

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

大型時空資料庫中拓撲樣式探勘之漸進式維護
Incremental Maintenance of Topological Patterns in Large

Spatial-Temporal Database

研 究 生：吳昭瑩

指導教授：李素瑛 教授

中 華 民 國 一 百 年 八 月

大型時空資料庫中拓撲樣式探勘之漸進式維護

Incremental Maintenance of Topological Patterns in Large

Spatial-Temporal Database

研 究 生：吳昭瑩 Student：Chao-Ying Wu

指導教授：李素瑛 Advisor：Suh-Yin Lee

國 立 交 通 大 學
多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

August 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年八月

i

大型時空資料庫中拓撲樣式探勘之漸進式維護

研究生：吳昭瑩 指導老師：李素瑛 教授

國立交通大學多媒體工程研究所

摘要

 在許多空間時間資料庫的生活應用，例如環境生態分析、氣象分析、位置基

礎分析，大都隨著時間變化做增量的更新。當資料庫增量更新後，有些已發現的

拓撲樣式會無效，而有些新的拓撲樣式會出現。

當新的事件加入資料庫，假如每一次的更新都必須重新探勘拓撲樣式，將是

一件既沒效率且不切實際的工作。儘管最近有學者提出維護拓撲樣式的方法，而

且我們也可以應用既有探勘靜態資料庫的演算法重新探勘更新後的資料庫。然而，

既存的演算法並不是非常有效率。

在大型時空資料庫中拓撲樣式探勘之漸進式維護是一件艱鉅的工作，因為拓

撲樣式探勘相較一般項目集樣式是比較複雜的。在這篇論文，我們提出一個演算

法，Inc_TMiner，主要是設計在增量的時空資料庫中維護拓撲樣式。在合成資料

的實驗結果顯示 Inc_TMiner 在執行時間優於之前的漸進式演算法，也優於利用

現有探勘靜態資料庫的演算法重新探勘更新後的資料庫。

關鍵字：資料探勘, 增量式探勘, 拓撲樣式, 時間樣式, 時空資料庫.

ii

Incremental Maintenance of Topological Patterns in Large

Spatial-Temporal Database

Student: Chao-Ying Wu Advisor: Prof. Suh-Yin Lee

Institute of Multimedia Engineering

National Chiao Tung University

ABSTRACT

Spatial temporal data mining is an important research area with many interesting

topics, such as ecology analysis, meteorology analysis, location-based analysis and so

forth. Most spatial temporal databases are updating incrementally with time. Some

discovered topological patterns may be invalidated and some new topological patterns

may be introduced by the evolution of databases. When new instances are inserted

into the database, we can re-mine topological patterns from scratch each time using

the existing static algorithms. Some researches on the maintenance of topological

patterns in an incremental manner are proposed. However, all static algorithms and

incremental algorithms are incompetent and not scalable.

In this thesis, an efficient algorithm, Inc_TMiner (Incremental Topology Miner)

is developed to incrementally maintain topological patterns from spatial-temporal

databases. The experimental results on synthetic datasets indicate that Inc_TMiner

significantly outperforms the static algorithms and the existing incremental algorithm

in execution time and possesses graceful scalability.

Keyword: data mining, incremental mining, topological pattern, collocation

pattern, spatial-temporal database.

iii

Acknowledgement

I greatly appreciate the kind guidance of my advisor, Prof. Suh-Yin Lee. She not

only helps with my research but also inspires and takes care of me. Without her

graceful suggestion and encouragement, I cannot complete the thesis. Besides I want

to give my thanks to all members in the Information System Laboratory for their

suggestion and instruction, especially Mr. Yi-Cheng Chen, Miss Yu-Jiun Liu, Mr.

Ji-Chiang Jiang, Mr. Cheng-Yi Peng, Mr. Yee-Choy Chean, and Mr Li-Wu Tsai.

Finally I would like to express my deepest appreciation to my parents, Mr.

Ming-Fang Wu and Mrs. Tu-Xiang Huang and my brother Chung-Ying Wu. This

thesis is dedicated to them.

iv

Table of Contents

ABSTRACT(Chinese) .. i
ABSTRACT(English) .. ii
Acknowledgement .. iii
Chapter 1. Introduction .. 1

1.1 Introduction and Motivation .. 1
1.2 Outline of the Thesis .. 3

Chapter 2. Related Works .. 4
Chapter 3. Problem Definitions ... 6
Chapter 4. Basic Concepts of the Static Algorithms .. 9

4.1 Topology Miner.. 9
4.1.1 Summary Structure ... 10
4.1.2 Concept of Projected Database ... 12
4.1.3 Construction of Projected Database .. 13
4.1.4 Mining Topological Patterns ... 14

4.2 Join-less Collocation Miner ... 18
4.2.1 Neighborhood Materialization .. 19
4.2.2 Join-less Collocation Mining Algorithm ... 20

Chapter 5. Proposed Algorithm: Inc_TMiner .. 24
5.1 Basic Definitions of Updated Database ... 24
5.2 The Basic Concept of Inc_TMiner... 27
5.3 The Updating Process of Inc_TMiner .. 29

5.3.1 Cases of Updating Process .. 29
5.3.2 Inc_TMiner Algorithm .. 30

Chapter 6. Experimental results and performance study ... 41
6.1 Data Generator ... 42
6.2 Performance ... 44

6.2.1 Effect of Cross Ratio ... 44
6.2.2 Effect of Incre Ratio .. 45
6.2.3 Effect of Data Size .. 46
6.2.4 Effect of Prevalence Threshold ... 48

Chapter 7. Conclusion .. 50
Bibliography .. 51

v

List of Figures

Figure 3-1: Examples of topological patterns .. 7
Figure 4-1: An example of the spatial temporal database ... 10
Figure 4-2: The summary structure with the two indices CFI and FCI. 12
Figure 4-3: The projected database of <𝑓1> .. 13
Figure 4-4: The projected database of < 𝑓1,𝑓2 > .. 14
Figure 4-5: An example of mining star-like patterns .. 15
Figure 4-6: An example of mining clique-like patterns . .. 16
Figure 4-7: The framework of Topology Miner . .. 17
Figure 4-8: The concept of candidate-maintenance-test with Apriori Property pruning.
.. 18
Figure 4-9: An example to materialize star neighbor relationships 19
Figure 4-10: The pseudo code of Join-less Collocation Miner 21
Figure 4-11: The process of mining topological patterns. ... 22
Figure 5-1: The classification of the databases. ... 24
Figure 5-2: The concepts of Non_Cross database and Cross database 25
Figure 5-3: An example of the extended database EDB .. 25
Figure 5-4: An example of count information CI .. 26
Figure 5-5: An example of (a) the original database (b) star neighborhood. 28
Figure 5-6: The framework of Inc_TMiner. .. 31
Figure 5-7: The pseudo code of Inc_TMiner. ... 32
Figure 5-8: An example of the updated database DB’ and the extend database EDB 33
Figure 5-9: The star neighborhood of the extended database. 34
Figure 5-10: The count information after database updated 35
Figure 5-11: An example of count information after the Star Mining Phase. 36
Figure 5-12: The process of determining the frequency of pattern <𝑓1,𝑓2,𝑓3> 37
Figure 5-13: The process of determining the frequency of pattern <𝑓1,𝑓3,𝑓4> 38
Figure 5-14: The process of determining the frequency of pattern <𝑓2,𝑓3,𝑓4> 39
Figure 5-15: The flowchart of Inc_TMiner.. 40
Figure 6-1: Parameters of synthetic data generator .. 42
Figure 6-2: The effect of Cross Ratio .. 45
Figure 6-3: The effect of Incre Ratio .. 46
Figure 6-4: The effect of Data Size v.s. Runtime ... 47
Figure 6-5: The effect of Data Size between the incremental algorithms v.s. Runtime
.. 47
Figure 6-6: The effect of Data Size v.s. Memory Usage .. 48

vi

Figure 6-7: The effect of min_prevalence V.S. Runtime ... 49
Figure 6-8: The effect of min_prevalence V.S. Memory Usage 49

1

Chapter 1. Introduction

1.1 Introduction and Motivation

In recent years, spatial-temporal data mining has received considerable attentions. One

important research topic in spatial-temporal data mining is mining topological patterns, also

called colocation patterns. Mining topological patterns is an interesting and essential data

mining technique with broad applications, such as ecology analysis, location-based analysis

and meteorology analysis, to name a few. Many efficient algorithms [2, 3, 4, 5, 6, 7] proposed

so far have good performances of discovering topological patterns from static databases.

However, the assumption of having a static database may not be considered in some

applications, since most databases usually grow incrementally over time in our daily life. Take

meteorology analysis as an example, weather usually changes every day, such as “in Taipei,

there was a typhoon yesterday, and it is foggy in the morning.” Moreover, meteorology

analysis requires up-to-date information. If we re-mine databases each time, it may take lots

of time when databases grow huge.

The existing static algorithms do not take the evolution of databases and the

maintenance of topological patterns into consideration. The results mined from the previous

database may be no longer valid since some topological patterns would become invalid and

some new topological patterns may be introduced with the evolution of databases.

Obviously, re-mining the updated databases from scratch each time is inefficient since it

wastes computational resources and neglect the previous mining results.

As far as we know, there have been few efficient methods which discuss the maintenance

of topological patterns mined from spatial temporal database in an incremental environment.

Some existing algorithms of maintaining topological patterns from spatial-temporal

2

databases in an incremental environment require to generate and to store a potentially large

number of candidate patterns. Moreover, the cost of managing the candidate patterns and

computing the frequent patterns is high. With this reason, we develop a new approach to

solve the drawbacks of the existing static algorithms and the existing incremental algorithms.

In this thesis, an efficient algorithm, Inc_TMiner, which represents Incremental

Topology Miner

, is proposed to address the important problem and incrementally maintain

the discovered frequent topological patterns. Our contribution is listed as follows.

 We use a Cube-Feature Index structure to record the instances count information of

a feature. Cube-Feature Index is a two hash-based index which is efficient to

determine the neighbor relationship among instances. With Cube-Feature Index, we

can retrieve the approximate feature counts of a topological pattern efficiently

 With the intention to store the neighbor relationship which we obtain from

Cube-Feature Index, we use the Star Neighborhood. Star Neighborhood is a table to

record the neighbor set of each instance. Moreover, it reduces the expensive cost of

join operations in discovering neighbor relationship among instances. When

incrementally maintain topological patterns, we may re-mine the original databases

to obtain accurate information in some cases. Instead of re-scanning instances from

the original database, we discover topological patterns through the Star

Neighborhood which eliminates the steps of re-finding the neighbor relationships

among instances.

 Inc_TMiner avoids re-mining updated databases from scratch each time.

Furthermore, Inc_TMiner is developed based on the pattern-growth method which

avoids generating numerous candidates. Our experiments indicate Inc_TMiner

3

significantly outperforms the prior static algorithms and the existing incremental

algorithm in execution time and possesses graceful scalability.

1.2 Outline of the Thesis

The remaining of this thesis is organized as follows. Chapter 2 and 3 provide the related

works and the problem statement respectively. Chapter 4 introduces the basic concept of

static algorithms, Topology Miner and Join-less Collocation Miner. Chapter 5 describes the

details of our proposed algorithm: Inc_TMiner. Chapter 6 presents the experiments and the

performance study. We make the conclusion of this thesis in Chapter 7.

4

Chapter 2. Related Works

Spatial-temporal data mining is an interesting topic and many algorithms have been

proposed for data analysis in spatial-temporal databases. For example, flow pattern mining

[10,11], collocation pattern mining[7,18,19,21], clustering mining [12,14] are interesting

topics in spatial temporal data mining. In this chapter, we review the related works of mining

topological patterns in spatial databases and spatial-temporal databases.

[1] proposes an algorithm to discover spatial association rules based on Apriori-like

manner. Spatial association rules can be considered as one kind of topological pattern: the

star-like patterns. Moreover, it converts the spatial dataset into transactions based on centric

reference feature model. [2] introduces an instance join-based algorithm for collocation

pattern mining which is similar to [1]. Join-based method has expensive computation cost

and no scalability. [3] introduces a critical measurement, participation ratio which provides

precise information of collocation patterns. Moreover, it develops a Collocation Miner based

on the spatial join to retrieve instances in spatial databases. [4] introduces the partial-join

approach to eliminate the computation cost of discovering collocation patterns by designing

a clique neighborhood model. However, the performance of partial-join approach depends

on the distribution of spatial datasets. [5] introduces the join-less approach for mining

collocation patterns. It designs a star neighborhood model which stores neighbor

information of each instance. It reduces the cost of expensive spatial join operations in

discovering neighbor relations.

[6] presents an algorithm to discover collocation patterns in spatial databases by

combining the discovery of spatial neighborhoods with the mining process. The algorithm

divides the extent of spatial temporal database and partitions the feature sets using a regular

grid. They introduce a hash-based spatial join algorithm to operate multi-feature sets.

5

However, this algorithm is based on the candidate-maintenance-test method. When the

number of features increases, the performance of the algorithm dramatically decreases. [7]

develops the Topology Miner which focuses on mining collocation in static spatial-temporal

databases. Topology Miner designs a summary structure to record the instances’ count

information of a feature in a region within a time window. Furthermore, Topology Miner

avoids the generation of many candidates and multiple scans of the database. It discovers

the topological patterns follows the pattern growth method.

The incremental maintenance technique for mining association rules has received a lot

of attentions. [8] proposes FUP (Fast Update) algorithm which is the first incremental

maintenance technique for mining association rules in large databases. The information from

the previous mining data can be reused. Moreover, in discovering the new large item sets,

the number of candidate sets can be pruned substantially. [9] proposes an algorithm, IMCP

(Incremental Maintenance for Colocation Patterns), for incremental maintenance of

discovered spatial collocation patterns. IMCP is based on Join-less method [5]. However,

IMCP still uses the candidate-maintenance-test method. The performance of IMCP decreases

when the number of the feature increases.

6

Chapter 3. Problem Definitions

Given a spatial-temporal database DB, a set of n features F= {𝑓1, … , 𝑓𝑛} arranged in

lexicographic order. Let I = {𝑖1 … , 𝑖𝑚 } be a set of m instances in database DB, each

instance𝑖 has the following information <instance-ID, feature type, spatial-location, timeslot>,

denoted as < 𝑖. 𝑖𝑑, 𝑖. 𝑓, 𝑖. 𝑥, 𝑖.𝑦, 𝑖. 𝑡 >.

In the spatial dimension, we define R as a neighborhood relationship over the location

of the instances in the database. Two instances 𝑖1 and 𝑖2 are said to be close to each other

if only if the geometric distance of two instances, as defined in Eq.(3-1) is less than or equal

to R.

Geodist = �(𝑖1.𝑥 − 𝑖2. 𝑥)2 + (𝑖1.𝑦 − 𝑖2.𝑦)2 (3-1)

 In the temporal dimension, we define W as a closeness relationship over the

time-stamp of the instances in the databases. An instance 𝑖1 is said to be close to another

instance 𝑖2 if the temporal distance, as defined in Eq. (3-2) is less than or equal to W.

𝑇𝑒𝑚𝑑𝑖𝑠𝑡= |𝑖1. 𝑡 − 𝑖2. 𝑡| (3-2)

A topological pattern S of k-length or k-pattern, denoted as S :{𝑓1, … , 𝑓𝑘} is a set of

spatial temporal features arranged in lexicographic order. A pattern Q is said to be a

sub-pattern of the pattern P if ∀ 𝑓𝑖 ∈ 𝑄 , 𝑓𝑖 ∈ P, and P is a super-pattern of the pattern Q,

denoted as Q≼P.

7

Figure 3-1: Examples of topological patterns

Two kinds of topological patterns: star-like patterns and clique-like patterns are

concerned. A topological pattern S is a star-like pattern if an instance with feature type 𝑓𝑖 of

S is located close to other instances, while other instances with other feature types are not

required to be close to each other. A star-like pattern is denoted as <𝑓𝑖: 𝑓1, . . ,𝑓𝑘>. Figure

3-1(a) shows an example of star-like patterns, i.e. <a :{ b, c, d}>. Nodes are instances with

feature types {a, b, c, d}, and an edge between two nodes indicate the two nodes are

neighbors.

A topological pattern S is a clique-like pattern if and only if all instances with different

feature types are close to each other. A clique-like pattern is denoted as <𝑓1, 𝑓2, … ,𝑓𝑘>.

Figure (b) shows an example of clique-like patterns where the instances of the features <a, b,

c, d> are close to each other.

Different from the measurement, support [5], the participation ratio [11] has been

introduced to be a crucial measurement for expressing the strength of collocation patterns in

the spatial database. The participation ratio, denoted as 𝑝𝑟(𝑓𝑖 , 𝑆), captures the probability

whenever an instance’s feature type 𝑓𝑖 participates in a pattern S. We define the equation

as follows:

𝑝𝑟(𝑓𝑖, 𝑆) = # 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑓𝑖 𝑖𝑛 𝑎 𝑐𝑜𝑙𝑙𝑜𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑆
𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑓𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

 (3-3)

8

To show the strength of a topological pattern S, we define the prevalence of a pattern S,

denoted as prevalence (S), which is a minimum probability among all features of S. The

equation of prevalence is defined as follows.

prevalence (S) = min { 𝑝𝑟(𝑓𝑖 , 𝑆),∀ 𝑓𝑖 ∈ 𝑆}. (3-4)

9

Chapter 4. Basic Concepts of the Static Algorithms

 In this chapter, we discuss two static algorithms Topology Miner [7] and Join-less

Collocation Miner [2]. Both are efficient for mining topological patterns in the static spatial

temporal database.

4.1 Topology Miner

 First, we present the basic concepts of Topology Miner [7] which is an efficient

algorithm to discover the topological patterns in spatial temporal database. Topology Miner

discovers the frequent topological patterns in the depth-first manner. This algorithm consists

of two phases:

 The First Phase: Topology Miner divides the space-time dimension into a set of

disjoint cubes. Then, it scans the database to build a summary structure which is a

two hash-based indices structure. The summary structure stores the instances’

count information of features in a cube.

 The Second Phase: Topology Miner discovers the frequent topological patterns in

the depth-first manner by utilizing the count information stored in the summary

structure.

10

4.1.1 Summary Structure

Let DB be the spatial temporal database, R and W be the distance threshold and the

time window threshold. It divides the space-time dimensions into a set of disjoint cubes

{<𝑐𝑥1,𝑦1,𝑤1 >, <𝑐𝑥1,𝑦1,𝑤2 >, …,<𝑐𝑥1,𝑦1,𝑤𝑞 >,… ,<𝑐𝑥𝑝,𝑦𝑝,𝑤𝑞>} where {𝑐𝑥1,𝑦1, … , 𝑐𝑥𝑝,𝑦𝑝} are

2-demension cells with width 𝑅
2√2

, and {𝑤1,𝑤2, … ,𝑤𝑞} are 1-demension time periods with

width 𝑊
2

.

For the instances in a cube <𝑐𝑥𝑘,𝑦𝑘,𝑤𝑡>, It is easier to determine their close neighbors,

which must be the instances in one of cubes <𝑐𝑥𝑖,𝑦𝑖,𝑤𝑠> in the set 𝑁𝑐𝑥𝑘,𝑦𝑘,𝑤𝑡= {< 𝑐𝑥𝑖,𝑦𝑖,𝑤𝑠 >|

|𝑥𝑘 − 𝑥𝑖|≤ 2 ˄ |𝑦𝑘 − 𝑦𝑖 |≤2 ˄ |t-s| ≤2}. Topology Miner defines two units as a

neighborhood threshold. Figure 4-1 is an example of the spatial temporal database with

R=45, W =90 mins. The space is divided into 48 cells and the time is divided into 8 time

periods.

Figure 4-1: An example of the spatial temporal database[7]

 Topology Miner scans the spatial-temporal database to build the summary structure

11

which records the instances’ count information of features in a cube. In order to facilitate the

operations for retrieving the neighborhood instances and the instances’ count, it constructs

two hash-based indices, called FCI (Feature-Cube Index) and CFI (Cube-Feature-Index). Both

indices are two-level structures. CFI has a composite information (<𝑐𝑥𝑖,𝑦𝑖,𝑤𝑠>, feature type).

𝑐𝑥𝑖,𝑦𝑖 is the spatial location, and 𝑤𝑠 is the time period. The first level is used to index the

cube location with the identifier <𝑐𝑥𝑖,𝑦𝑖,𝑤𝑠>, and the second level indexes the feature type.

FCI has a composite information (feature type, <𝑐𝑥𝑖,𝑦𝑖,𝑤𝑠>). The first level indexes the feature

type, and the second level indexes cube location. It can retrieve the instances’ count of

features that occur in cube <𝑐𝑥𝑖,𝑦𝑖,𝑤𝑠> with the information of CFI and determine the cubes

in which a feature occurs with FCI. Both can obtain instances’ count information in constant

time. Figure 4-2 is an example of the summary structure with the two indices CFI and FCI.

With these two indices, it can approximate the number of instances of a topological pattern.

It considers two instances are near in the position if and only if their cubes are neighbors.

Take feature 𝑓1 as an example, through FCI, we know instances with feature 𝑓1 occur in

two cubes, one is <𝑐1,5,𝑤5> with count 1, another is <𝑐5,5,𝑤1> with count 1. Topology Miner

can find the neighbors of these two instances through CFI, the instance occur in <𝑐1,5,𝑤5>

with feature 𝑓1 has a neighbor instance occurred in <𝑐1,5,𝑤5> with feature 𝑓2, and the

feature count is 1. Similarly, the instance occurred in <𝑐5,5,𝑤1> with feature 𝑓1 has two

neighbor instances, one occurs in <𝑐6,5,𝑤1> with feature 𝑓2, and another occurs in <𝑐6,5,𝑤2>

with feature 𝑓3. Both the feature counts are 1.

12

Figure 4-2: The summary structure with the two indices CFI and FCI [7].

4.1.2 Concept of Projected Database

Topology Miner constructs the projected database by utilizing the information of

instances’ count from the summary structure and discovers the frequent topological patterns

in the pattern growth method. The pattern growth method partitions the database into

subsets recursively. Moreover, it makes use of the Apriori property to prune the search space

and counts the frequent patterns in order to decide it can assemble longer patterns.

Topology Miner defines the projected database of a k-length topological pattern S=

{𝑓1, … ,𝑓𝑘}, denoted as 𝑃𝑠. 𝑃𝑠 is the collection of the entries <L,𝑅𝑝>, the cube-list L, denoted

as (<𝑐𝑥1,𝑦1,𝑤1>… <𝑐𝑥𝑘,𝑦𝑘, w𝑘>), is a list of cubes where the instances of the features in S

occur, all cubes in 𝑃𝑠.L must be neighbors. The feature list 𝑃𝑠.𝑅𝑝 which has the format (𝑓𝑟:

<𝑐𝑥𝑚,𝑦𝑚,𝑤𝑚>) where the instances of the related feature 𝑓𝑟 are in the cube <𝑐𝑥𝑚,𝑦𝑚,𝑤𝑚>.

13

𝑅𝑝 is a pointer pointing to a list of features that are related to the pattern S. The feature list

stores the potential features that can be used to combine with S to generate longer patterns.

Figure 4-3 shows an example of the projected database of 𝑓1.

Figure 4-3: The projected database of <𝒇𝟏>[7]

4.1.3 Construction of Projected Database

The first step of constructing the projected database 𝑃𝑓𝑖 is to obtain the cube-lists of 𝑓𝑖

from FCI. In this example, Topology Miner obtains two cube-lists of 𝑓1 by scanning FCI, which

are 𝐿1 = (< 𝑐1,5,𝑤5>), 𝐿2 = (< 𝑐5,5,𝑤1>). For each cube-list L in 𝑃𝑓𝑖 , Topology Miner

obtains its neighbor-set and the related features of each cube in neighbor set by scanning CFI.

Topology Miner generates the new entries 𝑃𝑓1.𝑅𝑝 with the information of the related features

and the neighboring cubes.

 For instance, One valid neighbor instance for 𝐿1: (< 𝑐1,5,𝑤5>) is in the cube < 𝑐1,5,𝑤5>

with the related feature 𝑓2 . Topology Miner adds the new entry (𝑓2: < 𝑐1,5,𝑤5>) into

feature-list 𝑅𝑝1 . Similarly, for 𝐿2 : (< 𝑐5,5,𝑤1>), there are two valid neighbor instances, one

is in the cube< 𝑐6,5,𝑤1> with the related feature 𝑓2 and another one is in the cube < 𝑐6,5,𝑤2>

with the related feature 𝑓3 , Topology Miner adds the new entries (𝑓2: < 𝑐6,5,𝑤1>) and (𝑓3:

< 𝑐6,5,𝑤2>) into feature-list 𝑅𝑝2 .

The projected database of a length-k pattern 𝑆𝑘 = {𝑓1, … , 𝑓𝑘−1,𝑓𝑘} can be derived from

the projected database of its prefix 𝑆𝑘−1 = {𝑓1, … , 𝑓𝑘−1}. ,𝑓𝑘 is a related feature of the

pattern 𝑆𝑘−1, Topology Miner obtains the related feature from 𝑃𝑆𝑘−1.𝑅𝑝.

14

Topology Miner constructs the projected database 𝑃𝑠𝑘 from 𝑃𝑠𝑘−1 as follows. In the

projected database 𝑃𝑠𝑘−1, for each entry <L,𝑅𝑝>, Topology Miner can obtain an element of

the feature 𝑓𝑘 and a neighboring cube <𝑐𝑥𝑚,𝑦𝑚,𝑤𝑚> from feature-list 𝑃𝑠𝑘−1 .𝑅𝑝. Topology

Miner generates the new entry <L,𝑅𝑝> of 𝑃𝑠𝑘. Topology Miner assigns 𝑃𝑠𝑘 . 𝐿 =𝑃𝑠𝑘−1 .𝐿 ∪

{<𝑐𝑥𝑚,𝑦𝑚,𝑤𝑚>}. 𝑃𝑠𝑘 .𝑅𝑝 is the subset of 𝑃𝑠𝑘−1 .𝑅𝑝, and each element must be a neighbor of

the cube <𝑐𝑥𝑚,𝑦𝑚,𝑤𝑚>.

Figure 4-4 shows an example of the projected database of the pattern <𝑓1,𝑓2> which is

derived from the projected database of the pattern <𝑓1>. Both two entries contain a related

feature 𝑓2 in 𝑃𝑓1 . Hence, Topology Miner creates two entries for 𝑃<𝑓1,𝑓2> , One

is 𝑃<𝑓1,𝑓2>.𝐿1 = {< (𝑐1,5,𝑤5) >, < (𝑐1,5,𝑤5) >} and its feature list 𝑃<𝑓1,𝑓2>.𝑅𝑝1 is null since no

instances are neighbor instances of these two instances. Another is 𝑃<𝑓1,𝑓2>.𝐿2 = {< (𝑐5,5,𝑤1)

>, < (𝑐6,5,𝑤1) >} and its feature list is 𝑃<𝑓1,𝑓2>.𝑅𝑝2 is (𝑓3: < 𝑐6,5,𝑤2>).

Figure 4-4: The projected database of < 𝒇𝟏,𝒇𝟐 > [7]

4.1.4 Mining Topological Patterns

Two different kinds of patterns: star-like patterns and clique-like patterns are concerned.

Topology Miner can mine these two kinds of patterns from the projected database 𝑃𝑆𝑘 .

Mining star-like patterns. Topology Miner directly mines the projected database of the

features. For a feature 𝑓𝑖, the feature 𝑓𝑗 are said to be one related feature of 𝑓𝑖 if only if the

participation ratio pr (𝑓𝑗 , < 𝑓𝑖 ,𝑓𝑗 >) ≥ min_prevalence. All the frequent related features

of 𝑓𝑖 form a star-like pattern: {𝑓𝑖: < 𝑓𝑟1, … , 𝑓𝑟𝑚 >}. Figure 4-5 shows a star-like pattern S =

<𝑓1: {𝑓2,𝑓3}> since pr (𝑓2, < 𝑓1,𝑓2 >) =0.33 and pr (𝑓3, < 𝑓1,𝑓3 >) = 0.5 are greater than

15

min_prevalence 0.3.

Figure 4-5: An example of mining star-like patterns [7]

Mining clique-like patterns. The process is more complicated compared to star-like

patterns, the main goal is to check a related feature 𝑓𝑟 of 𝑆𝑘 which can be combined with

𝑆𝑘 to generate a longer clique-like pattern 𝑆𝑘+1 = 𝑆𝑘 U {𝑓𝑟}. It determines whether the

prevalence of 𝑆𝑘+1 which is the minimum participation ratio among all features of pattern

𝑆𝑘+1 is greater than or equal to min_prevalence. Namely, Topology Miner needs to check

not only the related feature 𝑓𝑟, but also all other features which occur in 𝑆𝑘+1 .

Let the set RF contains all related features in 𝑆𝑘 and it arranges these features in

lexicographic order. For each feature 𝑓𝑟 in RF, Topology Miner first compute the

participation ratio pr (𝑓𝑟 , 𝑆𝑘+1) in the projected database 𝑃𝑆𝑘 . If pr (𝑓𝑟 , 𝑆𝑘+1) ≥

min_prevalence, Topology Miner continues to compute the participation ratio pr (𝑓𝑖 , 𝑆𝑘+1)

for each 𝑓𝑖 ∈ 𝑆𝑘. Otherwise, it removes the feature 𝑓𝑟 since 𝑓𝑟 cannot combine with Sk to

generate any frequent topological patterns.

Figure 4-5 shows an example of mining 2-clique-like patterns with min_prevalence 0.3. In

the projected database of 𝑓1, denoted as 𝑃𝑓1, two feature are the related features of 𝑓1. To

determine the pattern < 𝑓1,𝑓2 > is a frequent clique-like pattern, it needs to compute

prevalence of < 𝑓1,𝑓2 >. Namely, it computes the participation ratio pr (𝑓2, < 𝑓1,𝑓2 >) and

16

pr (𝑓1, < 𝑓1,𝑓2 >). In this example, there are six instances of 𝑓2 in the database, and two

instances of 𝑓2 participate in the pattern< 𝑓1,𝑓2 >.Hence, pr(𝑓2, < 𝑓1,𝑓2 >) = 2/6. Similarly,

pr (𝑓1, < 𝑓1,𝑓2 >) = 2/2. Finally the prevalence (< 𝑓1,𝑓2 >) = min {1, 0.33} =0.33 which is

greater than min_prevalence 0.3. Therefore, < 𝑓1, 𝑓2 > is a frequent clique-like pattern.

Topology Miner continues to determine the frequency of the pattern < 𝑓1,𝑓2, 𝑓3 >.

Similarly, it computes the prevalence of < 𝑓1,𝑓2,𝑓3 >. First, Topology Miner computes the

participation ratio of 𝑓3,pr (𝑓3, < 𝑓1,𝑓2,𝑓3 >) = 1/2, is greater than min_prevalence 0.3, then

Topology Miner continues to compute each feature in pattern< 𝑓1,𝑓2 >. The participation

ratio of 𝑓2 pr (𝑓2, < 𝑓1,𝑓2,𝑓3 >) =1/2 which is also greater than 0.3. However, pr (𝑓1, <

𝑓1,𝑓2,𝑓3 >) = 1/6 is less than 0.3. Hence, < 𝑓1, 𝑓2,𝑓3 > becomes infrequent. Figure 4-6

shows the process of mining clique-like pattern < 𝑓1,𝑓2, 𝑓3 >.

Figure 4-6: An example of mining clique-like patterns [7].

Figure 4-7 shows the framework of Topology Miner. The inputs are the spatial temporal

database DB, the distance threshold R, the time window threshold W, and the prevalence

threshold min_prevalence. It outputs the set of frequent star-like patterns and clique-like

patterns.

17

Figure 4-7: The framework of Topology Miner [7].

18

4.2 Join-less Collocation Miner

In this section, we present another static algorithm, Join-less Collocation Miner [5] which

is an efficient algorithm to discover the topological patterns in static spatial databases.

Join-less Collocation Miner proposes the concept of star neighborhood to materialize the

neighbor relationships without duplication of the neighbor relationships and loss of

collocation instances.

Join-less Collocation Miner uses an instance-look up method to reduce the computation

cost of identifying the instances of topological patterns. Moreover, it has a coarse pruning

step which can filter candidate patterns of topological patterns without finding exact the

instances of topological patterns.

In this algorithm, it uses candidate-maintenance-test method to generate candidate

patterns. It also makes use of Apriori property to prune the search space. Figure 4-8 is the

concept of candidate-maintenance-test with Apriori property pruning.

 Figure 4-8: The concept of candidate-maintenance-test with Apriori Property pruning.

19

4.2.1 Neighborhood Materialization

First, Join-less Collocation Miner proposes a method to materialize disjoint star neighbor

relationship as a framework for efficient collocation mining.

Definition 4.1 Given a spatial-temporal instance ii ∈ DB with feature type fi, the star

neighborhood of ii is defined as a set of spatial-temporal instances SNi =

{ij ∈ DB |Gdist�ii, ij� ≤ R ⋀Temdist�ii, ij� ≤ W, fj > fi}

Figure 4-9: An example to materialize star neighbor relationships [5]

The star neighbor of a center instance is the set of the center instance and instances in

its neighborhood whose feature types are greater than the feature type of the center

instance in a lexicographic order. Figure 4-9 shows an example to materialize star neighbor

relationship of a spatial dataset. The neighborhood areas of instances 𝑓1.𝑎,𝑓1. 𝑐,𝑓2.𝑑 are

represented in dotted circles with distance threshold R as radius. The black solid lines in each

circle represent a star neighbor relationship with the center instances. 𝑓1.𝑎 has two

neighbor instances, 𝑓2. 𝑎,𝑓3. 𝑎. The star neighborhood of 𝑓1. 𝑎 is {𝑓1.𝑎, 𝑓2.𝑎, 𝑓3.𝑎} including

20

the center instances 𝑓1.𝑎. In the case of 𝑓1. 𝑐, three neighbor instances are

present, 𝑓1.𝑑, 𝑓2. 𝑐, 𝑎𝑛𝑑 𝑓3.𝑎. However, 𝑓1. 𝑑 is not included in the star neighborhood set

of 𝑓1. 𝑐 since we focus on relationships among different feature types.

Definition 4.2 Let I = {𝑖1, … , 𝑖𝑘}⊆ I be a set of spatial instances whose feature types {𝑓1,…,𝑓𝑘}

are different. If all instances in I are neighbors to center instance 𝑜1, I is called a star instance

of the topological pattern S = {𝑓1,…,𝑓𝑘}.

 Figure 4-9 shows the star neighborhood of 𝑓1.𝑎 is { 𝑓1.𝑎 , 𝑓2. 𝑎 , 𝑓3.𝑎 }.

{𝑓1.𝑎 , 𝑓2. 𝑎, 𝑓3.𝑎 } is also one of star instances of {𝑓1, 𝑓2, 𝑓3}.

4.2.2 Join-less Collocation Mining Algorithm

The join-less collocation mining algorithm has three phases. The first phase

converts a spatial dataset into a set of disjoint star neighborhoods. The second phase

gathers the star instances of candidate patterns from the star neighborhood set, and

coarsely filters candidate patterns. The third phase filters instances from the star

instances, and finds prevalent topological patterns and generates co-location rules.

Figure 4-10 shows the pseudo code of Join-less Collocation Miner and Figure 4-11 is an

example of the process of mining colocation patterns. Join-less Collocation Miner

explains the algorithms with this example step by step.

21

Figure 4-10: The pseudo code of Join-less Collocation Miner[5]

22

Figure 4-11: The process of mining topological patterns[5].

Convert a spatial dataset to a set of disjoint star neighborhoods (step 1): Given a

spatial dataset and a distance threshold, Join-less Collocation Miner finds all neighbor

instance pairs using a geometric method such as plane sweep, or a spatial query method

using quaternary tree or R-tree. The star neighborhoods are generated by grouping the

neighboring instances.

Generate candidate patterns (step 4): k-length candidate patterns are generated

from prevalent (k-1)-length topological patterns. Join-less Collocation Miner make use of

Apriori property to prune the impossible candidate patterns. If any subset of a candidate

pattern is not prevalent, the candidate pattern is impossible be frequent.

23

Filter the star instances of a candidate pattern from the star neighborhood (step 5):

The star instances of a candidate pattern are gathered from the star neighborhoods

whose center instance feature is the same as the first feature of the candidate pattern.

For example, the instances of a candidate pattern {𝑓2,𝑓3} are gathered from the feature

𝑓2 star neighborhoods, and the instances of {𝑓1,𝑓2,𝑓3} are gathered from the feature 𝑓1

star neighborhoods.

Select coarse prevalent topological patterns using their star instances (step 9): The

length 2 star instances are clique instances since our neighbor relationship is symmetric.

For length 3 or more, Join-less Collocation Miner requests to check if the star instance is

a clique instance. In order to reduce computation cost, it has a coarse filtering step of

mining topological patterns. If the prevalence calculated from the star instances of a

candidate pattern is less than min-prevalence. The candidate pattern is pruned without

exact examination.

Filter instances of a topological pattern (step 10): From the star instances of a

candidate pattern, Join-less Collocation Miner filters its topological pattern instances by

looking up all the instances of the topological pattern of features except the first feature

of topological instances. For example, to examine the clique-like pattern of a star

instance {𝑓1.𝑎,𝑓2.𝑎,𝑓3.𝑎} of pattern {𝑓1, 𝑓2,𝑓3}, Join-less Collocation Miner only examine

the sub-instances {𝑓2.𝑎, 𝑓3.𝑎 } except 𝑓1. 𝑎.

Select prevalent topological patterns (step 12): The refinement filtering of

topological patterns is done by the participation ratio calculated from the instances of

topological patterns. Frequent topological patterns satisfy the min_prevalence.

24

Chapter 5. Proposed Algorithm: Inc_TMiner

 In this chapter, we discuss our algorithm Inc_TMiner for incremental maintenance

of topological patterns in spatial-temporal databases. First, we describe the basic definitions

of Inc_TMiner. Second, we present the concept of Inc_TMiner. Finally, we discuss the details

of the updating process of Inc_TMiner with examples.

5.1 Basic Definitions of Updated Database

In incremental environment, we have two different kinds of databases, the original

database DB and the incremental database db. Moreover, we separate the incremental

database into two parts: the Non_Cross database 𝑑𝑏𝑛𝑐 and the Cross database

𝑑𝑏𝑐. 𝑖. 𝑒. 𝑑𝑏 = 𝑑𝑏𝑐 + 𝑑𝑏𝑛𝑐. Figure 5-1 shows the classification of the databases.

Figure 5-1: The classification of the databases.

The Non_Cross database, denoted as 𝑑𝑏𝑛𝑐, is referred to as the set of new instances

which have no neighbor instances occurred in DB. The Cross database, denoted as 𝑑𝑏𝑐, is the

25

set of new instances which have neighbor instances existed in DB. Figure 5-2 shows the

concepts of Non_Cross database and Cross database in an updated topological spatial

temporal database.

Figure 5-2: The concepts of Non_Cross database and Cross database

A database combining all the data instances from DB and db is referred to as the

updated database DB’. An extended database EDB is the set of instances from incremental

database db and instances in the original database DB which are neighbors of the instances

in 𝑑𝑏𝑐. Figure 5-3 shows an example of the extended database EDB.

Figure 5-3: An example of the extended database EDB

26

In the extended database EDB, we have to modify the definition of the measurement of

discovering frequent topological patterns to avoid losing accurate count information.

Different from the prevalence in Eq.(3-4) which determines the minimum participation ratios

among all features of a pattern S, we define a new measurement, Max_PV(S) in Eq.(5-1)

which determines the maximum participation ratios among all features in a pattern S. If

Max_PV (S) < min_prevalence, pattern S is impossible to become frequent.

Max_PV (S) =max { 𝑝𝑟(𝑓𝑖, 𝑆),∀ 𝑓𝑖 ∈ 𝑆 }. (5-1)

With the intention of incremental maintenance of topological patterns in spatial

temporal databases, we need to store important information from the previous results which

can be re-used. First, we store Frequent Pattern Set (FPS) which is the set of frequent

patterns from the previous mining result. We also store the count information of each

frequent pattern in Count Information (CI). There are three columns in Count Information:

Pattern Type, Status, and Count. Pattern Type shows the feature types involved in this

pattern. Status shows the frequency of this pattern. Count records the counts of each feature

in a frequent pattern. Figure 5-4 shows an example of Count Information. In the example,

<𝑓1,𝑓2,𝑓3> is a frequent pattern, and we mark the Status of < 𝑓1,𝑓2,𝑓3 > as Freq. Moreover,

we store the counts of each feature 𝑓1: 3,𝑓2: 2,𝑓3: 3.

Pattern Type Status Count

<f1,f2,f3> Freq f1:3 f2:2 f3:3

<f1,f2,f4> InFreq

Figure 5-4: An example of count information CI

27

Problem Statement: Consider a spatial-temporal database DB, the minimum prevalence

threshold min_prevalence, a frequent topological pattern set FPS from DB, and an

incremental database db. The problem of incremental maintenance of topological pattern is

to maintain the set of frequent topological pattern FPS’ in an updated database DB’ based on

the information of FPS instead of re-mining DB’ from scratch.

5.2 The Basic Concept of Inc_TMiner

We improve the efficiency of the existing algorithms. Hence, we design a new core

algorithm for Inc_TMiner which combines the advantages of Topology Miner and Join-less

Collocation Miner.

 First, with the intention of incremental maintenance of topological patterns, we need to

store the neighborhood relationships among instances. Therefore, we utilize the star

neighborhood based on the concept of star neighborhood in Join-less Collocation Miner. It

reduces the expensive cost of join operations in discovering topological patterns. Moreover,

when we incrementally maintain the discovered topological patterns, we may re-mine the

original database to retrieve accurate information in some cases. Instead of re-scanning the

original database, we discover patterns from the star neighborhood which is more efficient.

Figure 5-5 shows an example of the original database and its star neighborhood.

28

Figure 5-5: An example of (a) the original database (b) star neighborhood.

 In order to find neighbor instances efficiently, we design a Cube-Feature Index structure

based on the concept of summary structure in Topology Miner. Cube-Feature Index is built

with the composite key (<𝑐𝑥𝑖,𝑦𝑖 ,𝑤𝑠>,𝑓𝑖), and its first level is used to index the cube with the

identifier <𝑐𝑥𝑖,𝑦𝑖 ,𝑤𝑠> and its second level indexes the feature type 𝑓𝑖. With this structure, we

can obtain the feature count occurred in a cube <𝑐𝑥𝑖,𝑦𝑖 ,𝑤𝑠>. Moreover, it is easier to discover

the neighbor cubes of <𝑐𝑥𝑖,𝑦𝑖 ,𝑤𝑠> and retrieve the neighbor instance counts.

 Finally, we generate candidate patterns using lexicographic Pattern-Growth method

mentioned in Topology Miner. Pattern-Growth method is one of the most effective methods

for frequent pattern mining and superior to candidate-maintenance-test approach. We also

make use of Apriori property to prune the impossible candidate patterns.

29

5.3 The Updating Process of Inc_TMiner

In this section, we discuss the updating process of Inc_TMiner. First, we discuss the

different cases when the database updated. Second, we give the details of our algorithm

with examples.

5.3.1 Cases of Updating Process

When an original database DB is updated to DB’, we have to check the extend database

EDB to update frequent patterns in FSP. There are several cases.

Case 1. If pattern S which appears in EDB is frequent in DB, then we update the count

information CI. It is easy to handle since we have already kept the count information from

the previous mining result.

Case 2. If pattern S which appears in EDB is not frequent in DB, then we check Max_PV (S) in

EDB. If Max_PV(S) is greater than or equal to min_prevalence, then we re-mine the original

database (Case 2.1). On the contrary, if Max_PV(S) ≤ min_prevalence, then it is impossible

to become frequent in an updated database (Case 2.2) based on theorem 1.

Theorem 1. If a topological pattern S is not frequent in the original database DB and

Max_PV(S) < min_prevalence in EDB, it is impossible to become frequent in an updated

database DB’.

Proof: 𝑓𝑚𝑎𝑥 is the feature with max participation ratio in pattern S in EDB.

 𝑛𝐷𝐵,𝑛𝐸𝐷𝐵 ,𝑛𝐷𝐵′ are the numbers of 𝑓𝑚𝑎𝑥 which participate in pattern S in DB,EDB,DB’

 𝑁𝐷𝐵,𝑁𝐸𝐷𝐵,𝑁𝐷𝐵′ are the number of 𝑓𝑚𝑎𝑥 in DB, EDB, DB’.

As we know pattern S is not frequent in the original database DB.

30

𝑛𝐷𝐵
𝑁𝐷𝐵

<min_prevalence

𝑛𝐷𝐵<min_prevlence* 𝑁𝐷𝐵

𝑛𝐷𝐵+𝑛𝐸𝐷𝐵 <min_prevalence* 𝑁𝐷𝐵+𝑛𝐸𝐷𝐵

𝑛𝐷𝐵+𝑛𝐸𝐷𝐵
𝑁𝐷𝐵+𝑁𝐸𝐷𝐵

<min_prevalence+𝑛𝐸𝐷𝐵-min_prevalence * 𝑁𝐸𝐷𝐵

𝑛𝐷𝐵′
𝑁𝐷𝐵′

<min_prevalence+𝑛𝐸𝐷𝐵-min_prevalence * 𝑁𝐸𝐷𝐵

If 𝑛𝐸𝐷𝐵-min_prevalence * 𝑁𝐸𝐷𝐵 ≤0, then 𝑛𝐷𝐵′
𝑁𝐷𝐵′

 is impossible to be greater than or equal

to min_prevalence.

So 𝑛𝐸𝐷𝐵
𝑁𝐸𝐷𝐵

≤ min_prev, then pattern S is infrequent in the updated database.

Case 3. If pattern S which does not appear in EDB is frequent in DB, we re-calculate the

prevalence. Since we have already kept the count information, it is easy to compute the

prevalence.

5.3.2 Inc_TMiner Algorithm

The Inc_TMiner algorithm has three phases. First, we update the Star Neighborhood

and find the extended database in the Update phase. Second, the Star Mining phase

discovers star-like patterns and 2 clique-like patterns in the updated database. Finally,

the Clique-Mining phase is mining frequent clique-like patterns.

Figure 5-6 shows the framework of Inc_TMiner. It takes the Frequent Pattern Set FSP,

the Count Information CI, the Star Neighborhood SN from the previous mining result,

and the incremental database db as input. It outputs the set of frequent topological

patterns and Figure 5-7 shows the pseudo code of Inc_TMiner. We explain the process of

Inc_TMiner with an example step by step.

31

Figure 5-6: The framework of Inc_TMiner.

32

Figure 5-7: The pseudo code of Inc_TMiner.

33

 The Update Phase:

Step I: Update the star neighborhood and determine the extended database EDB (Line

3-Line 4):

First, we update the star neighborhood when inserting the new instances and

determine the extended database EDB. Figure 5-8 shows an example of the updated

database DB’. We also mark the extended database EDB in this example. A special instance

𝑓1. 𝑒 which is an instance in the original database is also an instance in the extended

database, since 𝑓1. 𝑒 is the neighbor of 𝑓3. 𝑒 and 𝑓4. 𝑒.which are instances in the Cross

database.

Figure 5-8: An example of the updated database DB’ and the extend database EDB

Through the summary-structure, we discover the neighbor instances of new instances

{ 𝑓1.𝑓, 𝑓1.𝑔, 𝑓2. 𝑒, 𝑓2.𝑓,𝑓2.𝑔, 𝑓2.ℎ, 𝑓2. 𝑖,𝑓3. 𝑒,𝑓3. 𝑓,𝑓3.𝑔,𝑓3.ℎ,𝑓4. 𝑒,

𝑓4.𝑓} which are inserted into the incremental database. We store these new instances and

the neighbor instances of these new instances in star neighborhood. Figure 5-9 is the star

34

neighborhood of the extended database.

Figure 5-9: The star neighborhood of the extended database.

 The Star Mining Phase

Step II: Update the count information of 2 clique–like patterns and mine frequent

star –like patterns and 2 clique-like patterns. (Line 5-Line 7)

We can obtain the feature counts of 2 clique-like patterns directly from star

neighborhood. Therefore, we update the feature counts of each 2 clique-like patterns in CI

since we have already stored the count information from the previous result. For each

2-clique-like pattern, we add the feature counts in extended database to the feature counts

in CI.

Figure 5-10 shows the count information after database updated. Take pattern <𝑓1, 𝑓2>

as an example, the feature counts of <𝑓1,𝑓2> in the original database are 𝑓1: 2,𝑓2: 2 , and the

counts in the extended database are 𝑓1: 2 𝑓2: 2. Therefore, the feature counts of <𝑓1,𝑓2> in

the updated database are 𝑓1: 4 𝑓2: 4.

35

Figure 5-10: The count information after database updated

We mine star-like patterns by checking the counts of 2-clique-like patterns in Count

Information. We calculate the participation ratio pr (𝑓𝑗 , (𝑓𝑖,𝑓𝑗)) of each related feature 𝑓𝑗 of

the center feature 𝑓𝑖, if the participation ratio of the feature 𝑓𝑗 is greater than or equal to

min_prevalence, then this feature is one of star features of 𝑓𝑖. Take the center feature 𝑓1 as

an example, the participation ratio of each related features which are pr(𝑓2,, <𝑓1,𝑓2>)

=0.44, pr(𝑓3, <𝑓1,𝑓3>) =0.75 and pr(𝑓4,, <𝑓1,𝑓4>) =0.83 are greater than min_prevalence 0.35,

the star pattern of 𝑓1 is <𝑓1: 𝑓2,𝑓3,𝑓4>.

After mining frequent star-like patterns, we continue to discover frequent 2-clique-like

36

patterns. Figure 5-11 shows an example of mining 2-clique-like patterns, in this example,

<𝑓1,𝑓4> is frequent in the original database since the participation ratios are pr(𝑓4,, (𝑓1,𝑓4))

=3/4, pr(𝑓1, (𝑓1,𝑓4)) =2/5 and the prevalence of <𝑓1,𝑓4> is min {2/5, 3/4} = 0.4 which is greater

than min_prevalence 0.35.In the updated database, the prevalence of <𝑓1,𝑓4> changes to min

{3/7, 5/6} =0.42 since the participation ratios are pr(𝑓4,, <𝑓1,𝑓4>) =5/6, pr(𝑓1, <𝑓1,𝑓4>) =3/7.

<𝑓1,𝑓4> is still frequent after database updated.

Figure 5-11: An example of count information after the Star Mining Phase.

 Clique Mining Phase

Step III: Extend each frequent 2-clique-like pattern in EDB by the pattern growth method.

(Line 8 – Line 11)

As we already know the frequent 2 clique-like patterns in the updated database are

{<𝑓1,𝑓2>, <𝑓1,𝑓3>, <𝑓1,𝑓4>, <𝑓2,𝑓3>, <𝑓3,𝑓4>}, we extend each 2-clique-like pattern in EDB by

37

the pattern growth method, and also make the use of Apriori property to prune the

impossible candidate patterns. For each extended pattern 𝑆𝑒, we check whether the

extended pattern 𝑆𝑒 is in FPS, then we handle the extended pattern 𝑆𝑒 in different cases

to determine the pattern is frequent in the updated database.

Step IV: (Case 1) If an extended pattern 𝑺𝒆 is in FPS, then we update the count

information of 𝑺𝒆 (Line 1 - Line 2 in the Inc_PDB Procedure)

In this example, we extend the frequent pattern <𝑓1,𝑓2> to <𝑓1,𝑓2,𝑓3>. Because

<𝑓1,𝑓2,𝑓3> is already in FPS, we have already stored the count information, the feature

counts of <𝑓1,𝑓2,𝑓3> in the updated database is the sum of the feature counts in CIand the

feature counts in EDB. Then we calculate the prevalence of <𝑓1,𝑓2,𝑓3> is min {3/7,3/9,3/8}

= 0.33 which is less than min_prevalence 0.35 . Hence, <𝑓1,𝑓2,𝑓3> becomes infrequent in

the updated database. Figure 5-12 shows the process of determining the frequency of

pattern <𝑓1,𝑓2,𝑓3>

Figure 5-12: The process of determining the frequency of pattern <𝒇𝟏,𝒇𝟐,𝒇𝟑>

38

Step V :(Case 2) If the extended pattern 𝑺𝒆 is not in FPS, we re-mine the original

database. (Line 3- Line 4 in the Inc_PDB Procedure)

If an extended pattern 𝑺𝒆 is not in FPS, we did not keep any count information

about this pattern, so we have to check the Max_PV (𝑆𝑒) in EDB. In this example, <𝑓1,𝑓3,𝑓4>

is not in FPS, and the feature counts of <𝑓1,𝑓3,𝑓4> in EDB are 𝑓1: 2 𝑓3:2 𝑓4: 2. The Max_PV

(<𝑓1,𝑓3,𝑓4>) is max {2/2, 2/4, 2/2} =1 which is greater than min_prevalence 0.35. It meets the

condition of case 2.1. Therefore, we re-mine the original database, we obtain the feature

counts in DB as 𝑓1: 1 𝑓3:1 𝑓4: 1. Then sum the counts in EDB and in DB, we obtain the

feature counts in DB’ 𝑓1: 3 𝑓3:3 𝑓4: 3. Finally we calculate the prevalence of <𝑓1,𝑓3,𝑓4> is min

{3/7,3/8,3/6} = 0.375 ≥ 0.35. We determine <𝑓1,𝑓3,𝑓4> is a frequent pattern after database

updated. Figure 5-13 shows the process of determining the frequency of pattern <𝑓1,𝑓3,𝑓4>.

Figure 5-13: The process of determining the frequency of pattern <𝒇𝟏,𝒇𝟑,𝒇𝟒>

39

Step VI: (Case 3) for each pattern S is in FPS, but not appears in EDB, we re-calculate the

prevalence. (Line 13 – Line 15)

The topological pattern S does not appear in EDB, but S is frequent in DB, then it is

possible to become frequent in DB’. We check the prevalence due to the change of the

number of 𝑓𝑖 in the updated database. In this example, <𝑓2,𝑓3, 𝑓4> does not appear in EDB,

but it is a frequent pattern in FPS, so we re-calculate the prevalence. The prevalence of

<𝑓2, 𝑓3,𝑓4> in DB is min {2/5, 2/4, 2/4} =0.4, and changes to min {2/9, 2/8,2/6}=0.22 in DB’.

<𝑓2, 𝑓3,𝑓4> becomes infrequent after database updated. Figure 5-14 shows the process of

determining the frequency of pattern <𝑓2,𝑓3,𝑓4>

Figure 5-14: The process of determining the frequency of pattern <𝒇𝟐,𝒇𝟑,𝒇𝟒>

 Finally, we discover that the frequent patterns in the updated database are {<𝑓1,𝑓2>,

<𝑓1,𝑓3>, <𝑓1,𝑓4>, <𝑓2,𝑓3>, <𝑓3,𝑓4>,<𝑓1,𝑓3,𝑓4>}. Figure 5-15 shows the flowchart of

Inc_TMiner.

40

Figure 5-15: The flowchart of Inc_TMiner.

41

Chapter 6. Experimental results and performance study

To evaluate the performance of Inc_TMiner, two topological pattern mining algorithms

based on static databases, Topology Miner [7], Join-less Colocation Miner [5], and one

incremental spatial-temporal topological pattern maintaining algorithm IMCP based on

Join-less Colocation Miner method are implemented for comparison. All algorithms are

implemented in C++ language and tested on an Intel Centrino 1.3 GHz U7300 with 2 GB of

main memory running Windows 7 system. We test the performance on synthetic databases

with different parameters setting.

42

6.1 Data Generator

Figure 6-1: Parameters of synthetic data generator

We extend the synthetic data generator used for mining topological pattern in static

spatial-temporal databases [7]. Figure 6-1 shows the parameters setting of incremental

spatial-temporal data generator.

43

In our experiments, we set N as the number of instances in an incremental spatial

temporal database. Incre_Ratio divides the spatial-temporal database into two parts, the

original database and the incremental database. N*(1-Incre_Ratio) is the size of the original

database DB and N*Incre_Ratio is the size of the incremental database db. Moreover, we

divide the incremental database into the Non-Cross database and the Cross database by

Cross Ratio. The size of Non_Cross database is N*Incre_Ratio*(1-Cross_Ratio), and the size of

the Cross database is N*Incre_Ratio*Cross_Ratio.

In each database we divide the instances by several parameters. First, we set L as the

number of features which appear in the longest pattern and m is the number of features

which are confident in the longest pattern. The confident features should participate in the

frequent patterns. n is the number of noise features, and H is the percentage of noise

instances in the database. N*(1-Incre_Ratio)*H is the number of noise instances in the

original database. We assign these instances to noise features uniformly. The rest of

instances are assigned to non-noise features uniformly. Θ is min_prevalence. (Δmax +Θ)

is the percentage of confident instances which appear in the longest pattern. The number of

instances 𝑁𝑖, which must appear in the longest pattern of a feature 𝑓𝑖 in the original

database is (Δmax +Θ)* N*(1-Incre_Ratio)*(1-H) /L. For other features, the participation

ratio is (Δmin +Θ) and the number of instances in the longest pattern in the original

database is (Δmin +Θ)* N*(1-Incre_Ratio)*(1-H) /L.

We divide the spatial-temporal space by the cube-size with the spatial distance value 𝑅
2√2

and temporal distance value 𝑇_𝑢𝑛𝑖𝑡𝑠
2

. First, we generate a center instances (𝑥𝑐 ,𝑦𝑐, 𝑡𝑐) randomly,

then we generate the instances around a circle with a radius r. the location coordinate is

(𝑥𝑐 + 𝑟 ∗ sin 2𝜋
𝑁𝑖

,𝑦𝑐 + 𝑟 ∗ cos 2𝜋
𝑁𝑖

), the temporal coordinate is 𝑡𝑐 + 𝑇_𝑢𝑛𝑖𝑡 ∗ sincos 2𝜋
𝑁𝑖

 . We

confirm all instances in the cube will participate in the longest pattern. We mark the cubes

which intersect the cylinder. The centered of circle of cylinder is radius r and the height of

44

the cylinder is 2*T_unit. No other longest pattern instance can generate in this circle. After

generating instances of each feature which participate in the frequent pattern, the process is

end. We generate the remaining instances randomly on the space.

6.2 Performance

In this section, we discuss the performance of Inc_TMiner. As to the comparison of

Inc_TMiner, we implement the other three algorithms, Topology Miner and Join-less

Collocation Miner and IMCP.

With the intention to show the efficiency of Inc_TMiner, we vary Cross_Ratio,

Incre_Ratio and prevalence threshold to measure the execution times and memory usage of

the four algorithms. We also show scalability of Inc_TMiner by vary the data size of the

spatial temporal databases.

6.2.1 Effect of Cross Ratio

We study the performance of the four algorithms by varying Cross_Ratio from 0.05 to 0.5.

Figure 6-2 shows the effect of Cross_Ratio of the four algorithms v.s. the execution times.

When Cross_Ratio increases, the number of instances in the cross database also increases.

The execution times of the four algorithms also increase since more computations are

required for higher interaction relations between the original database and the incremental

database. However, Inc_TMiner still outperforms other algorithms and has a better

performance when Cross_Ratio is small.

45

Figure 6-2: The effect of Cross Ratio

6.2.2 Effect of Incre Ratio

We evaluate the performance of the four algorithms by varying the Inc_Ratio from 0.05

to 0.5. The results of the four algorithms shown in Figure 6-3 indicate Inc_TMiner

outperforms the other three algorithms. When the Inc_Ratio increases, the number of

instances in the incremental database also increases, the four algorithms require more time

to discover topological patterns. When Inc_Ratio is in lower value, both the incremental

algorithms require less time compared to the static algorithms, since the size of the

incremental database in the updated database is smaller. The experiment shows Inc_TMiner

is more efficient than the other three algorithms, especially in small Inc_Ratio.

46

Figure 6-3: The effect of Incre Ratio

6.2.3 Effect of Data Size

We study the effect of the number of instances N in the updated database. Figure 6-4

shows the results of the four algorithms with varing the number of instances from 100k to

1000k. Figure 6-5 depicts the performance of two incremental algorithms. Both incremetal

miners significantly outperform the static algorithms, especially when the number of

instances is greater than 500k, since the static algorithms reqiure to re-mine the updated

databases which are much larger than the incremental databases. When the number of

instances increases, Inc_TMiner requires less time to discover topological patterns compared

to the other three algorithms. Moreover, Inc_TMiner outperforms IMCP, since Inc_TMiner

discovers frequent topological patterns in the depth-first method and maintains the

corresponding projected databases. Figure 6-6 shows the effect of data size versus memory

usage. When data size increases, the memory usage also increases. Incremental algorithms

are less effective than static algorithms because the incremetnal algorithms require to keep

some extra information count information, frequent pattern set to efficiently maintain

47

topological patterns. Moreover, both Inc_TMiner and Topology Miner use the projected

database to facilitate the mining performance which also require extra memory storage.

Figure 6-4: The effect of Data Size v.s. Runtime

Figure 6-5: The effect of Data Size between the incremental algorithms v.s. Runtime

48

Figure 6-6: The effect of Data Size v.s. Memory Usage

6.2.4 Effect of Prevalence Threshold

Finally, we test the performance of min_prevalence by varying the value from 0.01 to

0.3. Figure 6-7 shows the performance of the four algorithms. When the min_prevalence

increases, the execution times of the four algorithms decreases as expected since when the

prevalence threshold increases, more topological patterns become infrequent. As a result,

both static algorithms require more time to discover topological patterns than the

incremental algorithms. Moreover, in the comparison of two incremental algorithms,

Inc_TMiner takes less time than IMCP which is based on the candidate-maintenance-test

method. Figure 6-8 shows the memory usage of the four algorithms. When min_prevalence

increases, the memory usages of the four algorithms decrease since more topological

patterns become infrequent.

49

Figure 6-7: The effect of min_prevalence V.S. Runtime

Figure 6-8: The effect of min_prevalence V.S. Memory Usage

50

Chapter 7. Conclusion

In this thesis, we investigate the issues for incremental maintenance of topological

patterns in large spatial temporal databases. We propose an efficient algorithm Inc_TMiner

by exploring techniques to maintain discovered topological patterns in spatial-temporal

databases in an incremental environment.

We improve the efficiency of the existing static algorithms, Topology Miner and Join-less

Collocation Miner. We use Cube-Feature Index as a summary structure which is efficient to

determine the neighbor relationships among instances and approximate the feature count in

a cube. With the intention of storing the neighbor relationship we obtain from Cube-Feature

Index structure, we utilize star neighborhood which materializes the neighbor set of each

instance. Instead of re-scanning the original databases and re-find the neighbor relationship

among instance, we retrieve the neighbor set of an instances from star neighborhood. For

incremental maintenance of topological patterns, we store the previous mining results which

can be re-used. We store frequent patterns in FPS and record the feature counts of the

frequent patterns in count information CI.

Inc_TMiner discovers patterns in the Pattern-Growth method which is superior to the

candidate-maintenance–test approach. Moreover, it utilizes the concept of the projected

database which partitions the databases into subset recursively. It also makes use of the

Apriori property to prune the impossible candidate patterns.

Inc_TMiner efficiently maintain topological patterns in incremental environment

without re-mining the updated database. Compared to the existing incremental algorithm

IMCP and the prior static algorithms Topology Miner and Join-less Collocation Miner, the

experiments show that the Inc_TMiner is efficient and scalable compared with than the

other three algorithms.

51

Bibliography

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” Proc. of the

20th International Conference on Very Large Data Bases (VLDB), Santiago, pp.487-499,
1994.

[2] J. S. Yoo, S. Shekhar, and M. Celik, “A join-less approach for co-location pattern mining:
A summary of results,” Proc. of the 5th IEEE International Conference on Data Mining
(ICDM), Houston, Texas, pp. 813–816, 2005.

[3] S. Shekhar and Y. Huang, “Discovering spatial co-location patterns: A summary of
results,” Proc. of the 7th International Symposium on Spatial and Temporal Databases
(SSTD '01), Redondo Beach, CA, pp. 236-256, July 2001.

[4] J. Yoo, S. Shekhar, J. Smith, and J. Kumquat, “A partial join approach for mining
co-location patterns,” Proc. of the 12th annual ACM international workshop on
Geographic information systems, Washington D.C., USA, pp. 241–249, 2004.

[5] J. Yoo and S. Shekhar, “A join-less approach for mining spatial colocation patterns,”
IEEE Trans. on Knowledge and Data Engineering, vol. 18, no. 10, pp.1323-1337, Oct.
2006.

[6] X. Zhang, N. Mamoulis, D. W. Cheung, and Y. Shou, “Fast mining of spatial
collocations,” Proc. of the 10th ACM SIGKDD Int'l Conf. Knowledge Discovery and
Data Mining (KDD '04), pp. 384-393, 2004.

[7] J. Wang, W. Hsu, and M. L. Lee, “A Framework for Mining Topological Patterns in
Spatio-temporal Databases,” Proc. of 14th ACM Conference on Information and
Knowledge Management (CIKM '05), Bremen, Germany, pp. 429-436, Nov 2005.

[8] D. Cheung, J. Han, V. Ng, and C.Wong, “Maintenance of discovered association rules in
large databases: An incremental updating technique,” Proc. of the 12th International
Conference on Data Engineering (ICDE), pp. 106–114, 1996.

[9] J. He, Q. He, F. Qian, and Q. Chen, “Incremental Maintenance of Discovered Spatial
Colocation Patterns,” Workshops Proc. of the 8th IEEE International Conference on Data
Mining (ICDM '08), Pisa, Italy, pp. 399-407, December 2008.

[10] J. Wang, W. Hsu, M. L. Lee, and J. Wang, “FlowMiner: Finding Flow Patterns in
Spatio-Temporal Databases,” Proc. of 16th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI '04), Boca Raton, Florida, pp. 14-21, November 2004.

[11] J. Wang, W. Hsu, and M. L. Lee, “Mining Generalized Spatio-Temporal Patterns,” Proc.
of 10th International Conference on Database Systems for Advanced Applications
(DASFAA), Beijing, China, pp. 649-661, April 2005.

[12] S. Guha, R. Rastogi, and K. Shim, “Cure: An efficient clustering algorithm for large

52

databases,” ACM SIGMOD International Conference on Management of Data, pp. 73-84,
June 1998.

[13] Y. Huang, H. Xiong, S. Shekhar, and J. Pei, “Mining confident co-location rules without
a support threshold,” Proc. of 18th ACM Symposium on Applied Computing (ACM
SAC), pp. 497-501, 2003.

[14] J. Sander, M. Ester, H. P. Kriedgel, and X. Xu, “Density-based clustering in spatial
databases,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 169-194, 1998.

[15] H. Cheng, X. Yan, and J. Han, “IncSpan: Incremental Mining of Sequential Patterns in
Large Database,” Proc. of the 10th ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pp. 527-532, August 2004.

[16] J. Han and J. Pei, “Mining frequent patterns by pattern-growth: Methodology and
implications,” ACM SIGKDD Explorations Newsletter, vol. 2, pp. 14-20, 2000.

[17] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong and Y.-K Lee, “Efficient Tree Structures for
High Utility Pattern Mining in Incremental Databases,” IEEE Transactions on
Knowledge and Data Engineering, vol. 21, no. 12, pp. 1708-1721, December 2009.

[18] H. Cao, N. Mamoulis, and D. W. Cheung, “Discovery of collocation episodes in
spatiotemporal data,” Proc. of the 6th IEEE Int'l Conf. Data Mining (ICDM '06), pp.
823–827, 2006.

[19] M. Celik, S. Shekhar, J. P. Rogers, J. A. Shine, and J. S. Yoo, “Mixed-drove
spatio-temporal co-occurrence pattern mining: A summary of results,” Proc. of the 6th
IEEE Int'l Conf. Data Mining (ICDM '06), Hong Kong, China, pp. 119-1287, 2006.

[20] Y. Huang, L. Zhang, and P. Yu, “Can we apply projection based frequent pattern mining
pradigm to spatial co-location mining?” In PAKDD, Vietnam, pp. 719–725, 2005.

[21] M. Celik, J.M. Kang, and S. Shekhar, “Zonal co-location pattern discovery with dynamic
parameters,” Proc. of the 7th IEEE Int. Conf. on Data Mining (ICDM), Omaha, Nebraska,
pp. 433–438, 2007.

	摘要
	ABSTRACT
	Acknowledgement
	Chapter 1. Introduction
	1.1 Introduction and Motivation
	1.2 Outline of the Thesis

	Chapter 2. Related Works
	Chapter 3. Problem Definitions
	Chapter 4. Basic Concepts of the Static Algorithms
	4.1 Topology Miner
	4.1.1 Summary Structure
	4.1.2 Concept of Projected Database
	4.1.3 Construction of Projected Database
	4.1.4 Mining Topological Patterns

	4.2 Join-less Collocation Miner
	4.2.1 Neighborhood Materialization
	4.2.2 Join-less Collocation Mining Algorithm

	Chapter 5. Proposed Algorithm: Inc_TMiner
	5.1 Basic Definitions of Updated Database
	5.2 The Basic Concept of Inc_TMiner
	5.3 The Updating Process of Inc_TMiner
	5.3.1 Cases of Updating Process
	5.3.2 Inc_TMiner Algorithm

	Chapter 6. Experimental results and performance study
	6.1 Data Generator
	6.2 Performance
	6.2.1 Effect of Cross Ratio
	6.2.2 Effect of Incre Ratio
	6.2.3 Effect of Data Size
	6.2.4 Effect of Prevalence Threshold

	Chapter 7. Conclusion
	Bibliography

