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大腦訊號傳遞網絡的變化 

 

學生：陳佳鈴      指導教授：林進燈 
博士 

國立交通大學多媒體工程研究所 
 

中文摘要 

在車禍事故的原因當中，駕駛者瞌睡普遍被認為是主要因素。過去我們研究團

隊層探討駕駛者瞌睡的腦電波現象，設計利用腦電波偵測瞌睡之演算法，並且開發

成為駕使者的無線可攜式瞌睡偵測設備。縱使我們已經有良好的瞌睡偵測指標，然

而過去的方法中並不能解決從清醒到瞌睡漸進程度上的偵測。本研究探討的是，受

測者從清醒到瞌睡過程中腦內訊號傳遞網絡是如何改變，以及真實生活中動態刺激

造成的訊號傳遞。一共有六位受測者參與模擬夜間高速公路動態及非動態的虛擬實

境開車實驗，並且利用此環境給與受測者事件相關開車偏移任務。受測者的腦電波

會經過獨立訊號分析、Granger 因果關係分析、時域頻譜轉換等方法進行分析比

較。結果顯示，從駕駛者清醒到瞌睡的過程中，訊號傳遞的目的地會從腦中前面的

區域移動至後面的區域。此外在動態模擬下駕駛腦內掌管視覺和運動區域會比非動

態的情況還要活躍。未來可利用這樣的結果，在適當的腦區位置偵測駕駛目前的瞌

睡狀態，並且於進入瞌睡前就給與警示，使駕駛者的行車表現能保持良好水平。 

 

關鍵字： 
瞌睡、駕駛行為表現、腦電波、訊號傳遞網絡、Granger causality、獨立成份分析 
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Abstract 

    Driver drowsiness was generally regarded as a main reason of causing car accidents. 

Our team had investigated EEG signals in drowsy state of driver, designed the algorithm 

that detecting drowsiness by EEG signals, and developed the wireless and portable 

application of detecting drowsiness for drivers. Although we already had the good 

indicators of detecting drowsiness by EEG signals, detecting the levels of drowsiness 

remained unsolved nowadays. The aim of this study is to explore the changes of brain 

signal transferring network from alertness to drowsiness and those signal flows generated 

by kinetic stimulation in real life. Six subjects participated in virtual-reality (VR)-based 

highway driving experiments on motion and motionless platform, and the event-related 

lane-departure task was used in the VR environment to simulate the long-term highway 

driving. The task-related EEG was analyzed using independent component analysis, 

Granger causality, and time-frequency. Results demonstrated the destination of signal 

flow was from anterior brain region shifting to posterior region respective alert to drowsy 

state. Furthermore, the EEG transferring dynamics were more active in occipital area and 

motor area on motion platform. In the future, the results can be used for detecting 

drowsiness in proper brain region, and warn the driver before drowsiness to make the 

performance of driver keep at a good level. 

 

Keyword:  
Drowsiness, driving performance, electroencephalograph (EEG), brain network, Granger 
causality analysis, independent component analysis (ICA) 
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1. Introduction 

1.1. The importance of drowsiness detection 

In previous study, the fatigue which caused drivers inattention or drowsiness, 

was the major risk factor for serious injury and death in car accidents [1-4] 

National Sleep Foundation (NSF) reported that 60% of drivers had felt drowsy 

during driving, and 37% of the drivers had actually fallen asleep. The National 

Highway Traffic Safety Administration (NHTSA) also reported that at least 

100,000 police-reported crashes were directly caused by drowsy driving in 2006 

and leaded to 1,500 deaths, 71,000 injuries and $12.5 billion in monetary losses 

(National Sleep Foundation 2007 State of the States Report on Drowsy Driving). 

Therefore, to early detect the drivers’ drowsiness and to help to keep the drivers’ 

alertness for avoiding the car accidents that caused by drowsiness are important 

to protect living safeties of people. 

Drowsiness detection has been widely researched by varied measurements 

[5, 6] including the monitoring subject’s behavior and image based techniques 

and physiological signal-based system. The following sections would explain the 

advantage and limitation of these methods.  

 

1.2. The Drowsiness detection index 

1.2.1. The behavioral monitoring 

 Previous studies had shown that driver’s response performance is 

negatively relative to the drowsiness. The response performances were defined 

in terms of response time [7, 8], driving trajectories [9, 10] and patterns of drivers’ 

moving handle wheel [11, 12]. The limitation of behavioral monitory system is 

highly depended on driving behavior, experiences, road conditions, and all other 

environmental variables. But, previous have showed that behavioral performance 
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is opposite correlated with the driver’s alertness. Specifically, the subject’s 

response performances, which index by response time, are decreased along with 

the increases of drivers’ drowsiness [13, 14]. 

 

1.2.2. The image-based technique  

 The image-based technique detect the eye gaze position, eye closure or 

the head position by the video camera[15] to calculate the duration of eye gaze 

fixation and the eye closure or frequency of eye movement, eye blinking [16-18] 

or head movement [19] for correlating the subject’s drowsiness level. However, 

the quality of recorded image is easily influenced by the environment [20], with 

which is necessary for the camera needed to interact. 

 

1.2.3. The physiological signal based system 

 Several studies used the physiological signals, including the 

electrocardiograph (ECG), electro-oculograph (EOG), or electroencephalograph 

(EEG), to monitor the subject’s alertness. The heart rate or heart rate variability 

[23] which derived from the ECG signals has been known easily effected by the 

subject’s psychological and physiological conditions, and therefore the ECG 

signals is not a good index for monitoring the driver’s alertness. And some 

laboratories tried to use the electro-oculograph (EOG) signals to define the 

driver’s alertness. It is reported that the rate of eye blinking [24] was declined 

along with the decreases of subject’s alertness. However, the time window for 

analyzing the EOG signals to assess the driver’s drowsiness was around 240 sec, 

which is too long to use in the drowsiness warning system in the real driving. 

Hence, the EEG signals are free from the limitation of long average windows to 

detect drowsiness. Therefore, EEG remains the most popular modality and the 

better index used to monitor drowsiness state in real-time. 
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1.3. Drowsiness related EEG phenomenon of 

drivers 

Previous studies had shown that Along with the subject’s drowsiness level, 

the neural activities are changed especially in which activities generated from the 

occipital lobe. Furthermore, the power of occipital alpha (8-12 Hz, [25-29]) and 

theta band (4-7 Hz, [27-30]) were increased following the decreases of subject’s 

performances. The similar brain dynamic changes are also observed in a virtual-

realty (VR) environment of driving experiments. Lin et al. [31] reported that the 

power of occipital alpha band was linearly increased from alertness to mild 

drowsy and then the alpha power was maintain at the same level or slightly 

decreased from mild drowsiness. In addition, the occipital theta power was also 

found increased monotonically from alert to deep drowsy. And Lin et al. [32] also 

demonstrated that EEG is feasible to accurately estimate quantitatively driver’s 

performance in a realistic simulator by the results above, and constructed 3 

editions of EEG monitoring system for drowsiness detection and warning. The 

first edition [33, 34] was a portable development of wireless brain computer 

interface using the alpha power increasing in occipital channels to detect 

drowsiness for warning drivers. Several studies investigated the algorithm for 

detecting drowsiness by EEG feature. The research team of Lin et al. [26] used 

independent component analysis (ICA) to remove most of EEG artifacts and 

suggest an optimal montage to place EEG electrodes for raising average 

estimation accuracy. Extending previous study, ICA-based fuzzy neural network 

was used in adaptive EEG-based alertness estimation system for optimizing 

predict performance [35]. In order to reduce the feature dimension of EEG 

signals, the nonparametric feature extraction methods were applied to one 

channel single-trial EEG signal [36, 37]. The latest algorithm reported an 

unsupervised subject- and session-independent approach for detection departure 

from alertness [38]. The second edition of EEG monitoring embedded system not 

only added independent component analysis (ICA) algorithm to monitoring 

system for raising average accuracy, but also minimized rear-end digital signal 
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processing unit [39]. Duann et al. had shown that it is feasible to correctly 

estimate the changing level of driving performance using the EEG feature 

obtained from the forehead non-hair channels [40]. The third edition used the 

unsupervised algorithm, smaller front-end, cell phone as rear-end and EEG 

signals from non-hair area without use of gel or skin preparation, and therefore it 

is more suitable for drivers in practical application [41]. In addition, Lin et al. 

investigated the EEG signals changes induced by arousing feedback, and the 

results shown that significant decrease in power spectra in theta and alpha bands 

following auditory feedback was found in the bilateral occipital component [42]. 

The above results suggest that occipital alpha and theta bands would be as good 

EEG features for indexing the driver’s drowsiness, and the feature extraction 

algorithms were developed to apply on drowsiness detection and warning 

embedded system. 

 

1.4. The brain network by Granger causality 

The most studies investigating EEG signal in drowsiness state focused on 

how the EEG power changing along with the subject's driving performance, and it 

was the only indicator for estimation. In order to obtain more EEG features 

associated drowsiness for estimation indicator, realizing the brain network from 

alertness to drowsiness was what we intended to. For comprehending causal 

relationship between each source of signal from alert to mild drowsiness and to 

deep drowsiness, one approach to gaining this information is the so-called 

Granger causality (GC) [43]. 

  Many studies used Granger causality (GC) to analyze EEG or other brain 

neural signals for realizing the causal relationship between distant brain site [44-

46]. The brain networks, causal relationship or neural interactions, means how 

those signal flows transfer among distinct region in brain under one condition or 

function. GC could be applied on invasive-recorded local field potential (LPF) [47, 

48] functional magnetic resonance image (fMRI) [49, 50] and EEG [51, 52] to 

construct the brain network. Most research analysis LPF of a small specific brain 
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area under one experimental function such as the study of Guéguin et al. [46] 

used GC to LPF data to investigate the functional connectivity between primary 

auditory cortex (Heschl's gyrus) and secondary auditory cortex (lateral part of 

Heschl's gyrus) under amplitude modulated sound processing [47]. However, the 

location of drowsy cortex is undefined, and therefore LPF is not good signal for 

observing drowsiness. The fMRI was also used for GC analysis; Duann et al [47] 

reported that the great connectivity was generated between inferior frontal cortex 

and presupplementary motor area during stop signal inhibition by using fMRI data 

to GC algorithm. Although fMRI data were recorded from whole brain, but the 

time resolution was not good as EEG data, and therefore it could not reflect the 

real-time reaction like EEG data in this experiment design. Some studies even 

applied GC combined with Independent component analysis (ICA). The brain 

connectivity between the independent components was investigated by applying 

to the GC analysis of fMRI study of word perception experiment in Londei et al.’s 

study [49]. The GC analysis in EEG data by Milde et al. [51] has been used for 

optimizing the adaptive algorithm of GC and realizing the brain network of laser-

evoked brain potentials. The EEG signal is more adaptive to the large detectable 

range and the simulated driving experiment and consequently is the most 

suitable signal for obtaining the brain networks by GC. 

 

1.5. Aims of this study 

 The connectivity between independent components at driver’s different 

drowsy levels was accessed by GC analysis applied in EEG data. The different 

drowsy levels were defined by the behavior response; the behavior performance 

could reflect the subject’s consciousness to classify the relative EEG data to 

different drowsy level. Independent component analysis was used for 

approaching the signal sources replacing the channel data.   

 The aims of this study were (1) To determine the concentrations of brain 

connectivity between different brain regions from subject’s alert status to 

drowsiness status. (2) To compare the above brain network in motion and 
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motionless simulation, finding the influence of kinesthetic input on EEG signal 

flows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 7 

2. Methods 

2.1. Subjects 

Seven male subjects (ages from 23 ~ 30), were recruited from NCTU to 

participate in this experiment. They didn’t have psychological and neurological 

diseases. The age All of them had normal hearing and normal or corrected-to-

normal vision. None of them reported psychiatric or sleep disorders. Subjects 

were given instruction on how to respond to the events before participating in the 

experiment for the first time. They were required to sign the research consent 

before the experiment. . All subjects have participated in the “motionless” session, 

and seven of them also participated in the “motion” session. 

 

2.2. Experimental apparatus 

2.2.1 Virtual reality driving simulation environment 

     For safety concern, a 3D virtual reality-driving simulator was built to 

simulate real-life driving environment. A real car body was mounted on a six 

degree-of-freedom (DOF) Steward motion platform, which simulated the vibration 

caused by uneven road surface as well as kinesthetic force during real-life driving 

(Figure 1-A 1-B). In addition, the temperature, background illumination and other 

unexpected stimuli or distraction were under control to access the better EEG 

signal. The VR-based high way scenes were generated from seven personal 

computers which synchronized by the internet connection and then were 

projected to seven screens via seven projectors (Figure 1-C). These large 

screens generate an immersive sensation and near real-life driving environment 

(Figure 2-A). 
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Figure 1. The car of virtual reality environment at Brain Research Center. 
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Figure 2.The view of 3-D virtual reality environment. 

 
2.3. Experimental paradigm  

2.3.1. The event-related lane-departure task 

In the study, the driver’s drowsiness level was indexed by the event-related lane-

departure task [53]. The VR scene which can properly emulate a car driving at a 

constant speed of 100 km/hr on the third lane of a 4-lane highway at night by 

refreshing 60 times per second (Figure 2-B). There were not acceleration and 

brake function in the car, so all the subjects had to do was controlling the steering 

wheel. The car was randomly drifted away from the center of the cruising lane to 

left or right with equal probability, which was controlled and triggered from the 

WTK program, to mimic the consequences of a non-ideal road surface [54-56]. 

During the experiment, subjects were instructed to steer back to the center of the 

cruising lane as quickly as possible after they detected the deviation. However, if 

the subjects fall asleep or stopped responding to the deviation, the vehicle will 
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eventually hit the virtual curb on either side without crash and continue moving 

along the curb.  After such non-responsive periods subjects resumed task 

performance without experimenter intervention. The next deviation event 

occurred randomly 5 to 10 s after the moment when the vehicle was back in the 

third lane. Three parameters were recorded via a synchronous pulse marker train 

recorded by the EEG acquisition system in parallel, the onset of deviation, the 

subject's response onset and response offset (Figure 3). The deviation onset is 

recorded the moment that the car started to drift away. The onset of subject's 

response is defined as the moment that the subject turned the steering wheel to 

fix the deviation to the center of the third lane. The last one, response offset, is 

defined as the moment when the vehicle return to the center of cruising lane and 

the subject ceases to turn the wheel. Each complete single epoch included the 

three parameters in this task and started at the beginning of baseline. The 

baseline meant the duration of 1 second before the deviation onset, and the 

response time (RT) was calculated the period from the deviation onset to the 

response onset. Such experimental design allows the observation of continuous 

transition from complete alertness to deep drowsy states, and the baseline part 

without interference of muscle controlling could be used for analyzing the brain 

network.     
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Figure 3. A bird’s eye view of the event-related lane-departure paradigm. 
 
 
2.4. Data acquisition 

2.4.1. EEG data 

2.4.1.1. Channel location measurement 

    The brain activities from subject's skull were recorded by Ag/AgCl electrode 

cap with 30 channels (plus 2 references). The texture of cap was elastic and 

attached to an adjustable strap, and therefore it could totally cover subject's head 

without discomfort. All channels were arranged base on the modified 

International 10 - 20 system (Figure 4-A and 4-B). For accessing the actual 

location of each channel, each channel was redigitized by the 3D digitizer 

(Fastrak®, Polhemus, Figure 5) to reconstruct individual subject’s head model by 

the mathematical algorithms [57] for localizing the sources of brain activities. 
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Figure 4. The channel location and EEG recording equipment. 
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Figure 5. The 3D digitizer was used for constructing the subject’s head model. 
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Figure 6. The process of digitizing and recording the real locations. 
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2.4.1.2. Amplify the EEG signals 

It is necessary to minimize the contact impedance of each electrode for 

increasing signal to noise ratio and diminishing the external noise integrating 

during the EEG recording. For this purpose, the conductive gel (Quik-GelTM, 

Compumedics NeuroMedical SuppliesTM) was carefully filled into each channel. 

The contact impedance of the EEG electrodes was controlled under 5kΩ before 

each experiment. Furthermore, the collected EEG activities were amplified by the 

Neural Scan Express System (NuAmps, Compumedics Ltd., VIC, Australia, 

Figure 4-C) and then recorded at 500 Hz sampling rate. 

 

2.5. Data analysis 

    The data analysis flowchart in this study was shown in Figure 7. The motion 

and motionless data of each subject were generated a set of causal relationship 

by the analysis procedure respectively.  Both EEG data and behavior data had to 

be preprocessed at first for rejecting those abnormal trials and artifacts. In the 

next step, EEG data were applied independent component analysis (ICA) for 

searching out the source data under 30 EEG channels, and on the other hand, 

the RT of each trial was calculated for EEG drowsy level classification. The third 

step in EEG data analysis, only interesting components were chosen to do 

further investigation, and then the drowsy levels, drowsy stages, of these 

components data were classified by RT in step 2 of behavior data. After those 

processes, we could apply the main algorithm, Granger causality (GC) which was 

indicated by purple block in figure 7, to the component data in the fifth step. 

There were 3 sub-steps in GC algorithm: order selection, Kalman filter and GC 

value accession. In the last step, the significant GC value was obtained after 

statistical testing. The causal relationship of each component in different drowsy 

levels could be realized after all these steps. The details of each process would 

be interpreted in following sub-chapter. 
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Figure 7. The flowchart of data analysis procedure in single subject. 

2.5.1. Preprocessing   

    There were four steps in preprocessing: Integration of EEG and behavioral 

Data, reaction time, epoch extraction and artifact removal. Because driving 

trajectories and EEG signals were recorded by the different equipments (VR 

scene computer and Neuroscan respectively), we had to align these data by the 

triggers recorded in both machine first. Then the RT as defined in the event-

relate lane departure [53] in each trial could be accessed by the driving 

trajectories. Third, the epochs were time-locked to 1 sec before deviation onset 
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from EEG data, which were referred as baseline. The last step, the abnormal 

trials in behavior data and EEG data had to be discarded before further analysis. 

Including the trials with RTs less than 0.3 sec, the overshoot or zigzag 

trajectories when subject reacted to car shifting, with extreme values in EEG 

channels and with severe fluctuations across most EEG channels were be 

abandoned. 

 

2.5.2. Independent Component Analysis (ICA) 

In this study, the inter-connection of those functional EEG sources was the 

intention to investigate. However, since the volume conduction of the skull and 

scalp tissue [58], the signal recorded from individual electrode is easily mixed 

with signals generated from other brain regions or which are not located at the 

position around the electrode or other sources outside of our brain, including the 

eye-movement (EOG), eye-blinking, muscle-movement (EMG). For approaching 

the more corrected brain sources from the mixing EEG signals which were from 

the experimental electrode and removing the unrelated signals to obtain the pure 

neural activities, we applied the ICA algorithm (the runica function of the 

EEGLAB toolbox) on the EEG signals to separate these mixing signals from 

source signals in each subject. 

The independent component analysis is widely used for blind source 

separation problem [59-61]. There were four basic assumptions in ICA theorem: 

First, the source signals (neuron activities) were independent to each other and 

the correlation between each two sources was zero or close to zero. Second, the 

propagation delay from sources to sensors was negligible. Third, the sources 

were analog and the possibility density function (p.d.f.) was not the gradient of a 

linguistic sigmoid. Fourth, the summation at scalp electrodes of potentials arising 

from different brain areas was linear [62]. The ICA model is: 

 

 

X t( )= A ∗ S t( )                (1) 
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Where A was a linear transform called an 

 

m ∗ n  mixing matrix and 

 

S t( )= s t( )1
... s t( )n[ ] were statistically mutually independent. This ICA model 

described how the observed data were generated by a mixing process of the 

component vectors si. The independent component vectors si (often abbreviated 

as ICs) were latent variables which could not be directly observed. The mixing 

matrix A is assumed to be unknown. All we observed were the random variables 

 

X t( )= x t( )1
... x t( )m[ ]T

, and the task of ICA was is to transform the observed 

vectors xi, using a linear static transformation matrix W as: 

 

 

U t( )= W ∗ X t( )              (2) 

 

A linear mapping W was from ICA such that the unmixed signals U(t) are 

statically independent. ICA was done by adaptively calculating the w vectors and 

setting up a cost function, which either maximizes the nongaussianity of the 

calculated 

 

Sk = wT ∗ x( ) or minimizes the mutual information. In some cases, a 

priori knowledge of the probability distributions of the sources could be used in 

the cost function. After ICA training, we can obtain N ICA components U(t) which 

was very close to the real source activities S decomposed from the measured N-

channel EEG data X(t).  



 

U(t) =

u t( )1

T

u t( )2

T



u t( )30

T

 

 

 
 
 
 
 

 

 

 
 
 
 
 

= W ∗ X t( )=

w1,1

w2,1



w30,1

 

 

 
 
 
 

 

 

 
 
 
 

∗ x1(t) +

w1,2

w2,2



w30,2

 

 

 
 
 
 

 

 

 
 
 
 

∗ x2(t) ++

w1,30

w2,30



w30,30

 

 

 
 
 
 

 

 

 
 
 
 

∗ x30(t)        (3) 

In this study, N=30, thus we obtain 30 components from 30 channel signals. 
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2.5.3. Component selection 

The scalp maps of each component represented the relative weight to 

compose from the channels (Figure 8). The maps from individual subject were 

generated by using the function topoplot of EEGLAB toolbox, which principle was 

rendering a column of the inverse of ICA weighting matrix onto the scalp (3). It 

was also revealed the spreading of the component topography.   

In this study, there were six sources generated from the frontal area, 

supplementary motor area (SMA), somatomotor area, occipital midline area and 

bilateral occipital area to be submitted for the further analysis [62], as shown in 

figure 8.  Figure 8 shown the 30 isolated scalp maps from the subject 01, and the 

components in red circle represented which were selected to analyze by Granger 

causality. The component 2, 3, 4, 5, 6 and 7 were frontal, SMA, right 

somatomotor, left somatomotor, occipital midline and bilateral occipital areas 

respectively. 
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Figure 8. An example of topographic maps of 30 independent components. 
 

2.5.4. Data classification   

 For observing the brain network in different drowsiness level, the criteria of 

different drowsiness level were defined to classify the EEG activities. The trial 

respective RT of the event-related lane-departure task was the basis in this study. 

If subjects stayed conscious, they could turn the car back more quickly which 

meant the RT would be shorter; and vice versa. All the data trial of one subject 

were segmented to 4 different stages from alertness to drowsiness (Figure 9). 

For decreasing the trial number difference between each stage, the stage length 

was not equal from 0.5 second to 1 second. All subjects was kept in alert state in 

the most of time, that majority of the distribution was centered on the range of RT 
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less than 1. The segments before RT=1.5 which represented as stage 1 to stage 

2 were shorter, stage length were 0.5 second. However, the trial number 

decreased along with the increase of RT as RT>1.5. The stage length of stage 3 

and stage 4 should be larger than 0.5 second for engaging the trial number in 

one stage to avoid unreasonable analysis. The stage 0 was regarded as baseline 

for statistical testing. The baseline had to keep in the most alert state and be 

controlled under reasonable trial number. Therefore the length of stage 0 was 

segmented as the first 14% alert trial instead of being segmented by RT for 

eliminating the difference in all subjects.  

 
Figure 9. The diagram of stage segment in S02. The dark blue bars shown the distribution of trial 
number and RT. 
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2.5.5. Granger causality 

 For perceiving the connectivities in human brain under drowsiness state 

and alert state, we used Granger causality algorithm to obtain their causal 

relationship. The concept of causality was expressed by Granger for econometric 

purpose [43]. It based on the notion that causes imply effects during the  future 

evolution of events and, conversely, the future cannot affect present. Granger 

causality assumed one time series y(t) caused another time series x(t) if y(t-

1),y(t-2),...,y(t-p) participation in prediction of x(t) could significantly improves.   

The t was time point and p was order. Therefore, the basic assumption of 

Granger causality was that the participating time series must be autoregressive 

model (4). In multi-channel EEG data, there was a time-variate multivariate 

autoregressive model (tvMVAR) to fit all time series [64]. Consider a set (K 

components) of processes like 

 

Xt  represented as:  

                     

                       

 

Xt = At−1 ∗ Xt−1 ++ At− p ∗ Xt− p + Et        (4) 

   

where, t represented the current time point, 

 

Xt ,Xt−1,,Xt− p  were K x 1 observed 

data matrix, p was model order, and E was a zeros mean Gaussian noise 

vector. 

 

At−1,,At− p  were K x K coefficient matrix of tvMVAR, and it also 

represented as linear time-lagged dependence. At a given time, the diagonal 

elements of A represented the self-connectivity of each channel, and off-diagonal 

element represented the inter-connectivity between each channel. If the 

prediction of 

 

Xt  of 

 

α  component was more accurate by adding a specific 

component 

 

β , we could say, component 

 

β  caused component

 

α . In other words, 

If the error matrix

 

Et  was controlled in the minimum, the coefficients of 

component 

 

β  to complete component 

 

α  indicated how much the 

 

β  caused the 

 

α . The following 4 section, order selection, Kalman filter, Granger causality value 

and statistical testing were 4 steps to determine if there was any connection exist 

between two time series components. The purpose of the first three steps was 
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accessing the coefficients of observed data and analyzing the strength of causal 

relationship between each component in each time sample and different drowsy 

stage. The statistical testing was used to determine the causal relationship was 

established or not. 

 

2.5.5.1. Order selection 

    Before accessing the observed measurements model coefficients, selecting 

the model order to get the best prediction was necessary in each different drowsy 

stage GC analysis. The Bayesian information criterion (BIC) [65] function was 

used to choose the model order p to yield a well-fit tvMVAR. The penalty was of 

each order calculated by BIC criterion, and selected the model order for which 

BIC penalty reaching for a minimum.  

 

   

 

BIC p( )= dep + log tn( )∗ p /n   (5) 

 

where, p was the model order presenting the current order, de was the predict 

error of p order, tn was the trial number of the observed data, n was the sample 

number of this trial. The error of observed data model prediction, de, was 

computed by QR decomposition algorithm which was often used to solve the 

linear least square problem. Therefore the de value had to be accessed once as 

calculating the p order each time. The BIC value of order p was the penalty of the 

observed data model prediction, that is, the lower value meant the better 

prediction and the more well-fit generated model. 
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Figure 10. The BIC testing in subject 01 (S01) with 36 trials. 
Figure10 shown that the shape of the curve was greatly similar in all trials from 

one subject. The order with the lowest penalty would be selected to be the model 

order as the red circle in figure 10. In the example, 4 was selected to be the 

model order for predicting the model coefficients in the next step. 

 

2.5.5.2. Kalman filter 

    Figure 11 showed the following steps of Granger causality analysis after order 

selection in an example of bi-variate. Applying Kalman filter was the next step. 

The purpose of Kalman filter was to use measurements that are observed over 

time that contain noise, random variations, and other inaccuracies, and produce 

the model whose values that tended to be closer to the true values of the 

measurements and their associated calculated values [66,67]. In GC analysis, 
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the advantage of adaptive filter such as Kalman filter was that the autoregressive 

model of observed data could be variable. Kalman filter could detect the change 

of linear combination of model along with time series in each prediction, therefore 

the assumption of stationary input data was unnecessary and one set of model 

coefficients was accessed in each time sample [68]. Otherwise, Milde et al. [51] 

reported that this adaptive way to access the model coefficients was more 

suitable than recursive least square (RLS) [69], which was the other adaptive 

filter used in GC analysis.  

    The procedure of filtering was producing estimates of the true values of 

measurements and their associated calculated values by predicting a value, 

estimating the uncertainty of the predicted value, and computing a weighted 

average of the predicted value and the measured value. The estimates produced 

by the method tend to be closer to the true values than the original 

measurements because the weighted average has a better estimated uncertainty 

than either of the values that went into the weighted average. Assume there was 

a m-dimensional vector autoregressive model of order p, and those functions 

could be shown as below: 

 

   

 

Y t( )= H t( )∗ X t( )+ ε t( )    (6) 

   

 

X t( )= Γ t( )∗ X t −1( )+ W t( )    (7) 

 

   

 

Κ t = Ρt | t−1 ∗ H t( )T ∗ H t( )∗Ρt | t−1H t( )+ R t( )[ ]−1
  (8) 

   

 

Ρt | t = Ρt | t−1 − Κ t ∗ H t( )∗Ρt | t−1    (9) 

   

 

ε t( )= Y t( )− H t( )∗ Xt | t−1    (10) 

   

 

Xt +1| t = Γ t( )∗ Xt | t−1 + Κ t ∗ε t( )[ ]   (11) 

   

 

Ρt +1| t = Γ t( )∗Ρt | t ∗Γ t( )+ Q t( )    (12) 

   

 

X0|−1 = X0       (13) 

   



 

Ρ0|−1 = Ρ0 =
0  0

  

0  0

 

 

 
 
 

 

 

 
 
 
     (14) 
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where, t was the current time point, 

 

Y t( ) was the observed data, 

 

H t( ) was the 

observed measurement matrix with dimension 

 

m ∗ m2 p  , 

 

Xt  was the 

 

m2 p∗ m2 p 

state variable matrix, and it also represented the model coefficient matrix in this 

study. 

 

Γ t( ) was the transition matrix whose size was also 

 

m2 p∗ m2 p, and it was 

identical matrix for assuming the coefficients evolve according to random walks. 

 

Kt  was the Kalman gain matrix, 

 

Ρt | t  was the priori covariance matrix of the 

estimation error, 

 

Ρt +1| t  was the posteriori  covariance matrix, 

 

R t( )  was the 

observation noise covariance, 

 

R t( )= ε ∗εT , 

 

W t( )  was the zero-mean white 

process-noise, 

 

Q t( ) was the state-noise covariance. The function 6 and 7 were 

basic state-space form. 

 

Y t( ) and 

 

H t( ) were known observation data, and the aim 

of Kalman filter in this study was to estimate the model coefficients 

 

Xt  by 

 

Y t( ) 
and 

 

H t( ), in the other words, to access the function 6. Function 8, 9 and 10 were 

the innovation part in the filter preparing for next time point prediction, and 

function 11 and 12 were prediction part. The filter trained the observed data time 

sample by time sample, and then the object coefficient matrix 

 

Xt  at each time 

sample could be solved. The initialization was shown in function 13 and 14. 
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Figure 11. The diagram of Granger causality application of bi-variate time series after order 
selection. 
 

2.5.5.3. Granger causality value 

    The original autoregressive model of observed data appeared to be analyzed 

by GC after filtering. We used a three components example to explain how to 

access GC value from the coefficient matrix 

 

Xt  in function 6. Assume the 

autoregressive model was solved by Kalman filter in previous section: 

 

   

 

Y t( )= X i( )
i=1

p

∑ ∗Y t − i( )+ ε t( )   (14) 

 

The same with the function 6, 

 

Y t( ) was the observed data with m components 

and t presented the current time point, p was the model order, 

 

Xi  represented 

linear time-lagged dependence which was referred as coefficient matrix from lag 

1 to order p. For explaining legibly, the function 14 was simplified order to be 

equal to 1 and only three components, not only that, the equation was expanded 

as following function:  

 

Figure 11: The diagram of Granger causality application of bi-variate time 
series after order selection. There were 2 components in this example, 
component A (comp A) and component B (comp B). Two components were 
trained by the Kalman filter which were represented as blue blocks with order 
length as window length to access the model coefficients. Next step was 
calculated the GC value in each time point by coefficients from filter 
represented by green blocks. Testing the significance was after the GC value 
calculating represented as pink blocks. Each GC value along with the time 
series was compared with the distribution of GC value in stage 0, if the value 
was in the distribution, the value was set for 0; else the value kept the original 
GC value. The last step of Granger causality was decision of the causal 
relationship. If the non-zero value was much more than the zero in the whole 
GC value along the time series, then the connection, causal relationship was 
established. 
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y1 t( )
y2 t( )
y3 t( )

 

 

 
 
 

 

 

 
 
 

=
x11 x12 x13

x21 x22 x23

x31 x32 x33

 

 

 
 
 

 

 

 
 
 
∗

y1 t −1( )
y2 t −1( )
y3 t −1( )

 

 

 
 
 

 

 

 
 
 
+

ε1 t( )
ε2 t( )
ε3 t( )

 

 

 
 
 

 

 

 
 
 
   (15) 

 

The diagonal elements, 

 

x11x22x33 represented the self-connectivity at lag 1, and 

the others were inter-component connectivity at lag 1. These coefficients were 

positive relation with causal relationship in above coefficients matrix. For instance, 

 

y1 t( ) was composed by 

 

y1 t −1( )  

 

y2 t −1( )  

 

y3 t −1( )  with coefficients 

 

x11x12x13 

respectively, that mean the relative strength of influence from component 

 

y2to

 

y1 

at time point t-1 was expressed by the ratio 

 

abs x12( )/abs x11( )+ abs x12( )+ abs x13( ), 

and from

 

y3  was expressed by the ratio 

 

abs x13( )/abs x11( )+ abs x12( )+ abs x13( ) . 

Therefore the GC value was designed [70,71] : 

 

   


 

GC t( )comp1→comp 2
=

abs x21 i( )( )
i=1

p∑
abs x11 i( )++ xm1 i( )( )

i=1

p∑
 (16) 

 

2.5.5.4. Statistical testing 

     For the difference in time-space and the EEG variance from person to 

person, the statistic testing was trial by trial in each subject. The EEG data in 

stage 0, baseline, were regarded as reference for the GC value in stage 1 to 4 to 

test the significance. All the single GC values along with time series were 

compared with the distribution of stage 0 distribution, if the GC value from stage 

1 – 4 wasn’t in the 95% confidence interval of stage 0, the GC value was 

significant and the GC value was kept, else the GC value was set for 0. Since 

avoid influence of the extreme value from minor trial, the median were used to 

average all the trials. After the median accessing, only if number of non-zero GC 

values were much more than the number of zero in whole time series between 

two components, the causal relationship in these two components was 

established as the example of connection of comp A to comp B in figure 11. 
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2.5.6. Power spectrum analysis 

      Previous studies suggested that drowsy EEG dynamics could be observed 

from two different aspects, the tonic and phasic changes [72, 73] and both 

aspects were processed by frequency analysis. Phasic change referred to the 

EEG power triggered from stimulation by the specific events, like the deviation 

onset in our experiment. Time-frequency was used to investigate the change of 

power spectral in grouping data from deviation onset to deviation offset. On the 

other hand, the tonic changes referred to the converting of baseline power 

spectral associated with change of cognitive state such as the different drowsy 

stage in this study. The baseline data were transferred to power spectral in each 

stage to observer the tonic changes from alert state to drowsy stage. 

 

2.5.6.1. Event-related  spectrum perturbation (ERSP) 

Time-frequency transform is a spectrotemporal decomposition technique to 

analysis the event-related data perturbations in spectral domain of EEG channel 

data or component data [74]. For assessing the EEG activities during the 

stimulation and after the response in different drowsy stage, the epochs of each 

stage from all subjects were extracted from -1 ~ 7 seconds to estimate the 

changes of ERSP. The 2000 points in each observed component epoch was 

chronically divided into 200 overlapped sub-windows with 250 points, and the 

power spectrum of each sub-window was computed by discrete wavelet 

transforms (DWT) using newtimef()  function of EEGLAB [73]. The frequency bins 

respective to the 200 sub-windows that distributed in -1 to 7seconds were 

obtained stage by stage. In the last step, we average the frequency bin in all the 

epochs in one stage to realize the ERSP changes from deviation onset in each 

drowsy stage.  
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Figure 12. The diagram of time-frequency transform of ICA component activity in an epoch. 

 

2.5.6.2. Tonic power spectrum  

      Tonic data were the main source for Granger causality to assess the brain 

network in different drowsy stage because we assuming there were not 

unexpected brain activities or event in this duration. Therefore the state were 

stable in whole baseline, the power spectrum should also be stable. Each 

observed component baseline with 250 samples from all subjects was directly 

computed the power spectrum by fast Fourier transforms using fft()  function in 

MATLAB stage by stage. The power respective to frequency in each component 

and each stage was obtained. Then we computed the average value from all 

trials by the frequency power in different drowsy stage to observer the tonic 

changes from alert state to drowsy stage. 
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3. Results 

3.1. Behavioral data 

    The information of behavior data were shown in Table 1 and Table 2. 

Table 1 showed the different 4 drowsy levels and the respective RT. Table 2 

showed the trial number in each stage and the average reaction time of behavior 

data. The stages number from 1 to 4 represented the subject’s alert status to 

drowsy status with inconsistent length of RT. The trial distribution in table 2 

revealed that the subjects kept in the alert status at most of the time, and 

therefore the length in stage 1 and 2 were shorter than stage 3 and 4 to balance 

the difference of trial distribution. The last row indicated the average RT of each 

stage including the motion and motionless condition. 

 

                               Table 1: The Stage no. and the Respective RT 

Stage no. Baseline 1 2 3 4 

RT (SEC.) The First 
14.28%Trials 

0.5 - 1 1 – 1.5 1.5 - 2.5 2.5 - ∞ 

 

Tables 1. The Stage no. and the Respective RT. 
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Table 2: Trial Number and RT of Behavior Data  

Subject 

Index 
Trials 

in 
Stage 0 

Avg. 
RT 

(SEC.) 

Trials 
in 

Stage 1 

Avg. 
RT 

(SEC.) 

Trials 
in 

Stage 2 

Avg. 
RT 

(SEC.) 

Trials 
in 

Stage 3 

Avg. 
RT 

(SEC.) 

Trials 
in 

Stage 4 

Avg. 
RT 

(SEC.) 

Total 
Avg. 

S01 
45 0.65 196 0.77 66 1.21 19 1.74 37 6.62 1.60 

58 0.69 142 0.82 36 1.12 27 1.85 38 4.84 1.33 

S02 
67 0.65 183 0.76 108 1.18 58 1.95 120 5.49 2.23 

37 0.90 41 0.90 137 1.16 62 1.82 23 4.50 1.59 

S03 
62 0.84 79 0.86 236 1.24 108 1.70 11 4.43 1.38 

24 0.59 135 0.71 8 1.01 5 1.25 19 11.66 2.03 

S04 
40 0.71 96 0.82 109 1.21 54 1.77 23 8.56 1.81 

45 0.74 109 0.82 80 1.19 38 1.85 92 8.34 3.25 

S05 
61 0.55 135 0.78 100 1.19 64 1.80 109 5.85 2.33 

44 0.68 139 0.81 55 1.11 22 1.78 92 17.09 5.87 

S06 
36 0.44 168 0.64 21 1.16 6 1.37 14 18.07  1.68 

35 0.59 199 0.71 17 1.07 4 1.55 29 9.89 1.85 

Avg. - 0.64 - 
0.77 - 

1.20 - 
1.72 - 

8.17 
2.25 

0.70 0.80 1.11 1.68 9.39 
The pink parts were indicated the motion condition, and the white parts were the 
motionless condition. 
 

Tables 2. Trial Number and RT of Behavior Data. 

 

3.2. Brain network of single subject data from 

alert stage to drowsy stage 

    Figure 13 showed the brain connectivity from stage 1 to 4 of S06 in 

simulated real driving situation. The graph showed the propagations of the 6 

components from alert status to drowsy status. Those components were 

represented by different color, the frontal area was represented by the red dot, 
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the SMA was orange dot, right and left somatomotor area was yellow and green 

dot respectively, the occipital midline was blue dot and the bilateral occipital was 

purple dot. The position of components and the strength of GC connections were 

indicated in the right bottom of figure. All the connections between any two 

components had been tested the significance by GC value. 

     In the S06 case, the most of connections influence were weak in stage 1. 

The connections got stronger from stage 2, and it was clear that the frontal area 

received all the information flow from each components except the midline 

occipital area which also received the information flow from other components, 

but slighter than the frontal area. However, the propagations of information flow, 

or causal relationship, was changing in stage 3. In stage 3, the strength of 

connections was deadened and the afflux was not the frontal area or the midline 

occipital area. The causal connectivity related to right and left somatomotor areas 

were becoming dynamic in this stage, and some influences were into the bilateral 

occipital area. The last stage, stage 4, those connections were similar to those in 

stage 1 or 2, the afflux were centered on frontal area and occipital area, but the 

strength of connection was different, the stronger connections were into the 

occipital areas instead of the frontal area. In this stage, the flow direction of 

causal relationship was more consistent than in other stage. 

 



 

 35 

 
Figure 13. The brain connectivity of S06 from stage 1 ~ 4 in simulated real driving. 
 

3.3. Brain network of grouping data from 

alert stage to drowsy stage 

    In order to observe the consistence in each subject, the integration of brain 

network of 6 subjects was shown below. For keeping the difference of baseline 

from person to person, the causal relationships were accessed by single subject 

instead of clustering all the trials to do GC analysis. Afterwards, the connection 

between two components appeared over 3 subjects at the same stage, and it 

would be selected and shown in the Figure 14 ~ 16. This grouping way could 

keep the reliability of reference of statistical testing.  
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3.3.1. Brain network in 3D coordinates 

    In results of grouping data, the dipoles were fitted to 3D talairach 

coordinates model to present the brain network. The coordinate was indicated in 

the right side of Figure 14, and the three surfaces were left to right, anterior to 

posterior and superior to inferior of human brain. As shown in Figure 13, the six 

components were represented by different color dots respectively in Figure 14, 

and those dots also projected to the three surfaces with a half dot to indicate, and 

therefore the EEG equivalent-dipole locations and orientations of human brain 

were visualized  

 
Figure 14. The brain network in 3D coordinates. 
 

3.3.2. Brain network in stage 1 

    The results of stage 1 were shown in Figure 15-A. Subjects should stayed in 

very alert status in this stage for the respective RT was 0.5 ~ 1 second. In stage 

1, the signal flow sent to frontal area, SMA and midline occipital area, especially 

the frontal area. All components sent signals to frontal area excepting the SMA, 

and SMA received the signal flow from occipital areas. On the other hand, 
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midline occipital received the signal flows from two somatomotor areas. 

Generally, the trend of signal flow was directing to the anterior part of brain from 

posterior part in stage 1, and somatomotor areas sent to both frontal and midline 

occipital area. 

 

 
Figure 15. The brain networks of grouping data in stage 1 and 2 (motion condition). 
 

3.3.3. Brain network in Stage 2 

    The respective RT was 1 ~ 1.5 seconds in stage 2, and we showed the results 

in simulated real driving (motion condition) in Figure 15-B. The trend was still 

towards frontal, central and midline occipital area, and the directions of 

connection centered on frontal area much more than previous stage. The signal 

flow from somatomotor did not send to occipital midline area, only sent to the 

anterior of human brain. And the signal flow from bilateral occipital area to SMA 

in stage 1 shifted to midline occipital area in this stage.  It is clearly that the main 

destinations of signal flows were frontal area and midline occipital area which 

inheriting the previous stage. 
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3.3.4. Brain network in Stage 3 

    There were many changes in stage 3 whose RT was 1.5 ~ 2.5 seconds. The 

main concentration of signal flow was not frontal area anymore, but was occipital 

midline area. In Figure 16-A, there were three components sending information to 

midline occipital area and two sending to SMA and left somatomotor area. The 

midline occipital area collected the most connections clearly. There had been 

four connections concerning frontal area in previous stage, but only left one, 

midline occipital to fontal, in stage 3. Frontal area became a signal source in this 

stage; it sent signals to SMA area and left somatomotor area. The SMA received 

the signal flows from frontal area and right somatomotor area, and seemed like 

the destination of signal flows shifted to posterior brain gradually. The sending of 

somatomotor area was back to midline occipital area and SMA, and somatomotor 

received the signals from midline occipital area. Stage 3 was the turning point of 

signal transmission from alert state to drowsy state, and it was different explicitly. 

The effect of frontal area was reduced and the somatomotor area and midline. 

 

 
Figure 16. The brain networks of grouping data in stage 3 and 4 (motion condition). 
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3.3.5. Brain network in Stage 4 

    In the last and most drowsy stage, which RT was more than 2.5 seconds, the 

brain network inherited the previous stage and the direction of signals centered 

on midline occipital area much more. In Figure 16-B, we could observe that the 

major arrows directed to posterior brain, that was, the occipital area. The midline 

occipital area received signal flows from all of the components except frontal area, 

and bilateral occipital area also received three causal relationships from three 

components SMA, right somatomotor, and including the frontal area. All causal 

relationships were towards to posterior brain, but there was one arrow directed to 

anterior part of brain, the bilateral occipital area to frontal area. The concentration 

of brain networks transferred to occipital area obviously, especially in the midline 

occipital area, beside that, the opposite location, frontal area, also received the 

signals from bilateral occipital. The main effect in drowsy stage was midline 

occipital area, which received those signal flows and didn’t send to any 

component. It was quite different with the brain network in alert stage such as 

stage 1 or 2. 

3.4. The comparison of brain network in 

motion and motionless condition 

     This section showed the comparison of brain network in motion platform and 

motionless platform. We used two kinds of simulator to represent the difference 

from reality and laboratory condition. The brain networks in motionless condition 

explain the brain networks from alert stage to drowsy stage only with the visual 

stimulation. Although the design of experiment was not similar with the real 

driving, the influence of consciousness was more remarkable. The kinesthetic 

stimulation was an extra input in motion condition for simulating reality situation, 

and therefore we indicated the connections only in motion condition to elucidate 

the influence on causal relationship from the extra input. In each stage, there 

were 3 brain networks in Figure 17 ~ 20 respective to motion, motionless 
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condition and the comparison. The parts of motion condition were the same with 

which in Figure 14 ~ 16, and in comparison, the consistent signal flow 

represented by blue arrows in both condition and those inconsistent parts by red.  

 

3.4.1. The comparison of brain networks in stage 1 

    The concentration of signal flow was frontal and midline occipital area in 

motion condition, however, it only sent to frontal area in motionless condition. 

And the number of connections in motionless were fewer than in motion condition, 

the brain network was more definite. In the comparison, all the connections in 

motionless condition were the consistent part in stage 1, and it expressed that 

the frontal area was caused by the four components, which two somatomotor and 

two occipital areas, in both condition. The consistent trend was from posterior to 

anterior brain. However, there were lots extra connections in motion condition, 

and those almost were concerned in SMA and midline occipital area. We could 

find out the SMA and occipital midline area did not participate in motionless 

condition.  
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Figure 17. The brain network in stage 1. 
 

3.4.2. The comparison of brain networks in stage 2 

The destination of signal flow still was frontal and midline occipital area in 

motion condition, but the effect of SMA was decreased. In motionless condition, 

the brain network was very like the one in stage 1, nevertheless, the causal 

relationship from somatomotor area was replaced with from the SMA. In 

comparison part, the most of those connections sent to frontal area were keeping 

consistent, and there were connections about somatomotor area and midline 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17: The brain network in stage 1. In motion condition, the signal flows 
were sent to frontal, SMA and midline occipital area, but only the signal flows 
were only sent to frontal area in motionless condition. In comparison, the 
connections linking the central and midline occipital were extra in motion 
condition. 
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occipital area belonged to inconsistent part. The direction of inconsistent 

connection was different with previous stage. Somatomotor area sent the signal 

flow to anterior brain, and the bilateral occipital sent to midline occipital area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18 The brain network of stage 2. 
 

3.4.3. The comparison of brain networks in stage 3 

The brain network was quite different in both motion and motionless 

condition. The main destination was not the frontal region, but was midline 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18: The brain network of stage 2.  The trends were still towards to the frontal, 
SMA and occipital midline area, but the somatomotor area sent the signal flow to 
frontal area instead of occipital midline area in motion condition, and fewer 
connections were towards to SMA. In motionless, the SMA sent to frontal instead of 
left somatomotor area sending. The trend was expanded from the previous stage: 
Consistent parts of comparison were those signal flow sent to frontal area, and 
inconsistent parts were those sent to SMA and midline occipital area. 
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occipital area. In motion experiment, the signal flow sent to midline occipital much 

more than stage 2, and the somatomotor area also received massage in this 

stage. In the other side, the motionless condition, the signal flows were centered 

on midline occipital area obviously, from bilateral occipital and SMA. In previous 

stage, there were four connections linking with frontal area, but there was none in 

stage 3. Although the two conditions also changed the concentration from 

anterior brain to posterior brain, the consistent part in comparison was only one 

connection, SMA to midline occipital area. There were many connections in 

inconsistent part, those about the left and right somatomotor area and the frontal 

area. The somatomotor area did not generate any causal relationship in 

motionless, but they were active in motion condition. That was the biggest 

difference in this stage. 
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Figure 19. The brain network of stage 3. 
 

 

 

 

 

Figure 19:  The brain network in stage 3. Both in motion and motionless 
condition, the main destination of signal flow was not frontal area, but was 
occipital midline area.  The causal relationship seemed to shift to posterior part 
gradational in motion condition, and seems like had shifted in motionless. In 
comparison, there were many difference which about the left and right 
somatomotor area and the frontal area. 
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3.4.4. The comparison of brain networks in stage 4 

In the drowsiest stage, the concentration of brain networks transferred to 

occipital area obviously, especially in the midline occipital area, beside that, the 

opposite location, frontal area, also received the signals from bilateral occipital in 

motion condition. The brain network in motionless condition was similar with the 

previous stage, but the concentration was stronger. All the signal flows were sent 

to midline occipital area, and only one somatomotor area did not work. In the 

comparison part, the consistent connections were sent to midline occipital area, 

and the inconsistent connections were including the left somatomotor area to 

midline occipital area, those sent to bilateral occipital area and the bilateral 

occipital to frontal area in motion condition. 
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Figure 20. The brain network of stage 4. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20:  The brain network in stage 4. The brain network extended the 
previous stage and centered on midline occipital area. In motion condition, the 
midline and bilateral occipital area received connections from all of the 
components, and the midline occipital area in motionless also receive the most 
signal flows. However, the connection were more complex in motion condition, 
the signal flow did not only send to midline occipital area, but also to bilateral 
occipital and frontal area. Beside that, the both somatomotor area were active in 
motion but not in motionless condition. 
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3.5. Summary 

Figure 21-A showed the concentration of brain networks from alert to 

drowsiness in motion and motionless condition. From alert to drowsiness, the 

concentration of signal flows shifted from frontal area to midline occipital area. 

This phenomenon was more obvious in laboratory situation than reality situation. 

There were a lot kinetic stimuli in real life like motion condition to make the brain 

networks more complex to be illustrated. Figure 21-B showed the power 

spectrum of midline occipital component in different drowsy stage in both two 

conditions. The power of alpha band increased along with drowsy level, as in 

brain networks, the phenomenon was more obvious in motionless condition. 
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Figure 21: The concentration of brain networks and EEG power spectrum in 
motion and motionless condition. 21-A: The destination of signal flows 
shifted from frontal area to midline occipital area with subject’s 
consciousness. Brain networks in real life condition were more complex than 
laboratory condition for extra kinetic stimulation. 21-B: The power spectrum 
of occipital component respective drowsy stage. The power of alpha band 
increased along with drowsy level, as in brain networks, the phenomenon 
was more obvious in motionless condition. 

 

Figure 21. The trend of brain networks and EEG power spectrum in motion and motionless 
condition. 
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4. Discussion 
 
     The aims of this study were to determine the brain connectivity between 

different brain regions from subject’s alert status to drowsiness status and to 

compare the above brain network in motion and motionless simulation, finding 

the influence of kinesthetic input on EEG signal flows in reallife. The results in 

previous chapter showed the brain networks in each stage and the consistent 

and inconsistent part in comparison of motion and motionless conditions. From 

alert stage to drowsy stage, the concentration of signal flow shifted from the 

anterior brain to the posterior brain. In addition, there were more connections 

supposed to be including kinetic stimulus in motion condition than in motionless 

condition. Figure 22 showed the structure of signal flows summarized from Figure 

21 to illustrate the finding clearly. 
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Figure 22: The dendrogram of brain networks from drowsiness to alert in 
motion and motionless condition. The structure illustrated the concentration of 
brain network and the difference between two conditions. Stage 1 and 2 
seemed like the same status, and the enormous change appeared in stage 3. 
In addition, stage 4 was expanded from stage 3. The involving components 
and connections in motion condition were much more than motionless 
condition. It illustrated the brain networks were influenced by more inputs in 
real-driving simulation. 

 

Figure 22. The dendrogram of signal flow from drowsiness to alert in motion and motionless 
condition. 

 

4.1. The brain network from alert state to 

drowsy state 

4.1.1.  The concentration of brain networks 

In Figure 23, the green line represented the consistent part of brain networks 

in motion and motionless condition. Most connections in motionless also 

occurring in motion condition explained that it caused by drowsiness level. 

Frontal area was the main region to receive signal flows from other posterior 

components in stage 1 and 2, but the trend totally changed in next stage. The 

destination was not frontal area in stage 3; most signals were sent to midline 

occipital area. In addition, the connections directed to midline occipital more 

obviously in stage 4. The trend was that sending to frontal area in alert stage and 

then sending to occipital area since into drowsier stage.  
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Figure 23: The consistent part of brain networks. The green lines of structure 
emphasized how the concentration of brain networks shifting from alert to 
drowsiness: The concentration was frontal area in stage 1 and 2, but it shifted 
to midline occipital area with increasing drowsiness in stage 3 and 4. In 
addition, the transition of brain networks from alert to drowsiness  occurred in 
stage 3.   

 
Figure 23. The consistent parts of brain networks. 

 

4.1.1.1. Frontal area     

The results in our study showed that the trend was directing to the frontal 

area from each posterior brain in alert stage such as stage 1 and 2, and it 

vanished gradually from stage 3. These results in motionless were corresponded 

with the motion condition. The finding may was consistent with an early study 

suggested that the frontal midline theta EEG/MEG activity was readily measured 

from the scalp during concentration or heightened attention in most human 
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subjects [75]. The signal flow generated by subjects who operating the 

experiments sent with highly attention to frontal area may cause the EEG activity 

in theta band arousing in alert stage. In addition, the temporal order of task 

coordination was related to frontal area [76]. In previous study, a higher activity 

was found in for the random-order condition compared with the fixed-order 

condition by fMRI data analysis [77]. The deviation onsets in each epoch in this 

study were also in random order. Therefore, the random order of deviation may 

be the one reason that signal flow towards to frontal area.  

 

4.1.1.2. Midline occipital area 

  In midline occipital area, it received signal flows in each stage from alert 

to drowsy, beside that, the number of connection was the most in drowsiest stage 

in grouping data and the strength was the strongest in single subject data. In 

study of Huang et al. [78], during each drift event by simulated driving, BOLD 

signals were activated in visual component located in occipital area. It may cause 

the signal flows sending to occipital area in alert stage in our study. However, the 

signal flow weaken in stage 3 and strengthened in the drowsiest stage may 

demonstrate by subject’s unconsciousness. In other sustained attention task 

study, the tonic brain activities in occipital cortex have been shown to reflect 

fluctuations of drowsiness level [72 79 80]. The broadband power of alpha and 

theta bands increased in visual component as the RT or error increased [26 53 

73], and the power spectrum was consistent in midline occipital area shown in 

Figure 21. The EEG change in previous study was corresponded with our brain 

network change. Therefore those signal flow from other components may cause 

the alpha and theta bands increasing in occipital cortex in subject’s drowsy stage. 

 

4.1.2. Criterion of drowsiness occurring 

 For the similar involving components and connections, stage 1 and 2 

seemed liked to be the same consciousness. The transient of brain networks 

occurred in stage 3, the concentration shifted to posterior brain region. And the 
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last stage, drowsiest stage, basically followed the previous stage, but sent to 

midline occipital area with more signal flows. Therefore, we speculated the 

criterion of drowsiness occurring from alert to strong drowsiness might be stage 3 

closed to RT = 1.5 ~ 2.5 seconds.  

 

4.2. The difference of brain networks in 

motion and motionless condition 

The kinesthetic stimulation was an extra input in motion condition, and we 

demonstrated the difference from the extra stimulation between two conditions by 

brain network. In Figure 24, the inconsistent parts indicated by red lines. It was 

obvious that the connections and involving components in motion condition were 

much more than motionless condition. The difference demonstrated the brain 

networks in real-driving were as not simple as the results of laboratory 

experiments. Furthermore, the SMA area was concentration of those causal 

relationships in motion condition in stage 1 ~ 3, but motionless not. And there 

were many extra connections related to somatomotor area in motion condition It 

might be consistent with previous study [80] that the kinetic stimulation of driving 

deviation in alert state would cause negative event-related potential in SMA and 

Mu blocking in alpha power occurred earlier in motion condition. On the other 

hand, the kinetic stimulation from z direction [81] and roll rotation [82] would 

generate negative ERP in Cz channel, which closed to SMA components. 
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Figure 24: The inconsistent part of brain networks. The red lines of structure 
emphasized how the kinetic stimulation causing the brain networks from alert 
to drowsiness: It was obvious that the networks in motion condition were 
much more complex than motionless. The stimulation from reality would 
generate more causal relationships in brain. In addition, some connections 
would be reduced by extra stimulation shown in right structure. 

 

Figure 24. The inconsistent parts of brain networks. 
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5.  Conclusion 
 

    In this study, we investigated the brain network between components in 

different drowsiness stage and compared the relationship by motion simulator 

and motionless simulator. The event-related lane-departure task was used in the 

VR environment to simulate the long-term high way driving and the task-related 

EEG spectral dynamics in terms of tonic changes were analyzed using 

independent component analysis, Granger causality and time-frequency. Results 

demonstrated the signal flow of brain network was concentrated intensely on 

frontal area and mildly on midline occipital area in alertness status, and the 

strength of signal flow to midline occipital area was increase gradually along with 

drowsiness level. Furthermore, the kinetic stimulation generated signals sent to 

visual and motor components in alertness stage. In the future, analyze by 

Granger causality in frequency domain to figure out further causal relationships, 

and the EEG feature related to drowsiness may be a new indicator for embedded 

drowsiness detection system. 
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6. Future works 

6.1. Brain networks in frequency domain 

     In order to further interpret our results, investigating the brain networks in 

frequency domain or dynamic causal model could be the next step. The two 

algorithms analyzed the causal relationships between two regions in frequency 

domain. The brain networks in frequency may help us realize the physiology 

reason of each causal connection in brain networks.  

 

6.2. Application on EEG monitoring 

embedded system 

 The results that the brain networks represented the drowsiness level might 

be applied on our EEG monitoring device for drowsiness detection. Frontal area 

and midline occipital area might be the channel location for measuring EEG data, 

and the warning criterion would be the brain networks in stage 3, RT 1.5 ~ 2.5 

seconds. When concentration of signal flows was not frontal area, or 

concentration shifted to midline occipital area, the drivers would receive warning 

from detection development. Using brain networks for predicting drowsiness 

could solve that there was not good criterion for warning in previous indicator and 

it was more reliable to detect by EEG features from two regions.  
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