure 4-3: The projected database of <𝒇𝟏>[7] 

 

4.1.3 Construction of Projected Database 
 

The first step of constructing the projected database 𝑃𝑓𝑖 is to obtain the cube-lists of 𝑓𝑖  

from FCI. In this example, Topology Miner obtains two cube-lists of 𝑓1 by scanning FCI, which 

are 𝐿1  = (< 𝑐1,5,𝑤5>), 𝐿2  = (< 𝑐5,5,𝑤1>).  For each cube-list L in 𝑃𝑓𝑖 , Topology Miner 

obtains its neighbor-set and the related features of each cube in neighbor set by scanning CFI. 

Topology Miner generates the new entries 𝑃𝑓1.𝑅𝑝 with the information of the related features 

and the neighboring cubes. 

 For instance, One valid neighbor instance for 𝐿1: (< 𝑐1,5,𝑤5>) is in the cube < 𝑐1,5,𝑤5> 

with the related feature 𝑓2 . Topology Miner adds the new entry (𝑓2: < 𝑐1,5,𝑤5>) into 

feature-list 𝑅𝑝1 . Similarly, for  𝐿2 : (< 𝑐5,5,𝑤1>), there are two valid neighbor instances, one 

is in the cube< 𝑐6,5,𝑤1> with the related feature 𝑓2 and another one is in the cube < 𝑐6,5,𝑤2> 

with the related feature 𝑓3 , Topology Miner adds the new entries (𝑓2: < 𝑐6,5,𝑤1>) and (𝑓3: 

< 𝑐6,5,𝑤2>) into feature-list 𝑅𝑝2 .  

The projected database of a length-k pattern 𝑆𝑘 = {𝑓1, … , 𝑓𝑘−1,𝑓𝑘} can be derived from 

the projected database of its prefix 𝑆𝑘−1 = {𝑓1, … , 𝑓𝑘−1}. ,𝑓𝑘  is a related feature of the 

pattern 𝑆𝑘−1, Topology Miner obtains the related feature from 𝑃𝑆𝑘−1.𝑅𝑝.  
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Topology Miner constructs the projected database 𝑃𝑠𝑘  from 𝑃𝑠𝑘−1  as follows. In the 

projected database  𝑃𝑠𝑘−1, for each entry <L,𝑅𝑝>, Topology Miner can obtain an element of 

the feature 𝑓𝑘 and a neighboring cube <𝑐𝑥𝑚,𝑦𝑚,𝑤𝑚> from feature-list 𝑃𝑠𝑘−1 .𝑅𝑝.  Topology 

Miner generates the new entry <L,𝑅𝑝> of 𝑃𝑠𝑘. Topology Miner assigns  𝑃𝑠𝑘 . 𝐿 =𝑃𝑠𝑘−1 .𝐿 ∪ 

{<𝑐𝑥𝑚,𝑦𝑚,𝑤𝑚>}. 𝑃𝑠𝑘 .𝑅𝑝 is the subset of 𝑃𝑠𝑘−1 .𝑅𝑝, and each element must be a neighbor of 

the cube <𝑐𝑥𝑚,𝑦𝑚,𝑤𝑚>.  

Figure 4-4 shows an example of the projected database of the pattern <𝑓1,𝑓2> which is 

derived from the projected database of the pattern <𝑓1>. Both two entries contain a related 

feature 𝑓2  in 𝑃𝑓1 . Hence, Topology Miner creates two entries for  𝑃<𝑓1,𝑓2>  , One 

is  𝑃<𝑓1,𝑓2>.𝐿1 = {< ( 𝑐1,5,𝑤5) >, < ( 𝑐1,5,𝑤5) >} and its feature list   𝑃<𝑓1,𝑓2>.𝑅𝑝1 is null since no 

instances are neighbor instances of these two instances. Another is  𝑃<𝑓1,𝑓2>.𝐿2 = {< ( 𝑐5,5,𝑤1) 

>, <  ( 𝑐6,5,𝑤1)  >} and its feature list is  𝑃<𝑓1,𝑓2>.𝑅𝑝2 is (𝑓3: < 𝑐6,5,𝑤2>).  

 

 
Figure 4-4: The projected database of < 𝒇𝟏,𝒇𝟐 > [7] 

 

4.1.4 Mining Topological Patterns 
 

Two different kinds of patterns: star-like patterns and clique-like patterns are concerned. 

Topology Miner can mine these two kinds of patterns from the projected database 𝑃𝑆𝑘 .  

Mining star-like patterns. Topology Miner directly mines the projected database of the 

features. For a feature 𝑓𝑖, the feature 𝑓𝑗 are said to be one related feature of  𝑓𝑖  if only if the 

participation ratio pr (𝑓𝑗 , < 𝑓𝑖 ,𝑓𝑗 >) ≥ min_prevalence. All the frequent related features 

of  𝑓𝑖  form a star-like pattern: {𝑓𝑖: < 𝑓𝑟1, … , 𝑓𝑟𝑚 >}. Figure 4-5 shows a star-like pattern S = 

<𝑓1: {𝑓2,𝑓3}> since pr (𝑓2, < 𝑓1,𝑓2 >) =0.33 and pr (𝑓3, < 𝑓1,𝑓3 >) = 0.5 are greater than 
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min_prevalence 0.3. 

 

 

Figure 4-5: An example of mining star-like patterns [7] 

 

Mining clique-like patterns. The process is more complicated compared to star-like 

patterns, the main goal is to check a related feature 𝑓𝑟 of 𝑆𝑘 which can be combined with 

𝑆𝑘 to generate a longer clique-like pattern 𝑆𝑘+1 = 𝑆𝑘 U {𝑓𝑟}.  It determines whether the 

prevalence of 𝑆𝑘+1 which is the minimum participation ratio among all features of pattern 

𝑆𝑘+1 is greater than or equal to min_prevalence. Namely, Topology Miner needs to check 

not only the related feature 𝑓𝑟, but also all other features which occur in 𝑆𝑘+1 . 

Let the set RF contains all related features in 𝑆𝑘 and it arranges these features in 

lexicographic order. For each feature 𝑓𝑟  in RF, Topology Miner first compute the 

participation ratio pr ( 𝑓𝑟 , 𝑆𝑘+1 ) in the projected database  𝑃𝑆𝑘 . If pr ( 𝑓𝑟 , 𝑆𝑘+1 )  ≥ 

min_prevalence, Topology Miner continues to compute the participation ratio pr (𝑓𝑖 , 𝑆𝑘+1) 

for each 𝑓𝑖  ∈ 𝑆𝑘. Otherwise, it removes the feature  𝑓𝑟 since 𝑓𝑟 cannot combine with Sk to 

generate any frequent topological patterns.  

Figure 4-5 shows an example of mining 2-clique-like patterns with min_prevalence 0.3. In 

the projected database of  𝑓1, denoted as 𝑃𝑓1, two feature are the related features of 𝑓1. To 

determine the pattern < 𝑓1,𝑓2 > is a frequent clique-like pattern, it needs to compute 

prevalence of < 𝑓1,𝑓2 >. Namely, it computes the participation ratio pr (𝑓2, < 𝑓1,𝑓2 >) and 
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pr (𝑓1, < 𝑓1,𝑓2 >). In this example, there are six instances of 𝑓2 in the database, and two 

instances of 𝑓2 participate in the pattern< 𝑓1,𝑓2 >.Hence, pr(𝑓2, < 𝑓1,𝑓2 >) = 2/6. Similarly, 

pr (𝑓1, < 𝑓1,𝑓2 >) = 2/2. Finally the prevalence (< 𝑓1,𝑓2 >) = min {1, 0.33} =0.33 which is 

greater than min_prevalence 0.3. Therefore, < 𝑓1, 𝑓2 > is a frequent clique-like pattern.  

Topology Miner continues to determine the frequency of the pattern < 𝑓1,𝑓2, 𝑓3 >. 

Similarly, it computes the prevalence of < 𝑓1,𝑓2,𝑓3 >. First, Topology Miner computes the 

participation ratio of 𝑓3,pr (𝑓3, < 𝑓1,𝑓2,𝑓3 >) = 1/2, is greater than min_prevalence 0.3, then 

Topology Miner continues to compute each feature in pattern< 𝑓1,𝑓2 >. The participation 

ratio of 𝑓2 pr (𝑓2, < 𝑓1,𝑓2,𝑓3 >) =1/2 which is also greater than 0.3. However, pr (𝑓1, <

𝑓1,𝑓2,𝑓3 >) = 1/6 is less than 0.3. Hence, < 𝑓1, 𝑓2,𝑓3 > becomes infrequent. Figure 4-6 

shows the process of mining clique-like pattern < 𝑓1,𝑓2, 𝑓3 >.  

 

 
Figure 4-6: An example of mining clique-like patterns [7]. 

 

Figure 4-7 shows the framework of Topology Miner. The inputs are the spatial temporal 

database DB, the distance threshold R, the time window threshold W, and the prevalence 

threshold min_prevalence. It outputs the set of frequent star-like patterns and clique-like 

patterns. 
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Figure 4-7: The framework of Topology Miner [7]. 
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4.2 Join-less Collocation Miner 
 

In this section, we present another static algorithm, Join-less Collocation Miner [5] which 

is an efficient algorithm to discover the topological patterns in static spatial databases. 

Join-less Collocation Miner proposes the concept of star neighborhood to materialize the 

neighbor relationships without duplication of the neighbor relationships and loss of 

collocation instances.  

Join-less Collocation Miner uses an instance-look up method to reduce the computation 

cost of identifying the instances of topological patterns. Moreover, it has a coarse pruning 

step which can filter candidate patterns of topological patterns without finding exact the 

instances of topological patterns.  

In this algorithm, it uses candidate-maintenance-test method to generate candidate 

patterns. It also makes use of Apriori property to prune the search space. Figure 4-8 is the 

concept of candidate-maintenance-test with Apriori property pruning.  

 

 

 Figure 4-8: The concept of candidate-maintenance-test with Apriori Property pruning. 
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4.2.1 Neighborhood Materialization 
 

First, Join-less Collocation Miner proposes a method to materialize disjoint star neighbor 

relationship as a framework for efficient collocation mining.  

 

Definition 4.1  Given a spatial-temporal instance ii ∈ DB with feature type fi, the star 

neighborhood of ii is defined as a set of spatial-temporal instances SNi = 

{ij ∈ DB |Gdist�ii, ij� ≤ R ⋀Temdist�ii, ij� ≤ W, fj > fi} 

 

 
Figure 4-9: An example to materialize star neighbor relationships [5] 

 

The star neighbor of a center instance is the set of the center instance and instances in 

its neighborhood whose feature types are greater than the feature type of the center 

instance in a lexicographic order. Figure 4-9 shows an example to materialize star neighbor 

relationship of a spatial dataset. The neighborhood areas of instances 𝑓1.𝑎,𝑓1. 𝑐,𝑓2.𝑑 are 

represented in dotted circles with distance threshold R as radius. The black solid lines in each 

circle represent a star neighbor relationship with the center instances. 𝑓1.𝑎 has two 

neighbor instances, 𝑓2. 𝑎,𝑓3. 𝑎. The star neighborhood of 𝑓1. 𝑎 is {𝑓1.𝑎, 𝑓2.𝑎, 𝑓3.𝑎} including 
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the center instances 𝑓1.𝑎. In the case of  𝑓1. 𝑐, three neighbor instances are 

present,  𝑓1.𝑑,  𝑓2. 𝑐, 𝑎𝑛𝑑 𝑓3.𝑎. However, 𝑓1. 𝑑 is not included in the star neighborhood set 

of 𝑓1. 𝑐 since we focus on relationships among different feature types.  

 

Definition 4.2 Let I = {𝑖1, … , 𝑖𝑘}⊆ I be a set of spatial instances whose feature types {𝑓1,…,𝑓𝑘} 

are different. If all instances in I are neighbors to center instance 𝑜1, I is called a star instance 

of the topological pattern S = {𝑓1,…,𝑓𝑘}.  

 Figure 4-9 shows the star neighborhood of  𝑓1.𝑎  is { 𝑓1.𝑎  ,  𝑓2. 𝑎 ,  𝑓3.𝑎  }. 

{𝑓1.𝑎 , 𝑓2. 𝑎, 𝑓3.𝑎 } is also one of star instances of {𝑓1, 𝑓2, 𝑓3}. 

 

4.2.2 Join-less Collocation Mining Algorithm 
 

The join-less collocation mining algorithm has three phases. The first phase 

converts a spatial dataset into a set of disjoint star neighborhoods. The second phase 

gathers the star instances of candidate patterns from the star neighborhood set, and 

coarsely filters candidate patterns. The third phase filters instances from the star 

instances, and finds prevalent topological patterns and generates co-location rules. 

Figure 4-10 shows the pseudo code of Join-less Collocation Miner and Figure 4-11 is an 

example of the process of mining colocation patterns. Join-less Collocation Miner 

explains the algorithms with this example step by step.  
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Figure 4-10: The pseudo code of Join-less Collocation Miner[5] 
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Figure 4-11: The process of mining topological patterns[5]. 

 

Convert a spatial dataset to a set of disjoint star neighborhoods (step 1): Given a 

spatial dataset and a distance threshold, Join-less Collocation Miner finds all neighbor 

instance pairs using a geometric method such as plane sweep, or a spatial query method 

using quaternary tree or R-tree. The star neighborhoods are generated by grouping the 

neighboring instances. 

 

Generate candidate patterns (step 4):  k-length candidate patterns are generated 

from prevalent (k-1)-length topological patterns. Join-less Collocation Miner make use of 

Apriori property to prune the impossible candidate patterns. If any subset of a candidate 

pattern is not prevalent, the candidate pattern is impossible be frequent.  
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Filter the star instances of a candidate pattern from the star neighborhood (step 5): 

The star instances of a candidate pattern are gathered from the star neighborhoods 

whose center instance feature is the same as the first feature of the candidate pattern. 

For example, the instances of a candidate pattern {𝑓2,𝑓3} are gathered from the feature 

𝑓2 star neighborhoods, and the instances of {𝑓1,𝑓2,𝑓3} are gathered from the feature 𝑓1 

star neighborhoods. 

 

Select coarse prevalent topological patterns using their star instances (step 9): The 

length 2 star instances are clique instances since our neighbor relationship is symmetric. 

For length 3 or more, Join-less Collocation Miner requests to check if the star instance is 

a clique instance. In order to reduce computation cost, it has a coarse filtering step of 

mining topological patterns. If the prevalence calculated from the star instances of a 

candidate pattern is less than min-prevalence. The candidate pattern is pruned without 

exact examination.  

 

Filter instances of a topological pattern (step 10): From the star instances of a 

candidate pattern, Join-less Collocation Miner filters its topological pattern instances by 

looking up all the instances of the topological pattern of features except the first feature 

of topological instances. For example, to examine the clique-like pattern of a star 

instance {𝑓1.𝑎,𝑓2.𝑎,𝑓3.𝑎} of pattern {𝑓1, 𝑓2,𝑓3}, Join-less Collocation Miner only examine 

the sub-instances {𝑓2.𝑎, 𝑓3.𝑎 } except 𝑓1. 𝑎.  

 

Select prevalent topological patterns (step 12): The refinement filtering of 

topological patterns is done by the participation ratio calculated from the instances of 

topological patterns. Frequent topological patterns satisfy the min_prevalence. 
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Chapter 5. Proposed Algorithm: Inc_TMiner 

 

 In this chapter, we discuss our algorithm Inc_TMiner for incremental maintenance 

of topological patterns in spatial-temporal databases. First, we describe the basic definitions 

of Inc_TMiner. Second, we present the concept of Inc_TMiner. Finally, we discuss the details 

of the updating process of Inc_TMiner with examples.   

 

5.1 Basic Definitions of Updated Database 
 

In incremental environment, we have two different kinds of databases, the original 

database DB and the incremental database db. Moreover, we separate the incremental 

database into two parts: the Non_Cross database 𝑑𝑏𝑛𝑐  and the Cross database 

𝑑𝑏𝑐.  𝑖. 𝑒.  𝑑𝑏 = 𝑑𝑏𝑐 + 𝑑𝑏𝑛𝑐. Figure 5-1 shows the classification of the databases.  

 

 

Figure 5-1: The classification of the databases. 
 

The Non_Cross database, denoted as 𝑑𝑏𝑛𝑐, is referred to as the set of new instances 

which have no neighbor instances occurred in DB. The Cross database, denoted as 𝑑𝑏𝑐, is the 
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set of new instances which have neighbor instances existed in DB. Figure 5-2 shows the 

concepts of Non_Cross database and Cross database in an updated topological spatial 

temporal database. 

 

 

Figure 5-2: The concepts of Non_Cross database and Cross database 

 

A database combining all the data instances from DB and db is referred to as the 

updated database DB’. An extended database EDB is the set of instances from incremental 

database db and instances in the original database DB which are neighbors of the instances 

in 𝑑𝑏𝑐. Figure 5-3 shows an example of the extended database EDB.   

 

 
Figure 5-3: An example of the extended database EDB 
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In the extended database EDB, we have to modify the definition of the measurement of 

discovering frequent topological patterns to avoid losing accurate count information. 

Different from the prevalence in Eq.(3-4) which determines the minimum participation ratios 

among all features of a pattern S, we define a new measurement, Max_PV(S) in Eq.(5-1) 

which determines the maximum participation ratios among all features in a pattern S. If 

Max_PV (S) < min_prevalence, pattern S is impossible to become frequent.  

 

Max_PV (S) =max { 𝑝𝑟(𝑓𝑖, 𝑆),∀ 𝑓𝑖 ∈ 𝑆 }.                            (5-1) 

 

With the intention of incremental maintenance of topological patterns in spatial 

temporal databases, we need to store important information from the previous results which 

can be re-used. First, we store Frequent Pattern Set (FPS) which is the set of frequent 

patterns from the previous mining result. We also store the count information of each 

frequent pattern in Count Information (CI). There are three columns in Count Information: 

Pattern Type, Status, and Count. Pattern Type shows the feature types involved in this 

pattern. Status shows the frequency of this pattern. Count records the counts of each feature 

in a frequent pattern. Figure 5-4 shows an example of Count Information. In the example, 

<𝑓1,𝑓2,𝑓3> is a frequent pattern, and we mark the Status of < 𝑓1,𝑓2,𝑓3 > as Freq. Moreover, 

we store the counts of each feature 𝑓1: 3,𝑓2: 2,𝑓3: 3. 

 

Pattern Type Status Count 

<f1,f2,f3> Freq f1:3 f2:2 f3:3 

<f1,f2,f4> InFreq  

Figure 5-4: An example of count information CI 
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Problem Statement: Consider a spatial-temporal database DB, the minimum prevalence 

threshold min_prevalence, a frequent topological pattern set FPS from DB, and an 

incremental database db. The problem of incremental maintenance of topological pattern is 

to maintain the set of frequent topological pattern FPS’ in an updated database DB’ based on 

the information of FPS instead of re-mining DB’ from scratch. 

 

5.2 The Basic Concept of Inc_TMiner 
 

We improve the efficiency of the existing algorithms. Hence, we design a new core 

algorithm for Inc_TMiner which combines the advantages of Topology Miner and Join-less 

Collocation Miner.  

 First, with the intention of incremental maintenance of topological patterns, we need to 

store the neighborhood relationships among instances. Therefore, we utilize the star 

neighborhood based on the concept of star neighborhood in Join-less Collocation Miner. It 

reduces the expensive cost of join operations in discovering topological patterns. Moreover, 

when we incrementally maintain the discovered topological patterns, we may re-mine the 

original database to retrieve accurate information in some cases. Instead of re-scanning the 

original database, we discover patterns from the star neighborhood which is more efficient. 

Figure 5-5 shows an example of the original database and its star neighborhood.  
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Figure 5-5: An example of (a) the original database (b) star neighborhood. 

 

  In order to find neighbor instances efficiently, we design a Cube-Feature Index structure 

based on the concept of summary structure in Topology Miner. Cube-Feature Index is built 

with the composite key (<𝑐𝑥𝑖,𝑦𝑖 ,𝑤𝑠>,𝑓𝑖), and its first level is used to index the cube with the 

identifier <𝑐𝑥𝑖,𝑦𝑖 ,𝑤𝑠> and its second level indexes the feature type 𝑓𝑖. With this structure, we 

can obtain the feature count occurred in a cube <𝑐𝑥𝑖,𝑦𝑖 ,𝑤𝑠>. Moreover, it is easier to discover 

the neighbor cubes of <𝑐𝑥𝑖,𝑦𝑖 ,𝑤𝑠> and retrieve the neighbor instance counts.   

 Finally, we generate candidate patterns using lexicographic Pattern-Growth method 

mentioned in Topology Miner. Pattern-Growth method is one of the most effective methods 

for frequent pattern mining and superior to candidate-maintenance-test approach. We also 

make use of Apriori property to prune the impossible candidate patterns. 
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5.3 The Updating Process of Inc_TMiner 
 

In this section, we discuss the updating process of Inc_TMiner. First, we discuss the 

different cases when the database updated. Second, we give the details of our algorithm 

with examples.  

  

5.3.1 Cases of Updating Process 
 

When an original database DB is updated to DB’, we have to check the extend database 

EDB to update frequent patterns in FSP. There are several cases.  

Case 1. If pattern S which appears in EDB is frequent in DB, then we update the count 

information CI. It is easy to handle since we have already kept the count information from 

the previous mining result.  

Case 2. If pattern S which appears in EDB is not frequent in DB, then we check Max_PV (S) in 

EDB. If Max_PV(S) is greater than or equal to min_prevalence, then we re-mine the original 

database (Case 2.1). On the contrary, if Max_PV(S) ≤ min_prevalence, then it is impossible 

to become frequent in an updated database (Case 2.2) based on theorem 1. 

 

Theorem 1. If a topological pattern S is not frequent in the original database DB and 

Max_PV(S) < min_prevalence in EDB, it is impossible to become frequent in an updated 

database DB’. 

 

Proof: 𝑓𝑚𝑎𝑥  is the feature with max participation ratio in pattern S in EDB. 

 𝑛𝐷𝐵,𝑛𝐸𝐷𝐵 ,𝑛𝐷𝐵′ are the numbers of 𝑓𝑚𝑎𝑥  which participate in pattern S in DB,EDB,DB’ 

 𝑁𝐷𝐵,𝑁𝐸𝐷𝐵,𝑁𝐷𝐵′ are the number of 𝑓𝑚𝑎𝑥  in DB, EDB, DB’.  

As we know pattern S is not frequent in the original database DB. 
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𝑛𝐷𝐵
𝑁𝐷𝐵

<min_prevalence 

𝑛𝐷𝐵<min_prevlence* 𝑁𝐷𝐵 

𝑛𝐷𝐵+𝑛𝐸𝐷𝐵 <min_prevalence* 𝑁𝐷𝐵+𝑛𝐸𝐷𝐵 

𝑛𝐷𝐵+𝑛𝐸𝐷𝐵
𝑁𝐷𝐵+𝑁𝐸𝐷𝐵

<min_prevalence+𝑛𝐸𝐷𝐵-min_prevalence * 𝑁𝐸𝐷𝐵  

𝑛𝐷𝐵′
𝑁𝐷𝐵′

<min_prevalence+𝑛𝐸𝐷𝐵-min_prevalence * 𝑁𝐸𝐷𝐵 

If 𝑛𝐸𝐷𝐵-min_prevalence * 𝑁𝐸𝐷𝐵 ≤0, then 𝑛𝐷𝐵′
𝑁𝐷𝐵′

 is impossible to be greater than or equal 

to min_prevalence.  

So 𝑛𝐸𝐷𝐵
𝑁𝐸𝐷𝐵

≤ min_prev, then pattern S is infrequent in the updated database. 

 

Case 3. If pattern S which does not appear in EDB is frequent in DB, we re-calculate the 

prevalence. Since we have already kept the count information, it is easy to compute the 

prevalence.  

 

5.3.2 Inc_TMiner Algorithm 

 

The Inc_TMiner algorithm has three phases. First, we update the Star Neighborhood 

and find the extended database in the Update phase. Second, the Star Mining phase 

discovers star-like patterns and 2 clique-like patterns in the updated database. Finally, 

the Clique-Mining phase is mining frequent clique-like patterns.  

Figure 5-6 shows the framework of Inc_TMiner. It takes the Frequent Pattern Set FSP, 

the Count Information CI, the Star Neighborhood SN from the previous mining result, 

and the incremental database db as input. It outputs the set of frequent topological 

patterns and Figure 5-7 shows the pseudo code of Inc_TMiner. We explain the process of 

Inc_TMiner with an example step by step.  



 

31 
 

 

 

Figure 5-6: The framework of Inc_TMiner. 
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Figure 5-7: The pseudo code of Inc_TMiner. 
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 The Update Phase: 

Step I: Update the star neighborhood and determine the extended database EDB (Line 

3-Line 4):  

First, we update the star neighborhood when inserting the new instances and 

determine the extended database EDB. Figure 5-8 shows an example of the updated 

database DB’. We also mark the extended database EDB in this example. A special instance 

𝑓1. 𝑒 which is an instance in the original database is also an instance in the extended 

database, since 𝑓1. 𝑒 is the neighbor of 𝑓3. 𝑒 and 𝑓4. 𝑒.which are instances in the Cross 

database.  

 

 
Figure 5-8: An example of the updated database DB’ and the extend database EDB 

 

Through the summary-structure, we discover the neighbor instances of new instances 

{ 𝑓1.𝑓, 𝑓1.𝑔, 𝑓2. 𝑒, 𝑓2.𝑓,𝑓2.𝑔, 𝑓2.ℎ, 𝑓2. 𝑖,𝑓3. 𝑒,𝑓3. 𝑓,𝑓3.𝑔,𝑓3.ℎ,𝑓4. 𝑒, 

𝑓4.𝑓} which are inserted into the incremental database. We store these new instances and 

the neighbor instances of these new instances in star neighborhood. Figure 5-9 is the star 
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neighborhood of the extended database.  

 

Figure 5-9: The star neighborhood of the extended database. 

 

 The Star Mining Phase 

Step II: Update the count information of 2 clique–like patterns and mine frequent 

star –like patterns and 2 clique-like patterns. (Line 5-Line 7) 

We can obtain the feature counts of 2 clique-like patterns directly from star 

neighborhood. Therefore, we update the feature counts of each 2 clique-like patterns in CI 

since we have already stored the count information from the previous result. For each 

2-clique-like pattern, we add the feature counts in extended database to the feature counts 

in CI.  

Figure 5-10 shows the count information after database updated. Take pattern <𝑓1, 𝑓2> 

as an example, the feature counts of <𝑓1,𝑓2> in the original database are 𝑓1: 2,𝑓2: 2 , and the 

counts in the extended database are 𝑓1: 2 𝑓2: 2. Therefore, the feature counts of <𝑓1,𝑓2> in 

the updated database are 𝑓1: 4 𝑓2: 4.  
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Figure 5-10: The count information after database updated 

 

We mine star-like patterns by checking the counts of 2-clique-like patterns in Count 

Information. We calculate the participation ratio pr (𝑓𝑗 , (𝑓𝑖,𝑓𝑗)) of each related feature 𝑓𝑗 of 

the center feature 𝑓𝑖, if the participation ratio of the feature 𝑓𝑗 is greater than or equal to 

min_prevalence, then this feature is one of star features of 𝑓𝑖. Take the center feature 𝑓1 as 

an example, the participation ratio of each related features which are pr(𝑓2,, <𝑓1,𝑓2>) 

=0.44, pr(𝑓3, <𝑓1,𝑓3>) =0.75 and pr(𝑓4,, <𝑓1,𝑓4>) =0.83 are greater than min_prevalence 0.35, 

the star pattern of 𝑓1 is <𝑓1: 𝑓2,𝑓3,𝑓4>.  

After mining frequent star-like patterns, we continue to discover frequent 2-clique-like 
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patterns. Figure 5-11 shows an example of mining 2-clique-like patterns, in this example, 

<𝑓1,𝑓4> is frequent in the original database since the participation ratios are pr(𝑓4,, (𝑓1,𝑓4)) 

=3/4, pr(𝑓1, (𝑓1,𝑓4)) =2/5 and the prevalence of <𝑓1,𝑓4> is min {2/5, 3/4} = 0.4 which is greater 

than min_prevalence 0.35.In the updated database, the prevalence of <𝑓1,𝑓4> changes to min 

{3/7, 5/6} =0.42 since the participation ratios are pr(𝑓4,, <𝑓1,𝑓4>) =5/6, pr(𝑓1, <𝑓1,𝑓4>) =3/7. 

<𝑓1,𝑓4> is still frequent after database updated.   

 

 
Figure 5-11: An example of count information after the Star Mining Phase. 

 

 Clique Mining Phase 

Step III: Extend each frequent 2-clique-like pattern in EDB by the pattern growth method. 

(Line 8 – Line 11) 

As we already know the frequent 2 clique-like patterns in the updated database are 

{<𝑓1,𝑓2>, <𝑓1,𝑓3>, <𝑓1,𝑓4>, <𝑓2,𝑓3>, <𝑓3,𝑓4>}, we extend each 2-clique-like pattern in EDB by 
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the pattern growth method, and also make the use of Apriori property to prune the 

impossible candidate patterns. For each extended pattern 𝑆𝑒, we check whether the 

extended pattern 𝑆𝑒 is in FPS, then we handle the extended pattern 𝑆𝑒 in different cases 

to determine the pattern is frequent in the updated database.  

 

Step IV: (Case 1) If an extended pattern 𝑺𝒆 is in FPS, then we update the count 

information of 𝑺𝒆 (Line 1 - Line 2 in the Inc_PDB Procedure) 

In this example, we extend the frequent pattern <𝑓1,𝑓2> to <𝑓1,𝑓2,𝑓3>. Because 

<𝑓1,𝑓2,𝑓3> is already in FPS, we have already stored the count information, the feature 

counts of <𝑓1,𝑓2,𝑓3> in the updated database is the sum of the feature counts in CIand the 

feature counts in EDB. Then we calculate the prevalence of <𝑓1,𝑓2,𝑓3> is min {3/7,3/9,3/8} 

= 0.33 which is less than min_prevalence 0.35 . Hence, <𝑓1,𝑓2,𝑓3> becomes infrequent in 

the updated database. Figure 5-12 shows the process of determining the frequency of 

pattern <𝑓1,𝑓2,𝑓3> 

 

 
Figure 5-12: The process of determining the frequency of pattern <𝒇𝟏,𝒇𝟐,𝒇𝟑> 
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Step V :( Case 2) If the extended pattern 𝑺𝒆 is not in FPS, we re-mine the original 

database. (Line 3- Line 4 in the Inc_PDB Procedure) 

If an extended pattern 𝑺𝒆 is not in FPS, we did not keep any count information 

about this pattern, so we have to check the Max_PV (𝑆𝑒) in EDB. In this example, <𝑓1,𝑓3,𝑓4> 

is not in FPS, and the feature counts of <𝑓1,𝑓3,𝑓4> in EDB are 𝑓1: 2 𝑓3:2 𝑓4: 2. The Max_PV 

(<𝑓1,𝑓3,𝑓4>) is max {2/2, 2/4, 2/2} =1 which is greater than min_prevalence 0.35. It meets the 

condition of case 2.1. Therefore, we re-mine the original database, we obtain the feature 

counts in DB as 𝑓1: 1 𝑓3:1 𝑓4: 1. Then sum the counts in EDB and in DB, we obtain the 

feature counts in DB’ 𝑓1: 3 𝑓3:3 𝑓4: 3. Finally we calculate the prevalence of <𝑓1,𝑓3,𝑓4> is min 

{3/7,3/8,3/6} = 0.375 ≥ 0.35. We determine <𝑓1,𝑓3,𝑓4> is a frequent pattern after database 

updated. Figure 5-13 shows the process of determining the frequency of pattern <𝑓1,𝑓3,𝑓4>.  

 

 

Figure 5-13: The process of determining the frequency of pattern <𝒇𝟏,𝒇𝟑,𝒇𝟒> 
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Step VI: (Case 3) for each pattern S is in FPS, but not appears in EDB, we re-calculate the 

prevalence. (Line 13 – Line 15) 

The topological pattern S does not appear in EDB, but S is frequent in DB, then it is 

possible to become frequent in DB’. We check the prevalence due to the change of the 

number of 𝑓𝑖  in the updated database. In this example, <𝑓2,𝑓3, 𝑓4> does not appear in EDB, 

but it is a frequent pattern in FPS, so we re-calculate the prevalence. The prevalence of 

<𝑓2, 𝑓3,𝑓4> in DB is min {2/5, 2/4, 2/4} =0.4, and changes to min {2/9, 2/8,2/6}=0.22 in DB’. 

<𝑓2, 𝑓3,𝑓4> becomes infrequent after database updated. Figure 5-14 shows the process of 

determining the frequency of pattern <𝑓2,𝑓3,𝑓4> 

 

 
Figure 5-14: The process of determining the frequency of pattern <𝒇𝟐,𝒇𝟑,𝒇𝟒> 

 

 Finally, we discover that the frequent patterns in the updated database are {<𝑓1,𝑓2>, 

<𝑓1,𝑓3>, <𝑓1,𝑓4>, <𝑓2,𝑓3>, <𝑓3,𝑓4>,<𝑓1,𝑓3,𝑓4>}. Figure 5-15 shows the flowchart of 

Inc_TMiner.  
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Figure 5-15: The flowchart of Inc_TMiner. 
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Chapter 6. Experimental results and performance study 

 

To evaluate the performance of Inc_TMiner, two topological pattern mining algorithms 

based on static databases, Topology Miner [7], Join-less Colocation Miner [5], and one 

incremental spatial-temporal topological pattern maintaining algorithm IMCP based on 

Join-less Colocation Miner method are implemented for comparison. All algorithms are 

implemented in C++ language and tested on an Intel Centrino 1.3 GHz U7300 with 2 GB of 

main memory running Windows 7 system. We test the performance on synthetic databases 

with different parameters setting.  
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6.1 Data Generator 

 
Figure 6-1: Parameters of synthetic data generator  

 

We extend the synthetic data generator used for mining topological pattern in static 

spatial-temporal databases [7]. Figure 6-1 shows the parameters setting of incremental 

spatial-temporal data generator.  
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In our experiments, we set N as the number of instances in an incremental spatial 

temporal database. Incre_Ratio divides the spatial-temporal database into two parts, the 

original database and the incremental database. N*(1-Incre_Ratio) is the size of the original 

database DB and N*Incre_Ratio is the size of the incremental database db. Moreover, we 

divide the incremental database into the Non-Cross database and the Cross database by 

Cross Ratio. The size of Non_Cross database is N*Incre_Ratio*(1-Cross_Ratio), and the size of 

the Cross database is N*Incre_Ratio*Cross_Ratio. 

In each database we divide the instances by several parameters. First, we set L as the 

number of features which appear in the longest pattern and m is the number of features 

which are confident in the longest pattern. The confident features should participate in the 

frequent patterns. n is the number of noise features, and H is the percentage of noise 

instances in the database. N*(1-Incre_Ratio)*H is the number of noise instances in the 

original database. We assign these instances to noise features uniformly. The rest of 

instances are assigned to non-noise features uniformly. Θ is min_prevalence. (Δmax +Θ) 

is the percentage of confident instances which appear in the longest pattern. The number of 

instances 𝑁𝑖, which must appear in the longest pattern of a feature 𝑓𝑖  in the original 

database is (Δmax +Θ)* N*(1-Incre_Ratio)*(1-H) /L. For other features, the participation 

ratio is  (Δmin +Θ) and the number of instances in the longest pattern in the original 

database is (Δmin +Θ)* N*(1-Incre_Ratio)*(1-H) /L.  

We divide the spatial-temporal space by the cube-size with the spatial distance value 𝑅
2√2

 

and temporal distance value 𝑇_𝑢𝑛𝑖𝑡𝑠
2

. First, we generate a center instances (𝑥𝑐 ,𝑦𝑐, 𝑡𝑐) randomly, 

then we generate the instances around a circle with a radius r. the location coordinate is 

(𝑥𝑐 + 𝑟 ∗ sin 2𝜋
𝑁𝑖

,𝑦𝑐 + 𝑟 ∗ cos 2𝜋
𝑁𝑖

), the temporal coordinate is 𝑡𝑐 + 𝑇_𝑢𝑛𝑖𝑡 ∗ sincos 2𝜋
𝑁𝑖

 . We 

confirm all instances in the cube will participate in the longest pattern. We mark the cubes 

which intersect the cylinder. The centered of circle of cylinder is radius r and the height of 
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the cylinder is 2*T_unit. No other longest pattern instance can generate in this circle. After 

generating instances of each feature which participate in the frequent pattern, the process is 

end. We generate the remaining instances randomly on the space. 

 

6.2 Performance 
 

In this section, we discuss the performance of Inc_TMiner. As to the comparison of 

Inc_TMiner, we implement the other three algorithms, Topology Miner and Join-less 

Collocation Miner and IMCP.   

With the intention to show the efficiency of Inc_TMiner, we vary Cross_Ratio, 

Incre_Ratio and prevalence threshold to measure the execution times and memory usage of 

the four algorithms. We also show scalability of Inc_TMiner by vary the data size of the 

spatial temporal databases.    

 

6.2.1 Effect of Cross Ratio 
 

We study the performance of the four algorithms by varying Cross_Ratio from 0.05 to 0.5. 

Figure 6-2 shows the effect of Cross_Ratio of the four algorithms v.s. the execution times. 

When Cross_Ratio increases, the number of instances in the cross database also increases. 

The execution times of the four algorithms also increase since more computations are 

required for higher interaction relations between the original database and the incremental 

database. However, Inc_TMiner still outperforms other algorithms and has a better 

performance when Cross_Ratio is small.   
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Figure 6-2: The effect of Cross Ratio 

 

6.2.2 Effect of Incre Ratio 
 

We evaluate the performance of the four algorithms by varying the Inc_Ratio from 0.05 

to 0.5. The results of the four algorithms shown in Figure 6-3 indicate Inc_TMiner 

outperforms the other three algorithms. When the Inc_Ratio increases, the number of 

instances in the incremental database also increases, the four algorithms require more time 

to discover topological patterns. When Inc_Ratio is in lower value, both the incremental 

algorithms require less time compared to the static algorithms, since the size of the 

incremental database in the updated database is smaller. The experiment shows Inc_TMiner 

is more efficient than the other three algorithms, especially in small Inc_Ratio. 
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Figure 6-3: The effect of Incre Ratio 

 

6.2.3 Effect of Data Size 
 

We study the effect of the number of instances N in the updated database. Figure 6-4 

shows the results of the four algorithms with varing the number of instances from 100k to 

1000k. Figure 6-5 depicts the performance of two incremental algorithms. Both incremetal 

miners significantly outperform the static algorithms, especially when the number of 

instances is greater than 500k, since the static algorithms reqiure to re-mine the updated 

databases which are much larger than the incremental databases. When the number of 

instances increases, Inc_TMiner requires less time to discover topological patterns compared 

to the other three algorithms. Moreover, Inc_TMiner outperforms IMCP, since Inc_TMiner 

discovers frequent topological patterns in the depth-first method and maintains the 

corresponding projected databases. Figure 6-6 shows the effect of data size versus memory 

usage. When data size increases, the memory usage also increases. Incremental algorithms 

are less effective than static algorithms because the incremetnal algorithms require to keep 

some extra information count information, frequent pattern set to efficiently maintain 
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topological patterns. Moreover, both Inc_TMiner and Topology Miner use the projected 

database to facilitate the mining performance which also require extra memory storage.   

 

 

 
Figure 6-4: The effect of Data Size v.s. Runtime 

 
 

 

Figure 6-5: The effect of Data Size between the incremental algorithms v.s. Runtime 
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Figure 6-6: The effect of Data Size v.s. Memory Usage 
 

6.2.4 Effect of Prevalence Threshold 
 

Finally, we test the performance of min_prevalence by varying the value from 0.01 to 

0.3. Figure 6-7 shows the performance of the four algorithms. When the min_prevalence 

increases, the execution times of the four algorithms decreases as expected since when the 

prevalence threshold increases, more topological patterns become infrequent. As a result, 

both static algorithms require more time to discover topological patterns than the 

incremental algorithms. Moreover, in the comparison of two incremental algorithms, 

Inc_TMiner takes less time than IMCP which is based on the candidate-maintenance-test 

method. Figure 6-8 shows the memory usage of the four algorithms. When min_prevalence 

increases, the memory usages of the four algorithms decrease since more topological 

patterns become infrequent.  
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Figure 6-7: The effect of min_prevalence V.S. Runtime 

 

 

Figure 6-8: The effect of min_prevalence V.S. Memory Usage 
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Chapter 7. Conclusion 

 

In this thesis, we investigate the issues for incremental maintenance of topological 

patterns in large spatial temporal databases. We propose an efficient algorithm Inc_TMiner 

by exploring techniques to maintain discovered topological patterns in spatial-temporal 

databases in an incremental environment.  

We improve the efficiency of the existing static algorithms, Topology Miner and Join-less 

Collocation Miner. We use Cube-Feature Index as a summary structure which is efficient to 

determine the neighbor relationships among instances and approximate the feature count in 

a cube. With the intention of storing the neighbor relationship we obtain from Cube-Feature 

Index structure, we utilize star neighborhood which materializes the neighbor set of each 

instance. Instead of re-scanning the original databases and re-find the neighbor relationship 

among instance, we retrieve the neighbor set of an instances from star neighborhood. For 

incremental maintenance of topological patterns, we store the previous mining results which 

can be re-used. We store frequent patterns in FPS and record the feature counts of the 

frequent patterns in count information CI.  

Inc_TMiner discovers patterns in the Pattern-Growth method which is superior to the 

candidate-maintenance–test approach. Moreover, it utilizes the concept of the projected 

database which partitions the databases into subset recursively. It also makes use of the 

Apriori property to prune the impossible candidate patterns. 

Inc_TMiner efficiently maintain topological patterns in incremental environment 

without re-mining the updated database. Compared to the existing incremental algorithm 

IMCP and the prior static algorithms Topology Miner and Join-less Collocation Miner, the 

experiments show that the Inc_TMiner is efficient and scalable compared with than the 

other three algorithms. 



 

51 
 

Bibliography 

 
[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” Proc. of the 

20th International Conference on Very Large Data Bases (VLDB), Santiago, pp.487-499, 
1994. 

[2] J. S. Yoo, S. Shekhar, and M. Celik, “A join-less approach for co-location pattern mining: 
A summary of results,” Proc. of the 5th IEEE International Conference on Data Mining 
(ICDM), Houston, Texas, pp. 813–816, 2005. 

[3] S. Shekhar and Y. Huang, “Discovering spatial co-location patterns: A summary of 
results,” Proc. of the 7th International Symposium on Spatial and Temporal Databases 
(SSTD '01), Redondo Beach, CA, pp. 236-256, July 2001. 

[4] J. Yoo, S. Shekhar, J. Smith, and J. Kumquat, “A partial join approach for mining 
co-location patterns,” Proc. of the 12th annual ACM international workshop on 
Geographic information systems, Washington D.C., USA, pp. 241–249, 2004. 

[5] J. Yoo and S. Shekhar, “A join-less approach for mining spatial colocation patterns,” 
IEEE Trans. on Knowledge and Data Engineering, vol. 18, no. 10, pp.1323-1337, Oct. 
2006. 

[6] X. Zhang, N. Mamoulis, D. W. Cheung, and Y. Shou, “Fast mining of spatial 
collocations,” Proc. of the 10th ACM SIGKDD Int'l Conf. Knowledge Discovery and 
Data Mining (KDD '04), pp. 384-393, 2004. 

[7] J. Wang, W. Hsu, and M. L. Lee, “A Framework for Mining Topological Patterns in 
Spatio-temporal Databases,” Proc. of 14th ACM Conference on Information and 
Knowledge Management (CIKM '05), Bremen, Germany, pp. 429-436, Nov 2005. 

[8] D. Cheung, J. Han, V. Ng, and C.Wong, “Maintenance of discovered association rules in 
large databases: An incremental updating technique,” Proc. of the 12th International 
Conference on Data Engineering (ICDE), pp. 106–114, 1996. 

[9] J. He, Q. He, F. Qian, and Q. Chen, “Incremental Maintenance of Discovered Spatial 
Colocation Patterns,” Workshops Proc. of the 8th IEEE International Conference on Data 
Mining (ICDM '08), Pisa, Italy, pp. 399-407, December 2008. 

[10] J. Wang, W. Hsu, M. L. Lee, and J. Wang, “FlowMiner: Finding Flow Patterns in 
Spatio-Temporal Databases,” Proc. of 16th IEEE International Conference on Tools with 
Artificial Intelligence (ICTAI '04), Boca Raton, Florida, pp. 14-21, November 2004. 

[11] J. Wang, W. Hsu, and M. L. Lee, “Mining Generalized Spatio-Temporal Patterns,” Proc. 
of 10th International Conference on Database Systems for Advanced Applications 
(DASFAA),  Beijing, China, pp. 649-661, April 2005. 

[12] S. Guha, R. Rastogi, and K. Shim, “Cure: An efficient clustering algorithm for large 



 

52 
 

databases,” ACM SIGMOD International Conference on Management of Data, pp. 73-84, 
June 1998. 

[13] Y. Huang, H. Xiong, S. Shekhar, and J. Pei, “Mining confident co-location rules without 
a support threshold,” Proc. of 18th ACM Symposium on Applied Computing (ACM 
SAC), pp. 497-501, 2003. 

[14] J. Sander, M. Ester, H. P. Kriedgel, and X. Xu, “Density-based clustering in spatial 
databases,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 169-194, 1998. 

[15] H. Cheng, X. Yan, and J. Han, “IncSpan: Incremental Mining of Sequential Patterns in 
Large Database,” Proc. of the 10th ACM International Conference on Knowledge 
Discovery and Data Mining (SIGKDD), pp. 527-532, August 2004. 

[16] J. Han and J. Pei, “Mining frequent patterns by pattern-growth: Methodology and 
implications,” ACM SIGKDD Explorations Newsletter, vol. 2, pp. 14-20, 2000. 

[17] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong and Y.-K Lee, “Efficient Tree Structures for 
High Utility Pattern Mining in Incremental Databases,” IEEE Transactions on 
Knowledge and Data Engineering, vol. 21, no. 12, pp. 1708-1721, December 2009. 

[18] H. Cao, N. Mamoulis, and D. W. Cheung, “Discovery of collocation episodes in 
spatiotemporal data,” Proc. of the 6th IEEE Int'l Conf. Data Mining (ICDM '06), pp. 
823–827, 2006. 

[19] M. Celik, S. Shekhar, J. P. Rogers, J. A. Shine, and J. S. Yoo, “Mixed-drove 
spatio-temporal co-occurrence pattern mining: A summary of results,” Proc. of the 6th 
IEEE Int'l Conf. Data Mining (ICDM '06), Hong Kong, China, pp. 119-1287, 2006. 

[20] Y. Huang, L. Zhang, and P. Yu, “Can we apply projection based frequent pattern mining 
pradigm to spatial co-location mining?” In PAKDD, Vietnam, pp. 719–725, 2005. 

[21] M. Celik, J.M. Kang, and S. Shekhar, “Zonal co-location pattern discovery with dynamic 
parameters,” Proc. of the 7th IEEE Int. Conf. on Data Mining (ICDM), Omaha, Nebraska, 
pp. 433–438, 2007. 


	摘要
	ABSTRACT
	Acknowledgement
	Chapter 1. Introduction
	1.1 Introduction and Motivation
	1.2 Outline of the Thesis

	Chapter 2. Related Works
	Chapter 3. Problem Definitions
	Chapter 4. Basic Concepts of the Static Algorithms
	4.1 Topology Miner
	4.1.1 Summary Structure
	4.1.2 Concept of Projected Database
	4.1.3 Construction of Projected Database
	4.1.4 Mining Topological Patterns

	4.2 Join-less Collocation Miner
	4.2.1 Neighborhood Materialization
	4.2.2 Join-less Collocation Mining Algorithm


	Chapter 5. Proposed Algorithm: Inc_TMiner
	5.1 Basic Definitions of Updated Database
	5.2 The Basic Concept of Inc_TMiner
	5.3 The Updating Process of Inc_TMiner
	5.3.1 Cases of Updating Process
	5.3.2 Inc_TMiner Algorithm


	Chapter 6. Experimental results and performance study
	6.1 Data Generator
	6.2 Performance
	6.2.1 Effect of Cross Ratio
	6.2.2 Effect of Incre Ratio
	6.2.3 Effect of Data Size
	6.2.4 Effect of Prevalence Threshold


	Chapter 7. Conclusion
	Bibliography

