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Student: Chia-Lin Chen  Advisor: Dr. Chin-Teng Lin

Institute of Multimedia Engineering
National Chiao Tung University

Abstract

Driver drowsiness was generally regarded as a main reason of causing car accidents.
Our team had investigated EEG signals in drowsy state of driver, designed the algorithm
that detecting drowsiness by EEG signals, and developed the wireless and portable
application of detecting drowsiness for drivers. Although we already had the good
indicators of detecting drowsiness by EEG signals, ‘detecting the levels of drowsiness
remained unsolved nowadays. The aim of this study is to explore the changes of brain
signal transferring network from.alertness to drowsiness-and those signal flows generated
by kinetic stimulation in real life: Six subjects participated in virtual-reality (VR)-based
highway driving experiments on motion and motionless platform, and the event-related
lane-departure task was used in the VR environment to simulate the long-term highway
driving. The task-related EEG was analyzed using independent component analysis,
Granger causality, and time-frequency. Results demonstrated the destination of signal
flow was from anterior brain region shifting to posterior region respective alert to drowsy
state. Furthermore, the EEG transferring dynamics were more active in occipital area and
motor area on motion platform. In the future, the results can be used for detecting
drowsiness in proper brain region, and warn the driver before drowsiness to make the

performance of driver keep at a good level.

Keyword:
Drowsiness, driving performance, electroencephalograph (EEG), brain network, Granger
causality analysis, independent component analysis (ICA)



cContents

A 2 S iii
Y 0111 = Tod ST RPUPPPPPPPRRRN \Y
(070101 (=] 01 £ FH TSP UPPPPTRRPPPPPN %
S 0 ) {0 U =S Vi
LiSt Of taDIES ... vii
I L1 0o [ Tod 1 o] o PR SPPPP 1
1.1. The importance of drowsiness detection .............cceeeeeeeiiiiiiiiiiiiiieee e, 1

1.2. The Drowsiness detecCtion iNAEeX ..........ccoeeieeiiiiiiiiiiiiee e 1
1.2.1. The behavioral MoNitoring ..........cccovvvviiiiiiii e 1

1.2.2. The image-based technique ..........c.cevvviiiiiiiiiiieeece e 2

1.2.3. The physiological signal.based system...........cccccuviiiiiiiniiiiiininnes 2

1.3. Drowsiness related EEG phenomenon of drivers ..............cccooeeen. 3

1.4. The brain network by Granger causality ..............ccccoeeeeeeiriiiiiiiiiiiiee e, 4

1.5. AIMS Of this StUAY ... o it ee i et eee ettt e e e e e e e e e e e e e e eeeeees 5

P2 |V =1 1o T £ S S PSSP 7
2.1. Subjects......cceeerrn. R SR ECRETE]  BEN e 7

2.2. EXperimental apParatusS i . .... . adariaseeeeeeunnnsseeeeeesssnnssnnnaaaeeeeeeesnmnnn 7
2.2.1 Virtual reality driving simulation environment............ccccceeeevvveeennnns 7

2.3. Experimental paradigm .........ooooiiiiiiiiiieeee e 9
2.3.1. The event-related lane-departure task...........cccceevvvviiiiiiiniiniieinnnns 9

P N DT L= W= Tt o [ U] £ 11 o] o O 11
2.4. 1 EEG OALA ... 11

2.5. Data @NAIYSIS ... 15
2.5. 0. PrePIrOCESSING. . uiiiieiiiiiiiitiiiee e e e e e e e ettt e e e e e e e eeeeesn e e e e e e eeeeennenns 16

2.5.2. Independent Component Analysis (ICA).........coevvvieeiieeeeeeeeeeiinns 17

2.5.3. ComponeNnt SEIECHION .........uiiie e 19

2.5.4. Data classification..............cooiieiiiiiiiiiiiii s 20

2.5.5. Granger CauSality............uuuuiiiiii i 22

2.5.6. Power Spectrum analySiS.........cccuvvrrrruiiiiiieeeeeereeiiiieeeeeeeeeeeeennnnns 30

S RESUIS ... 32
3.1. Behavioral data.............ueiiiiiiiiiii e 32

3.2. Brain network of single subject data from alert stage to drowsy stage..33



3.3. Brain network of grouping data from alert stage to drowsy stage ......... 35

3.3.1. Brain network in 3D coordinates..........ccooeeeeeieieeiiiiiiieee e 36

3.3.2. Brain Network in Stage 1 .......cccceevvvieiiiiiiie e eeeeeeeiee e e e e e 36

3.3.3. Brain Network in Stage 2.......ccceeevvieeiiiiiiie e eeeeveeeiiee e e e e e e 37

3.3.4. Brain Network in Stage 3......ccoooe i 38

3.3.5. Brain Network in StAge 4 ......cooeeeeieiiiiiiiiiee e 39

3.4. The comparison of brain network in motion and motionless condition..39
3.4.1. The comparison of brain networks in stage 1 ...........cceeeevvvvvennnens 40

3.4.2. The comparison of brain networks in stage 2 ........cccoeeeeeeeveeennnns 41

3.4.3. The comparison of brain networks in stage 3 ........cccoeeeeeivveeinnnns 42

3.4.4. The comparison of brain networks in stage 4 ........ccccoeeeeevvvvennnns 45

3.5, SUMMAIY ittt e e e e et e e e e e e e e e e e e eeanns 47

A, DISCUSSION. ...eeetttttiee e e e e e e ettt e e e e e e e e ettt e e e e e e e e eeeaaaa e e e e e e eeeeesssnnnaaaeeeeaeeesnnnns 50
4.1. The brain network from alert state to drowsy state ............c.cceeevveeennnns 51
4.1.1. The concentration of brain NetWorks...........cccccoeeeiiiiii . 51

4.1.2. Criterion of drowsSINESS OCCUIMING. uuuuuneeeeerreerriniineeeeeeeereernnnnnnens 53

4.2. The difference of brain hetworks in motion‘and motionless condition...54

I O] o Tod 01T o O e SRR 56
6. FULUIE WOIKS ...ttt Db b it st dubis s 57
6.1. Brain networks in frequency domain ... ..o i 57

6.2. Application on EEG monitoring-embedded system.....................oooo. 57

7. RETEIEINCE ...ttt e e e e e e e e 58

List of figures

Figure 1. The car of virtual reality environment at Brain Research Center............ 8
Figure 2. The view of 3-D virtual reality environment. ..............ccccooiiiiiiiiiiiiiiicinnnn. 9
Figure 3. A bird’s eye view of the event-related lane-departure paradigm.......... 11
Figure 4. The channel location and EEG recording equipment..................ccenn... 12
Figure 5. The 3D digitizer was used for constructing the subject’s head model..13
Figure 6. The process of digitizing and recording the real locations. .................. 14
Figure 7. The flowchart of data analysis procedure in single subject. ................. 16
Figure 8. An example of topographic maps of 30 independent components....... 20
Figure 9. The diagram of stage segment in S02. The dark blue bars shown the
distribution of trial number and RT. ... 21
Figure 10. The BIC testing in subject 01 (S01) with 36 trialS............ccccvvvvvvvnnnnn... 24
Figure 11. The diagram of Granger causality application of bi-variate time series
after order SElECHION. ...........uiiiiiiiiiiiiiiiieie e 28

Vi



Figure 12. The diagram of time-frequency transform of ICA component activity in

AN EPOCN. Lo 31
Figure 13. The brain connectivity of SO6 from stage 1 ~ 4 in simulated real driving.

............................................................................................................ 35
Figure 14. The brain network in 3D coordinates. ...........ccovvveivivriiineeeeeeeeeiiiinnn 36
Figure 15. The brain networks of grouping data in stage 1 and 2 (motion

(o0] 0o 11110 ] o) TR PRSP 37
Figure 16. The brain networks of grouping data in stage 3 and 4 (motion

(o0] 8o 1110 ] o) TR PSSP 38
Figure 17. The brain Network in stage L.........cooevuiiiiiiiie e 41
Figure 18. The brain network of Stage 2.........ooovvuiiiiiiiii e 42
Figure 19. The brain network of stage 3........coovvviiiiiii e 44
Figure 20. The brain Network of Stage 4. 46
Figure 21. The trend of brain networks and EEG power spectrum in motion and

MOLIONIESS CONAILION. ...ceeiiiiiiiie e 49
Figure 22. The dendrogram of signal flow from drowsiness to alert in motion and

MOLIONIESS CONAILION. ...oeeiiiiiiiiii e 51
Figure 23. The consistent parts of brain networks. ..........cccccveiiei i, 52
Figure 24. The inconsistent parts of brain Networks. .............ceeiiiiiiiiiiiiiiiiee. 55

List of tables

Tables 1. The Stage no. and the Respective RT. ..., 32
Tables 2. Trial Number and RT of Behavior Data: ......ccveueeeeeeeeeeeeeeeeeeeeeeeaenn 33

Vi



1. Introduction

1.1. The importance of drowsiness detection

In previous study, the fatigue which caused drivers inattention or drowsiness,
was the major risk factor for serious injury and death in car accidents [1-4]
National Sleep Foundation (NSF) reported that 60% of drivers had felt drowsy
during driving, and 37% of the drivers had actually fallen asleep. The National
Highway Traffic Safety Administration (NHTSA) also reported that at least
100,000 police-reported crashes were directly caused by drowsy driving in 2006
and leaded to 1,500 deaths, 71,000 injuries and $12.5 billion in monetary losses
(National Sleep Foundation 2007 State of the States Report on Drowsy Driving).

Therefore, to early detect the drivers’ drowsiness and to help to keep the drivers’
alertness for avoiding the car accidents that caused by drowsiness are important
to protect living safeties of peaple.

Drowsiness detection has been widely researched by varied measurements
[5, 6] including the monitoring subject’s behavior and image based techniques
and physiological signal-based system. The-following sections would explain the

advantage and limitation of these methods.

1.2. The Drowsiness detection index

1.2.1. The behavioral monitoring

Previous studies had shown that driver's response performance is
negatively relative to the drowsiness. The response performances were defined
in terms of response time [7, 8], driving trajectories [9, 10] and patterns of drivers’
moving handle wheel [11, 12]. The limitation of behavioral monitory system is
highly depended on driving behavior, experiences, road conditions, and all other

environmental variables. But, previous have showed that behavioral performance



is opposite correlated with the driver's alertness. Specifically, the subject’s
response performances, which index by response time, are decreased along with

the increases of drivers’ drowsiness [13, 14].

1.2.2. The image-based technique

The image-based technique detect the eye gaze position, eye closure or
the head position by the video camera[15] to calculate the duration of eye gaze
fixation and the eye closure or frequency of eye movement, eye blinking [16-18]
or head movement [19] for correlating the subject’'s drowsiness level. However,
the quality of recorded image is easily influenced by the environment [20], with

which is necessary for the camera needed to interact.

1.2.3. The physiological signal based system

Several studies wused the. physiological signals, including the
electrocardiograph (ECG), electro-oculograph (EOG), or electroencephalograph
(EEG), to monitor the subject’s alertness.-The heart rate or heart rate variability
[23] which derived from the ECG signals has been known easily effected by the
subject’s psychological and physiological conditions, and therefore the ECG
signals is not a good index for monitoring the driver's alertness. And some
laboratories tried to use the electro-oculograph (EOG) signals to define the
driver’'s alertness. It is reported that the rate of eye blinking [24] was declined
along with the decreases of subject’'s alertness. However, the time window for
analyzing the EOG signals to assess the driver’s drowsiness was around 240 sec,
which is too long to use in the drowsiness warning system in the real driving.
Hence, the EEG signals are free from the limitation of long average windows to
detect drowsiness. Therefore, EEG remains the most popular modality and the

better index used to monitor drowsiness state in real-time.



1.3. Drowsiness related EEG phenomenon of

drivers

Previous studies had shown that Along with the subject’s drowsiness level,
the neural activities are changed especially in which activities generated from the
occipital lobe. Furthermore, the power of occipital alpha (8-12 Hz, [25-29]) and
theta band (4-7 Hz, [27-30]) were increased following the decreases of subject’s
performances. The similar brain dynamic changes are also observed in a virtual-
realty (VR) environment of driving experiments. Lin et al. [31] reported that the
power of occipital alpha band was linearly increased from alertness to mild
drowsy and then the alpha power was maintain at the same level or slightly
decreased from mild drowsiness. In addition, the occipital theta power was also
found increased monotonically from alert to'deep drowsy. And Lin et al. [32] also
demonstrated that EEG is feasible to accurately estimate quantitatively driver’s
performance in a realistic simulator by the results above, and constructed 3
editions of EEG monitoring system for drowsiness detection and warning. The
first edition [33, 34] was a portable development of wireless brain computer
interface using the alpha power increasing ‘in occipital channels to detect
drowsiness for warning drivers. Several studies investigated the algorithm for
detecting drowsiness by EEG feature. The research team of Lin et al. [26] used
independent component analysis (ICA) to remove most of EEG artifacts and
suggest an optimal montage to place EEG electrodes for raising average
estimation accuracy. Extending previous study, ICA-based fuzzy neural network
was used in adaptive EEG-based alertness estimation system for optimizing
predict performance [35]. In order to reduce the feature dimension of EEG
signals, the nonparametric feature extraction methods were applied to one
channel single-trial EEG signal [36, 37]. The latest algorithm reported an
unsupervised subject- and session-independent approach for detection departure
from alertness [38]. The second edition of EEG monitoring embedded system not
only added independent component analysis (ICA) algorithm to monitoring

system for raising average accuracy, but also minimized rear-end digital signal



processing unit [39]. Duann et al. had shown that it is feasible to correctly
estimate the changing level of driving performance using the EEG feature
obtained from the forehead non-hair channels [40]. The third edition used the
unsupervised algorithm, smaller front-end, cell phone as rear-end and EEG
signals from non-hair area without use of gel or skin preparation, and therefore it
is more suitable for drivers in practical application [41]. In addition, Lin et al.
investigated the EEG signals changes induced by arousing feedback, and the
results shown that significant decrease in power spectra in theta and alpha bands
following auditory feedback was found in the bilateral occipital component [42].
The above results suggest that occipital alpha and theta bands would be as good
EEG features for indexing the driver’s drowsiness, and the feature extraction
algorithms were developed to apply on drowsiness detection and warning
embedded system.

1.4. The brain network by Granger causality

The most studies investigating EEG signhal in drowsiness state focused on
how the EEG power changing along. with the subject's driving performance, and it
was the only indicator for estimation. 1n order to obtain more EEG features
associated drowsiness for estimation indicator, realizing the brain network from
alertness to drowsiness was what we intended to. For comprehending causal
relationship between each source of signal from alert to mild drowsiness and to
deep drowsiness, one approach to gaining this information is the so-called
Granger causality (GC) [43].

Many studies used Granger causality (GC) to analyze EEG or other brain
neural signals for realizing the causal relationship between distant brain site [44-
46]. The brain networks, causal relationship or neural interactions, means how
those signal flows transfer among distinct region in brain under one condition or
function. GC could be applied on invasive-recorded local field potential (LPF) [47,
48] functional magnetic resonance image (fMRI) [49, 50] and EEG [51, 52] to
construct the brain network. Most research analysis LPF of a small specific brain



area under one experimental function such as the study of Guéguin et al. [46]
used GC to LPF data to investigate the functional connectivity between primary
auditory cortex (Heschl's gyrus) and secondary auditory cortex (lateral part of
Heschl's gyrus) under amplitude modulated sound processing [47]. However, the
location of drowsy cortex is undefined, and therefore LPF is not good signal for
observing drowsiness. The fMRI was also used for GC analysis; Duann et al [47]
reported that the great connectivity was generated between inferior frontal cortex
and presupplementary motor area during stop signal inhibition by using fMRI data
to GC algorithm. Although fMRI data were recorded from whole brain, but the
time resolution was not good as EEG data, and therefore it could not reflect the
real-time reaction like EEG data in this experiment design. Some studies even
applied GC combined with Independent component analysis (ICA). The brain
connectivity between the independent components was investigated by applying
to the GC analysis of fMRI study-of word perception experiment in Londei et al.’s
study [49]. The GC analysis in EEG data by Milde et al. [51] has been used for
optimizing the adaptive algorithm of GC and realizing the brain network of laser-
evoked brain potentials. The EEG sighal is more adaptive to the large detectable
range and the simulated driving ‘experiment.and consequently is the most

suitable signal for obtaining the brain netwaorks by GC.

1.5. Aims of this study

The connectivity between independent components at driver's different
drowsy levels was accessed by GC analysis applied in EEG data. The different
drowsy levels were defined by the behavior response; the behavior performance
could reflect the subject's consciousness to classify the relative EEG data to
different drowsy level. Independent component analysis was used for
approaching the signal sources replacing the channel data.

The aims of this study were (1) To determine the concentrations of brain
connectivity between different brain regions from subject's alert status to

drowsiness status. (2) To compare the above brain network in motion and



motionless simulation, finding the influence of kinesthetic input on EEG signal

flows.




2. Methods
2.1. Subjects

Seven male subjects (ages from 23 ~ 30), were recruited from NCTU to
participate in this experiment. They didn’t have psychological and neurological
diseases. The age All of them had normal hearing and normal or corrected-to-
normal vision. None of them reported psychiatric or sleep disorders. Subjects
were given instruction on how to respond to the events before participating in the
experiment for the first time. They were required to sign the research consent
before the experiment. . All subjects have participated in the “motionless” session,

and seven of them also participated in the “motion” session.

2.2. Experimental-apparatus

2.2.1 Virtual reality driving simulation environment

For safety concern, a.3D. virtual reality-driving simulator was built to
simulate real-life driving environment. A real car body was mounted on a six
degree-of-freedom (DOF) Steward motion platform, which simulated the vibration
caused by uneven road surface as well as kinesthetic force during real-life driving
(Figure 1-A 1-B). In addition, the temperature, background illumination and other
unexpected stimuli or distraction were under control to access the better EEG
signal. The VR-based high way scenes were generated from seven personal
computers which synchronized by the internet connection and then were
projected to seven screens via seven projectors (Figure 1-C). These large
screens generate an immersive sensation and near real-life driving environment
(Figure 2-A).



Figure 1. The car of virtual reality enviroment at Brain Research Center (BRC) , National Chiao Tong
University. 1-A: The real car frame mounted on the motion platform. 1-B: The six degree-of-freedom
steward platform under the car frame. 1-C: The 3B0°-surrounded virtual reality scenes which

projected from seven projectors.

Figure 1. The car of virtual reality environment.at.Brain.Research Center.



Figure 2. The view of 3-D virtual reality enviroment. 2-4: The real car frame in the 360 degree
virtual reality enviroment. Large screens generate an immersive sensation and near real-life driving
gnvironment. 2-B: The view of driving on the third lane of 4-lame highway at night in this
experiment. Subjects were instructed {o steer back fo the center of the cruising lane as quickly as
possible after they detected the deviation.

Figure 2.The view of 3-D virtual reality environment:

2.3. Experimental paradigm

2.3.1. The event-related lane-departure task

In the study, the driver’s drowsiness level was indexed by the event-related lane-
departure task [53]. The VR scene which can properly emulate a car driving at a
constant speed of 100 km/hr on the third lane of a 4-lane highway at night by
refreshing 60 times per second (Figure 2-B). There were not acceleration and
brake function in the car, so all the subjects had to do was controlling the steering
wheel. The car was randomly drifted away from the center of the cruising lane to
left or right with equal probability, which was controlled and triggered from the
WTK program, to mimic the consequences of a non-ideal road surface [54-56].
During the experiment, subjects were instructed to steer back to the center of the
cruising lane as quickly as possible after they detected the deviation. However, if
the subjects fall asleep or stopped responding to the deviation, the vehicle will



eventually hit the virtual curb on either side without crash and continue moving
along the curb. After such non-responsive periods subjects resumed task
performance without experimenter intervention. The next deviation event
occurred randomly 5 to 10 s after the moment when the vehicle was back in the
third lane. Three parameters were recorded via a synchronous pulse marker train
recorded by the EEG acquisition system in parallel, the onset of deviation, the
subject's response onset and response offset (Figure 3). The deviation onset is
recorded the moment that the car started to drift away. The onset of subject's
response is defined as the moment that the subject turned the steering wheel to
fix the deviation to the center of the third lane. The last one, response offset, is
defined as the moment when the vehicle return to the center of cruising lane and
the subject ceases to turn the wheel. Each complete single epoch included the
three parameters in this task and started at the beginning of baseline. The
baseline meant the duration of+1 second before the deviation onset, and the
response time (RT) was calculated the period from the deviation onset to the
response onset. Such experimental design allows the observation of continuous
transition from complete alertness to deep drowsy-states, and the baseline part
without interference of muscle’controlling could ‘be used for analyzing the brain

network.

10



| one epoch

[BESSiRS]

sec

one trial

P

® Deviation onset

Drivi , @ Response onset
P Driving trajectory @ Response offset

Figure 3. A bird's eye view of the event-related lane-departure paradigm. The car was
randomly drifted away from the center of the cruising lane to left or right. Subjects were
instructed to steer the car back to the center of the cruising lane as quickly as possible.

The black arrows presented the driving trajectory. The circle with an x symbol the
deviation onset. The double circle was the response onset. The circle with + symbol was
the response offset. The pink line was the baseline meant the duration from 1 sec before

to the onset of car drifting. The response time (RT) was the time duration between the
deviation onset and response onset. A completed trial is from 1 sec before the deviation

onset to the response offset.

Figure 3. A bird’s eye view of the event-related-lane-departure paradigm.

2.4.Data acquisition

2.4.1. EEG data

2.4.1.1. Channel location measurement

The brain activities from subject's skull were recorded by Ag/AgCI electrode
cap with 30 channels (plus 2 references). The texture of cap was elastic and
attached to an adjustable strap, and therefore it could totally cover subject's head
without discomfort. All channels were arranged base on the modified
International 10 - 20 system (Figure 4-A and 4-B). For accessing the actual
location of each channel, each channel was redigitized by the 3D digitizer
(Fastrak®, Polhemus, Figure 5) to reconstruct individual subject’s head model by

the mathematical algorithms [57] for localizing the sources of brain activities.
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Figure 4. The channel location and EEG recording equipment. 4-4: The sketch map of the channel relative
position in the 30-channel recording system. 4-B: The real 30-channel EEG cap in this experiment. 4-C: The
MNeural Scan Express System (MuAmps, Compumedics Ltd., VIC, Australia) for amplifying the signal
measured by the electrode under the EEG cap.

Figure 4. The channel location and EEG recording equipment.
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Figure 5. The 3D digitizer (Fastrakz, Polhemus) was used for constructing the subject’s head)
maodel. 5-A: The left equipments was the receivers, and the transmitter would measure the
relative position and orientation of receiver; the right one was also a receiver with a pen
shape, it would be measured only when pushing the button on penstock. 5-B: The Systen|
Electronics Unit (SEU) could supply power and connect each part and computer. 5-C: The
transmitter was the device which produced the electro-magnetic field for access the position
and orientation of the receivers relative to itself.

Figure 5. The 3D digitizer was used for constructing the subject’s head model.

13



Figure &: The process of digitizing and recording the real
locations. The transmitter which was figure below was put behind
the subject's head and put the 3 receivers under the Oz, T3, and
T4 channel inside the electrode cap. After these setups, the 3-D
relative location of each channel was pointed out by the receiver
pen.

Figure 6. The process of digitizing and recording the real locations.
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2.4.1.2. Amplify the EEG signals

It is necessary to minimize the contact impedance of each electrode for
increasing signal to noise ratio and diminishing the external noise integrating
during the EEG recording. For this purpose, the conductive gel (Quik-Gel™,
Compumedics NeuroMedical Supplies™) was carefully filled into each channel.

The contact impedance of the EEG electrodes was controlled under 5k§) before

each experiment. Furthermore, the collected EEG activities were amplified by the
Neural Scan Express System (NuAmps, Compumedics Ltd., VIC, Australia,

Figure 4-C) and then recorded at 500 Hz sampling rate.

2.5.Data analysis

The data analysis flowchart in this study was.shown in Figure 7. The motion
and motionless data of each subject were generated a set of causal relationship
by the analysis procedure respectively. Both EEG data and behavior data had to
be preprocessed at first for rejecting-those-abnormal trials and artifacts. In the
next step, EEG data were applied independent component analysis (ICA) for
searching out the source data under 30 EEG channels, and on the other hand,
the RT of each trial was calculated for EEG drowsy level classification. The third
step in EEG data analysis, only interesting components were chosen to do
further investigation, and then the drowsy levels, drowsy stages, of these
components data were classified by RT in step 2 of behavior data. After those
processes, we could apply the main algorithm, Granger causality (GC) which was
indicated by purple block in figure 7, to the component data in the fifth step.
There were 3 sub-steps in GC algorithm: order selection, Kalman filter and GC
value accession. In the last step, the significant GC value was obtained after
statistical testing. The causal relationship of each component in different drowsy
levels could be realized after all these steps. The details of each process would

be interpreted in following sub-chapter.
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Figure 7: The flowchart of data analysis procedure in single subject. The color box in
the figure present each process which be explained in the following chapter. After the
last step, statistic, causal relationship between each component would be
interpreted. The data were run the flow in both motion condition and motionless
condition respectively.

Figure 7. The flowchart of data analysis procedure in single subject.

2.5.1. Preprocessing

There were four steps in preprocessing: Integration of EEG and behavioral
Data, reaction time, epoch extraction and artifact removal. Because driving
trajectories and EEG signals were recorded by the different equipments (VR
scene computer and Neuroscan respectively), we had to align these data by the
triggers recorded in both machine first. Then the RT as defined in the event-
relate lane departure [53] in each trial could be accessed by the driving

trajectories. Third, the epochs were time-locked to 1 sec before deviation onset

16



from EEG data, which were referred as baseline. The last step, the abnormal
trials in behavior data and EEG data had to be discarded before further analysis.
Including the trials with RTs less than 0.3 sec, the overshoot or zigzag
trajectories when subject reacted to car shifting, with extreme values in EEG
channels and with severe fluctuations across most EEG channels were be

abandoned.

2.5.2. Independent Component Analysis (ICA)

In this study, the inter-connection of those functional EEG sources was the
intention to investigate. However, since the volume conduction of the skull and
scalp tissue [58], the signal recorded from individual electrode is easily mixed
with signals generated from other brain regions or which are not located at the
position around the electrode or .other sources outside of our brain, including the
eye-movement (EOG), eye-blinking, muscle-movement (EMG). For approaching
the more corrected brain sources from the mixing EEG signals which were from
the experimental electrode and removing the unrelated signals to obtain the pure
neural activities, we applied the ICA algorithm (the runica function of the
EEGLAB toolbox) on the EEG signals: to separate these mixing signals from

source signals in each subject.

The independent component analysis is widely used for blind source
separation problem [59-61]. There were four basic assumptions in ICA theorem:
First, the source signals (neuron activities) were independent to each other and
the correlation between each two sources was zero or close to zero. Second, the
propagation delay from sources to sensors was negligible. Third, the sources
were analog and the possibility density function (p.d.f.) was not the gradient of a
linguistic sigmoid. Fourth, the summation at scalp electrodes of potentials arising

from different brain areas was linear [62]. The ICA model is:

X(t)= A*S(t) (1)
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Where A was a linear transform called an m=n mixing matrix and
S(t):[s(t)1 s(t)n] were statistically mutually independent. This ICA model
described how the observed data were generated by a mixing process of the
component vectors s;. The independent component vectors s; (often abbreviated

as ICs) were latent variables which could not be directly observed. The mixing

matrix A is assumed to be unknown. All we observed were the random variables
X(t)= [x(t)l x(t)m]T, and the task of ICA was is to transform the observed

vectors x;, using a linear static transformation matrix W as:
U(t)=W = X(t) (2)

A linear mapping W was fromICA such that the unmixed signals U(t) are
statically independent. ICA was done by adaptively calculating the w vectors and

setting up a cost function, which either maximizes the nongaussianity of the

calculated S, =(w' *x) or minimizes the mutual-information. In some cases, a

priori knowledge of the probability distributions of the sources could be used in
the cost function. After ICA training, we can obtain N ICA components U(t) which
was very close to the real source activities S decomposed from the measured N-
channel EEG data X(t).

u(t)I Wiy Wy, Wi 39

u(t) = “(f)z W X(O)=] T O+ 2 e e ® (3)

.
_u(t)30_ W31 W3, W30.30

In this study, N=30, thus we obtain 30 components from 30 channel signals.
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2.5.3. Component selection

The scalp maps of each component represented the relative weight to
compose from the channels (Figure 8). The maps from individual subject were
generated by using the function topoplot of EEGLAB toolbox, which principle was
rendering a column of the inverse of ICA weighting matrix onto the scalp (3). It

was also revealed the spreading of the component topography.

In this study, there were six sources generated from the frontal area,
supplementary motor area (SMA), somatomotor area, occipital midline area and
bilateral occipital area to be submitted for the further analysis [62], as shown in
figure 8. Figure 8 shown the 30 isolated scalp maps from the subject 01, and the
components in red circle represented which were selected to analyze by Granger
causality. The component 2, 3, 4, 5, 6 and 7 were frontal, SMA, right
somatomotor, left somatomotor, «occipital- midline and bilateral occipital areas

respectively.
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Figure 8: An example of topographic maps of 30 independent components. The independent
component 4,5,6,7,.9 and 11 were respective frontal area, bilateral occipital area, SMA area,
occipital midline area, right somatomotor and left somatomotor area.Those activities of
components marked by a red circle were selected for analysis analysis.

Figure 8. An example of topographic maps of 30 independent components.

2.5.4. Data classification

For observing the brain network in different drowsiness level, the criteria of

different drowsiness level were defined to classify the EEG activities. The trial

respective RT of the event-related lane-departure task was the basis in this study.

If subjects stayed conscious, they could turn the car back more quickly which

meant the RT would be shorter; and vice versa. All the data trial of one subject

were segmented to 4 different stages from alertness to drowsiness (Figure 9).

For decreasing the trial number difference between each stage, the stage length

was not equal from 0.5 second to 1 second. All subjects was kept in alert state in

the most of time, that majority of the distribution was centered on the range of RT
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less than 1. The segments before RT=1.5 which represented as stage 1 to stage
2 were shorter, stage length were 0.5 second. However, the trial number
decreased along with the increase of RT as RT>1.5. The stage length of stage 3
and stage 4 should be larger than 0.5 second for engaging the trial number in
one stage to avoid unreasonable analysis. The stage 0 was regarded as baseline
for statistical testing. The baseline had to keep in the most alert state and be
controlled under reasonable trial number. Therefore the length of stage 0 was
segmented as the first 14% alert trial instead of being segmented by RT for
eliminating the difference in all subjects.

N 14.28%
4[ T T T T T

Tridl Murnbes
ra
=
T

0s 1 15 2 2.3 3 ol 4 45 3
: : AT (gec) :

[
0
Stage 0 : é H
Baseline :

| Staged

502

Figure 9: The diagram of stage segment in S02. The dark blue bars shown the distribution of trial number and
RT. The stage 1 was segmented by the most 14.28% alert to be the baseline. Others were segmented by the
RT to define different alert level, and from alert state to drowsy state respectively stage 1 to 4.

Figure 9. The diagram of stage segment in S02. The dark blue bars shown the distribution of trial
number and RT.
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2.5.5. Granger causality

For perceiving the connectivities in human brain under drowsiness state
and alert state, we used Granger causality algorithm to obtain their causal
relationship. The concept of causality was expressed by Granger for econometric
purpose [43]. It based on the notion that causes imply effects during the future
evolution of events and, conversely, the future cannot affect present. Granger
causality assumed one time series y(t) caused another time series x(t) if y(t-
1),y(t-2),...,y(t-p) participation in prediction of x(t) could significantly improves.
The t was time point and p was order. Therefore, the basic assumption of
Granger causality was that the participating time series must be autoregressive
model (4). In multi-channel EEG data, there was a time-variate multivariate

autoregressive model (tvMVAR) to fit all time series [64]. Consider a set (K

components) of processes like X represented as:

Xt:At_l*xt_l+---+AT_p*Xt_p+Et (4)

RS ... X

where, t represented the current:time point, t-p were K x 1 observed

data matrix, p was model order, and E 'was a zeros mean Gaussian noise

Acp were K x K coefficient matrix of tvMVAR, and it also

vector. Ao
represented as linear time-lagged dependence. At a given time, the diagonal
elements of A represented the self-connectivity of each channel, and off-diagonal

element represented the inter-connectivity between each channel. If the
prediction of Xi of a component was more accurate by adding a specific
component £, we could say, component B caused component. In other words,
If the error matrix Et was controlled in the minimum, the coefficients of

component B to complete component & indicated how much the B caused the
a. The following 4 section, order selection, Kalman filter, Granger causality value
and statistical testing were 4 steps to determine if there was any connection exist

between two time series components. The purpose of the first three steps was
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accessing the coefficients of observed data and analyzing the strength of causal
relationship between each component in each time sample and different drowsy
stage. The statistical testing was used to determine the causal relationship was
established or not.

2.5.5.1. Order selection

Before accessing the observed measurements model coefficients, selecting
the model order to get the best prediction was necessary in each different drowsy
stage GC analysis. The Bayesian information criterion (BIC) [65] function was
used to choose the model order p to yield a well-fit tyMVAR. The penalty was of
each order calculated by BIC criterion, and selected the model order for which
BIC penalty reaching for a minimum.

BIC(p)= de,+log(tn)* p/n (5)

where, p was the model order presenting the current order, de was the predict
error of p order, tn was the trial number of the observed data, n was the sample
number of this trial. The error of observed data model prediction, de, was
computed by QR decomposition algorithm which was often used to solve the
linear least square problem. Therefore the de value had to be accessed once as
calculating the p order each time. The BIC value of order p was the penalty of the
observed data model prediction, that is, the lower value meant the better
prediction and the more well-fit generated model.
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Figure 10: The BIC testing in subject 01 (S01) with 36 trials. Each line represented one BIC
testing of trial, it showed the testing order from 1 to 30 (x axes) respective their penalty (y
axes). The red line in indicated the order 4 reached for the minimum, therefore order 4 would
be selected to be the model order. In all trials in one stage of one subject, the shape of the
curve was greatly similar.

Figure 10. The BIC testing in subject 01 (S01) with 36 trials.
Figurel0 shown that the shape of the curve was greatly similar in all trials from

one subject. The order with the lowest penalty would be selected to be the model
order as the red circle in figure 10. In the example, 4 was selected to be the

model order for predicting the model coefficients in the next step.

2.5.5.2. Kalman filter

Figure 11 showed the following steps of Granger causality analysis after order
selection in an example of bi-variate. Applying Kalman filter was the next step.
The purpose of Kalman filter was to use measurements that are observed over
time that contain noise, random variations, and other inaccuracies, and produce
the model whose values that tended to be closer to the true values of the

measurements and their associated calculated values [66,67]. In GC analysis,
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the advantage of adaptive filter such as Kalman filter was that the autoregressive
model of observed data could be variable. Kalman filter could detect the change
of linear combination of model along with time series in each prediction, therefore
the assumption of stationary input data was unnecessary and one set of model
coefficients was accessed in each time sample [68]. Otherwise, Milde et al. [51]
reported that this adaptive way to access the model coefficients was more
suitable than recursive least square (RLS) [69], which was the other adaptive
filter used in GC analysis.

The procedure of filtering was producing estimates of the true values of
measurements and their associated calculated values by predicting a value,
estimating the uncertainty of the predicted value, and computing a weighted
average of the predicted value and the measured value. The estimates produced
by the method tend to be closer to the true values than the original
measurements because the weighted average has a better estimated uncertainty
than either of the values that went into the weighted average. Assume there was
a m-dimensional vector autoregressive model of order p, and those functions

could be shown as below:

Y (t)= H(t)* X (t)e(t) (6)
X(t)=T(t)* X(t—1)+W (1) (7)

K, =Py *H() * [H(t)* Py HE)+ RO (8)

Pt|t = Ptlt—l -K,*H (t)* Ptlt—l 9)

‘C'(t): Y (t)_ H(t)* xt\t—l (10)

X =T(0)* Xy + K * ()] (11)

Py =T(t)* P, ¥ () + Q(1) (12)

x0|—1 =X, (13)
0 --- 0

PoH:Po: R (14)
0 --- 0
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where, t was the current time point, Y(t) was the observed data, H(t) was the

observed measurement matrix with dimension m*m?p , X, was the m*p*m?p
state variable matrix, and it also represented the model coefficient matrix in this

study. I'(t) was the transition matrix whose size was also m’p*m?p, and it was
identical matrix for assuming the coefficients evolve according to random walks.
K, was the Kalman gain matrix, P,, was the priori covariance matrix of the
estimation error, P_,, was the posteriori covariance matrix, R(t) was the
observation noise covariance, R(t)=e*¢' , W(t) was the zero-mean white
process-noise, Q(t) was the state-noise covariance. The function 6 and 7 were
basic state-space form. Y (t) and H(t) were known observation data, and the aim
of Kalman filter in this study was to estimate the model coefficients X, by Y(t)
and H(t), in the other words, to.access the fungtion 6. Function 8, 9 and 10 were

the innovation part in the filter preparing for. next time point prediction, and
function 11 and 12 were prediction part. The filter trained the observed data time
sample by time sample, and then the object coefficient matrix X, at each time

sample could be solved. The initialization was-shown in function 13 and 14.
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Figure 11: The diagram of Granger causality application of bi-variate time
series after order selection. There were 2 components in this example,
component A (comp A) and component B (comp B). Two components were
trained by the Kalman filter which were represented as blue blocks with order
length as window length to access the model coefficients. Next step was
calculated the GC value in each time point by coefficients from filter
represented by green blocks. Testing the significance was after the GC value
calculating represented as pink blocks. Each GC value along with the time
series was compared with the distribution of GC value in stage 0, if the value
was in the distribution, the value was set for O; else the value kept the original
GC value. The last step of Granger causality was decision of the causal
relationship. If the non-zero value was much more than the zero in the whole
GC value along the time series, then the connection, causal relationship was
established.

Figure 11. The diagram of Granger causality application of bi-variate time series after order
selection.

2.5.5.3. Granger causality value

The original autoregressive model of observed data appeared to be analyzed
by GC after filtering. We used a three components example to explain how to
access GC value from the coefficient matrix X, in function 6. Assume the

autoregressive model was solved by Kalman filter in previous section:

Y(t):_zpjx(i)*v(t_i)+g(t) (14)

The same with the function 6, Y(t) was the observed data with m components
and t presented the current time point, p was the model order, X, represented

linear time-lagged dependence which was referred as coefficient matrix from lag
1 to order p. For explaining legibly, the function 14 was simplified order to be
equal to 1 and only three components, not only that, the equation was expanded

as following function:
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Y1 (t) X1 X X | |V (t - 1) ‘gl(t)
yZ(t) = Xy Xy Xz |* yz(t_l) + 82(t) (15)
Y3 (t) Xy Xz Xg Y3(t _l) & (t)

The diagonal elements, Xx,,x,,X,, represented the self-connectivity at lag 1, and
the others were inter-component connectivity at lag 1. These coefficients were
positive relation with causal relationship in above coefficients matrix. For instance,
y,(t) was composed by y,(t-1) vy,(t-1) y,(t—-1) with coefficients x;X;,X;
respectively, that mean the relative strength of influence from component y,toy,
at time point t-1 was expressed by the ratio abs(x,,)/abs(x,; )+ abs(x,, )+ abs(x;; ),
and from y, was expressed by the ratio abs(x;)/abs(x,,)+ abs(x;,)+abs(x,;,) .

Therefore the GC value was designed [70,71] :

Zip:labs(xﬂ(i )
Zip:l abs(Xyy ()= + Xy (i)

GC(t)comp1—>comp2 = (16)

2.5.5.4, Statistical testing

For the difference in time-space and the EEG variance from person to
person, the statistic testing was trial by trial in each subject. The EEG data in
stage 0, baseline, were regarded as reference for the GC value in stage 1 to 4 to
test the significance. All the single GC values along with time series were
compared with the distribution of stage O distribution, if the GC value from stage
1 — 4 wasn’t in the 95% confidence interval of stage 0, the GC value was
significant and the GC value was kept, else the GC value was set for 0. Since
avoid influence of the extreme value from minor trial, the median were used to
average all the trials. After the median accessing, only if number of non-zero GC
values were much more than the number of zero in whole time series between
two components, the causal relationship in these two components was

established as the example of connection of comp A to comp B in figure 11.

29



2.5.6. Power spectrum analysis

Previous studies suggested that drowsy EEG dynamics could be observed
from two different aspects, the tonic and phasic changes [72, 73] and both
aspects were processed by frequency analysis. Phasic change referred to the
EEG power triggered from stimulation by the specific events, like the deviation
onset in our experiment. Time-frequency was used to investigate the change of
power spectral in grouping data from deviation onset to deviation offset. On the
other hand, the tonic changes referred to the converting of baseline power
spectral associated with change of cognitive state such as the different drowsy
stage in this study. The baseline data were transferred to power spectral in each

stage to observer the tonic changes from alert state to drowsy stage.

2.5.6.1. Event-related spectrum perturbation (ERSP)

Time-frequency transform is a spectrotemporal decomposition technique to
analysis the event-related data perturbations-in spectral domain of EEG channel
data or component data [74]. For-assessing the EEG activities during the
stimulation and after the response in different drowsy stage, the epochs of each
stage from all subjects were extracted from -1 ~ 7 seconds to estimate the
changes of ERSP. The 2000 points in each observed component epoch was
chronically divided into 200 overlapped sub-windows with 250 points, and the
power spectrum of each sub-window was computed by discrete wavelet
transforms (DWT) using newtimef() function of EEGLAB [73]. The frequency bins
respective to the 200 sub-windows that distributed in -1 to 7seconds were
obtained stage by stage. In the last step, we average the frequency bin in all the
epochs in one stage to realize the ERSP changes from deviation onset in each

drowsy stage.
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Figure 12. The diagram of time-frequency transform of ICA component activity in an epoch. The
moving window discrete wavelet transforms (DWTs) was used to transform the time domain
activities into spectrotemporal activations. There were 200 windows distributed in 8 secs epoch, and

the window size was 250 points.

Figure 12. The diagram of time-frequency transform of ICA component activity in an epoch.

2.5.6.2. Tonic power spectrum

Tonic data were the main source for Granger causality to assess the brain
network in different drowsy stage because we assuming there were not
unexpected brain activities or event in this duration. Therefore the state were
stable in whole baseline, the power spectrum should also be stable. Each
observed component baseline with 250 samples from all subjects was directly
computed the power spectrum by fast Fourier transforms using fft() function in
MATLAB stage by stage. The power respective to frequency in each component
and each stage was obtained. Then we computed the average value from all
trials by the frequency power in different drowsy stage to observer the tonic

changes from alert state to drowsy stage.
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3. Results

3.1. Behavioral data

The information of behavior data were shown in Table 1 and Table 2.
Table 1 showed the different 4 drowsy levels and the respective RT. Table 2
showed the trial number in each stage and the average reaction time of behavior
data. The stages number from 1 to 4 represented the subject’s alert status to
drowsy status with inconsistent length of RT. The trial distribution in table 2
revealed that the subjects kept in the alert status at most of the time, and
therefore the length in stage 1 and 2 were shorter than stage 3 and 4 to balance
the difference of trial distribution. The last row indicated the average RT of each

stage including the motion and metionless condition.

Table 1: The Stage no. and the Respective RT

Stage no. | Baseline 1 2 3 4
RT (SEC.) The First 05-1 1-15 1.5-25 2.5 -
14.28%Trials

Tables 1. The Stage no. and the Respective RT.
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Table 2: Trial Number and RT of Behavior Data

Subject | Trials | Avg. | Trials | Avg. | Trials | Avg. | Trials | Avg. | Trials | Avg. | o
Index | gage 0 | (SEC) | stage 1 | (SEC) | stage 2 | (SEC) | Stage 3 | (SEC) | stage 4 | (SEC) | AV
45 0.65| 196 | 0.77 66 1.21 19 1.74 | 37 6.62 | 1.60
S0t 58 0.69 | 142 | 0.82 36 1.12 27 1.85 38 14.84| 133
67 | 065| 183 |0.76 | 108 | 1.18 | 58 1.95| 120 |5.49 | 2.23
S02 37 0.90 | 41 0.90 | 137 |1.16 62 1.82 23 450 | 159
62 |084| 79 |(0.86| 236 [1.24| 108 |[1.70| 11 |4.43| 1.38
509 24 0.59 | 135 |0.71 8 1.01 5 1.25 19 1166 | 2.03
40 0.71 96 0.82| 109 |1.21 54 1.77 23 8.56 | 1.81
S04 45 0.74 | 109 | 0.82 80 1.19 38 1.85 92 8.34 | 3.25
61 |055| 135 (0.78| 100 [1.19| 64 |[1.80| 109 |5.85| 2.33
S0% 44 0.68 | 139-/0.81| 55 1.11 22 1.78 92 17.09 | 5.87
36 [ 044 | 168 | 064 | 21 |1.16 6 1.37| 14 | 1807 | 1.68
506 35 0.59 | 199 4 0.71 17 1.07 4 1.55 29 9.89 | 1.85
Ava. _ 0.64 _ 0.77 1 1.20 _ 1.72 _ 8.17 295
0.70 0.80 1.11 1.68 9.39

The pink parts were indicated the motion condition, and the white parts were the
motionless condition.

Tables 2. Trial Number and RT of Behavior Data.

3.2. Brain network of single subject data from

alert stage to drowsy stage

Figure 13 showed the brain connectivity from stage 1 to 4 of S06 in
simulated real driving situation. The graph showed the propagations of the 6
components from alert status to drowsy status. Those components were

represented by different color, the frontal area was represented by the red dot,

33




the SMA was orange dot, right and left somatomotor area was yellow and green
dot respectively, the occipital midline was blue dot and the bilateral occipital was
purple dot. The position of components and the strength of GC connections were
indicated in the right bottom of figure. All the connections between any two
components had been tested the significance by GC value.

In the S06 case, the most of connections influence were weak in stage 1.
The connections got stronger from stage 2, and it was clear that the frontal area
received all the information flow from each components except the midline
occipital area which also received the information flow from other components,
but slighter than the frontal area. However, the propagations of information flow,
or causal relationship, was changing in stage 3. In stage 3, the strength of
connections was deadened and the afflux was not the frontal area or the midline
occipital area. The causal connectivity related to right and left somatomotor areas
were becoming dynamic in this stage, and some-influences were into the bilateral
occipital area. The last stage,-stage 4, those connections were similar to those in
stage 1 or 2, the afflux were centered on frontal area and occipital area, but the
strength of connection was .different, the stronger connections were into the
occipital areas instead of the“frontal area. In this stage, the flow direction of

causal relationship was more consistent than in other stage.
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Figure 13: The brain connectivity of S06 from stage 1 = 4 in simulated real driving. The six
components was indicated with different color at right bottom of the figure, and the thickness
of connection represented as the strength of GC value. From stage 1 to 4, the direction of
strong signal flow was from frontal area to occipital area.

Figure 13. The brain connectivity of SO6 from stage 1 ~ 4 in simulated real driving.

3.3. Brain network of grouping data from

alert stage to drowsy stage

In order to observe the consistence in each subject, the integration of brain

network of 6 subjects was shown below. For keeping the difference of baseline

from person to person, the causal relationships were accessed by single subject

instead of clustering all the trials to do GC analysis. Afterwards, the connection

between two components appeared over 3 subjects at the same stage, and it

would be selected and shown in the Figure 14 ~ 16. This grouping way could

keep the reliability of reference of statistical testing.
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3.3.1. Brain network in 3D coordinates

In results of grouping data, the dipoles were fitted to 3D talairach
coordinates model to present the brain network. The coordinate was indicated in
the right side of Figure 14, and the three surfaces were left to right, anterior to
posterior and superior to inferior of human brain. As shown in Figure 13, the six
components were represented by different color dots respectively in Figure 14,
and those dots also projected to the three surfaces with a half dot to indicate, and
therefore the EEG equivalent-dipole locations and orientations of human brain

were visualized

. B
= coordinate
5. } supenor
left
anterior

. posterior _
[} 1 right

- inferior

Figure 14. The brain network in 3D coordinates. Each components was indicated by different color. The
equivalent-dipole location and the 30 coordinate with six objective components and their projection on
each surface.

Figure 14. The brain network in 3D coordinates.

3.3.2. Brain network in stage 1

The results of stage 1 were shown in Figure 15-A. Subjects should stayed in
very alert status in this stage for the respective RT was 0.5 ~ 1 second. In stage
1, the signal flow sent to frontal area, SMA and midline occipital area, especially
the frontal area. All components sent signals to frontal area excepting the SMA,

and SMA received the signal flow from occipital areas. On the other hand,
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midline occipital received the signal flows from two somatomotor areas.
Generally, the trend of signal flow was directing to the anterior part of brain from
posterior part in stage 1, and somatomotor areas sent to both frontal and midline

occipital area.

posieriar

riferice

Figure 15, The brain networks of grouping data in stage 1 and 2 (motion condition). The start of the arrow represented
the source of signal flow, and the end represented as the destination. 15-A: The result in stage 1. The trend of signal
flow was directing to the anterior part of brain from posterior part, and somatomotor areas sent to both frontal and
midline occipital area. 15-B: The result of stage 2. The main destinations of signal flows were frontal area and midline
occipital area which inheriting the previous stage.

Figure 15. The brain networks of grouping-data in stage-1and 2 (motion condition).

3.3.3. Brain network in Stage 2

The respective RT was 1 ~ 1.5 seconds in stage 2, and we showed the results
in simulated real driving (motion condition) in Figure 15-B. The trend was still
towards frontal, central and midline occipital area, and the directions of
connection centered on frontal area much more than previous stage. The signal
flow from somatomotor did not send to occipital midline area, only sent to the
anterior of human brain. And the signal flow from bilateral occipital area to SMA
in stage 1 shifted to midline occipital area in this stage. It is clearly that the main
destinations of signal flows were frontal area and midline occipital area which

inheriting the previous stage.
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3.3.4. Brain network in Stage 3

There were many changes in stage 3 whose RT was 1.5 ~ 2.5 seconds. The

main concentration of signal flow was not frontal area anymore, but was occipital

midline area. In Figure 16-A, there were three components sending information to
midline occipital area and two sending to SMA and left somatomotor area. The
midline occipital area collected the most connections clearly. There had been
four connections concerning frontal area in previous stage, but only left one,
midline occipital to fontal, in stage 3. Frontal area became a signal source in this
stage; it sent signals to SMA area and left somatomotor area. The SMA received
the signal flows from frontal area and right somatomotor area, and seemed like
the destination of signal flows shifted to posterior brain gradually. The sending of
somatomotor area was back to midline occipital area and SMA, and somatomotor
received the signals from midline occipital area. Stage 3 was the turning point of
signal transmission from alert'state to drowsy state; and it was different explicitly.

The effect of frontal area was reduced and the somatomotor area and midline.

Figure 16. The brain networks of grouping data in stage 3 and 4 (motion condition). The start of the arrow represented the
source of signal flow, and the end represented as the destination. 16-A; The result in stage3. The main trend of signal
flow was not sending to frontal area, but was occipital midiine area. 16-B: The result of stage 4. There was a huge effect
of midline occipital area. The trend of brain networks transferred to occipital area obviously, especially in the midline
occipital area, beside that, the opposite location, frontal area, also received the signals from bilateral occipital

Figure 16. The brain networks of grouping data in stage 3 and 4 (motion condition).
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3.3.5. Brain network in Stage 4

In the last and most drowsy stage, which RT was more than 2.5 seconds, the
brain network inherited the previous stage and the direction of signals centered
on midline occipital area much more. In Figure 16-B, we could observe that the
major arrows directed to posterior brain, that was, the occipital area. The midline
occipital area received signal flows from all of the components except frontal area,
and bilateral occipital area also received three causal relationships from three
components SMA, right somatomotor, and including the frontal area. All causal
relationships were towards to posterior brain, but there was one arrow directed to
anterior part of brain, the bilateral occipital area to frontal area. The concentration
of brain networks transferred to occipital area obviously, especially in the midline
occipital area, beside that, the opposite location, frontal area, also received the
signals from bilateral occipital. The main effect in drowsy stage was midline
occipital area, which received those signal flows and didn't send to any
component. It was quite different with-the brain network in alert stage such as

stage 1 or 2.

3.4. The comparison ‘of brain network in

motion and motionless condition

This section showed the comparison of brain network in motion platform and
motionless platform. We used two kinds of simulator to represent the difference
from reality and laboratory condition. The brain networks in motionless condition
explain the brain networks from alert stage to drowsy stage only with the visual
stimulation. Although the design of experiment was not similar with the real
driving, the influence of consciousness was more remarkable. The kinesthetic
stimulation was an extra input in motion condition for simulating reality situation,
and therefore we indicated the connections only in motion condition to elucidate
the influence on causal relationship from the extra input. In each stage, there

were 3 brain networks in Figure 17 ~ 20 respective to motion, motionless
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condition and the comparison. The parts of motion condition were the same with
which in Figure 14 ~ 16, and in comparison, the consistent signal flow

represented by blue arrows in both condition and those inconsistent parts by red.

3.4.1. The comparison of brain networks in stage 1

The concentration of signal flow was frontal and midline occipital area in
motion condition, however, it only sent to frontal area in motionless condition.
And the number of connections in motionless were fewer than in motion condition,
the brain network was more definite. In the comparison, all the connections in
motionless condition were the consistent part in stage 1, and it expressed that
the frontal area was caused by the four components, which two somatomotor and
two occipital areas, in both condition. The consistent trend was from posterior to
anterior brain. However, there were lots extra connections in motion condition,
and those almost were concerned in SMA .and midline occipital area. We could
find out the SMA and occipital. midline area did -not participate in motionless

condition.
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Motion Motionless

Comparison
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Figure 17: The brain network in stage 1. In motion condition, the signal flows
were sent to frontal, SMA and midline occipital area, but only the signal flows
were only sent to frontal area in motionless condition. In comparison, the
connections linking the central and midline occipital were extra in motion
condition.

Figure 17. The brain network in stage 1.

3.4.2. The comparison of brain networks in stage 2

The destination of signal flow still was frontal and midline occipital area in
motion condition, but the effect of SMA was decreased. In motionless condition,
the brain network was very like the one in stage 1, nevertheless, the causal
relationship from somatomotor area was replaced with from the SMA. In
comparison part, the most of those connections sent to frontal area were keeping

consistent, and there were connections about somatomotor area and midline
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occipital area belonged to inconsistent part. The direction of inconsistent
connection was different with previous stage. Somatomotor area sent the signal

flow to anterior brain, and the bilateral occipital sent to midline occipital area.

Motion Motionless

Comparison

— : consistent
— :inconsistent

Figure 18: The brain network of stage 2. The trends were still towards to the frontal,
SMA and occipital midline area, but the somatomotor area sent the signal flow to
frontal area instead of occipital midline area in motion condition, and fewer
connections were towards to SMA. In motionless, the SMA sent to frontal instead of
left somatomotor area sending. The trend was expanded from the previous stage:
Consistent parts of comparison were those signal flow sent to frontal area, and
inconsistent parts were those sent to SMA and midline occipital area.

Figure 18 The brain network of stage 2.

3.4.3. The comparison of brain networks in stage 3

The brain network was quite different in both motion and motionless

condition. The main destination was not the frontal region, but was midline
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occipital area. In motion experiment, the signal flow sent to midline occipital much
more than stage 2, and the somatomotor area also received massage in this
stage. In the other side, the motionless condition, the signal flows were centered
on midline occipital area obviously, from bilateral occipital and SMA. In previous
stage, there were four connections linking with frontal area, but there was none in
stage 3. Although the two conditions also changed the concentration from
anterior brain to posterior brain, the consistent part in comparison was only one
connection, SMA to midline occipital area. There were many connections in
inconsistent part, those about the left and right somatomotor area and the frontal
area. The somatomotor area did not generate any causal relationship in
motionless, but they were active in motion condition. That was the biggest
difference in this stage.
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Figure 19: The brain network in stage 3. Both in motion and motionless
condition, the main destination of signal flow was not frontal area, but was
occipital midline area. The causal relationship seemed to shift to posterior part
gradational in motion condition, and seems like had shifted in motionless. In
comparison, there were many difference which about the left and right
somatomotor area and the frontal area.

Figure 19. The brain network of stage 3.
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3.4.4. The comparison of brain networks in stage 4

In the drowsiest stage, the concentration of brain networks transferred to
occipital area obviously, especially in the midline occipital area, beside that, the
opposite location, frontal area, also received the signals from bilateral occipital in
motion condition. The brain network in motionless condition was similar with the
previous stage, but the concentration was stronger. All the signal flows were sent
to midline occipital area, and only one somatomotor area did not work. In the
comparison part, the consistent connections were sent to midline occipital area,
and the inconsistent connections were including the left somatomotor area to
midline occipital area, those sent to bilateral occipital area and the bilateral

occipital to frontal area in motion condition.
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Figure 20: The brain network in stage 4. The brain network extended the
previous stage and centered on midline occipital area. In motion condition, the
midline and bilateral occipital area received connections from all of the
components, and the midline occipital area in motionless also receive the most
signal flows. However, the connection were more complex in motion condition,
the signal flow did not only send to midline occipital area, but also to bilateral
occipital and frontal area. Beside that, the both somatomotor area were active in
motion but not in motionless condition.

Figure 20. The brain network of stage 4.
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3.5. Summary

Figure 21-A showed the concentration of brain networks from alert to
drowsiness in motion and motionless condition. From alert to drowsiness, the
concentration of signal flows shifted from frontal area to midline occipital area.
This phenomenon was more obvious in laboratory situation than reality situation.
There were a lot kinetic stimuli in real life like motion condition to make the brain
networks more complex to be illustrated. Figure 21-B showed the power
spectrum of midline occipital component in different drowsy stage in both two
conditions. The power of alpha band increased along with drowsy level, as in

brain networks, the phenomenon was more obvious in motionless condition.
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Figure 21: The concentration of brain networks and EEG power spectrum in
motion and motionless condition. 21-A: The destination of signal flows
shifted from frontal area to midline occipital area with subject’s
consciousness. Brain networks in real life condition were more complex than
laboratory condition for extra kinetic stimulation. 21-B: The power spectrum
of occipital component respective drowsy stage. The power of alpha band
increased along with drowsy level, as in brain networks, the phenomenon
was more obvious in motionless condition.

Figure 21. The trend of brain networks and EEG power spectrum in motion and motionless
condition.
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4. Discussion

The aims of this study were to determine the b

different brain regions from subject’s alert status to drowsiness status and to

compare the above brain network in motion and motionless simulation, finding

the influence of kinesthetic input on EEG signal flows

previous chapter showed the brain networks in each

and inconsistent part in comparison of motion and motionless conditions. From

alert stage to drowsy stage, the concentration of sig

anterior brain to the posterior brain. In addition, there were more connections
supposed to be including kinetic stimulus in motion condition than in motionless

condition. Figure 22 showed the structure of signal flows summarized from Figure

21 to illustrate the finding clearly.

rain connectivity between

in reallife. The results in

stage and the consistent
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Figure 22: The dendrogram of brain networks from drowsiness to alert in
motion and motionless condition. The structure illustrated the concentration of
brain network and the difference between two conditions. Stage 1 and 2
seemed like the same status, and the enormous change appeared in stage 3.
In addition, stage 4 was expanded from stage 3. The involving components
and connections in motion condition were much more than motionless
condition. It illustrated the brain networks were influenced by more inputs in
real-driving simulation.

Figure 22. The dendrogram of signal flow from drowsiness to alert in motion and motionless
condition.

4.1. The brain network from alert state to
drowsy state

4.1.1. The concentration of'brain networks

In Figure 23, the green line represented the consistent part of brain networks
in motion and motionless -condition. Maost connections in motionless also
occurring in motion condition explained that it caused by drowsiness level.
Frontal area was the main region to receive signal flows from other posterior
components in stage 1 and 2, but the trend totally changed in next stage. The
destination was not frontal area in stage 3; most signals were sent to midline
occipital area. In addition, the connections directed to midline occipital more
obviously in stage 4. The trend was that sending to frontal area in alert stage and

then sending to occipital area since into drowsier stage.
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Figure 23: The consistent part of brain-networks. The green lines of structure
emphasized how the concentration of brain networks shifting from alert to
drowsiness: The concentration was-frontal area'in stage 1 and 2, but it shifted
to midline occipital area with increasing drowsiness in stage 3 and 4. In
addition, the transition of brain networks from alert to drowsiness occurred in

stage 3.

Figure 23. The consistent parts of brain networks.

4.1.1.1. Frontal area

The results in our study showed that the trend was directing to the frontal
area from each posterior brain in alert stage such as stage 1 and 2, and it
vanished gradually from stage 3. These results in motionless were corresponded
with the motion condition. The finding may was consistent with an early study
suggested that the frontal midline theta EEG/MEG activity was readily measured

from the scalp during concentration or heightened attention in most human
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subjects [75]. The signal flow generated by subjects who operating the
experiments sent with highly attention to frontal area may cause the EEG activity
in theta band arousing in alert stage. In addition, the temporal order of task
coordination was related to frontal area [76]. In previous study, a higher activity
was found in for the random-order condition compared with the fixed-order
condition by fMRI data analysis [77]. The deviation onsets in each epoch in this
study were also in random order. Therefore, the random order of deviation may
be the one reason that signal flow towards to frontal area.

4.1.1.2. Midline occipital area

In midline occipital area, it received signal flows in each stage from alert
to drowsy, beside that, the number of connection was the most in drowsiest stage
in grouping data and the strength was the strongest in single subject data. In
study of Huang et al. [78], during each drift event by simulated driving, BOLD
signals were activated in visual component lecated in occipital area. It may cause
the signal flows sending to occipital area in alert stage in our study. However, the
signal flow weaken in stage 3 .and strengthened in the drowsiest stage may
demonstrate by subject’s unconsciousness. In other sustained attention task
study, the tonic brain activities in occipital cortex have been shown to reflect
fluctuations of drowsiness level [72 79 80]. The broadband power of alpha and
theta bands increased in visual component as the RT or error increased [26 53
73], and the power spectrum was consistent in midline occipital area shown in
Figure 21. The EEG change in previous study was corresponded with our brain
network change. Therefore those signal flow from other components may cause

the alpha and theta bands increasing in occipital cortex in subject’s drowsy stage.

4.1.2. Criterion of drowsiness occurring

For the similar involving components and connections, stage 1 and 2
seemed liked to be the same consciousness. The transient of brain networks

occurred in stage 3, the concentration shifted to posterior brain region. And the
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last stage, drowsiest stage, basically followed the previous stage, but sent to
midline occipital area with more signal flows. Therefore, we speculated the
criterion of drowsiness occurring from alert to strong drowsiness might be stage 3
closed to RT = 1.5 ~ 2.5 seconds.

4.2. The difference of brain networks in

motion and motionless condition

The kinesthetic stimulation was an extra input in motion condition, and we
demonstrated the difference from the extra stimulation between two conditions by
brain network. In Figure 24, the inconsistent parts indicated by red lines. It was
obvious that the connections and involving components in motion condition were
much more than motionless condition. The difference demonstrated the brain
networks in real-driving were as not simple as the results of laboratory
experiments. Furthermore, the SMA area was concentration of those causal
relationships in motion condition in stage 1 ~ 3, but motionless not. And there
were many extra connections related to somatemotor area in motion condition It
might be consistent with previous study-[80] that the kinetic stimulation of driving
deviation in alert state would cause negative event-related potential in SMA and
Mu blocking in alpha power occurred earlier in motion condition. On the other
hand, the kinetic stimulation from z direction [81] and roll rotation [82] would

generate negative ERP in Cz channel, which closed to SMA components.
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Figure 24: The inconsistent -part of brain-networks. The red lines of structure
emphasized how the kinetic stimulation causing the brain networks from alert
to drowsiness: It was obvious‘that the networks in motion condition were
much more complex than motionless."The stimulation from reality would
generate more causal relationships in brain. In addition, some connections
would be reduced by extra stimulation shown in right structure.

Figure 24. The inconsistent parts of brain networks.
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5. Conclusion

In this study, we investigated the brain network between components in
different drowsiness stage and compared the relationship by motion simulator
and motionless simulator. The event-related lane-departure task was used in the
VR environment to simulate the long-term high way driving and the task-related
EEG spectral dynamics in terms of tonic changes were analyzed using
independent component analysis, Granger causality and time-frequency. Results
demonstrated the signal flow of brain network was concentrated intensely on
frontal area and mildly on midline occipital area in alertness status, and the
strength of signal flow to midline occipital area was increase gradually along with
drowsiness level. Furthermore, the kinetic stimulation generated signals sent to
visual and motor components in alertness stage. In the future, analyze by
Granger causality in frequency domain to figure .out further causal relationships,
and the EEG feature related to drowsiness may. be a new indicator for embedded

drowsiness detection system.
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6. Future works

6.1.Brain networks in frequency domain

In order to further interpret our results, investigating the brain networks in
frequency domain or dynamic causal model could be the next step. The two
algorithms analyzed the causal relationships between two regions in frequency
domain. The brain networks in frequency may help us realize the physiology

reason of each causal connection in brain networks.

6.2. Application on EEG monitoring

embedded system

The results that the brain.networks represented the drowsiness level might
be applied on our EEG monitoring device for drowsiness detection. Frontal area
and midline occipital area might be the channel location for measuring EEG data,
and the warning criterion would be the brain-networks in stage 3, RT 1.5 ~ 2.5
seconds. When concentration of signal flows was not frontal area, or
concentration shifted to midline occipital area, the drivers would receive warning
from detection development. Using brain networks for predicting drowsiness
could solve that there was not good criterion for warning in previous indicator and

it was more reliable to detect by EEG features from two regions.
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