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ABSTRACT
In this thesis, we introduce a 3D texture synthesis method using weighted color and grey
level co-occurrence probabilities. Because the extracted features from an input 2D texture can
affect the quality of the result, we use color and grey level co-occurrence probabilities to
extract the features. Appearance vectors are used to replace RGB color values. And various
statistics are used according to the characteristic of the input 2D texture. We achieve 3D
texture synthesis by using a pre-computed similarity set and 3D-candidate set. Then we can

synthesize desired 3D textures by applying the 3D pyramid synthesis method.
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Chapter 1
Introduction

1.1 Motivation

Texturing mapping [8,.15, 20,24, 25, 26, 27, 28] has been applied widely in computer
graphics. It is an effective technique of simulating surface detail at relatively low cost. This
technique can easily add the ‘appearance of detail to a large variety of object surfaces.
Without increasing 3D model detail complexity, it enhances the visual realism of 3D
models by adding fine texture details. But it suffers some well-know problems such as
distortion and discontinuity. Moreover, the size and resolution of textures can not be
changed dynamically.

3D textures [19, 20] can be used to solve the above problems. A 3D texture is defined
as colored points in 3D to represent a real-world material. Users do not need to find a
parameterization for the surface of the object to be textured. Furthermore, 3D textures

provide texture information inside the entire volume. Procedural approaches and



image-based approaches both can generate 3D textures, but they may be suffered from

some problems. For procedural approaches, it is difficult to express procedurally a desired

texture for users. It only can be defined for a limited set of materials. For image-based

approaches, it cannot do well for large structural textures. Furthermore, it is non-reusable,

that is, textures generated for one 3D texture cannot be used for other 3D textures.

Recently, a lot of 3D textures have been synthesized from 2D textures by 3D texture

synthesis approaches [3, 4, 6, 7, 11, 14, 19, 21, 22, 23]. Several methods [6, 7, 14, 22] used

three orthogonal slices for neighborhood matching to synthesize 3D textures. They are

applicable to a wide variety of textures, including anisotropic textures, textures with large

coherent structures, and multi-channel textures. However, the quality problems still exist

for a lot of textures. Further improvements are often required to extract more reliable

texture features. Haralick et al. [9] introduced a method using the conditional joint

probabilities of all pair wise combinations of grey levels in the spatial window to extract

texture features for image classification. Recently, several methods [2, 5, 13, 18] extended

the method to some applications, such as face detection, and image segmentation.

In this thesis, we extract color and grey level co-occurrence probability (GLCP)

features from a 2D texture for 3D texture synthesis. With the characteristic of an input 2D

texture, we adjust weighting values between color and GLCP features. We use weighted

color and GLCP features for neighborhood matching. Our approach can provide better



synthesized results for a wide range of textures.

The major contributions of this thesis are as follows: We present an approach for
synthesizing 3D textures from a 2D texture using weighted color and GLCP features.
With the characteristic of an input 2D texture, we can adjust the weighting values

between color and GLCP features for 3D texture synthesis.

1.2 System Overview

The flowchart of our system is shown in Figure 1.1. First, input a 2D texture and
repeat the texture thrice as three directional exemplars.

For feature vector generation, it divides into twoparts: one part is to extract color
features; the other part is to extract GLCP features. For the color feature extraction, it
captures 5x5 window information‘and uses principal component analysis (PCA) to
decrease the dimensions. For the GLCP feature extraction, it converts the input 2D
texture to a grey level texture, and then it captures 15x15 window information and
assigns the number of guantized grey levels. It selects the displacement value (3) and
the orientation value (0) to create a grey level co-occurrence matrix and selects the
acceptable statistical parameters. According to the characteristic of the input 2D texture,
we assign weighted values between color and GLCP features.

For similarity set generation and 3D-candidates generation, it finds the three pixels



most similar to each pixel. And it computes a small candidate set from the other two
examplars for each pixel. For synthesis process, we apply the pyramid synthesis method
[7, 10] to our system. The pyramid synthesis method consists of the upsampling step,

jitter step and correction step. They are used at each synthesis level to obtain the results.

1.3 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2, we review related works.
In Chapter 3, we present our approach for synthesizing 3D textures from a 2D texture
based on weighted color and GLCP features. Chapter 4 shows the implementation and

results. Finally, conclusions and future works are discussed in Chapter 5.
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Chapter 2
Related Works

In this chapter, we review related works related to our approach. In Section 2.1, we
review previous approaches .about 3D-texture synthesis based on neighborhood matching.

In Section 2.2, we review related works about grey level.co-occurrence matrices.

2.1 3D Texture Synthesis Based on Neighborhood Matching

Wei [26] first adapted 2D neighborhood matching synthesis schemes to 3D textures.
The key idea is to consider three 2D exemplars for each direction from an input 2D
texture. In each voxel of the output 3D texture, three interleaved 2D neighborhoods are
extracted (see Fig. 2.1 [7]). The best matches are found independently in each of the three
2D exemplars. And then they attempted to converge toward the best color for all three

directions.
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Figure 2.1 [7] 3D neighborhood matching synthesis schemes

(a) The three exemplars E,, E,, E, anda corresponding 3-neighborhood.

y H

(b) the crossbar defined by the 3-neighborhood.

Qin and Yang [22] presented a method for generating 3D textures from input
examples. They replaced traditional gray-level histograms with basic gray-level aura
matrices for neighborhood matching. Their method characterized each input example as a
set of aura matrices and generated a 3D texture from multiple view directions. For every
voxel in the volume result, they only considered the pixels on the three orthogonal slices
for neighborhood matching. Furthermore, their approach can generate reliable results for

both stochastic and structural textures. However, it needs large storages for large matrices.

Kopf et al. [14] introduced a 3D texture synthesis method from 2D exemplars. They

extended 2D texture optimization techniques to synthesize 3D textures, and integrated



with histogram matching which forces the global statistics of the synthesized 3D texture.

They also introduced a reweighting scheme for histogram matching. For each voxel, they

only considered the neighborhood coherence in three orthogonal slices, and iteratively

increased the similarity between the 3D textures and the exemplar. Their approach could

generate good results for wide range of textures. However, they synthesized the texture

with the information on the slices.

Dong et al. [7] introduced a method with the unique ability to restrict synthesis to a

subset of the voxels. They .synthesized .a volume from a set of pre-computed 3D

candidates. Their pre-computed 3D candidates improved synthesis efficiency and

significantly reduced the dependency chain-required to compute voxel colors. Their

approach generates good results efficiently. However, if the three exemplars do not define

a coherent 3D volume, the quality of the synthesized result will be poor.

Chen and Wang [3] presented a method for synthesizing solid textures from 2D

exemplars. They analyzed the relevant factors for further improvements of the synthesis

quality. They adopted an optimization framework with the k-coherence search and the

discrete solver for 3D texture synthesis. Their approach was integrated with two kinds of

histogram matching methods, position and index histogram matching. They effectively



cause the global statistics of the synthesized 3D textures to match those of the exemplars.

2.2 Grey Level Co-occurrence Matrix
The grey level co-occurrence method provides a second-order approach for
generating features [9, 12]. Given a spatial window within the grey level image, the

GLCP method computes the conditional joint probabilities, C. , of all pairwise

ij
combinations of grey levels i and j, given the inter-pixel displacement vector (¢ ,0),

which represents the relationship of the pixel pairs, where ¢ is the interpixel distance,

and @ is the orientation. The set'of GLCPs.are defined as

iji G-1
Zi,jzo Pij

where p, is the frequency of occurrence between two grey levels, i and j, for a given

displacement vector (¢ ,6), for the given window size; G is the number of quantized
grey levels. The probabilities are stored in a grey level co-occurrence matrix (GLCM),
where index (i, j) in the matrix is probability C;. Statistics are applied to the GLCM to
generate texture features which are assigned to the center pixel of the image window. For
example, as shown in Fig. 2.2, we use a 5x5 window size for the grey image and G is

set as 4 (Fig. 2.2(a)). The GLCM is generated with the inter-pixel displacement vector (1,

9



0°) (Fig. 2.2(b)) and then GLCP (Fig. 2.2(c)) is computed.

0 1 2 3
ol2]2]1]2
Y11]o0]0|2
312|003 12011
212131 312121110
0O(0(2 |3 |1 (b)
O(3(0]|1]0 0 ) 3
511130/ 1.l.0(2/20(2/20|1/20]2/20
@) 1 \1/20| © 0 |2/20

2 | 1/20| 2/20 | 1/20 | 1/20

3.42/20|2/20(1/20| O

(c)

Figure 2.2 The process for computing grey level co-occurrence probabilities

(@) a 5x5 window size for the grey image and G is set as 4

(b) GLCM is generated with the inter-pixel displacement vector (1, 0°)

(c) GLCP is computed from (b)

Haralick et al. [9] first presented a texture analysis method, grey level co-occurrence

10



matrix (GLCM). The GLCM method is a way of extracting second order statistical texture

features. The approach has been used in various of applications [2, 12, 13, 18]. The key

idea is to describe the probability of any grey level occurring spatially relative to any

other grey level, within a given image window.

Jobanputra and Clausi [12] extended the GLCM method. They proposed a Gaussian

weighting scheme. Co-occurring pixel pairs closer to the center of the image window are

assigned larger co-occurring probabilities according to a Gaussian distribution. The

generated features are referred.to as weighted GL CM.texture features.

Jobanputra and Clausi” [13] presented a weighted GLCM method for preserving

boundaries for image texture segmentation. They selected suitable GLCM parameters for

improved boundary preservation. From their tests, weighted GLCM features provide

improved boundary preservation and segmentation accuracy at a computational cost.

Chen [2] presented a GLCM method for face detection. Face detection is one of the

most important researches in face recognition. They extracted texture features from a

color image by wavelet transform, and then extracted the suitable statistics by the GLCM

method. They used the statistics to execute the face detection process.

11



Lu [18] presented a GLCM method for image segmentation. The key idea is to
perform image segmentation by combining the analytic result of color and texture. In the
textural part, they proposed an approach to solve the problem in GLCM. Using fixed
window size is unable to accurately segment textures in the image. Therefore, adaptive

windows are used to analyze features of the image textures.

12



Chapter 3
3D Texture Synthesis

In this chapter, we present our approach for synthesizing 3D textures. In Section 3.1,
we describe how to obtain the feature vectors. In Section 3.2, we use similarity sets to
accelerate neighborhood matching. And then we compute 3D-candidates which keep the
color coherence of the threeorthogonal slices. In Section 3.3, we introduce 3D pyramid
texture synthesis to our system. It ‘is divided into three parts: the upsampling step, the
jitter step, and the correction step. The upsampling step is to increase the synthesized 3D
texture sizes from coarse level to fine level, and each voxel in parent level generates eight
voxels in children level. The jitter step is to perturb the textures to achieve deterministic
randomness. The correction step is to use neighborhood matching to make the results

more similar to the exemplar.

3.1 Feature Vector Generation

13



First, we extract the features from an input 2D texture. The feature extraction
approach is divided into two parts: color feature extraction method and the grey level

co-occurrence method.

3.1.1 Color Features

3D texture synthesis using RGB color values for neighborhood matching needs
larger neighborhood size and numerous data. Appearance vectors [17] are continuous and
low-dimensional than RGB color values for neighborhood matching. Therefore, we
transform the texture data values in color space into feature vectors in appearance space.
As shown in Fig. 3.1, we transform the input 2D texture T into the transformed

exemplar T'.

According to Lefebvre and Hoppe [19], we take the RGB color values in 5x5
windows to construct appearance vectors for each pixel of an input texture T . The
transformed exemplar T’ consists of the feature vectors at each pixel. There are 75
dimensions (25 for grids and 3 for RGB) for each pixel in T'. We perform PCA to
reduce the dimensions to obtain a transformed exemplar T'. It means that we project the
exemplar T'using PCA to obtain the transformed exemplar T'. We reduce the

75-dimensional to 8-dimensional feature vectors.

14



Color Space Appearance Space

RGB for each pixel Feature vector for each pixel
2D Texture
T > T Dimension Reduced
—>

T

Figure 3.1 Overview of color feature extraction

We suppose that the data on each side is connected with them on the opposite side.
For the pixels on the border, we will treat-the pixels on the opposite border as its

neighbors, and then take their RGB color values to construct feature vectors.

3.1.2 Grey Level Co-occurrence Probability Features

Here we convert the input 2D texture to a grey image, and extract GLCP features
from the grey image. Extracting GLCP features from a grey image requires the
parameters as follows: (1) window size (n,, n,), (2) image quantization (G), (3)

displacement vector (0 ,0) and (4) statistic selection.

For window size (n,, n,), we use a window size of 15x15 to compute GLCP

features. Because large window sizes are necessary to gather sufficient data to

15



characterize local texture regions, and small window sizes will result in poorly sampled

co-occurring probabilities and will produce incoherent features [13]. As shown in Fig.

3.2, we compute GLCP features for the window size 15x15.

(b)

(@) (©

Figure 3.2 (a) grey level image generated from the input 2D texture

(b) 15x15 window for each pixel (c) GLCP features computed from the window.

16



For image quantization (G), according to Clausi [5], the larger values of G are
deemed excessive. Therefore, we set G as 32 for our experiments. For displacement
vector (9 ,86), we select the suitable displacement vector. The interpixel distance is set as
1 and the orientations are set as 0°, 45° 90° 135° . Because we consider the
characteristic of an input 2D texture for each direction and consider the influence of the

distance of the pixel pairs.

For statistic selection, we will select the suitable statistic. Many of the statistics
suggested by Haralick [9] produce highly correlated texture features which are not
desirable. Clausi [5] studied the relationship of the statistical parameters and concluded
that entropy, contrast and correlation compose a preferred set of statistical parameters.

Therefore, we use three grey level shift invariant statistics in our approach as follows:

G-1
Entropy : — > _C; logC;

i,j=0

G-1
Contrast: > .C,(i-j),

i,j=0

Correlation : %0 — i li— oy :

i,j=0 GXO'y

17



where g, and u are the means in the the x- and y-directions, respectively; o, and
o, are the standard derivations in the the x- and y-directions, respectively. For entropy
statistics, it means the level of spatial disorder of gray levels in the GLCM. For contrast
statistics, it means the contrast of spatial disorder of gray levels in the GLCM. For
correlation statistics, it means the linear dependency of gray levels on those of
neighboring pixels in the GLCM. Therefore, we extract 12 GLCP features for our

experiments (4 orientations for each statistical parameter).

3.1.3 Weighted Color and GLCP Features

After color and GLCP features are extracted, we propose weighted color and GLCP
features for 3D texture synthesis. Different weights are assigned to color and GLCP
features for a given input 2D texture. The weighted color and GLCP features are defined

as

WF = (Weight .. xCF, Weight, c.r x GLCPF),

where Weight.. and Weightg .- are the weights, and they are changed according to
the characteristics of the input 2D texture. CF and GLCPF are the color feature

vectors and GLCP feature vectors, respectively.

18



3.2 Similarity Set and 3D-Candidate Construction

Based on [1, 24], we find the k most similar candidates in the exemplar for each
pixel p, and then search from the candidates for neighborhood matching. The method
can accelerate neighborhood matching because we do not have to search from each pixel
in the exemplar for neighborhood matching. Therefore, we have to construct a similarity

set to record the k candidates similar to each pixel.

Furthermore, we repeat the input texture.thrice as three directional exemplars T,
T,, T,. By Dong et al. [7]; we construct a small set of 3D-candidates for each pixel of
the three exemplars to build the relation between the three exemplars. A 3D-candidate is
defined by three 5x5 slices (2D ‘neighborhoods). A suitable candidate should be
consistent across the crossbar which is the strip that is intersected by two slices.
Therefore, we minimize the color disparity between the strips shared by interleaved

slices.

3.3 3D Pyramid Synthesis
3.3.1 Pyramid Upsampling

The 3D pyramid synthesis approach [7, 10] synthesizes 3D textures from coarse

19



level to fine level. There are 1+1 levels in the whole synthesis process, 1=0~log, m,

where m is the size of the target 3D texture.

In the proposed approach, we synthesize from one voxel to a 3D texture, S, ~S,. A

3D texture Sis synthesized from a voxel. Each voxel S[v] stores three coordinate,

~

indicating 'FX Ty', 'FZ exemplar’s pixel for each direction, respectively. In our
experiments, we build a voxel and assign the values (1,1), (1,1), (1,1) to it as triple
coordinates. For next level, we upsample the coordinates of parent voxels. We replace

eight children for each parent voxels to “the scaled parent coordinates plus

child-dependent offset as

S,[ijk1, = s,l[( %Hé”ﬂ] +h(jmod 2,k mod 2)

S [iik1, = S”[M’H’[g]y +h,(imod 2,k mod 2)

S,[ijk], = S”[HHHQ] +h,(imod2, jmod2)

0 0 0)( O 0 0 0)( O
A, e{|-05|| 05||-05|/05||-05]| 05||-05|[05]}
-05)(-05)( 05)(05)|-05)\-05/( 05)(05
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where h, is the regular output spacing of exemplar coordinates, and ijk signifies the
location of voxel v. S[ijk], is the new coordinate value at location ijk with the 3D
texture of level | for exemplar fx S,[ijk], is the new coordinate value at location
ijk with the 3D texture of level | for exemplar 'ITy'. S,[ijk], is the new coordinate

value at location ijk with the 3D texture of level | for exemplar 'FZ

3.3.2 Jitter
After we upsample the coordinates from a voxel, we jitter our upsampled result in
order to achieve deterministic randomness.. We use the upsampled coordinates plus a
jitter function value to perturb it at each level. The jitter function J,(v) is defined by a
hash function H(v):Z? —[=14+1] ‘and a parameter ri that is specified by user.
SIV]=S,[vl+ 3, (v)

J,(v) =hH V)

3.3.3 Voxel Correction
After we jitter the coordinates for achieving deterministic randomness, we make the

coordinates similar to those in the exemplars T,, T,, T,. We take the jittered results to

recreate neighborhood. There are feature values for each pixel after constructing feature

vectors. For every voxel v, we respectively collect the feature values of its neighborhood

21



to obtain the neighborhood vectors for each direction. We search the most similar pixel

from the transformed exemplars to make the result similar to the exemplars T,, T, T,.

In neighborhood matching, 4 diagonal locations in each direction are taken for voxel

v to obtain the neighborhood vectors N (v),, Ng (v),, N (v),:

N, (v), =1 T, [S[V+A,1]A, =| £1

N, (v), =2, [SIv£4,1]A, =| ©

Ng (v), =1 T, [S[V+4,T]A, =| £1

In order to improve convergence without increasing the size of the neighborhood
vector, we average the voxels nearby voxel v+ A, according to [12]. We average the
appearance values from 3 synthesized voxels nearby v+ A, as the new feature value to
replace the voxel v+ A, . And then, we use the new feature values at 4 diagonal voxel to
construct neighborhood vector. N, (v;A,) is the averaged feature value at voxel v+A, .
N, (v;A,) is the averaged feature value at voxel v+A, N, (v;A,) is the averaged

feature value at voxel V+A,.

22



1 7 r r
Ny (4,) =2 3 o, e,V ISIV 44, +AT-41]

Using the similarity sets and 3D-candidate sets, we utilize the 4 voxels (ix= 1~4) for
each direction nearby voxel v. For the neighborhood voxel ik (ix= 1~4) in direction X,
we can obtain the most similar 3 pixels (i1, ix, ixs) in exemplar T, for voxel iy from the
similarity set. Then, we transform the offset between voxel iy and voxel v from 3D space
to 2D space to infer the candidates (ixw, ixav, ixav) in exemplar 1 for voxel v. To keep
color consistence in three directions, we use the 3D-candidate set to infer the other two

coordinates (i w) in exemplars Ty and T,. Additionally, directions y and

A I(xez

z can be done by the same step.

23



Finally, we can obtain a set of triple candidates TC, , which point towards pixels

in exemplars T,, T,, T, We compute the neighborhood vectors N, (TC, ,), .

y1oz
N, (TC, )y, N (TC, ), by the averaged feature values from the 4 nearby pixels. And
Then, we compute the total difference among N, (TC, ,),, N, (TC,,),, N (TC, ,),

and N (v),, Ng(v),, N (v),to replace the triple coordinate for voxel v with the best

matching triple candidate.
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Chapter 4
Implementation and Results

In Section 4.1, we describe the implementation of our method. Then, we show

synthesis results and comparisons‘in Section 4.2.

4.1 Implementation

Our system is implemented on'a PC with 3.00GHz and 3.00GHz Core2 Extreme
CPU and 8.0GB of system memory. We use MATLAB to implement our method. The

input 2D texture size is 128x128, and the output 3D texture size is 128x128x128.

In feature vector generation, we use a 5x5 window for extracting color features and
a 15x15 window for extracting GLCP features for each pixel from the input 2D texture.
Furthermore, we set image quantization G as 32 and displacement vector (0, @) as (1,

0°). Then, we use 7x7 neighborhood for constructing similarity sets. In 3D pyramid

25



synthesis step, the parameter for jitter step is set to 0.7.

4.2 Results

It takes about 2 minutes and 22 seconds to generate weighted color and grey level

co-occurrence probability features. It takes different times to construct similarity sets

based on characteristics of an input 2D texture. However, it does not exceed 1.5 hours.

And it takes about 3 hours 20 minutes to construct a 3D-candidate set. Once the feature

vectors and similarity sets are constructed, they are used in syntheses process with

different target sizes for results. It takes.about 1 day and 1 hour for synthesis process.

We compare our approach with the -previous method which only extracts color

features. As we can see in Fig. 4.1~Fig. 4.8, our results preserve more features and

structures better than the results synthesized by the previous approach. This is because

we can obtain more information than the previous method. The previous method only

extracts color features to generate feature vectors from input 2D texture, but our approach

extracts not only color features but also GLCP features. The grey level co-occurrence

method is one of the statistical methods. GLCP features describe the probability of any

grey level occurring spatially relative to any other grey level within a given window for

each pixel. From the distribution, we can obtain the information of various characteristics
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for each pixel from input 2D texture. For irregular textures, color features are hard to

record various characteristics accurately for each pixel. However, GLCP features record

accurately the various characteristics because of the statistical relatedness among pixel

pair within a given window for each pixel.

The input 2D texture in Fig. 4.1(a) is a stochastic and marble-like texture. And the

input 2D texture in Fig. 4.2(a) is a particle-like texture. They only contain two kinds of

colors, and they are vivid. Fig. 4.1(b) shows the result synthesized by the previous

approach and Fig. 4.1(c) shows our result. As.we can see from the results, the quality of

our method is almost the-same as that of the previous method. And our result is

continuous and not the duplication of the input 2D texture. As long as there are few

complete particle patterns in the input 2D texture, our approach and the previous method

can synthesize the desired results, as shown in Fig. 4.2(b) and Fig. 4.2(c). From Fig. 4.1

and Fig. 4.2, our approach and the previous method can preserve features and structures.

The input 2D texture in Fig. 4.3(a) is a stochastic and marble-like texture. The input

2D texture in Fig. 4.4(a) is a kind of stochastic textures. The input 2D texture in Fig.

4.5(a) is a stochastic and camouflage-like texture. In Fig. 4.3(c), our result preserves

more white features in whole area. But in the previous result (Fig. 4.3(b)), it preserves
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less white features. And our result is more colorful than that of the previous method. In

Fig. 4.4(c), our result preserves complete features in whole area. But the previous result

(Fig. 4.4(b)), it does not preserve features as we can see in Fig. 4.5(c), our result

preserves more features than that of the previous method (Fig. 4.5(b)). From Fig. 4.3 and

Fig. 4.4 and Fig. 4.5, we can preserve more features than the previous method.

The input 2D textures in Fig. 4.6(a), Fig. 4.7(a), and Fig. 4.8(a) are grey level

textures. They are stochastic patterns as we can see in Fig. 4.6(b), our result preserves

more black features in whole area. But the previous result (Fig. 4.6(b)) preserves less

black features. In Fig. 4.7(c), color variation of our-result is better than that of the

previous method (Fig. 4.7(b)). Our result is-information-rich. The previous result does

not keep the features as we can see in Fig. 4.8(c), our result preserves white features in

whole area. But the previous result (Fig. 4.8(b)) preserves less white features. From Fig.

4.6, Fig. 4.7 and Fig. 4.8, the quality of our approach is better than that of the previous

method.

We can see in Fig. 4.1 and Fig. 4.2, the results of our approach and the previous

method are similar. However, we can see in Fig 4.3 and 4.8, the results of our approach

are better than the previous method. This is because they are regular textures in Fig. 4.1(a)
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and Fig. 4.2(a), so we can synthesize good results by only using color features. But in Fig
4.3(a) and 4.8(a), they are irregular textures, but color features can not record the
information of various characteristics accurately. GLCP features can solve the above
problem because of the statistical relatedness among pixel pair within a given window for

each pixel. Therefore, our approach can synthesize well than previous method.
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Figure 4.1 The comparison between the previous method and our method
(@) input 2D texture
(b) output 3D texture by the previous method
(c) output 3D texture by our method
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Figure 4.2 The comparison between the previous method and our method
(@) input 2D texture
(b) output 3D texture by the previous method
(c) output 3D texture by our method
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Figure 4.3 The comparison between the previous method and our method
(a) input 2D texture
(b) output 3D texture by the previous method
(c) output 3D texture by our method
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Figure 4.4 The comparison between the previous method and our method
(@) input 2D texture
(b) output 3D texture by the previous method
(c) output 3D texture by our method
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Figure 4.5 The comparison between the previous method and our method
(@) input 2D texture
(b) output 3D texture by the previous method
(c) output 3D texture by our method
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Figure 4.6 The comparison between the previous method and our method
(a) input 2D texture
(b) output 3D texture by the previous method
(c) output 3D texture by our method
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Figure 4.7 The comparison between the previous method and our method
(@) input 2D texture
(b) output 3D texture by the previous method
(c) output 3D texture by our method
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Figure 4.8 The comparison between the previous method and our method
(a) input 2D texture
(b) output 3D texture by the previous method
(c) output 3D texture by our method
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Chapter 5
Conclusions and Future Works

We have presented a 3D texture synthesis method from a 2D texture using weighted
color and grey level co-occurrence probabilities. \We use the feature vectors consisting of
color and grey level co-oceurrence probabilities, instead of traditional RGB values for
more accurate neighborhood matching. Then, we assign different weights for color and
GLCP features. The proposed approach can synthesize desired results for a wide range of

textures.

In the future, we will apply our method to synthesize textures changing with time in
the 3D space [16]. We will try another algorithm to extract the suitable features from an
input 2D texture. For the use of grey level co-occurrence probabilities, we will determine

an adaptive window size for each pixel for varying textures.
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