1D &t PO RS SRR | g (=

Character Animation Driven by Sparse Motion Sensors

==

oyo4 R R

Rz s gl

PoE 3 4 L 4 or = 3

RS =) SRR Y\ I\ Sl A SR Sy

Character Animation Driven by Sparse Motion Sensors

FoyoA o MR Student : Chun-Hao Liu
hERR D kR EL Advisor : Dr. I-Chen Lin
Bz 2 < 7

AThesis
Submitted to Institutes of Multimedia Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

July 2010

Hsinchu, Taiwan, Republic of China

PR R4 L4 E

I | DRV (RS o B & 1 g e g
4 kT R MR

i
S R

F2

Bl RO R R - B S F L R Sk SF n i h d b (T A o K

F e e B ge s FASTEAT o 16 F = LK iE Y LT B 5 ek

s
+
T~
o

;/M:JQ d A de - f@;ﬂ}l]? ")‘E‘_é’f’]}é—%ﬁ%%i P 5’[’?,5%@"5-5 # (T O'F'T’t AN
ERRY HRf O RHEwE > X0 P G TR B - B TR B
Rengile A= e Fl ¢ Al P B> &0 UH EEOTHREH @ BIg
SRR A BEES BT ANAAT R -SRI V- PRGOS Ay
B TEEm? 2> VUL e EFE Ve hiso 50 Hhed TR, At
- WU B T FAE i S A TRER RS - BRETTY R T A

PEehT f A g BB T o (& —*Ff?ﬂ’* CEIRB R TR ELY > UBRR R LS

Character Animation Driven by Sparse Motion Sensors

Student: Chun-Hao Liu Advisor: Dr. I-Chen Lin

Institute of Multimedia Engineering

National Chiao Tung University

Abstract

Motion capture devices provide an.accurate and high definition technique to generate
avatar’s motion from reality. Nevertheless, the expensive cost and tedious post-processing
make it difficult to gain the popularity and to perform-on interactive applications. In this
thesis, we propose a data-driven approach to drive character animation by sparse motion
sensors. To acquire the motion characteristics of a subject (player), we ask a user to follow
exemplar motion and record the acceleration ‘and angular velocity from sparse motion
sensors. The motion data are then divided into several clips, and we construct the action
graph to connect each smooth pair of clips. While applying hidden Markov Model to
calculate the probability of transition from one clip to the other, it shows that the
reconstructed motion is much more realistic and reliable. Finally, to extend the motion
variety, we farther blend clips that are similar to user's action for playing motion unseen in
the database. In real-time, the user is capable of driving avatar’s motion by inexpensive
sensors. In addition, such an easy-to-use system can also be applied to advanced interaction

systems.

Keywords: Computer animation, interactive interfaces, Wii remotes, sensors.

Acknowledgement

RILWH > AT A BEEY Y S S kokfry A o

SRR B P R B R SRS BB

t

Xl

GO FIE p Ay PG I AR 2 g P G DT

AR R S s dg BRI 0 A U RF L E B p
BB g o uaHAKRGPR o FE R K > IR ATy

g

A BB SENL A e A BB X g b 5 ¥ 38
NI RE S g AL T S ’T}E& LB E R P 2 A
MR RER ARG R WIS R

Bofs o A RREHTE Sdg iR > U E p AT MRS LD

F} ifrﬂrﬂ%ﬁ‘ 0 7; 1k R

Content

BB B AR i
AADSTIACT. ...ttt i
ACKNOWIEAGEMENT ...ttt ii
(O] 01 (=10 | TSP P TP PP PP PPRPRPPPPRR 0\
LIST OF FIQUIES. ... bbbttt b bbbttt Vi
LISE OF TADIES ...ttt viii
O [T [FTox (o] o TSP TR PPV 1
1.1 IMIOTIVALION .ottt 1

1.2 BACKGIOUNT.euiiieieee e ettt eaEendbe ettt ettt bttt e e e bbb nbe b i 2

1.3 FraMEWOIKS ... i iemmrue s ah bk eh 0 b 65 ettt ettt 4

2. REIAIEA WOTKS......c.eeeiie 50ttt e e e LTttt bbbttt b et 7
2.1 Animations by Motion:Capture DEVICES wiiu...ivieiteureiieieeie ettt 7

2.2 ANIMation With LOW-COSt SEMSOIS uesrisiintitereereeeeeeiesiestestesiesiesseeee e sse e sne e sie e 10

3. Driving Character using MOtiON SENSOISccccveiieiiieie e 15
3.1 Training Data COIECTIONcoviiiiiiiec e 15

3.2 MOLION ClIPS ...ttt et e b e et e s e saeenre e e 17

3.3 Principal Component ANAIYSISc.ooiiiiiiiiiiieiee e 18

R O [V 151 (=1 [o ST PPRTR 22

3.5 Linear Discriminant ANAlYSISccooiiiiiiiiiiieeeie et 23

3.6 ACLION GraPN ..ot 26
3.6.1 Detecting candidate tranSitioNS.coceiiririirene e 26

3.6.2 Constructing action graph.........ccocv i 28

3.7 Hidden MarkoV MOGEL ..ot s 30

3.7.1 Generate states and 0DSEIVALIONSoov e 33

3.7.2 Probability diStriDULIONSccoiiiiiiiiic e 33

3.7.3 Viterbi algorithm.......cc.ooiiiiee e 36

3.8 MOtION BIBNGING......ceiiiieiiiieieiee e 38

3.9 Real-time Motion RECONSIIUCTIONeveiiiiiicieieieee st 39

4. Implementation Of OUI SYSTEIMcviiiiiiice s 41
5. EXPeriments and RESUILScciiiiiieii ettt st 45
5.1 EXPerimental DESIGNcuiiiiiierieiie ittt 47

5.2 EXperimental RESUILcov i 48

5.3 DHSCUSSION. ...ttt ettt bbbttt bbbt bbbttt e b et b e b 54

B. CONCIUSIONS ..o e ek B bbb 55
RETEIBINCES ...t B h s meme s e e eb e ehi s e E R e et ettt b ettt e et et eb bbb ebe s 56

List of Figures

Figure 1.1: Wii remotes With MOtIONPIUS.ccoviiiieceee e 2
Figure 1.2: System diagram Of MOLION SENSOIS.eiiiirieieieierie s 2
Figure 1.3: The velocity value before fixing the background noise of MotionPlus................... 3
Figure 1.4: The velocity value after fixing the background noise of MotionPlus...................... 4
Figure 1.5: Flowchart 0f OUr SYSIEM.........ciioiiiiccece e 6
Figure 2.1: An example that character is driven by motion graph.ccocceoeieiiiiiiininenn 7
Figure 2.2 The principal markers and the estimated markers..............cccooveveivieieenie s s, 8
Figure 2.3: The actual pose data and eStIMAtEd POSE.ccuerveriereririririeee s 8
Figure 2.4: User wearing markers to control the full-body motion of avatar................c..c......... 9
FIQUIE 2.5: SYSTEIM OVEIVIBW. tur.. i iuitttaueaueausese aaiiheastat e oh 655 eseeseseeasessessesseessensesensesbesbesnesseenes 9
Figure 2.6: Snapshots of a user-performing a calibration motion.cccccevevieiiiieieenne 10
Figure 2.7: A user uses Wii remotes to control a bird character by physically simulation....... 11
Figure 2.8: A state machine for Walking............ocoooeii oo 12
Figure 2.9: A state maching fOr rUNNING.cccooiiiiiii e 12
Figure 2.10: Motion query and SYNNESIS.ccviieiiiiecic et 13
Figure 2.11: CalibDration SEIUP.ooiiiiieieiee et 14
Figure 2.12: TriangUIALION.cciiiiieiie e 14
Figure 3.1: The finite state machine of motion playing and the Wii remotes data record. 16
Figure 3.2: An example of linearly time warping..........cccccooveiiieiie e 16
Figure 3.3: Motion clips without overlay frames. ..o 17
Figure 3.4: Motion clips with overlay frames.cccoooieiii i 17
Figure 3.5: PCA of a two dimensional sample data.cccccveveiieiiiiesieie e 18
Figure 3.6: Percentage of variance explained by the PC of angular velocity data set.............. 19

Vi

Figure 3.7: Percentage of variance explained by the PC of acceleration data set. 19

Figure 3.8: Reducing the dimensionality of angular velocity and accelerationc....... 21
Figure 3.9: We partition the data into several clusters by K-means method.c.c......... 23
Figure 3.10: Each cluster with its discriminant function.cccocevvvienieninie s 24
Figure 3.11: The distance grids plot shows that the distance between each pair of clips. 28
Figure 3.12: An example of aCtion graph.coooiiiiiiiec e 29
Figure 3.13: An example of hidden Markov Model. ... 34
Figure 3.14: An example of Viterbi algorithm by given states and observations...................... 36
Figure 3.15: The framework to reconstruct human motion by Sensors.cccccoeveveeiveinennnne 40
Figure 4.1: A simple tree of System frameworkccooeeieiiiiiiiineeee e 42
Figure 4.2: A sCreenshot Of OUI SYStEIMIu . it ettt sra e 43
Figure 4.3: Tab pages to all FUNCHIONS.........o i i 44
Figure 4.4: Tab pages in "Wiil REMIOLE. i ittt 44
Figure 5.1: Average ratio of orientation 0n-five MOtIONS.ccooviveiiiiiiciee e 46
Figure 5.2: Average RMS 0N fIVEMOLIONS.occtiieitiniiiieie e 48
Figure 5.3: Screen shots on reconstructing' walking motion.c.ccocvvviieiineniiencnens 49
Figure 5.4: Screen shots on reconstructing running MOtION.c.cocveveiieiecie e 50
Figure 5.5: Screen shots on reconstructing sword playing motion.ccccoevvnenenciininnnns 51
Figure 5.6: Screen shots on reconstructing basketball free throw motion.ccccccovenennn. 52
Figure 5.7: Screen shots on reconstructing baseball pitch motion. ... 53

vii

List of Tables

Table 5.1: Average ratio of orientation on five MOtIONS..........cccccevveiii i, 46

Table 5.2: Average RMS 0N fiVe MOLIONS.cccveiiiieiice e 48

viii

1. Introduction

1.1 Motivation

In recent years, the computer generated characters can be seen in lots of interesting
regions, such as cartoons, movies, games or virtual environments. Nevertheless, the most
popular technique to drive motion of characters is through motion capture device, which is
tedious to setup, high-cost and time-consuming. To solve this problem, there have been many
researches that discuss about this topic, such as using camera to catch silhouette, or wearing
Wii remotes to receive acceleration data and predict human motions.

However, most existing methods used motion recognition but regards less on reasonable
motion transition. Taking a baseball player as an example, most of the batter will perform
three actions on the field, which are stance, swinging bat, and stretchy. Most of methods by
motion recognition will reconstruct this sequence of swinging bat well with data sensors. But
if he suddenly detects that the coming ball is in the strike zone when the batter stops
swinging suddenly, this immediate transition between swinging and stopping will not be
considered in most of recognizing methods. Besides, existing methods mostly recognize and
playback motion in database, and limit the variety of character motion.

In this thesis, we propose another a novel approach to capture human motion from
sparse off-the-shelf motion sensors. In our system, we use Wii remotes with MotionPlus as
our input, where accelerometer and the gyroscope inside provide us motion signals to
reconstruct human motion in real-time. The proposed motion estimation system provides
high performance and accuracy of reconstructing smooth human motion in real-time, so that

it will be adequate to various interactive applications.

Figure 1.1: Wii remotes with MotionPlus. [Nintendo]

IDG-650

X >

> System Processor | RF

Integrated o
Dual-Axis Gyro

ISZ-650

z

Accelerometer

Z-Axis Gyro

Figure 1.2: System diagram of motion sensors. [Invensense]

1.2 Background

A famous game corporation, Nintendo, has developed a new TV game console, Wii, in
the late 2006. Meanwhile, they also introduced an innovative controller, Wii remote, also
called Wiimote, which contains not only buttons but the IR sensor and three-axis
accelerometer. The accelerometer captures net force acting on Wiimote in the range from -3g
to 3g, where g is gravitational acceleration.

In June 2009, an expansion device for Wii remote, MotionPlus, was released for

capturing the complex motion with more degree of accuracy. With three-axis gyroscope,
MotionPlus can receive the local angular velocity in pitch, roll and yaw rotations. In other
words, the data of local rotation derived by Wii remote is much more precise.

Since the Wiimote and MotionPlus off-the-shelf are not expensive, in this research, we
put one to five such devices on subject’s limbs, and propose an efficient algorithm to
reconstruct subject’s motion from sensing data.

Two critical issues in MotionPlus are initialization and error accumulation. In order to
fix initial error, we should put MotionPlus on a flat surface and the system will automatically
detect the background noise of MotionPlus, and revise the new coming value every time. To
fix accumulated the pitch and roll rotation can be calibrated by the relative direction of
gravity. Since there is no relationship.between the yaw rotation and gravity (yaw rotation is
horizontal to the plane), in most Wii games, they used the sensor bar position in IR camera
for yaw calibration. In other ‘words, the yaw rotation is set to zero whenever Wii remotes

pointing toward the sensor bar.

25

20

WAAWAAAMANA AN A NN

MotionPlus VA St U e

Data e \/e|Pitch
(Degree) 19

15

= \/e|Roll

VelYaw

01—.—_
— O O 00 I~ < N N o O O 0N

N N NN N NN OO AN O
I NN NN

Yo}
(o)}

115
286
305
324
343
362
381
400

Time Frame

Figure 1.3: The velocity value of pitch, roll and yaw rotations before fixing the background

noise of MotionPlus

1.5
1
0.5
MotionPlus e \/e|Pitch
Dota o LAA A AL ad o a A J
(Degree) N < O0WONSTWOOWONS-TW™MO AN O
_05 I T AN AN AN AN AN OO N DN M
. VelYaw
-1
-1.5
-2
Time Frame

Figure 1.4: The velocity value of pitch, roll and yaw rotations after fixing the background

noise of MotionPlus

1.3 Frameworks

In this thesis, we propose a ‘data-driven method to reconstruct human motion in
real-time. First of all, we use motion capture data from CMU MoCap Lab. To associate the
data for motion sensors with actual motion we require, we acquire users to wear Wii remotes
with MotionPlus and ask them to follow the motion playback on the screen. To avoid sensors’
data are asynchronous with user’s action, we divide training motion into several short
segments, it makes user easier to follow up and make our motion alignment more accurate
(Sec. 3.1). Besides, the training motion is divided into several training motion clips for later
reconstruction (Sec. 3.2). Then, we use principal component analysis (PCA) to reduce the
dimensionality of sensors' data (Sec. 3.3).

In the second stage, we perform the k-mean method to cluster training motion clips into

several groups, relying on the reduced-dimensionality data by PCA (Sec 3.4). For the

performance issue, rather than calculating the difference between input data from Wii
remotes to each clusters, we utilize implementing linear discriminant analysis (LDA) for
dimensionality reduction before later classification (Sec. 3.5). Afterward, we construct an
action graph to connect each smooth pair of training motion clips, depending on the total
Euclidean distance between the positions of one's end frame to the position of other's start
frame (Sec. 3.6). It is not necessary that consider the middle frames of clip since a clip is
short.

In the third stage, we calculate the transition probability in action graph, and the
probabilities from each node in graph to each cluster. With these pre-processed data, we can
construct the hidden Markov Model (HMM) as a database for reconstruction (Sec. 3.7). The
hidden states are nodes in action graph, and observations are clusters of acceleration and
angular velocity. In order to get the maximum probability of the path in transitions, we
implement a dynamic programming algorithm, Viterbi algorithm, for finding the most likely
sequence of hidden states. This Viterbi path will result in @ smooth and reasonable motion.

Finally, in order to produce the motion which.is not in the database, we propose
performing motion blending methods. Rather than finding a single Viterbi path with the
maximum probability, we find more than one path. If their maximal probabilities are close
enough, or larger than a user-define threshold, we blend the training motion clips from
Viterbi paths (Sec. 3.8).

In real-time motion reconstruction, the user should wear Wii remotes with MotionPlus
as the motion sensors (Sec. 3.9). Our system performs in multi-threading styles: one for
collecting and processing the data by sensors, and other for rendering the reconstructed

human motion.

Data pre-process Real-time reconstruction

i Training motions with / N\ Revise background /

e \

ide training motion into
l D

Action

Modified Viterbi algorithm on

A\ 4

Figure 1.5: Flowchart of our system

2. Related Works

Since the topic of 3D animation becomes popular in modern days, more and more
researchers and corporations pay attention to the significance of transforming human motion
from reality into digital characters. There are two major technologies to capture human
motions. One is employing optical systems, or the motion capture devices, and the other is

non-optical systems, which often uses sensors as the substitution.

2.1 Animations by Motion Capture Devices

Figure 2.1: An example that character is driven by motion graph. [KGP02]

Kovar et al. [KGP02] proposed a method using the concept of graph structure to play
continuous motion clips smoothly, where the closet frames were found to transit between clip
pairs. By deliberating upon these supplementary transitions as edges of a directed graph,
called motion graph, was automatically constructed by setting the threshold and blend two
clips by applying spherical linear interpolation (Slerp). A nodes of graph was the sequence of
frames, or what we called the motion clip. To generate continuous motions, the largest

strongly connected component (SCC) of the motion graph was the only one can be used.

In this thesis, we take advantage of graph structure, building an action graph to address
the problem in motion synthesis. Specifically, when a user drives the character in different
categories, such as from running to boxing, our system traverses graph nodes and searches a
proper path from running to boxing motion. This path guarantees that the motion clips and

transitions are synthesized smoothly.

Figure 2.2 The principal markers are shown Figure 2.3: The golden model represents the
in black and the estimated markers are actual pose data. The cyan model shows an

shown in red. [LZWMO6] estimated pose. [LZWMO6]

Liu et al. [LZWMO06] proposed that they used an adequate subset of original markers on
motion capture were sufficient to predict the whole markers for subtle variations in human
motions. The main concept was to build piecewise linear models and search principal
markers automatically by off-line data training, and then to construct the three dimensional
motion models.

By using position information with a small set of markers, this approach is able to
derived the position for a large amount of non-principal markers. Besides, this method is
based on a few markers with motion models, instead of considerable markers with motion
database. Hence, the less requirements are appropriate to interactive applications.

However, if samples of training data were insufficient, it possibly results in an

erroneous estimation given an unseen motion. Furthermore, because it only operates on

position data, which is difficult to be obtained for popularity by off the shelf low-cost devices
like Wii remotes. Namely, when a user demands to control the position of a marker or a joint,
it is uncontrollable due to none of the position information by reality. In our approach, our
system can be applied position data, the acceleration or angular velocity data from Wii

remotes.

Figure 2.4: The above pictures are that user wearing markers to control the full-body motion

of avatar in from of two synchronized cameras. [CHO5]

Motion
performance

Low-dimensional
control signals

/c:

Root position
and orientation

Online local Control term
modeling
[q;.-qy] Human pose Local linear Y
prior model
. Smoothness N Online motion
Previous term synthesis
synthesized
poses
(@) Ty]

Figure 2.5: System overview. [CHO5]

Chai et al. [CHO5] introduced to employ two synchronized cameras and a few of
retro-reflective markers to reconstruct full-body motion of avatar. The major difference to the
[Liu et al. 2006] was that they take the location of the markers, by using video cameras as the
input. This system consisted of three significant components, which were motion
performance, online local modeling, and online motion synthesis. In other words, this system
first extracted positions of markers, which specified the desired trajectories of certain points
on the animated character. Then, it searched the closest to signals by neighbor graph in the
database. Finally, they synthesized motions to smooth the reconstructed animation of avatar.

This approach performs six motion categories, walking, running, hopping, jumping,
boxing, and Kendo (Japanese sword art) from low-dimensional signals in real-time. Besides,
since only two cameras and a small_number of markers are required, it is not as expensive
and cumbersome as the original motion capture devices.

However, this system demands for retro-reflective markers and synchronized cameras to
perform motion as input, the issue ‘of occlusion and post-processing make it remained
impractical for home usage in recent.years. Besides; the performing area is strongly limited if

it is used in interactive application.

2.2 Animation with Low-cost Sensors

Figure 2.6: Snapshots of a user performing a calibration motion. [SHO8b]

10

Slyper et al. [SHO8b] proposed a method to capture human motion based on
accelerometers. The accelerometer, ADXL 330, is the same MEMS as the Wii remotes. This
approach was to install five ADXL 330 on a shirt, which were on each forearm, upper arm,
and one on the chest. By measuring the acceleration value of human motion, they proceeded
to compare clips of motion accelerations in the database. Finally, the system played back the
corresponding motion clip. The strengths of this approach were simple to implement and
often perform accurately in some motions.

Nevertheless, when a user performs a complicated motion, this approach may match the
wrong clips unless the training database is sufficient enough. But if the database is too large,
the system needs more searching time in the database. Moreover, if the chosen frames of a
motion clip is long, the latency will also be long; on the other hand, the transition between
two clips will be visually non-fluent. Besides, this method only recognizes the motion on
upper body. Once the lower body is taking into account, the system will be spoilt by

interferences from more accelerometers, and the accuracy may decrease substantially.

Moving or not, Amplitude,
Frequency, [—® Mean,
Phase Inclination

- Acceleration Analysis }

L J
Parameter
change

Motion controller
{walk, run, jump, step)

Physicallysimulated motion Physical Simulation

Figure 2.7: A user uses Wii remotes to control a bird character by physically simulation.

[SHO8a]

11

Vertical hip

Upward velocity Downward
Flight less than zero. Flight

-

Double
\ Support

Swingleg Rearleg
contactsground. leavesground.

Support foot
passes
under hip.

Support foot
passes
under hip.

Figure 2.8: A state machine for walking. Figure 2.9: A state machine for running.

[SHO84] [SHO84]

Shiratori et al. [SH08a] also used Wii remotes attached on user's arms, wrists, or legs to
get the accelerations for the control of physically simulated character. In this approach, they
formulated the data into features, such as frequency, mean, amplitude, etc. In the real-time,
the physical simulation was processed by transforming these features into the corresponding
motion. During the user study and analysis, they proved that three of the Wii remotes
interfaces provide better control than the traditional joystick interface.

In this physically simulated system, a user-controls a bird character by Wii remotes.
There are four motions supported in this-system, which are walk, run, jump and step. This
character is able to arbitrarily change directions and movements (6 uncontrolled degrees of
freedom, DOF), with two hips (3 DOFs) and two telescoping joints (1 DOF). Moreover, this
system offers the potential for some natural responses to rough terrain and other disturbances,
such as tumbling over or trembling.

But with the limitation on a few of acceleration information, there remains the
ambiguity problem because of unobvious motions. Additionally, if there are more complex
motions are desired except these four motions, there should be more complicated physically

theories to support them.

12

Database
c<—>q,

Clustering

&

T
Model Learning

Local Linear | Motion
Model Synthesis

Sensor Signals Synthesized Motion
C q
t t

Figure 2.10: Motion query and synthesis. [XKCG*08]

Xie et al. [XKCG*08] used a data-driven approach that operated the optical motion
capture while attached four- Wii remotes to a performer's body, for obtaining the
frame-to-frame acceleration mapping. They reduced the dimensionality of acceleration data
by implementing principal component analysis (PCA), and built a local linear model by
applying radial basis function (RBF). After the data pre-preprocessing, the system could
drive the character by database from input sensor data.

This proposed system can be used for various applications. Besides, since the
dimensionality is reduced, this design will be scalable and is capable of large database
without degradation. By a sufficient number of training examples, it is able to synthesize a
great deal of disparities on human motions.

However, because the framework of this approach only concentrates on motion
estimation, it suffers from the smoothness problem due to the noise in the sensor data, or
different motion clusters synthesize together, such that the visual discontinuity of motion

may happen.

13

'R ‘._,/"x___
Aot A: [g)
=\]h’\ >
)
- e > L 4
Figure 2.11: Calibration Setup. [SH09] Figure 2.12: Triangulation. [SH09]

Scherfgen et al. [SH09] used two Wii remotes performing as cameras. Rather than
applying accelerometers, they preferred to take advantages of IR sensors insides Wii remotes
to do the tracking process. They calibrated Wii remotes' cameras by a calibration board with
infrared reflectors and illuminated. groups of-them, following by applying triangulation,
which was to track a 3D point position P by observing 2D point positions P1 and P2.

This approach allows an.user to interact in'a more intuitive way instead of just pressing
buttons or applying the acceleration -data into-motion based on data-driven modeling.
However, because of the triangulation dependent-on targeting the ray at the same point in 3D
space, when rays do not intersect due to the limited camera resolution, there will be

numerical inaccuracy and the processing errors in the point detection.

14

3. Driving Character using Motion Sensors

3.1 Training Data Collection

At first, we use motion capture data as training motion from CMU MoCap Lab. To
avoid device dependant bias of sensor data, we acquire users to wear Wii remotes with
MotionPlus on two wrists and legs, and ask them to follow the motion playing on the screen
in order to associate the training data for motion sensors with actual motion. However, the
directly retrieved Wii data often falls behind the training motion, since we often perform the
action after we have seen the motion on the screen. Namely;, it is not synchronized.

We propose two methods to solve this problem without using motion capture device.
One is to use a “pause” button‘on Wik remote, which is'a function key stopping the motion on
the screen and waiting for the user’s response. This method can reduce most asynchronous
problems on simple motions, but not the complex one. The other one is to divide training
motion into several short segments, and we record the training sensor data with time warping
using a finite state machine (FSM) controller. From our experimental result, the later one
makes our motion alignment more accurate.

There are five states in the controller, including two pause states, a playing state, a
recording state, and a time warping state. In the beginning, a user presses button one to
waiting state, and playing the motion by pressing button two. Whenever the user plans to
divide training motion into a segment, it goes to waiting state by pressing button two and it
causes the motion stopping on the screen. Then by pressing button two again, the user should
perform like the motion segment that he has seen on the screen; meanwhile, the acceleration
and angular velocity from Wii controllers are recorded into buffer. When the user finishes his

action, pressing button two to time warping state and the controller goes to waiting state

15

when it finished. In the time warping state, we simply perform linearly warping, because the
motion segments are short and it is computationally efficient. The procedure is iteratively
performed until the end frame of playback motion. Finally, the data will be stored in the

database after we apply a low pass filter.

End frame
of motio

Playing Buffer is full
Done
Linearly time - Recording
warping @

Figure 3.1: The finite state.machine of motion playing and the Wii remotes data record.

Begin End Frame
0 Playing Playing Size
Training
Sensors’
0
Begin End Buffer
Recording Recording

Figure 3.2: An example of linearly time warping.

16

3.2 Motion Clips

In this stage, we are going to divide the training motion into several parts, or so called
training motion clips in this thesis. A training motion clip is formally a sequence of frames,
and associates with information between the displayed avatar and Wii sensors, such as joints'
angles, skeleton's position, and training sensor data. This information will be utilized to drive
the avatar for novel motions. There are two major methods to divide motion into clips.

The first method is to simply divide the whole training motion data into n parts, where n
is a user-defined number. But this method will not take the sequence between two middle of
clips into consideration. In other words, when the system is trying to reconstruct human
motion from middle of iw clip to middle of ‘(i + 1)w clip, it selects either one of them.
However, whether what the result is, it is not expected.

The second method is rather than dividing into n parts, we take the overlay frames
between two clips into account. Namely ifthere are k frames per clip, we divide the training
motion starting from (k / 2) x i, where i =1, 2, 3, <<~ Therefore, sequential frames between

each pair can be considered and making ‘the reconstructed motion acts more stable and

flexible. In our approach, we prefer using the second method in the implementation.

Training motion data Training motion data

Figure 3.3: Motion clips without overlay Figure 3.4: Motion clips with overlay frames.

frames.

17

3.3 Principal Component Analysis

After collecting the training or online received data from motion sensors, we need to
maintain two matrices, an matrix of acceleration, and a matrix of angular velocity. The size
of matrices are (C-W - D - 3) X N, where C is the number of data training collections, W is
the number of motion sensors, e.g. accelerometers and gyroscopes, D is the number of
frames in a motion clips, 3 is for three dimensional axes, and N is the number of clips in
training motion. However, the dimension of matrix grows larger as the C, W or D increases.

Consequently, the huge dimension results in poor performance on reconstructing motion.

[0}

[REY
(en)

Figure 3.5: PCA of a two dimensional sample data.

In order to efficiently execute matrix operation in real-time, the process of dimensional
reduction is required. Therefore, we propose using principal component analysis (PCA) in
advance. PCA is a eigenvector-based multivariate analysis, which turns plenty of possibly

correlated data into a few of uncorrelated, or what we called principal components. These

18

components should also be responsible for the remaining variability; thus the
reduced-dimensionality data persists for the significant features from the given huge
information.

The major concept of PCA is an orthogonal linear transformation, which projecting the
given data into new coordinates system. The projection is dependent on the variance of data,
such that the first component contains the greatest variance, second component contains the
second variance, etc. Therefore, when the enough number of principle components is
extracted, they are able to stand for most of features in the given data. In our case, we reduce

the dimensionality from 90 to 7. since it captures 99% of the motion variance.

100%

90% ,l

80%

70%

60%

50% -

1 4 7101316192225283134374043464952555861646770737679828588

Figure 3.6: Percentage of variance explained by the principal components of angular velocity

data set.

100%
90% r
80% !
70%
60%
50% -

1 4 7 101316192225283134374043464952555861646770737679828588
Figure 3.7: Percentage of variance explained by the principal components of acceleration

data set.

19

To apply PCA in our sensors' data, we prepare two matrices for the training or online
received data on acceleration and angular velocity by motion sensors. Since the procedures
of PCA on angular velocity and acceleration are equivalent, we explain only the procedures
of PCA on acceleration and denoting the data matrix as X of dimensions M x N, where
M= (C-W-D-3) and N is the number of clips in training motion, C is the number of data
training collections, W is the number of motion sensors, D is the number of frames in a clips,
3 is for three dimensional axes. We calculate the mean vector on each column w of

dimension M x 1.

m=1,23,..,M (1)

Then, we produce a row vector t-of dimension 1 x N, whose elements are all 1's. We
subtract mean vector w from-X to derive the new matrix X' of dimension M x N, whose

mean is zero.

X'=X— wt @)

We calculate the covariance matrix C of dimension M x M from the outer product of

matrix X" with itself. The E is the expected value operator.

C=E[X'xX] ©)

Finally, we find the eigenvectors and eigenvalues of the covariance matrix C. The

matrix of eigenvectors is denoted as V, and the D is the diagonal matrix that D[m, m] is the

My, eigenvalue of C, where 1 < m < M.

20

D =VICV (4)

When applying PCA, we can choose components and forming feature vectors by

eigenvectors with highest eigenvalues. The result of reduced-dimensional data ri’ is

produced by the following equation:

) = (v -7)4 5)

where v; is the mean value of the clip j, A]-‘1 IS the inverse matrix built from the

eigenvectors V corresponding to the largest ergenvalues from C.

Numbers Vel-1, Vel-2, ..., Vel-n
of clips

Acc-1, Acc-2, ..., Acc-n Numbers
of clips
PCA l lPCA

Numbers PCA Vel PCA Acc Numbers
of clips = = of clips

Figure 3.8: We reduce the dimensionality of angular velocity matrix and acceleration matrix

derived by motion sensor.

21

3.4 Clustering

When we derived the new incoming training data from motion sensor, computing all of
training motion clips in the database to find the mostly correlated one is very inefficient,
since the searching time increases as the database grows. Such approach results in poor
performance and is difficult to be employed in interactive applications. We prefer to partition
the reduced-dimensionality training sensors' data into a number of clusters in pre-processing.
Besides, these clusters will be used in building a statistic model. Hence, this approach makes
the reconstructed motion with the data-driven model efficiently by searching the closely
cluster during the runtime.

Given a large set of reduced-dimensionality training data of acceleration and angular
velocity, we assign each of them ‘with_different user-defined weight. We have to change
weights relying on different motion categories. Since the gyroscope is sensitive in rotations,
we should set a larger weight on angular velocity when motion categories are with small
details, such as forehand driving or. backhand slicing in tennis. On the contrary, we set a
larger weight on acceleration when categories are differing with obvious differences, such as
squatting or running, where the accelerometer is sufficient to recognize and the sensitive
gyroscope may be the noise.

Finally, these two data are combined according to assigned weights. Assuming that there
are M clusters that should be partitioned from the merged data, we apply the k-means method
to derive the cluster of each data. These partitions are iteratively calculated by their
Euclidean distance from data to the means value of the cluster, until each element belongs to

the cluster with the nearest mean.

22

PCA_Vel PCA_Acc

Weight_Vel l lWeight_Acc

Reduced-dimensionality

Sensors’ data

1 K-means

B
- T

Cluster A Cluster B Cluster C - Cluster M

Figure 3.9: We partition the data into several clusters by K-means method.

3.5 Linear Discriminant Analysis

After associating the training motion clips with their corresponding clusters, we apply
linear discriminant analysis (LDA) for.better-discrimination. The LDA method analyzes
separating each cluster by subspace projection, and it preserves as much of the cluster
discriminatory information as much as possible. This method is widely utilized in many

applications, such as machine learning, prediction, pattern recognition, etc.

23

S

a— —
-

fa fy fe fm

Figure 3.10: Each cluster with its discriminant function.

First of all, we denote training or online received data matrix as x, which each row is the
frame number of the training motion, and each column is the angular velocity or acceleration
data. The goal of LDA is to compute.a matrix W = [w;|w,]|--- |wc_4], and the data of new
coordinate y; is derived by projecting data x onto the 'w;, where 1 < i < C—1 and C is

the total number of clusters.
yi=wlx - y= W (6)

To compute the optimal projection w*, we define a measure of the scatter in multivariate

feature space x, or so called within-class scatter matrix. We denote it as Sy in this thesis.

Sw = Z;l (wai(x - m;) (x — mi)t> om, = Zx(;-fix -

Then, we compute the difference between means, or so called between-class scatter. We
denote it as Sg in this thesis. The rank of Sg is as most (C - 1) since it is the sum of C matrices

of rank one or less.

24

Sp = ZC_ n(m; — m)((m; — m)* , m= Zivx X (8)

i=1 n

Finally, the linear discriminant is defined as the linear function w'x that maximizes the
ratio of between-class to with-in class scatter. The determinant of the scatter matrices is used

to derive a scalar objective function.

Jawy = W SsW ©)

|lwts, W]

To obtain the optimal projection matrix W* that maximizes the ratio, we derive it by
transforming into the following generalized eigenvalue problem. Namely, the columns of
matrix are the eigenvectors corresponding to the largest eigenvalues. This projections with
maximum separability information —are the eigenvectors corresponding to the largest

eigenvalues of S;;1Sg.

(WESsW|

W™ = [wi|w;|--- [wi_1] = arg max {IWTWWI

} - SBWi = ASWWL' (10)

In runtime, we derive the projection data y' by projecting the matrix data x' from motion
sensors, and we obtain its corresponding cluster by applying discriminant function f. The data

X" is in cluster j if the function f; generates the minimum discriminant value.

cluster (x) = arg min f; = arg min(y; — y’)z (11)
1<jsC-1 1<jsC-1

25

3.6 Action Graph

Without the concept of graph structure, two similar motion clips belonging to different
motion categories may mislead into one or another when reconstructing human motion. This
causes a visually discontinuous motion, and the artificial result is hardly accepted in any
interactive application. Although the discontinuous motion can be blended with convoluted
filtering algorithms, such as low-pass filtering, it is not an ideal solution since it only
alleviates the discontinuity. A direct method to solve it is increasing the numbers of frames in
a clip, and thus it minimizes problems in synthesizing the discontinuous motion, which is
also able to perform in real-time application.

However, the critical side effect of using .this method is latency time. Namely the
numbers of frames in a training motion 'clip increase,.the accumulative time from online
received sensors' data should alsobe longer. Besides, the searching time for a training motion
clip also increases. Finally, the problem of synthesis still exists, and merely the frequency to
combine two motion clips decreases. Therefore; in order to prevent the problem of
smoothness from synthesizing two discontinuous motion clips due to ambiguity of sensor’
data, we propose constructing an action graph to avoid it. The idea of action graph is similar
to motion graph in [KGP02]. The graph node represents a training motion clip from the

training motion, and the graph edge is automatically generated transitions.

3.6.1 Detecting candidate transitions

When we have training motion clips from training motion database, we calculate the
total Euclidean distance for each pair of clips, that is the difference from the positions of
one's end frame to the position of other's start frame. It is not necessary that consider the

middle frames of clip since a clip is short. After we have the distance between each pair of

26

training motion clips, we normalize the difference for finding the candidate transition. Then
we construct a distance grid plot, whose element contains the normalized difference from one
training motion clip to the other. It is beneficial to find candidate transitions and for
probabilistic computation in hidden Markov Model.

In order to automatically search for the candidate transition, the user has to set Ginreshold,
a threshold value between zero and one. Then the difference that is under the Ginreshola Will
form the candidate transition, or what will be the edge of the graph. About the threshold
setting, there is no definite value for all of motions. It depends on what motion categories
that user wants to perform. If the motion is common in everyday life, such as walking,
jumping or running, it is suggested that threshold should be set lower. The lower threshold
provides a smoother transition of clips. Because people are sensitive to those common
motions and can be easily aware if the transition is.unusual. However, if the motion is a
specific type like ballet or yoga; it is recommended-that threshold is ought to be higher.
Setting the higher threshold provides a higher connective graph. Therefore, the stretching or
spinning move with huge differences.is able to have flexible candidate transitions from those

motion types.

27

Figure 3.11: Taking 3 motions as an example. The distance grids plot shows that the distance
between each pair of clips. (White point represents shorter distance. Red point represents

distance under threshold. Black peint represents longer distance.)

3.6.2 Constructing action graph

The action graph can be built ‘after we have training motion clips and the candidate
transitions in the database. A training motion clip contains a set of frames with all
information of the character, such as the position of the root joint, the orientation of each
joint, the reduced-dimensionality sensors' training data, and the corresponding number of
cluster. The training motion clip represents the node of the graph. The length of the node, or
the number of frames in a clip, should not set too long due to latency time. The longer size a
clip is, the longer accumulating time (latency) we have for collecting sensors' online received
data. We set ten to twenty frames per clip in our experiment, and the frame per second (FPS)
is about sixty in the system. A candidate transition contains the incoming node and outgoing
node, and the auto-generated a small set of frame containing with the information of the

position of the root joint and the orientation of each joint. A candidate transition represents

28

the edge of the graph.

To construct action graph, we place all of training motion clips as nodes, and connecting
two nodes with an edge if these two nodes are a candidate transition. However, the sink
nodes or dead end nodes may exist in the graph, and they make the following motion
infeasible. A dead end node occurs if there is no outgoing edge from this node, and a sink
node happened if this node does not connect at least two other nodes. Consequently, the
process of driving human motion by sensors will be halted if the system entered these nodes.
To fix this problem, we eliminate sink and dead end nodes by traversing all nodes and edges.

When the system is traversing the graph for reconstructing motion of avatar in run time,
it is able to synthesize the smooth motion from nodes and edges without spending extra time

on calculating the transit frames.

Figure 3.12: An example of action graph.

29

3.7 Hidden Markov Model

Signals received by motion sensors are continuous, time-varying, and easily interfere
with noises. Therefore, for generality reasonable and visually pleasant motion, we
characterize the statistical property of the signal data, and build a statistical model that is
assumed to be a Markov process with unobserved states. This model is capable of providing
the basis for a theoretical description of a signal processing system, and also can be used to
provide us a desired output sequence of clips for reconstructing human motion. More
specifically, instead of traversing the node of graph by calculating the nearest neighbor, we
make use of a probabilistic model, hidden Markov Model, to search the reasonable sequence
of training motion clips efficiently and. accurately:.

The hidden Markov Model (HMM) is a finite state machine that can be considered as
the simplest dynamic Bayesian network. Since the sequence of states in HMM is hidden,
they can only be conjectured by the given-the sequence of observations. There are a number
of researches using HMM to learn.the various signals such as speech recognition, gene
prediction, alignment of bio-sequence, etc. In our approach, the HMM is to be utilized in
human motion recognition.

A standard hidden Markov Model contains the following elements: states, possible
observations, state transition probability, observation (or emit) probabilities, and initial state
distribution.
® States: We denote the individual state as S = { s3, S, S3, ... , Sn }, Where n is the numbers
of state, and the state at time t as g;. Though the state is hidden, but the physical significance
Is attached to sets of states of the model. Hence, a training motion clip represents as single
state in our approach, and each state dependently decides the next state.
® Possible observations: We denote the individual possible observations as O = {0;, 0,

03, ... , Om }, Where m is the numbers of distinct possible observation per state. It is

30

correspondent with the output of the system being modeled. A data cluster obtained by
motion sensor represents the possible observation in our approach.
® State transition probability: We denote the state transition probability distribution as 4 =

{ aij }, where

aj=Plg1=silae=s], 1<i,j<n (12)

® Observation probability: We denote the observation probability distribution as B =

{ Si(k) }, where

Bi(k) = Plogatt| q; = s;], 1<i<n 1<k<m (13)

® Initial state distribution: We denote the initial state distribution as 7" = { y; }, where

IA
IA
3

Yi = Play =5, 1 (14)
We denote the parameter of the model as 7 = (4, B, I") for convenience. To derive the 4,
B, I"in our approach, we will discuss it in the following section. Besides, there are a few of

important constrains on the above three probability distributions, which are as the following:

(OSaij,ﬁi(k),)/iSL 1Sl,]§n
n
Z al-j=1, 1<i<n
j=1
{ ©m (15)
B.(k) = 1, 1<i<n
k=1
n
=1
DT

31

Given a HMM, there are three basic problems:
® Given the model 7= and observation sequence O, how do we efficiently calculate the
probability P (O | 7)?
® Given the model 7 and observation sequence O, how do we generate the state sequence
S that is most likely the optimal one?
® Given the model # = (4, B, "), how do we adjust the parameters to maximize the
probability P (O | 7)?

There are standard solutions to solve these problems. For the first one, instead of
computing all of the possible state sequences, it is better to efficiently perform forward
algorithm by dynamic programming. For the second one, a formal solution to find a state
sequence is also a dynamic programming algorithm, which is called Viterbi algorithm. This
algorithm is closely related to forward algorithm for the computation of maximum
probability, and thus the state Sequence is derived by backtracking method. Besides, it is the
most related to our approach. Namely, the problem of our system is how we generate the
optimal sequence of motion clips based on the clusters obtained by motion sensor. For the
final, the Baum-Welch method is the formal solution to adjust parameters to maximize the
probability.

Therefore, our system applies the dynamic programming algorithm to derive the clip
sequence, which is a method modified by the solution of Viterbi algorithm. Instead of finding
a single Viterbi path, we compute more than one paths to blend them into one. To do so, we
first compute the transition probability distribution 4 and the initial probability distribution I”
in action graph, and the observation probability distribution B from each node in graph to
each cluster. With the probability distribution, we are able to build the hidden Markov Model

w = (A, B, I'') for the later usage.

32

3.7.1 Generate states and observations

Before we construct the model 7, we first generate two sets. They are states S = { sy, Sy,
S3, ..., Sp }, and observations O = { 01, 02, 03, ..., on }, Where n is the numbers of states and
m is the numbers of distinct possible observation per state.

As we mention, the training motion is divided into several clips, and action graph
connects each smoothly pair of clips. Assume that the directed action graphis G = (V, E).
The set of vertices is denoted by V = { v1, V2, v3, ..., vq }, and the set of edges is denoted by E
={ ey, € €3 ..., ey}, Where w is the numbers of edge. The amount of nodes is the same as
the amount of motion clips. Then we are now utilizing nodes of the action graph as the states
of HMM. More specifically, we assign each vertex v; to the state s;, for all i is from 1 to n.

The online received data obtained by motion sensors for driving avatar are set into a
group c; using LDA method in each duration time t.\When the t = m occurs, we form the
sequence of clusters C = {'Ci, Cy.C3 ., em }. Then we assign each cluster c; to the
observation o;, for all j is from 1 to_m. Given the'model = and states S, this procedure is
iteratively running in real-time in order to uncover the hidden states for reconstructing

human motion.

3.7.2 Probability distributions

Now we are going to generate three probability distributions, the state transition
probability distribution 4 = { ajj }, the observation probability distribution B = { gi(k) }, and
the initial state distribution as 7" = { yi }, where 1 < i,j < n, nis the numbers of states,
and 1 < k < m, m is the numbers of cluster. Therefore, our system is able to build the

model # = (4, B, I'").

33

Cluster Cluster Cluster
A B M

Figure 3.13: An example of hidden‘Markov Madel that combines the action graph and the
clusters with probability distribution. (The state transition probability distribution is denoted
as A = { a;j }. The observation probability distribution is denoted as B = { fi(k) }. The initial

state distribution is denoted as 7" = { yi }.)

Given the directed action graph G = (V ,E),V={ vy, Vv, V3, ..., vn},and E = { e, e,
€3, ..., ew }, Where w is the numbers of edge. In order to generate the state transition
probability, we first simply assign the state probability a;; = 0 if the edge e, connecting from
node i to node j does not exist, namely the edge ex & E, where 1 < i,j < n and
1 < x < w. If the edge e, € E, we compute the probability as follows. Considering our

action graph is constructed dependent on normalized Euclidean distance, and the intuition is

34

that human usually tend to act the similar motion rather than the dissimilar. Hence, we
calculate the probability by that the longer distance having with the lower probability and the
shorter distance having with the higher probability.

We denote the normalized distance from node i to node j as Distij, and the Ginrenold
represents the user-define threshold for automatically candidates generation. The state

probability distribution is computed by equation (16).

Gthreshold - DlSti,j

Zv(vi,v j)EE(Gthreshold — Dist; j)

@;; Vv, ,1 <i,) <n (16)
About observation probability, concerning that the clusters are partitioned by applying
LDA on the online received data by sensors. Therefore, we calculate the discriminant value
for each cluster and normalize these values to be the probability distribution from one state to
each cluster. Besides, we subtract normalized discriminant value from one since the smaller
value implies the larger probability.
We denote the normalized discriminant value from node i to cluster k as Disci(k). The

observation probability distribution is computed by equation (17).
1.0 — Disc;(k)

(k) = <i< <k <
pi (k) T 1.0 = Disc,(IF)) 1<i<n 1<k<m (17

Every time the system starts to reconstruct motion, we ask user to stand the same pose
as the avatar in the first training motion clip. Therefore, we generate the initial probability

distribution by equation (18).

Y1 = 1.0
{Vi = 0.0, 2<i<n (18)

35

3.7.3 Viterbi algorithm

In order to get the maximum probability of the path in states, we adapt a dynamic
programming algorithm, Viterbi algorithm, to derive the most likely sequence of hidden
states. This path is sometimes called Viterbi path, and it represents the optimal sequence of
hidden state corresponding to given observations.

There are a few of assumptions satisfied in a first-order hidden Markov Model before
we apply Viterbi algorithm. The state sequence S and observation sequence O must be
aligned by time point t with the same amount. Besides, to uncover the hidden state s;, it can

only be computed by the dependence on the observation o; and the optimal sequence at point

(t-1).

Observations

WW
.«» .o H
Am AA AA

WW VW WW WV

States

‘
W

1/\\ Nf\ N ’

-4 H'/"“

Figure 3.14: An example of Viterbi algorithm by given states and observations.

36

We are going to apply the Viterbi algorithm with the given hidden Markov Model 7= =
(A4, B, I') and states S = { sy, Sp, S3, ..., sn }. Say we observe online received data O = { 0y,
02, O3, ... , om } from motion sensors, and the state sequence X = { X1, X2, X3, ... , Xm } Most
likely be produced by the recurrence relations.

We denote the probability of optimal sequence as Z(i), that is in charge of the first k

observations on state i.

(19)

IA A
IA A

{21(1') = Bi(o1) " vi) k=1) 1

Zi () = Bi(or) -maxyes(ay; * Zx_1 (D)), 2 <k < m,

Since the Viterbi algorithm is based on dynamic programming method, the optimal
sequence, or Viterbi path, can be «retrieved by saving back pointers, U(i), for the first k

observations on state i.

Ui () =0 , k=1) <i<
. . . (20)
Up(i) = arg max,es (axl- 'Zk_l(l)), 2 <k <m, <i<
Then, we need a temporary state sequence Y = { y1, Y2, Y3, .. , Ym }-
yi = arg max(Z, (D) , 1<k<m (21)

1<isn

Finally, the Viterbi Path can be derived by the back tracking by the following

recursively equation.

X = Ups1Vks1) k=m-1m-2m-3,..,1 (22)

37

3.8 Motion Blending

In order to produce the motion which is not in the database, we propose performing
motion blending methods. Rather than finding a single Viterbi path with the maximum
probability, we find more than one path. If their maximal probabilities are close enough, or
larger than user-define threshold, we blend the motion clips from paths.

A optimal sequence of hidden states is obtained by the given model =z, states S and
observations O using canonical Viterbi algorithm, and this sequence possess the maximum
probability comparing with other sequences. This optimal sequence, Viterbi path, is formed
the sequence of motion clips for reconstructing human motion. But there is a limitation. For
example, we have training motion that character. swings a bat upward and downward. If a
user tries to swing forward, the system derives the Virterbi path either swinging upward or
swinging downward, depending on - whose probability is larger. However, this motion might
be blended using exist training clips.. Therefore, we obtain the first v maximum probability D
={dj, dy, ds, ..., dy} and the corresponding Virterhi paths H = { hy, hy, hs, ..., hy}, where v
is the user-defined threshold of path amount. Probability d; is assigned by the iy, maximal
value of Z(j) and h; is derived by the recurrence equation, 1 < i < v, 1 < j < n.

Then, we collect the probability d; such that piprenoia < diy 2 < i < v, Where prnreshold
is a user-defined threshold from zero to one. This threshold constrains the smallest
probability that the corresponding state sequence can be blended. More specifically, we blend
the sequence h; into h; with setting the ratio of weights if the d; meets the threshold; otherwise
we drop the sequence h;. The ratio of blending weight is denoted by W = { wa, Wp, ws, ...,
w; }, where | is the last sequence which d; meets the constraint if | = v or Pinreshold = di+1. The

elemental value of W is computed by the following equation.

38

——, 1<i<lI (23)

3.9 Real-time Motion Reconstruction

The user should wear a few of Wii remotes with MotionPlus as the motion sensors. In
the beginning, we put all sensors on a flat surface, and the system automatically detects the
background noise to revise the coming sensors' data every time. Then, the online received
data are collected into data pool for duration, and the system reduce the dimension of data by
applying PCA as section 3.3. By user-defined weights, the significance between acceleration
and angular velocity can be evaluated by the user. The final online received data is
partitioned by performing LDA as section 3.5, and its group is represented as an observation
in HMM. These procedures are.iterative operated until the number of observations reaches to
the expected number.

When the number of observations is sufficient, the HMM is integrated with action graph
and clusters. This model provides the-final motion more reliable and of theorization. To
reconstruct motion, we apply modified Viterbi algorithm on multiple paths as section 3.8.
Namely, we blend closet clips and transitions for unseen motions beyond the database. The
blended clips and transitions are synthesized into a series of frames displaying on the screen,
and the above procedures are also running for reconstructing next motion in the meanwhile.

Besides, since reconstructing the combination of different motion categories is more
complex than a specific motion, we should ask the user to wear more sensors to provide
sufficient information. That is, our system calculates the variation of angular rate on two
wrist and two legs from the training motion database and those variations are normalized into
percentage. For example, the percentages on two wrists are higher than two legs on sword

playing motion. On the contrary, the percentages on two wrists are lower on walking motion.

39

Finally, our system also performs on various motions with training data and sensors’

percentage information of angular rate. To implement it, we give a user-defined bonus on

probability Z(i) from equation (19) if percentages on two wrists and legs are matched.

In our multi-threading system, reconstructed motions can be run at a rate of 0.016

seconds/frame, which are around 60 frames per second (FPS) animation. Therefore, this

system provides the user to drive avatar’s motion by inexpensive sensors in real-time

performance. Furthermore, this easy-to-use system can also be applied to advanced

interaction systems, such as games, computer animation, or virtual environment.

B\ R
- \ \

4
&
Acceleration Angul.ar
Velocity
§ rca 1 §

§ Wweight §

LDA
o

Reconstructed Motion

Li

(X X o

Viterbi Path 1

Maximal probability 1

000-

Figure 3.15: The framework to reconstruct human motion by sensors.

40

4. Implementation of Our System

Our system is implemented by using C++ language of object-oriented programming and
built based on .NET Framework 3.5 with Visual Studio 2008. Several external library are
utilized as well, such as OpenGL, MATLAB and WiiYourself. OpenGL library renders the
scene and avatar, MATLAB calculates the singular value decomposition for polynomial
function, and WiiYourself connects the Wii Remotes with MotionPlus via Bluetooth
technology. The graphic user interface (GUI) is developed through windows form. Besides,
Our system performs in multi-threading styles: one for collecting and processing the online
received data by sensors, and another for rendering the reconstructed human motion.

The procedure of this system includes loading motion, training motion, and connecting
motion sensors for driving character animation in real-time. Furthermore, we also implement
four other methods to reconstruct motion in comparison with our approach, which are
k-nearest neighbor (KNN), principle component analysis (PCA), linear discriminant analysis
(LDA), and polynomial function.
® KNN: We have motion sensors' data associated with training motion clips. During
runtime, we search for k clips that are the closest to the incoming sensing data in the database,
and blending them into one for playing back human motion.
® PCA: We have reduced-dimensionality motion sensors' data associated with training
motion clips. During runtime, we search for the closet training motion clips from incoming
reduced-dimensionality sensors' data in the database, and playing back human motion.
® [|DA: We have motion sensors' data associated with training motion clips, and we
compute the linear discriminant function f; for each training motion clip i. When new input
data comes, we play back human motion clip j if fjreturns the minimum discriminant value

from all of functions.

41

® Polynomial: We assume that positions of skeleton joints create a vector, sensors' data are
variables, and degree of polynomial is dynamically selected by the user. Then coefficients are
calculated by applying singular value decomposition (SVD), which is the canonical solution
of linear least squares, and they are stored in the database. Finally, when new input data

comes, we are able to reconstruct human motions by polynomial function.

System
| |) | | j |
Load Train Sensors
Motions Motions

{ Settings Methods

|
| . | l I] 1
/ ’ / /

{ KNN PCA LDA Polynomial

Figure 4.1: A simple tree of system framework is showed. Five methods to drive character’s

animation for comparison will be displayed by different colors.

This system begins with loading motion capture data from CMU MoCap library as the
exemplar training motion, and the data contains the information of the position of root joint
and the local rotations of other joints on each frame. Then, the global positions of the
skeleton are computed for rendering skeleton, and we apply the training process with these

information. Finally, the training motions are stored in the database for later driving avatar's

42

motion in real-time. Since we present four other methods in our implementation, those
avatars are separated with different colors in order to distinguish the reconstructed motion
from different methods. The red avatar is our approach, the purple one is KNN method, the
orange one is PCA method, the pink one is LDA method, and the yellow one is polynomial

method. Besides, the blue avatar represents the training motion from motion capture device.

(-‘an‘ Character Animation Driven by Sparse M

File RMS Render
FPS : 61.16 (1§.35ms) BYH | Reduce Marker Set | Wii Remote | Info. | (RM-based IK) |
. . _ Lock Setting
Skeleton soale | 7 H
Root X Y Z —=
e Room scale i 2 +}
- % b P Tenske [0 [[Fooreigt | 0 2]
— . —
- .* il Rowte [[PaySped [1[5
m L & -
‘ z &\ Non-root Render
= Robte F F F [¥] Render BVH motion
[] Render testing motion

UL R Y . ["] Render reconstructed motion
["] Render RM-based IK motion

@ i
Load BVH Motion Renderwii O "oten

sword

= 02)) 2 Go e ¢

[

Next frame.

Figure 4.2: A screenshot of our system. The blue avatar represents the motion from training
database. The red avatar represents the motion reconstructed by our approach. The purple
avatar represents the motion reconstructed by KNN. The orange avatar represents the motion
reconstructed by PCA. The pink avatar represents the motion reconstructed by LDA. The

yellow avatar represents the motion reconstructed by polynomial.

43

EYH | Reduce Morker Set | Wii Remote | Info. | (RM-based IK)|

[BYH_| Redue Macker St | Wi Remote [Info, | RM-based 1K) | BYH | Reduce MorkerSet| WiiRemote |ufo. | (Rbi-based IK) |
Lock Betting Train setting Wi Infomation
Skeleton scale 4= Method of redueed marker Press "Connect” to find the Wi remote.
Root ¥ YV E))
Room seals T = © Pobynomial ©) Tnverse Matrie
Tenste [[[FlocrHeigh 0 o= li)atamh’ajning goaypam Messeae
Rawe [[[Byl | 1 |2 o Attt @ Rty
= () Position-based () Segmented body parts
Nom-root Render © Combissfion Stats Mo comneetion
' © Wiisrmotes dats
Rowe [] [] [] [7ReoderBVHmotion v B Rate 120 ¢ 3333333 1)
Render testing motion 1 =
. Degree = U
Render reconstrocted motion y
Render RM-based IK motion Pringipel markers
o B Setting | Methods | Data
e & 80 anEnD -
) swort a] Wil Senstiity (1-100): 8 z
0 oE @ Total Wii-Remotes {1-5): 4 =
aa Teftfoot =
[B Wimote-] (MOO0) ON Leftfoo D
Wiimote-3 (COMCIC]) ON [Rightfoot z
Predict setting
Polynornial dats weight Thme coherence Wiimole-3 (LLJMCT) O Left hand =
ingVel | 050 2 Fomewmber | 5 |- Wiimote-4 (OCJCIM)~ 0N Righthand =
Pos [Fomeinerval | 2 2 Winotes (WMD) OFF NILL
Low pass fltsr Recond or Recognize
Angnlar velocity Tabit Euler angles Local joint positinn Humber of ies ! 5| Treining label 0 E
oty | 3¢
Frogress:
Trsin BVHs l
‘ Load predicting data ‘
Load trained database
Figure 4.3: Tab pages to all functions.
Setting | Methods | Diata. |Seﬂ:ing | Methads |Da1:a |
Wiimotes Frames of duration | 10 [+
Wi Sensitivity (1-100): 8 : Tome warping -
iti Graph Digt, Threshold | 0.20 [=
Totel Wi-Remotes (1-5) s = Transiton frames ' :

) Aetinn Grraph Clostered Number | 4 [2
Winote-1 (MOCC) oM Leftfoot e . z
Winow-2 (CMOC]) " OF Rightfoot Clustering BElend Prob. Threshold | 020 [=

ifmote- 00 = =

- Motion Blending Blending Number | 3 =
Witnote-3 (CJTIMC) ON Lefthand z .) z
Wiimote dats weight
Witmote-4 (LLILJM) O Right hand - Aecelerstion | 050 (=] Angulax Velocity | 050 =
Wiimote-5 { MBC) OFF |NULL
Reconstrmetion Color Render multiple skeletons
Recond or Recognize
HMM Red Observation Number | 3 [=
Wumber of times: 1 = Traning label:] -
~ = [C] KhN Puigle Waye Featre
Druration (sec). I Save Vel and Aec.] Eca Orange Frequeney =
D LD4 Pink Increass -
Progress:
[J [C] Polynornial — Vellow Virtual matker for angles

Figure 4.4: Tab pages in "Wii Remote."

44

5. Experiments and Results

Our experiments perform on a desktop with Intel® Core™ i7-930 Processor, 6GB main
memory, and AT| Radeon HD 5770 graphics card. In our experiments, there are five motions
in our training database, which are walking, running, sword playing, basketball free throw,
and baseball pitch.

To drive a specific motion, our approach is able to provide a smooth and high quality of
reconstructed motion by wearing one or two motion sensors. However, few sensors are
unfeasible to be applied to combination of motions, due to insufficient information for
distinguish from one motion to the other.

To drive a series of motions;.such as running, sword playing, and then walking, we need
to ask the user wears three or-four sensors. Since the ratios of variations of orientations on
two wrists and two legs are different for each motion category, and they can be calculated
from training database in pre-processing, those attached sensors can provide the reliable
information on variations of orientation. Therefore, when the user is trying to drive a
character from one motion to the other, such as from walking to sword playing, we can
evaluate that the variation of orientations on legs decreases and on wrists increases.

The variation of orientations & is defined as below.

0 - \/2?—2(% aan) (24)
n

where n is the total frame number, z; represents in frame f and joint i, the summation
of orientation on x, y, z rotations in training motion data, or pitch, roll, yaw rotations in

sensors’ data.

45

Table 5.1: Average ratio of orientation on five motions.

Average ratio of orientation

Sensor |Tra|n|ng| Sensor |Tra|n|ng| Sensor |Tra|n|ng| Sensor |Tra|n|ng| Sensor |Tr

Walking Running Sword playing Basketballfree Baseball pltch
throw

Figure 5.1: Average ratio of orientation on five motions.

46

Motions Data
Right hand | Left hand | Right foot | Left foot
Sensors data 0.183 0.208 0.330 0.279
Walking
Training database 0.149 0.180 0.319 0.352
Sensors data 0.179 0.181 0.324 0.316
Running
Training database 0.130 0.123 0.366 0.381
Sensors data 0.558 0.117 0.171 0.154
Sword playing
Training database 0.415 0.153 0.216 0.216
Basketball free Sensors data 0.517 0.255 0.120 0.108
throw Training database 0.365 0.479 0.076 0.080
Sensors data 0.470 0.280 0.123 0.127
Baseball pitch
Training database 0.353 0.208 0.188 0.251
100% -
o0% - N~ N
80% -
70% +—
60% +—
50% | M Left foot
40% +— Right foot
30% + M Left hand
20% -
10% - I M Right hand
0%
aining

5.1 Experimental Design

In our experiment, we use four motion sensors attached on user's wrists and legs to
derive acceleration and angular velocity with the same data weights in 60Hz frame rate
(16.6667ms). All parameters of our approach are described as follows. We set 10 frames for a
training motion clip, 10 clusters for training data, 3 observations length for the hidden
Markov Model. Besides, for the action graph, we set the distance threshold G:pesnoia 10 0.2
for a specific motion and 0.35 for the combination of different motions. The blending
probability threshold pireshord 1S Set to 0.2 for the modified Viterbi algorithm.

The motion capture data from CMU Maocap_library is used as the ground truth data.
They are walking, running, sword playing, basketball. free throw, and baseball pitch. To
measure the accuracy of our ‘approach, we perform the evaluation by applying Root Mean
Square (RMS). Besides, the "accuracy of four other methods are compared as well. The
ground motion and reconstructed maotions are conyverted from joint angle data to joint local
position data for error calculation, and the error value £ of RMS is computed by Euclidean

distance by the equation defined as below.

N2
£ = RMS(a)f, ﬁf) = \/2?_1(wf’;l_ wf’i) (25)

where w; is the ground truth motion data, @y is the reconstructed motion, f is the
frame index number, n is the total dimension, and wy; is the i" dimension of ;.

For comparison, we also compute RMS for other reconstructing methods, and those are
k-nearest neighbor (KNN), principle component analysis (PCA), linear discriminant analysis

(LDA), and polynomial function.

47

5.2 Experimental Result

Table 5.2: Average RMS on five motions.

Average RMS

Processing Frame
Motions Our

time (sec.) | numbers KNN | PCA | LDA |Polynomial

approach

Walking 8.71 529 2.927 3.857 | 3.480 | 3.479 3.793
Running 3.53 202 2.082 4,185 | 4.723 | 4.790 3.597
Sword

12.15 749 6.542 7.540 | 6.708 | 7.893 6.526
playing
Basketball

6.24 362 6.809 7.180 | 7.262 | 6.842 7.9695
free throw
Baseball

5.26 320 5.242 7.936 | 7.981 | 6.999 7.108
pitch
9
8
7
6 B Our approach
5 m KNN
4 mPCA
3 1 LDA
2 7 Polynomial
1 -
0 — T T T

Walking Running Sword Playing Free Throw Pitch

Figure 5.2: Average RMS on five motions.

48

Figure 5.3: Screen shots on reconstructing walking motion. The avatars from left to right are

ground truth, our approach, KNN, PCA, LDA, and Polynomial functions.

Figure 5.4: Screen shots on reconstructing running motion. The avatars from left to right are

ground truth, our approach, KNN, PCA, LDA, and Polynomial functions.

Figure 5.5: Screen shots on reconstructing sword playing motion. The avatars from left to

right are ground truth, our approach, KNN, PCA, LDA, and Polynomial functions.

Figure 5.6: Screen shots on reconstructing basketball free throw motion. The avatars from left

to right are ground truth, our approach, KNN, PCA, LDA, and Polynomial functions.

TooU g/~

Figure 5.7: Screen shots on reconstructing baseball pitch motion. The avatars from left to

right are ground truth, our approach, KNN, PCA, LDA, and Polynomial functions.

5.3 Discussion

In experiments, we demonstrate that our approach possesses the better results than other
four methods, according to the lower RMS error. Though, we perform motion blending
method, which makes the reconstructed motion with beyond to the training motion but similar
to user's action. This RMS value is also accounted.

Our approach is also applicable if the user suddenly stops an action or changes one
motion to the other. Namely, if we observe that variations of orientations from all sensors
suddenly decrease substantially, our model is able to stop reconstructing motion with keeping
the same pose as the user. If the significant variation of orientations alters, such as from hands
to legs or from legs to hands, the probability on Viterbi algorithm can be tuned automatically
by system in the meanwhile. Then;, it computes the maximum possibility on motion sequence
to follow up the user's action.

Furthermore, we solve the problem of synthesizing motions by applying graph structure,
and thus the final reconstructed motion‘is much more continuous than others without using
graph structure. Although this problem can also be solved by setting considerable frames in a
training motion clip, the longer latency time to accumulate online sensors' data is a critical
side effect.

Finally, in our approach, the PCA method reduces the dimension of sensors' data and it
preserves the 99% of the motion variance. The LDA method analyzes separating each cluster
by subspace projection, and it also preserves as much of the cluster discriminatory
information as much as possible. Therefore, our system is able to run in real-time

performance, which is around 60 frames per second (60 FPS) rate.

54

6. Conclusions

In this thesis, we propose a novel method to drive avatar’s motion by utilizing sparse
motion sensors. We ask a user to follow training motion and record the data of acceleration
and angular velocity to retrieve features associating with training motion. Then, the training
motion is divided into several small overlaying clips, and these clips are partitioned based on
Euclidean distance by applying K-means method. Besides, we solve motion synthesis
problem by constructing an action graph to connect each smooth pair of clips. While
applying hidden Markov Model and performing the modified Viterbi algorithm on multiple
paths, the reconstructed motion is much more reasonable and is capable of playing motion
unseen in the database. Finally, ausercan drive character animation by motion sensors.

The Wii remotes with MotionPlus are the only requirements for capturing motion
features, and the automatic pre-processing and post-processing can be prevent users from
setting a few of threshold constraints. Therefore, our approach is able to provide low-cost but
high quality full-body motion in interactive applications, and it performs in environment

without motion capture device.

55

References

[AT04]

[CHO5]

[CHPO7]

[CIMO3]

[FBRAO7]

Agarwal, A. and Triggs, B. 2004. 3D Human Pose from Silhouettes by
Relevance \ector Regression. cvpr, vol. 2, pp.882-888, 2004. IEEE
Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR'04) - Volume 2.

Chai, J. and Hodgins, J. K. 2005. Performance animation from
low-dimensional control signals. ACM Trans. Graph. 24, 3 (Jul. 2005),

Pp. 686-696.

Cooper, S., Hertzmann, A., and Popovi¢, Z. 2007. Active learning for
real-time motion controllers. In ACM-SIGGRAPH 2007 Papers (San
Diego, California, August 05 =09, 2007). SIGGRAPH '07. ACM, New

York, NY, 5.

Chu, C.W. , Jenkins, O.C., and Mataric, M. J. 2003. Markerless Kinematic
Model and Motion Capture from Volume Sequences, cvpr, vol. 2, pp.475,
2003 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR '03) - Volume 2.

Farella, E., Benini, L., Ricco, E., and Acquaviva, A. 2007. MOCA: A
Low-Power, Low-Cost Motion Capture System Based on Integrated
Accelerometers. In Advances in Multimedia, vol. 2007, Article 1D 82638,

11 pages.

56

[IWZL09]

[J02]

[KGP02]

[KGO5]

[LH99]

[LZWMO6]

Ishigaki, S., White, T., Zordan, V. B., and Liu, C. K. 2009.
Performance-based control interface for character animation. ACM Trans.

Graph. 28, 3 (Jul. 2009), pp. 1-8.

Jolliffe, I.T.. Principal Component Analysis, 2nd, Springer, 2002.

Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. ACM Trans.

Graph. 21, 3 (Jul. 2002), pp. 473-482.

Kwon, D. Y. and Grass, M. 2005. Combining body sensors and visual
sensors for motion training. In Proceedings of the 2005 ACM SIGCHI
international = Conference on* Advances in Computer Entertainment
Technology "(Valencia, Spain, June 15 - 17, 2005). ACE '05, vol. 265.

ACM, New York, NY, pp. 94-101.

Lee, J. and Ha, 1. 1999. Sensor fusion and calibration for motion captures
using accelerometers. Robotics and Automation, 1999. Proceedings. 1999

IEEE International Conference on , vol.3, pp.1954-1959.

Liu, G., Zhang, J., Wang, W., and McMillan, L. 2006. Human motion
estimation from a reduced marker set. In Proceedings of the 2006
Symposium on interactive 3D Graphics and Games (Redwood City,
California, March 14 - 17, 2006). 13D '06. ACM, New York, NY, pp.

35-42.

57

[MKO1]

[MRWS*99]

[R90]

[SHO84]

[SHO8b]

Martinez, A.M. and Kak, A.C. , 2001. PCA versus LDA. Pattern Analysis
and Machine Intelligence, IEEE Transactions on , vol.23, no.2,

pp.228-233.

Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.R. 1999.
Fisher discriminant analysis with kernels. Neural Networks for Signal
Processing X, 1999. Proceedings of the 1999 IEEE Signal Processing

Society Workshop, pp. 41-48.

Rabiner, L. R. 1990. ‘A tutorial- on hidden Markov models and selected
applications in‘speech recognition. In‘Readings in Speech Recognition, A.
Waibel and K. Lee, Eds. Morgan Kaufmann Publishers, San Francisco,

CA, pp. 267-296.

Shiratori, T. and Hodgins, J."K. 2008. Accelerometer-based user interfaces
for the control of a physically simulated character. ACM Trans. Graph. 27,

5 (Dec. 2008), pp. 1-9.

Slyper, R. and Hodgins, J. K. 2008. Action capture with accelerometers.
In Proceedings of the 2008 ACM Siggraph/Eurographics Symposium on
Computer Animation (Dublin, Ireland, July 07 - 09, 2008). Symposium on
Computer Animation. Eurographics Association, Aire-la-Ville,

Switzerland, pp. 193-199.

58

[SHO9] Scherfgen, D. and Herpers, R. 2009. 3D tracking using multiple Nintendo
Wii Remotes: a simple consumer hardware tracking approach. In
Proceedings of the 2009 Conference on Future Play on @ GDC Canada
(Vancouver, British Columbia, Canada, May 12 - 13, 2009). Future Play

'09. ACM, New York, NY, pp. 31-32.

[TLO6] Tiesel, J. P. and Loviscach, J. 2006. A Mobile Low-Cost Motion Capture

System Based on Accelerometers. In Advances in Visual Computing.

[XKCG*08] Xie, L., Kumar, M., Cao, Y., Gracanin, D., and Quek, F. 2008. Data-driven

motion estimation with low-cost sensors. Visual Information Engineering,

2008. VIE 2008. 5th International Conference on , vol., no., pp.600-605.

[CMUMocap] CMU Graphics Lab Motion Capture Database.

http://mocap.cs.cmu.edu/

[InvenSense] MEMS Gyro | Gyroscope | Motion Plus | Processing - InvenSense Home.

http://invensense.com/index.html

[Nintendo] Nintendo of America Inc. Headquarters are in Redmond, Washington.

http://www.nintendo.com/wii

[WiiYourself] WiiYourself — gl.tter’s native C++ Wiimote library.

http://wiiyourself.gl.tter.org/

59

