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利用權重彩色與灰階共現機率之三維紋理合成 

3D Texture Synthesis Using Weighted Color and Grey Level Co-occurrence 

Probabilities 

 

 

研究生：張家文        指導教授：施仁忠  教授 

 張勤振  教授 

 

國立交通大學多媒體工程研究所 

 

摘 要 

 

 本論文提出了一個利用權重彩色和灰階共現機率來做三維紋理合成(3D texture 

synthesis)的方法。因為由輸入的貼圖中用於鄰近點比對時所擷取的特徵會影響合成結

果的品質，我們首先利用彩色和灰階共現機率這兩種方法來擷取輸入貼圖中的特徵。其

中彩色的部分使用表面向量值(appearance vector)取代傳統只用色彩值(RGB color 

value)作為特徵向量，而灰階共現機率可隨輸入貼圖的特性來選擇不同的統計量作為特

徵向量。接著透過輸入貼圖的特性改變兩種方法之間的權重值。再預先計算輸入圖片中

的特徵所組成的相似集(similarity set)和三維候選點(3D-candidates)來做三維紋理

合成。接著利用三維金字塔合成方法(pyramid synthesis method)來完成三維紋理的合

成。 
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ABSTRACT 

In this thesis, we introduce a 3D texture synthesis method using weighted color and grey 

level co-occurrence probabilities. Because the extracted features from an input 2D texture can 

affect the quality of the result, we use color and grey level co-occurrence probabilities to 

extract the features. Appearance vectors are used to replace RGB color values. And various 

statistics are used according to the characteristic of the input 2D texture. We achieve 3D 

texture synthesis by using a pre-computed similarity set and 3D-candidate set. Then we can 

synthesize desired 3D textures by applying the 3D pyramid synthesis method.
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Chapter 1 

Introduction 

 
1.1 Motivation 

Texturing mapping [8, 15, 20, 24, 25, 26, 27, 28] has been applied widely in computer 

graphics. It is an effective technique of simulating surface detail at relatively low cost. This 

technique can easily add the appearance of detail to a large variety of object surfaces. 

Without increasing 3D model detail complexity, it enhances the visual realism of 3D 

models by adding fine texture details. But it suffers some well-know problems such as 

distortion and discontinuity. Moreover, the size and resolution of textures can not be 

changed dynamically. 

3D textures [19, 20] can be used to solve the above problems. A 3D texture is defined 

as colored points in 3D to represent a real-world material. Users do not need to find a 

parameterization for the surface of the object to be textured. Furthermore, 3D textures 

provide texture information inside the entire volume. Procedural approaches and 
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image-based approaches both can generate 3D textures, but they may be suffered from 

some problems. For procedural approaches, it is difficult to express procedurally a desired 

texture for users. It only can be defined for a limited set of materials. For image-based 

approaches, it cannot do well for large structural textures. Furthermore, it is non-reusable, 

that is, textures generated for one 3D texture cannot be used for other 3D textures. 

Recently, a lot of 3D textures have been synthesized from 2D textures by 3D texture 

synthesis approaches [3, 4, 6, 7, 11, 14, 19, 21, 22, 23]. Several methods [6, 7, 14, 22] used 

three orthogonal slices for neighborhood matching to synthesize 3D textures. They are 

applicable to a wide variety of textures, including anisotropic textures, textures with large 

coherent structures, and multi-channel textures. However, the quality problems still exist 

for a lot of textures. Further improvements are often required to extract more reliable 

texture features. Haralick et al. [9] introduced a method using the conditional joint 

probabilities of all pair wise combinations of grey levels in the spatial window to extract 

texture features for image classification. Recently, several methods [2, 5, 13, 18] extended 

the method to some applications, such as face detection, and image segmentation.  

In this thesis, we extract color and grey level co-occurrence probability (GLCP) 

features from a 2D texture for 3D texture synthesis. With the characteristic of an input 2D 

texture, we adjust weighting values between color and GLCP features. We use weighted 

color and GLCP features for neighborhood matching. Our approach can provide better 
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synthesized results for a wide range of textures. 

The major contributions of this thesis are as follows: We present an approach for 

synthesizing 3D textures from a 2D texture using weighted color and GLCP features. 

With the characteristic of an input 2D texture, we can adjust the weighting values 

between color and GLCP features for 3D texture synthesis. 

 

1.2 System Overview 

The flowchart of our system is shown in Figure 1.1. First, input a 2D texture and 

repeat the texture thrice as three directional exemplars. 

For feature vector generation, it divides into two parts: one part is to extract color 

features; the other part is to extract GLCP features. For the color feature extraction, it 

captures 5×5 window information and uses principal component analysis (PCA) to 

decrease the dimensions. For the GLCP feature extraction, it converts the input 2D 

texture to a grey level texture, and then it captures 15×15 window information and 

assigns the number of guantized grey levels. It selects the displacement value ( ) and 

the orientation value ( ) to create a grey level co-occurrence matrix and selects the 

acceptable statistical parameters. According to the characteristic of the input 2D texture, 

we assign weighted values between color and GLCP features.  

For similarity set generation and 3D-candidates generation, it finds the three pixels 
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most similar to each pixel. And it computes a small candidate set from the other two 

examplars for each pixel. For synthesis process, we apply the pyramid synthesis method 

[7, 10] to our system. The pyramid synthesis method consists of the upsampling step, 

jitter step and correction step. They are used at each synthesis level to obtain the results. 

 

1.3 Thesis Organization 

The rest of this thesis is organized as follows: In Chapter 2, we review related works. 

In Chapter 3, we present our approach for synthesizing 3D textures from a 2D texture 

based on weighted color and GLCP features. Chapter 4 shows the implementation and 

results. Finally, conclusions and future works are discussed in Chapter 5. 
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Figure 1.1 System flowchart 
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Chapter 2  

Related Works 

 
In this chapter, we review related works related to our approach. In Section 2.1, we 

review previous approaches about 3D texture synthesis based on neighborhood matching. 

In Section 2.2, we review related works about grey level co-occurrence matrices. 

 

2.1 3D Texture Synthesis Based on Neighborhood Matching 

Wei [26] first adapted 2D neighborhood matching synthesis schemes to 3D textures. 

The key idea is to consider three 2D exemplars for each direction from an input 2D 

texture. In each voxel of the output 3D texture, three interleaved 2D neighborhoods are 

extracted (see Fig. 2.1 [7]). The best matches are found independently in each of the three 

2D exemplars. And then they attempted to converge toward the best color for all three 

directions.
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Figure 2.1 [7] 3D neighborhood matching synthesis schemes 

(a) The three exemplars xE , yE , 
zE  and a corresponding 3-neighborhood.  

(b) the crossbar defined by the 3-neighborhood. 

 

Qin and Yang [22] presented a method for generating 3D textures from input 

examples. They replaced traditional gray-level histograms with basic gray-level aura 

matrices for neighborhood matching. Their method characterized each input example as a 

set of aura matrices and generated a 3D texture from multiple view directions. For every 

voxel in the volume result, they only considered the pixels on the three orthogonal slices 

for neighborhood matching. Furthermore, their approach can generate reliable results for 

both stochastic and structural textures. However, it needs large storages for large matrices. 

  

Kopf et al. [14] introduced a 3D texture synthesis method from 2D exemplars. They 

extended 2D texture optimization techniques to synthesize 3D textures, and integrated 

(a) (b) 
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with histogram matching which forces the global statistics of the synthesized 3D texture. 

They also introduced a reweighting scheme for histogram matching. For each voxel, they 

only considered the neighborhood coherence in three orthogonal slices, and iteratively 

increased the similarity between the 3D textures and the exemplar. Their approach could 

generate good results for wide range of textures. However, they synthesized the texture 

with the information on the slices.  

 

Dong et al. [7] introduced a method with the unique ability to restrict synthesis to a 

subset of the voxels. They synthesized a volume from a set of pre-computed 3D 

candidates. Their pre-computed 3D candidates improved synthesis efficiency and 

significantly reduced the dependency chain required to compute voxel colors. Their 

approach generates good results efficiently. However, if the three exemplars do not define 

a coherent 3D volume, the quality of the synthesized result will be poor. 

 

Chen and Wang [3] presented a method for synthesizing solid textures from 2D 

exemplars. They analyzed the relevant factors for further improvements of the synthesis 

quality. They adopted an optimization framework with the k-coherence search and the 

discrete solver for 3D texture synthesis. Their approach was integrated with two kinds of 

histogram matching methods, position and index histogram matching. They effectively 
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cause the global statistics of the synthesized 3D textures to match those of the exemplars. 

 

2.2 Grey Level Co-occurrence Matrix 

The grey level co-occurrence method provides a second-order approach for 

generating features [9, 12]. Given a spatial window within the grey level image, the 

GLCP method computes the conditional joint probabilities, ijC , of all pairwise 

combinations of grey levels i and j, given the inter-pixel displacement vector ( , ), 

which represents the relationship of the pixel pairs, where   is the interpixel distance, 

and   is the orientation. The set of GLCPs are defined as 

 







1

0,

G

ji ij

ij

ij

P

P
C , 

 

where 
ijP  is the frequency of occurrence between two grey levels, i and j, for a given 

displacement vector ( , ), for the given window size; G is the number of quantized 

grey levels. The probabilities are stored in a grey level co-occurrence matrix (GLCM), 

where index (i, j) in the matrix is probability ijC . Statistics are applied to the GLCM to 

generate texture features which are assigned to the center pixel of the image window. For 

example, as shown in Fig. 2.2, we use a 55  window size for the grey image and G is 

set as 4 (Fig. 2.2(a)). The GLCM is generated with the inter-pixel displacement vector (1, 
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0 ) (Fig. 2.2(b)) and then GLCP (Fig. 2.2(c)) is computed. 

 

Figure 2.2 The process for computing grey level co-occurrence probabilities 

(a) a 55  window size for the grey image and G is set as 4  

(b) GLCM is generated with the inter-pixel displacement vector (1, 0 )  

(c) GLCP is computed from (b) 

 

Haralick et al. [9] first presented a texture analysis method, grey level co-occurrence 

(a) 

(b) 

(c) 
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matrix (GLCM). The GLCM method is a way of extracting second order statistical texture 

features. The approach has been used in various of applications [2, 12, 13, 18]. The key 

idea is to describe the probability of any grey level occurring spatially relative to any 

other grey level, within a given image window. 

 

Jobanputra and Clausi [12] extended the GLCM method. They proposed a Gaussian 

weighting scheme. Co-occurring pixel pairs closer to the center of the image window are 

assigned larger co-occurring probabilities according to a Gaussian distribution. The 

generated features are referred to as weighted GLCM texture features. 

 

Jobanputra and Clausi [13] presented a weighted GLCM method for preserving 

boundaries for image texture segmentation. They selected suitable GLCM parameters for 

improved boundary preservation. From their tests, weighted GLCM features provide 

improved boundary preservation and segmentation accuracy at a computational cost. 

 

Chen [2] presented a GLCM method for face detection. Face detection is one of the 

most important researches in face recognition. They extracted texture features from a 

color image by wavelet transform, and then extracted the suitable statistics by the GLCM 

method. They used the statistics to execute the face detection process. 



 

 12 

 

Lu [18] presented a GLCM method for image segmentation. The key idea is to 

perform image segmentation by combining the analytic result of color and texture. In the 

textural part, they proposed an approach to solve the problem in GLCM. Using fixed 

window size is unable to accurately segment textures in the image. Therefore, adaptive 

windows are used to analyze features of the image textures.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 13 

 

 

 

Chapter 3  

3D Texture Synthesis 

 
In this chapter, we present our approach for synthesizing 3D textures. In Section 3.1, 

we describe how to obtain the feature vectors. In Section 3.2, we use similarity sets to 

accelerate neighborhood matching. And then we compute 3D-candidates which keep the 

color coherence of the three orthogonal slices. In Section 3.3, we introduce 3D pyramid 

texture synthesis to our system. It is divided into three parts: the upsampling step, the 

jitter step, and the correction step. The upsampling step is to increase the synthesized 3D 

texture sizes from coarse level to fine level, and each voxel in parent level generates eight 

voxels in children level. The jitter step is to perturb the textures to achieve deterministic 

randomness. The correction step is to use neighborhood matching to make the results 

more similar to the exemplar.  

 

3.1 Feature Vector Generation 
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First, we extract the features from an input 2D texture. The feature extraction 

approach is divided into two parts: color feature extraction method and the grey level 

co-occurrence method.  

 

3.1.1 Color Features 

3D texture synthesis using RGB color values for neighborhood matching needs 

larger neighborhood size and numerous data. Appearance vectors [17] are continuous and 

low-dimensional than RGB color values for neighborhood matching. Therefore, we 

transform the texture data values in color space into feature vectors in appearance space. 

As shown in Fig. 3.1, we transform the input 2D texture T  into the transformed 

exemplar T  .  

 

According to Lefebvre and Hoppe [19], we take the RGB color values in 5×5 

windows to construct appearance vectors for each pixel of an input texture T . The 

transformed exemplar T   consists of the feature vectors at each pixel. There are 75 

dimensions (25 for grids and 3 for RGB) for each pixel in T  . We perform PCA to 

reduce the dimensions to obtain a transformed exemplar T
~
 . It means that we project the 

exemplar T  using PCA to obtain the transformed exemplar T
~
 . We reduce the 

75-dimensional to 8-dimensional feature vectors.  
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Figure 3.1  Overview of color feature extraction 

  

We suppose that the data on each side is connected with them on the opposite side. 

For the pixels on the border, we will treat the pixels on the opposite border as its 

neighbors, and then take their RGB color values to construct feature vectors.  

 

3.1.2 Grey Level Co-occurrence Probability Features 

Here we convert the input 2D texture to a grey image, and extract GLCP features 

from the grey image. Extracting GLCP features from a grey image requires the 

parameters as follows: (1) window size ( xn , yn ), (2) image quantization (G), (3) 

displacement vector ( , ) and (4) statistic selection. 

 

For window size ( xn , yn ), we use a window size of 15 15 to compute GLCP 

features. Because large window sizes are necessary to gather sufficient data to 

    

 

T                     

 

2D Texture 

T  

Color Space Appearance Space 

RGB for each pixel Feature vector for each pixel 

Dimension Reduced 

T
~
  
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characterize local texture regions, and small window sizes will result in poorly sampled 

co-occurring probabilities and will produce incoherent features [13]. As shown in Fig. 

3.2, we compute GLCP features for the window size 15 15. 

 

 

Figure 3.2 (a) grey level image generated from the input 2D texture  

(b) 15×15 window for each pixel (c) GLCP features computed from the window. 

 

(b) 

(a) 

 

(c) 
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For image quantization (G), according to Clausi [5], the larger values of G are 

deemed excessive. Therefore, we set G as 32 for our experiments. For displacement 

vector ( , ), we select the suitable displacement vector. The interpixel distance is set as 

1 and the orientations are set as  135,90,45,0 . Because we consider the 

characteristic of an input 2D texture for each direction and consider the influence of the 

distance of the pixel pairs.  

 

For statistic selection, we will select the suitable statistic. Many of the statistics 

suggested by Haralick [9] produce highly correlated texture features which are not 

desirable. Clausi [5] studied the relationship of the statistical parameters and concluded 

that entropy, contrast and correlation compose a preferred set of statistical parameters. 

Therefore, we use three grey level shift invariant statistics in our approach as follows: 
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where x  and y are the means in the the x- and y-directions, respectively; x  and 

y are the standard derivations in the the x- and y-directions, respectively. For entropy 

statistics, it means the level of spatial disorder of gray levels in the GLCM. For contrast 

statistics, it means the contrast of spatial disorder of gray levels in the GLCM. For 

correlation statistics, it means the linear dependency of gray levels on those of 

neighboring pixels in the GLCM. Therefore, we extract 12 GLCP features for our 

experiments (4 orientations for each statistical parameter). 

 

3.1.3 Weighted Color and GLCP Features 

After color and GLCP features are extracted, we propose weighted color and GLCP 

features for 3D texture synthesis. Different weights are assigned to color and GLCP 

features for a given input 2D texture. The weighted color and GLCP features are defined 

as 

 

 GLCPFWeightCFWeightWF GLCPFCF  , , 

 

where CFWeight  and GLCPFWeight  are the weights, and they are changed according to 

the characteristics of the input 2D texture. CF  and GLCPF  are the color feature 

vectors and GLCP feature vectors, respectively.  
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3.2 Similarity Set and 3D-Candidate Construction 

Based on [1, 24], we find the k most similar candidates in the exemplar for each 

pixel p , and then search from the candidates for neighborhood matching. The method 

can accelerate neighborhood matching because we do not have to search from each pixel 

in the exemplar for neighborhood matching. Therefore, we have to construct a similarity 

set to record the k candidates similar to each pixel. 

 

Furthermore, we repeat the input texture thrice as three directional exemplars 
xT , 

yT , 
zT . By Dong et al. [7], we construct a small set of 3D-candidates for each pixel of 

the three exemplars to build the relation between the three exemplars. A 3D-candidate is 

defined by three 5×5 slices (2D neighborhoods). A suitable candidate should be 

consistent across the crossbar which is the strip that is intersected by two slices. 

Therefore, we minimize the color disparity between the strips shared by interleaved 

slices. 

 

3.3 3D Pyramid Synthesis 

3.3.1 Pyramid Upsampling 

The 3D pyramid synthesis approach [7, 10] synthesizes 3D textures from coarse 
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level to fine level. There are 1l  levels in the whole synthesis process, ml 2log~0 , 

where m is the size of the target 3D texture. 

 

In the proposed approach, we synthesize from one voxel to a 3D texture, lSS ~0 . A 

3D texture S is synthesized from a voxel. Each voxel  vS  stores three coordinate, 

indicating
'~

xT , 
'~

yT , 
'~

zT  exemplar’s pixel for each direction, respectively. In our 

experiments, we build a voxel and assign the values (1,1), (1,1), (1,1) to it as triple 

coordinates. For next level, we upsample the coordinates of parent voxels. We replace 

eight children for each parent voxels to the scaled parent coordinates plus 

child-dependent offset as 
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where lh  is the regular output spacing of exemplar coordinates, and ijk  signifies the 

location of voxel v . xl ijkS ][  is the new coordinate value at location ijk  with the 3D 

texture of level l  for exemplar 
'~

xT . yl ijkS ][  is the new coordinate value at location 

ijk  with the 3D texture of level l  for exemplar 
'~

yT . zl ijkS ][
 
is the new coordinate 

value at location ijk  with the 3D texture of level l  for exemplar 
'~

zT . 

 

3.3.2 Jitter 

After we upsample the coordinates from a voxel, we jitter our upsampled result in 

order to achieve deterministic randomness. We use the upsampled coordinates plus a 

jitter function value to perturb it at each level. The jitter function )(vJ l  is defined by a 

hash function  22 1,1:)( vH  and a parameter rl that is specified by user. 

)(][][ vJvSvS lll 
 

lll rvHhvJ )()( 
 

 

3.3.3 Voxel Correction 

After we jitter the coordinates for achieving deterministic randomness, we make the 

coordinates similar to those in the exemplars xT , 
yT , zT . We take the jittered results to 

recreate neighborhood. There are feature values for each pixel after constructing feature 

vectors. For every voxel v, we respectively collect the feature values of its neighborhood 
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to obtain the neighborhood vectors for each direction. We search the most similar pixel 

from the transformed exemplars to make the result similar to the exemplars 
xT , 

yT , 
zT . 

 

In neighborhood matching, 4 diagonal locations in each direction are taken for voxel 

v to obtain the neighborhood vectors xs vN
l

)( , 
ys vN

l
)( , zs vN

l
)( : 



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
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In order to improve convergence without increasing the size of the neighborhood 

vector, we average the voxels nearby voxel 
xv   according to [12]. We average the 

appearance values from 3 synthesized voxels nearby 
xv   as the new feature value to 

replace the voxel 
xv  . And then, we use the new feature values at 4 diagonal voxel to 

construct neighborhood vector. );( xs vN
l

  is the averaged feature value at voxel 
xv  . 

);( ys vN
l


 
is the averaged feature value at voxel yv  . );( zs vN

l
  is the averaged 

feature value at voxel zv  . 
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]][[
~

3

1
);( '
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Using the similarity sets and 3D-candidate sets, we utilize the 4 voxels (ix = 1~4) for 

each direction nearby voxel v. For the neighborhood voxel ix (ix = 1~4) in direction x , 

we can obtain the most similar 3 pixels (ix1, ix2, ix3) in exemplar xT  for voxel ix from the 

similarity set. Then, we transform the offset between voxel ix and voxel v from 3D space 

to 2D space to infer the candidates (ix1v, ix2v, ix3v) in exemplar 
xT  for voxel v. To keep 

color consistence in three directions, we use the 3D-candidate set to infer the other two 

coordinates (  vyxi  ,  vzxi  ) in exemplars yT  and zT . Additionally, directions y  and 

z  can be done by the same step. 
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Finally, we can obtain a set of triple candidates 
k1...TC  which point towards pixels 

in exemplars xT , yT , zT . We compute the neighborhood vectors xks TCN
l

)( ...1 , 

yks TCN
l

)( ...1 , zks TCN
l

)( ...1  by the averaged feature values from the 4 nearby pixels. And 

Then, we compute the total difference among xks TCN
l

)( ...1 , yks TCN
l

)( ...1 , zks TCN
l

)( ...1  

and xs vN
l

)( , ys vN
l

)( , zs vN
l

)( to replace the triple coordinate for voxel v with the best 

matching triple candidate. 
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Chapter 4  

Implementation and Results 

 

In Section 4.1, we describe the implementation of our method. Then, we show 

synthesis results and comparisons in Section 4.2. 

 

4.1 Implementation 

Our system is implemented on a PC with 3.00GHz and 3.00GHz Core2 Extreme 

CPU and 8.0GB of system memory. We use MATLAB to implement our method. The 

input 2D texture size is 128×128, and the output 3D texture size is 128×128×128. 

 

In feature vector generation, we use a 5×5 window for extracting color features and 

a 15×15 window for extracting GLCP features for each pixel from the input 2D texture. 

Furthermore, we set image quantization G as 32 and displacement vector ( ,  ) as (1, 

0 ). Then, we use 7×7 neighborhood for constructing similarity sets. In 3D pyramid 
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synthesis step, the parameter for jitter step is set to 0.7. 

 

4.2 Results 

It takes about 2 minutes and 22 seconds to generate weighted color and grey level 

co-occurrence probability features. It takes different times to construct similarity sets 

based on characteristics of an input 2D texture. However, it does not exceed 1.5 hours. 

And it takes about 3 hours 20 minutes to construct a 3D-candidate set. Once the feature 

vectors and similarity sets are constructed, they are used in syntheses process with 

different target sizes for results. It takes about 1 day and 1 hour for synthesis process. 

 

We compare our approach with the previous method which only extracts color 

features. As we can see in Fig. 4.1~Fig. 4.8, our results preserve more features and 

structures better than the results synthesized by the previous approach. This is because 

we can obtain more information than the previous method. The previous method only 

extracts color features to generate feature vectors from input 2D texture, but our approach 

extracts not only color features but also GLCP features. The grey level co-occurrence 

method is one of the statistical methods. GLCP features describe the probability of any 

grey level occurring spatially relative to any other grey level within a given window for 

each pixel. From the distribution, we can obtain the information of various characteristics 
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for each pixel from input 2D texture. For irregular textures, color features are hard to 

record various characteristics accurately for each pixel. However, GLCP features record 

accurately the various characteristics because of the statistical relatedness among pixel 

pair within a given window for each pixel. 

 

The input 2D texture in Fig. 4.1(a) is a stochastic and marble-like texture. And the 

input 2D texture in Fig. 4.2(a) is a particle-like texture. They only contain two kinds of 

colors, and they are vivid. Fig. 4.1(b) shows the result synthesized by the previous 

approach and Fig. 4.1(c) shows our result. As we can see from the results, the quality of 

our method is almost the same as that of the previous method. And our result is 

continuous and not the duplication of the input 2D texture. As long as there are few 

complete particle patterns in the input 2D texture, our approach and the previous method 

can synthesize the desired results, as shown in Fig. 4.2(b) and Fig. 4.2(c). From Fig. 4.1 

and Fig. 4.2, our approach and the previous method can preserve features and structures. 

 

The input 2D texture in Fig. 4.3(a) is a stochastic and marble-like texture. The input 

2D texture in Fig. 4.4(a) is a kind of stochastic textures. The input 2D texture in Fig. 

4.5(a) is a stochastic and camouflage-like texture. In Fig. 4.3(c), our result preserves 

more white features in whole area. But in the previous result (Fig. 4.3(b)), it preserves 
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less white features. And our result is more colorful than that of the previous method. In 

Fig. 4.4(c), our result preserves complete features in whole area. But the previous result 

(Fig. 4.4(b)), it does not preserve features as we can see in Fig. 4.5(c), our result 

preserves more features than that of the previous method (Fig. 4.5(b)). From Fig. 4.3 and 

Fig. 4.4 and Fig. 4.5, we can preserve more features than the previous method. 

 

The input 2D textures in Fig. 4.6(a), Fig. 4.7(a), and Fig. 4.8(a) are grey level 

textures. They are stochastic patterns as we can see in Fig. 4.6(b), our result preserves 

more black features in whole area. But the previous result (Fig. 4.6(b)) preserves less 

black features. In Fig. 4.7(c), color variation of our result is better than that of the 

previous method (Fig. 4.7(b)). Our result is information-rich. The previous result does 

not keep the features as we can see in Fig. 4.8(c), our result preserves white features in 

whole area. But the previous result (Fig. 4.8(b)) preserves less white features. From Fig. 

4.6, Fig. 4.7 and Fig. 4.8, the quality of our approach is better than that of the previous 

method.  

 

We can see in Fig. 4.1 and Fig. 4.2, the results of our approach and the previous 

method are similar. However, we can see in Fig 4.3 and 4.8, the results of our approach 

are better than the previous method. This is because they are regular textures in Fig. 4.1(a) 
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and Fig. 4.2(a), so we can synthesize good results by only using color features. But in Fig 

4.3(a) and 4.8(a), they are irregular textures, but color features can not record the 

information of various characteristics accurately. GLCP features can solve the above 

problem because of the statistical relatedness among pixel pair within a given window for 

each pixel. Therefore, our approach can synthesize well than previous method.  
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Figure 4.1 The comparison between the previous method and our method 

         (a) input 2D texture 

         (b) output 3D texture by the previous method 

   (c) output 3D texture by our method 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) (c) 
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Figure 4.2 The comparison between the previous method and our method 

         (a) input 2D texture 

         (b) output 3D texture by the previous method 

   (c) output 3D texture by our method 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) (c) 
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Figure 4.3 The comparison between the previous method and our method 

         (a) input 2D texture 

         (b) output 3D texture by the previous method 

   (c) output 3D texture by our method 
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(b) (c) 
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Figure 4.4 The comparison between the previous method and our method 

         (a) input 2D texture 

         (b) output 3D texture by the previous method 

   (c) output 3D texture by our method 
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Figure 4.5 The comparison between the previous method and our method 

         (a) input 2D texture 

         (b) output 3D texture by the previous method 

   (c) output 3D texture by our method 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) (c) 
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Figure 4.6 The comparison between the previous method and our method 

         (a) input 2D texture 

         (b) output 3D texture by the previous method 

   (c) output 3D texture by our method 
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Figure 4.7 The comparison between the previous method and our method 

         (a) input 2D texture 

         (b) output 3D texture by the previous method 

   (c) output 3D texture by our method 
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Figure 4.8 The comparison between the previous method and our method 

         (a) input 2D texture 

         (b) output 3D texture by the previous method 

   (c) output 3D texture by our method 
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Chapter 5  

Conclusions and Future Works 

 
We have presented a 3D texture synthesis method from a 2D texture using weighted 

color and grey level co-occurrence probabilities. We use the feature vectors consisting of 

color and grey level co-occurrence probabilities, instead of traditional RGB values for 

more accurate neighborhood matching. Then, we assign different weights for color and 

GLCP features. The proposed approach can synthesize desired results for a wide range of 

textures. 

 

In the future, we will apply our method to synthesize textures changing with time in 

the 3D space [16]. We will try another algorithm to extract the suitable features from an 

input 2D texture. For the use of grey level co-occurrence probabilities, we will determine 

an adaptive window size for each pixel for varying textures. 
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