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以少量的動作感知器來驅動角色動作之研究 

 

  學生：劉峻豪 指導教授：林奕成博士 

 

國立交通大學 

多媒體工程研究所 

 

摘要 

 動作捕捉系統提供了一個高品質且準確的技術，來驅動虛擬角色的動作。然而，昂

貴的價格與繁雜的後續處理過程，使得此一技術難以普遍運用在互動式的環境中。在本

論文中，我們提出一個利用少量的感知器裝置，即可驅動角色動作的方法。首先，我們

要求使用者配戴少量的感知器，並且跟隨範例動作舞動，以取得一動作主題於感知器之

間的特性。其次，動作資料會切成數個片段，並且以動作圖的資料結構，連接各個平順

的片段動作。然後，透過隱馬爾可夫模型來計算一動作片段至另一片段的機率，我們發

現此動作重建的方法，可以更加真實及可靠。最後，為了增加動作的變化性，我們更進

一步的混合類似使用者舞動的數個片段，而資料庫則無此一還原動作片段。因此，在即

時的互動介面環境下，使用者可利用少量且廉價的動作感知器裝置，以驅動虛擬角色的

動作。此外，該簡易之系統裝置，更可運用於各類高級互動之介面系統。 

 

關鍵字：電腦動畫，互動介面，WII控制器，感知器。 
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Character Animation Driven by Sparse Motion Sensors 

 

   Student: Chun-Hao Liu Advisor: Dr. I-Chen Lin 

 

Institute of Multimedia Engineering 

National Chiao Tung University 

Abstract 
 

 Motion capture devices provide an accurate and high definition technique to generate 

avatar’s motion from reality. Nevertheless, the expensive cost and tedious post-processing 

make it difficult to gain the popularity and to perform on interactive applications. In this 

thesis, we propose a data-driven approach to drive character animation by sparse motion 

sensors. To acquire the motion characteristics of a subject (player), we ask a user to follow 

exemplar motion and record the acceleration and angular velocity from sparse motion 

sensors. The motion data are then divided into several clips, and we construct the action 

graph to connect each smooth pair of clips. While applying hidden Markov Model to 

calculate the probability of transition from one clip to the other, it shows that the 

reconstructed motion is much more realistic and reliable. Finally, to extend the motion 

variety, we farther blend clips that are similar to user's action for playing motion unseen in 

the database. In real-time, the user is capable of driving avatar’s motion by inexpensive 

sensors. In addition, such an easy-to-use system can also be applied to advanced interaction 

systems. 

 

Keywords: Computer animation, interactive interfaces, Wii remotes, sensors.  
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1. Introduction 

 

1.1 Motivation 

 

 In recent years, the computer generated characters can be seen in lots of interesting 

regions, such as cartoons, movies, games or virtual environments. Nevertheless, the most 

popular technique to drive motion of characters is through motion capture device, which is 

tedious to setup, high-cost and time-consuming. To solve this problem, there have been many 

researches that discuss about this topic, such as using camera to catch silhouette, or wearing 

Wii remotes to receive acceleration data and predict human motions. 

 However, most existing methods used motion recognition but regards less on reasonable 

motion transition. Taking a baseball player as an example, most of the batter will perform 

three actions on the field, which are stance, swinging bat, and stretchy. Most of methods by 

motion recognition will reconstruct this sequence of swinging bat well with data sensors. But 

if he suddenly detects that the coming ball is in the strike zone when the batter stops 

swinging suddenly, this immediate transition between swinging and stopping will not be 

considered in most of recognizing methods. Besides, existing methods mostly recognize and 

playback motion in database, and limit the variety of character motion. 

 In this thesis, we propose another a novel approach to capture human motion from 

sparse off-the-shelf motion sensors. In our system, we use Wii remotes with MotionPlus as 

our input, where accelerometer and the gyroscope inside provide us motion signals to 

reconstruct human motion in real-time. The proposed motion estimation system provides 

high performance and accuracy of reconstructing smooth human motion in real-time, so that 

it will be adequate to various interactive applications. 
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Figure 1.1: Wii remotes with MotionPlus. [Nintendo] 

 

 

Figure 1.2: System diagram of motion sensors. [Invensense] 

 

1.2 Background 

 

 A famous game corporation, Nintendo, has developed a new TV game console, Wii, in 

the late 2006. Meanwhile, they also introduced an innovative controller, Wii remote, also 

called Wiimote, which contains not only buttons but the IR sensor and three-axis 

accelerometer. The accelerometer captures net force acting on Wiimote in the range from -3g 

to 3g, where g is gravitational acceleration. 

 In June 2009, an expansion device for Wii remote, MotionPlus, was released for 



3 

capturing the complex motion with more degree of accuracy. With three-axis gyroscope, 

MotionPlus can receive the local angular velocity in pitch, roll and yaw rotations. In other 

words, the data of local rotation derived by Wii remote is much more precise. 

 Since the Wiimote and MotionPlus off-the-shelf are not expensive, in this research, we 

put one to five such devices on subject’s limbs, and propose an efficient algorithm to 

reconstruct subject’s motion from sensing data. 

 Two critical issues in MotionPlus are initialization and error accumulation. In order to 

fix initial error, we should put MotionPlus on a flat surface and the system will automatically 

detect the background noise of MotionPlus, and revise the new coming value every time. To 

fix accumulated the pitch and roll rotation can be calibrated by the relative direction of 

gravity. Since there is no relationship between the yaw rotation and gravity (yaw rotation is 

horizontal to the plane), in most Wii games, they used the sensor bar position in IR camera 

for yaw calibration. In other words, the yaw rotation is set to zero whenever Wii remotes 

pointing toward the sensor bar. 

 

 

Figure 1.3: The velocity value of pitch, roll and yaw rotations before fixing the background 

noise of MotionPlus 
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Figure 1.4: The velocity value of pitch, roll and yaw rotations after fixing the background 

noise of MotionPlus 

 

1.3 Frameworks 

 

 In this thesis, we propose a data-driven method to reconstruct human motion in 

real-time. First of all, we use motion capture data from CMU MoCap Lab. To associate the 

data for motion sensors with actual motion we require, we acquire users to wear Wii remotes 

with MotionPlus and ask them to follow the motion playback on the screen. To avoid sensors’ 

data are asynchronous with user’s action, we divide training motion into several short 

segments, it makes user easier to follow up and make our motion alignment more accurate 

(Sec. 3.1). Besides, the training motion is divided into several training motion clips for later 

reconstruction (Sec. 3.2). Then, we use principal component analysis (PCA) to reduce the 

dimensionality of sensors' data (Sec. 3.3). 

 In the second stage, we perform the k-mean method to cluster training motion clips into 

several groups, relying on the reduced-dimensionality data by PCA (Sec 3.4). For the 
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performance issue, rather than calculating the difference between input data from Wii 

remotes to each clusters, we utilize implementing linear discriminant analysis (LDA) for 

dimensionality reduction before later classification (Sec. 3.5). Afterward, we construct an 

action graph to connect each smooth pair of training motion clips, depending on the total 

Euclidean distance between the positions of one's end frame to the position of other's start 

frame (Sec. 3.6). It is not necessary that consider the middle frames of clip since a clip is 

short. 

 In the third stage, we calculate the transition probability in action graph, and the 

probabilities from each node in graph to each cluster. With these pre-processed data, we can 

construct the hidden Markov Model (HMM) as a database for reconstruction (Sec. 3.7). The 

hidden states are nodes in action graph, and observations are clusters of acceleration and 

angular velocity. In order to get the maximum probability of the path in transitions, we 

implement a dynamic programming algorithm, Viterbi algorithm, for finding the most likely 

sequence of hidden states. This Viterbi path will result in a smooth and reasonable motion. 

 Finally, in order to produce the motion which is not in the database, we propose 

performing motion blending methods. Rather than finding a single Viterbi path with the 

maximum probability, we find more than one path. If their maximal probabilities are close 

enough, or larger than a user-define threshold, we blend the training motion clips from 

Viterbi paths (Sec. 3.8). 

 In real-time motion reconstruction, the user should wear Wii remotes with MotionPlus 

as the motion sensors (Sec. 3.9). Our system performs in multi-threading styles: one for 

collecting and processing the data by sensors, and other for rendering the reconstructed 

human motion.  
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2. Related Works 

 

 Since the topic of 3D animation becomes popular in modern days, more and more 

researchers and corporations pay attention to the significance of transforming human motion 

from reality into digital characters. There are two major technologies to capture human 

motions. One is employing optical systems, or the motion capture devices, and the other is 

non-optical systems, which often uses sensors as the substitution. 

 

2.1 Animations by Motion Capture Devices 

 

 

Figure 2.1: An example that character is driven by motion graph. [KGP02] 

 

 Kovar et al. [KGP02] proposed a method using the concept of graph structure to play 

continuous motion clips smoothly, where the closet frames were found to transit between clip 

pairs. By deliberating upon these supplementary transitions as edges of a directed graph, 

called motion graph, was automatically constructed by setting the threshold and blend two 

clips by applying spherical linear interpolation (Slerp). A nodes of graph was the sequence of 

frames, or what we called the motion clip. To generate continuous motions, the largest 

strongly connected component (SCC) of the motion graph was the only one can be used. 
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 In this thesis, we take advantage of graph structure, building an action graph to address 

the problem in motion synthesis. Specifically, when a user drives the character in different 

categories, such as from running to boxing, our system traverses graph nodes and searches a 

proper path from running to boxing motion. This path guarantees that the motion clips and 

transitions are synthesized smoothly. 

 

 

Figure 2.2 The principal markers are shown 

in black and the estimated markers are 

shown in red. [LZWM06] 

 

Figure 2.3: The golden model represents the 

actual pose data. The cyan model shows an 

estimated pose. [LZWM06] 

 

Liu et al. [LZWM06] proposed that they used an adequate subset of original markers on 

motion capture were sufficient to predict the whole markers for subtle variations in human 

motions. The main concept was to build piecewise linear models and search principal 

markers automatically by off-line data training, and then to construct the three dimensional 

motion models. 

 By using position information with a small set of markers, this approach is able to 

derived the position for a large amount of non-principal markers. Besides, this method is 

based on a few markers with motion models, instead of considerable markers with motion 

database. Hence, the less requirements are appropriate to interactive applications.  

 However, if samples of training data were insufficient, it possibly results in an 

erroneous estimation given an unseen motion. Furthermore, because it only operates on 
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position data, which is difficult to be obtained for popularity by off the shelf low-cost devices 

like Wii remotes. Namely, when a user demands to control the position of a marker or a joint, 

it is uncontrollable due to none of the position information by reality. In our approach, our 

system can be applied position data, the acceleration or angular velocity data from Wii 

remotes.  

 

 

Figure 2.4: The above pictures are that user wearing markers to control the full-body motion 

of avatar in from of two synchronized cameras. [CH05] 

 

 

Figure 2.5: System overview. [CH05] 
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 Chai et al. [CH05] introduced to employ two synchronized cameras and a few of 

retro-reflective markers to reconstruct full-body motion of avatar. The major difference to the 

[Liu et al. 2006] was that they take the location of the markers, by using video cameras as the 

input. This system consisted of three significant components, which were motion 

performance, online local modeling, and online motion synthesis. In other words, this system 

first extracted positions of markers, which specified the desired trajectories of certain points 

on the animated character. Then, it searched the closest to signals by neighbor graph in the 

database. Finally, they synthesized motions to smooth the reconstructed animation of avatar. 

 This approach performs six motion categories, walking, running, hopping, jumping, 

boxing, and Kendo (Japanese sword art) from low-dimensional signals in real-time. Besides, 

since only two cameras and a small number of markers are required, it is not as expensive 

and cumbersome as the original motion capture devices. 

 However, this system demands for retro-reflective markers and synchronized cameras to 

perform motion as input, the issue of occlusion and post-processing make it remained 

impractical for home usage in recent years. Besides, the performing area is strongly limited if 

it is used in interactive application. 

 

2.2 Animation with Low-cost Sensors 

 

 

Figure 2.6: Snapshots of a user performing a calibration motion. [SH08b] 
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 Slyper et al. [SH08b] proposed a method to capture human motion based on 

accelerometers. The accelerometer, ADXL 330, is the same MEMS as the Wii remotes. This 

approach was to install five ADXL 330 on a shirt, which were on each forearm, upper arm, 

and one on the chest. By measuring the acceleration value of human motion, they proceeded 

to compare clips of motion accelerations in the database. Finally, the system played back the 

corresponding motion clip. The strengths of this approach were simple to implement and 

often perform accurately in some motions. 

 Nevertheless, when a user performs a complicated motion, this approach may match the 

wrong clips unless the training database is sufficient enough. But if the database is too large, 

the system needs more searching time in the database. Moreover, if the chosen frames of a 

motion clip is long, the latency will also be long; on the other hand, the transition between 

two clips will be visually non-fluent. Besides, this method only recognizes the motion on 

upper body. Once the lower body is taking into account, the system will be spoilt by 

interferences from more accelerometers, and the accuracy may decrease substantially. 

 

 

 

Figure 2.7: A user uses Wii remotes to control a bird character by physically simulation. 

[SH08a] 
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Figure 2.8: A state machine for walking. 

[SH08a] 

 

Figure 2.9: A state machine for running. 

[SH08a] 

 

 Shiratori et al. [SH08a] also used Wii remotes attached on user's arms, wrists, or legs to 

get the accelerations for the control of physically simulated character. In this approach, they 

formulated the data into features, such as frequency, mean, amplitude, etc. In the real-time, 

the physical simulation was processed by transforming these features into the corresponding 

motion. During the user study and analysis, they proved that three of the Wii remotes 

interfaces provide better control than the traditional joystick interface. 

 In this physically simulated system, a user controls a bird character by Wii remotes. 

There are four motions supported in this system, which are walk, run, jump and step. This 

character is able to arbitrarily change directions and movements (6 uncontrolled degrees of 

freedom, DOF), with two hips (3 DOFs) and two telescoping joints (1 DOF). Moreover, this 

system offers the potential for some natural responses to rough terrain and other disturbances, 

such as tumbling over or trembling. 

 But with the limitation on a few of acceleration information, there remains the 

ambiguity problem because of unobvious motions. Additionally, if there are more complex 

motions are desired except these four motions, there should be more complicated physically 

theories to support them. 
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Figure 2.10: Motion query and synthesis. [XKCG*08] 

 

 Xie et al. [XKCG*08] used a data-driven approach that operated the optical motion 

capture while attached four Wii remotes to a performer's body, for obtaining the 

frame-to-frame acceleration mapping. They reduced the dimensionality of acceleration data 

by implementing principal component analysis (PCA), and built a local linear model by 

applying radial basis function (RBF). After the data pre-preprocessing, the system could 

drive the character by database from input sensor data.  

 This proposed system can be used for various applications. Besides, since the 

dimensionality is reduced, this design will be scalable and is capable of large database 

without degradation. By a sufficient number of training examples, it is able to synthesize a 

great deal of disparities on human motions. 

 However, because the framework of this approach only concentrates on motion 

estimation, it suffers from the smoothness problem due to the noise in the sensor data, or 

different motion clusters synthesize together, such that the visual discontinuity of motion 

may happen. 
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Figure 2.11: Calibration Setup. [SH09] 

 

Figure 2.12: Triangulation. [SH09] 

 

 Scherfgen et al. [SH09] used two Wii remotes performing as cameras. Rather than 

applying accelerometers, they preferred to take advantages of IR sensors insides Wii remotes 

to do the tracking process. They calibrated Wii remotes' cameras by a calibration board with 

infrared reflectors and illuminated groups of them, following by applying triangulation, 

which was to track a 3D point position P by observing 2D point positions P1 and P2.  

 This approach allows an user to interact in a more intuitive way instead of just pressing 

buttons or applying the acceleration data into motion based on data-driven modeling. 

However, because of the triangulation dependent on targeting the ray at the same point in 3D 

space, when rays do not intersect due to the limited camera resolution, there will be 

numerical inaccuracy and the processing errors in the point detection.  
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3. Driving Character using Motion Sensors 

 

3.1 Training Data Collection 

 

 At first, we use motion capture data as training motion from CMU MoCap Lab. To 

avoid device dependant bias of sensor data, we acquire users to wear Wii remotes with 

MotionPlus on two wrists and legs, and ask them to follow the motion playing on the screen 

in order to associate the training data for motion sensors with actual motion. However, the 

directly retrieved Wii data often falls behind the training motion, since we often perform the 

action after we have seen the motion on the screen. Namely, it is not synchronized. 

 We propose two methods to solve this problem without using motion capture device. 

One is to use a “pause” button on Wii remote, which is a function key stopping the motion on 

the screen and waiting for the user’s response. This method can reduce most asynchronous 

problems on simple motions, but not the complex one. The other one is to divide training 

motion into several short segments, and we record the training sensor data with time warping 

using a finite state machine (FSM) controller. From our experimental result, the later one 

makes our motion alignment more accurate. 

 There are five states in the controller, including two pause states, a playing state, a 

recording state, and a time warping state. In the beginning, a user presses button one to 

waiting state, and playing the motion by pressing button two. Whenever the user plans to 

divide training motion into a segment, it goes to waiting state by pressing button two and it 

causes the motion stopping on the screen. Then by pressing button two again, the user should 

perform like the motion segment that he has seen on the screen; meanwhile, the acceleration 

and angular velocity from Wii controllers are recorded into buffer. When the user finishes his 

action, pressing button two to time warping state and the controller goes to waiting state 
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when it finished. In the time warping state, we simply perform linearly warping, because the 

motion segments are short and it is computationally efficient. The procedure is iteratively 

performed until the end frame of playback motion. Finally, the data will be stored in the 

database after we apply a low pass filter. 

 

 

Figure 3.1: The finite state machine of motion playing and the Wii remotes data record. 

 

 

Figure 3.2: An example of linearly time warping. 
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3.2 Motion Clips 

 

 In this stage, we are going to divide the training motion into several parts, or so called 

training motion clips in this thesis. A training motion clip is formally a sequence of frames, 

and associates with information between the displayed avatar and Wii sensors, such as joints' 

angles, skeleton's position, and training sensor data. This information will be utilized to drive 

the avatar for novel motions. There are two major methods to divide motion into clips.  

 The first method is to simply divide the whole training motion data into n parts, where n 

is a user-defined number. But this method will not take the sequence between two middle of 

clips into consideration. In other words, when the system is trying to reconstruct human 

motion from middle of ith clip to middle of (i + 1)th clip, it selects either one of them. 

However, whether what the result is, it is not expected.  

 The second method is rather than dividing into n parts, we take the overlay frames 

between two clips into account. Namely if there are k frames per clip, we divide the training 

motion starting from (k / 2) × i, where i = 1, 2, 3, …. Therefore, sequential frames between 

each pair can be considered and making the reconstructed motion acts more stable and 

flexible. In our approach, we prefer using the second method in the implementation. 

 

 

 

Figure 3.3: Motion clips without overlay 

frames. 

 

Figure 3.4: Motion clips with overlay frames. 
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3.3 Principal Component Analysis 

 

 After collecting the training or online received data from motion sensors, we need to 

maintain two matrices, an matrix of acceleration, and a matrix of angular velocity. The size 

of matrices are (𝐶 ∙ 𝑊 ∙ 𝐷 ∙ 3) × 𝑁, where C is the number of data training collections, W is 

the number of motion sensors, e.g. accelerometers and gyroscopes, D is the number of 

frames in a motion clips, 3 is for three dimensional axes, and N is the number of clips in 

training motion. However, the dimension of matrix grows larger as the C, W or D increases. 

Consequently, the huge dimension results in poor performance on reconstructing motion. 

 

 

Figure 3.5: PCA of a two dimensional sample data. 

 

 In order to efficiently execute matrix operation in real-time, the process of dimensional 

reduction is required. Therefore, we propose using principal component analysis (PCA) in 

advance. PCA is a eigenvector-based multivariate analysis, which turns plenty of possibly 

correlated data into a few of uncorrelated, or what we called principal components. These 
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components should also be responsible for the remaining variability; thus the 

reduced-dimensionality data persists for the significant features from the given huge 

information. 

 The major concept of PCA is an orthogonal linear transformation, which projecting the 

given data into new coordinates system. The projection is dependent on the variance of data, 

such that the first component contains the greatest variance, second component contains the 

second variance, etc. Therefore, when the enough number of principle components is 

extracted, they are able to stand for most of features in the given data. In our case, we reduce 

the dimensionality from 90 to 7. since it captures 99% of the motion variance.  

 

 

Figure 3.6: Percentage of variance explained by the principal components of angular velocity 

data set. 

 

 

Figure 3.7: Percentage of variance explained by the principal components of acceleration 

data set. 
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 To apply PCA in our sensors' data, we prepare two matrices for the training or online 

received data on acceleration and angular velocity by motion sensors. Since the procedures 

of PCA on angular velocity and acceleration are equivalent, we explain only the procedures 

of PCA on acceleration and denoting the data matrix as X of dimensions M × N, where 

𝑀 = (𝐶 ∙ 𝑊 ∙ 𝐷 ∙ 3) and N is the number of clips in training motion, C is the number of data 

training collections, W is the number of motion sensors, D is the number of frames in a clips, 

3 is for three dimensional axes. We calculate the mean vector on each column w of 

dimension M × 1. 

 

𝑤[𝑚] =  
∑ 𝑋[𝑚 , 𝑛]𝑁
𝑛=1

𝑁
  , 𝑚 = 1, 2, 3, … ,𝑀 (1) 

 

 Then, we produce a row vector t of dimension 1 × N, whose elements are all 1's. We 

subtract mean vector w from X to derive the new matrix X' of dimension M × N, whose 

mean is zero. 

 

𝑋′ = 𝑋 −  𝑤𝑡 (2) 

 

 We calculate the covariance matrix C of dimension M × M from the outer product of 

matrix X' with itself. The E is the expected value operator. 

 

C = E [ X' ×  X' ] (3) 

  

 Finally, we find the eigenvectors and eigenvalues of the covariance matrix C. The 

matrix of eigenvectors is denoted as V, and the D is the diagonal matrix that D[ m , m ] is the 

mth eigenvalue of C, where 1 ≤  𝑚 ≤ 𝑀. 
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D = V-1CV (4) 

 

 When applying PCA, we can choose components and forming feature vectors by 

eigenvectors with highest eigenvalues. The result of reduced-dimensional data 𝑟𝑖
𝑗

 is 

produced by the following equation: 

 

𝑟𝑖
𝑗
= (𝑣𝑖

𝑗
− 𝑣𝑗)𝐴𝑗

−1 (5) 

 

 where 𝑣𝑗  is the mean value of the clip j, 𝐴𝑗
−1 is the inverse matrix built from the 

eigenvectors V corresponding to the largest eigenvalues from C. 

 

 

Figure 3.8: We reduce the dimensionality of angular velocity matrix and acceleration matrix 

derived by motion sensor. 
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3.4 Clustering 

 

 When we derived the new incoming training data from motion sensor, computing all of 

training motion clips in the database to find the mostly correlated one is very inefficient, 

since the searching time increases as the database grows. Such approach results in poor 

performance and is difficult to be employed in interactive applications. We prefer to partition 

the reduced-dimensionality training sensors' data into a number of clusters in pre-processing. 

Besides, these clusters will be used in building a statistic model. Hence, this approach makes 

the reconstructed motion with the data-driven model efficiently by searching the closely 

cluster during the runtime. 

 Given a large set of reduced-dimensionality training data of acceleration and angular 

velocity, we assign each of them with different user-defined weight. We have to change 

weights relying on different motion categories. Since the gyroscope is sensitive in rotations, 

we should set a larger weight on angular velocity when motion categories are with small 

details, such as forehand driving or backhand slicing in tennis. On the contrary, we set a 

larger weight on acceleration when categories are differing with obvious differences, such as 

squatting or running, where the accelerometer is sufficient to recognize and the sensitive 

gyroscope may be the noise. 

 Finally, these two data are combined according to assigned weights. Assuming that there 

are M clusters that should be partitioned from the merged data, we apply the k-means method 

to derive the cluster of each data. These partitions are iteratively calculated by their 

Euclidean distance from data to the means value of the cluster, until each element belongs to 

the cluster with the nearest mean. 
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Figure 3.9: We partition the data into several clusters by K-means method. 

 

3.5 Linear Discriminant Analysis 

  

 After associating the training motion clips with their corresponding clusters, we apply 

linear discriminant analysis (LDA) for better discrimination. The LDA method analyzes 

separating each cluster by subspace projection, and it preserves as much of the cluster 

discriminatory information as much as possible. This method is widely utilized in many 

applications, such as machine learning, prediction, pattern recognition, etc. 
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Figure 3.10: Each cluster with its discriminant function. 

 

 First of all, we denote training or online received data matrix as x, which each row is the 

frame number of the training motion, and each column is the angular velocity or acceleration 

data. The goal of LDA is to compute a matrix W = [𝑤1|𝑤2|⋯ |𝑤𝐶−1], and the data of new 

coordinate yi is derived by projecting data x onto the wi, where 1 ≤  𝑖 ≤  𝐶 − 1 and C is 

the total number of clusters. 

 

 𝑦𝑖 = 𝑤𝑖
𝑇𝑥   →    𝑦 =  𝑊𝑡𝑥 (6) 

 

 To compute the optimal projection w*, we define a measure of the scatter in multivariate 

feature space x, or so called within-class scatter matrix. We denote it as SW in this thesis. 

 

𝑆𝑤 = ∑ (∑ (𝑥 − 𝑚𝑖)
𝑥𝜖𝐷𝑖

(𝑥 − 𝑚𝑖)
𝑡)

𝑐

𝑖=1
   ,     𝑚𝑖 = 

∑ 𝑥𝑥𝜖𝐷𝑖

𝑛
 (7) 

 

 Then, we compute the difference between means, or so called between-class scatter. We 

denote it as SB in this thesis. The rank of SB is as most (C - 1) since it is the sum of C matrices 

of rank one or less. 
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𝑆𝐵 = ∑ 𝑛𝑖(𝑚𝑖 −  𝑚)(𝑚𝑖 −  𝑚)
𝑡 

𝑐

𝑖=1
  ,     𝑚 =  

∑ 𝑥∀𝑥

𝑛
  (8) 

  

 Finally, the linear discriminant is defined as the linear function w
t
x that maximizes the 

ratio of between-class to with-in class scatter. The determinant of the scatter matrices is used 

to derive a scalar objective function. 

 

𝐽(𝑊) =  
|𝑊𝑡𝑆𝐵𝑊|

|𝑊𝑡𝑆𝑤𝑊|
  (9) 

 

 To obtain the optimal projection matrix W* that maximizes the ratio, we derive it by 

transforming into the following generalized eigenvalue problem. Namely, the columns of 

matrix are the eigenvectors corresponding to the largest eigenvalues. This projections with 

maximum separability information are the eigenvectors corresponding to the largest 

eigenvalues of 𝑆𝑤
−1𝑆𝐵. 

 

𝑊∗ = [𝑤1
∗|𝑤2

∗|⋯ |𝑤𝑐−1
∗ ] = 𝑎𝑟𝑔 𝑚𝑎𝑥 {

|𝑊𝑡𝑆𝐵𝑊|

|𝑊𝑡𝑆𝑤𝑊|
}  →   𝑆𝐵𝑤𝑖  =  𝜆𝑆𝑤𝑤𝑖 (10) 

 

 In runtime, we derive the projection data y' by projecting the matrix data x' from motion 

sensors, and we obtain its corresponding cluster by applying discriminant function f. The data 

x' is in cluster j if the function fj generates the minimum discriminant value. 

 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑥′) = 𝑎𝑟𝑔 𝑚𝑖𝑛
1≤𝑗≤𝐶−1

𝑓𝑗 = 𝑎𝑟𝑔 𝑚𝑖𝑛
1≤𝑗≤𝐶−1

(𝑦𝑗 −  𝑦′)
2
 (11) 
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3.6 Action Graph 

 

 Without the concept of graph structure, two similar motion clips belonging to different 

motion categories may mislead into one or another when reconstructing human motion. This 

causes a visually discontinuous motion, and the artificial result is hardly accepted in any 

interactive application. Although the discontinuous motion can be blended with convoluted 

filtering algorithms, such as low-pass filtering, it is not an ideal solution since it only 

alleviates the discontinuity. A direct method to solve it is increasing the numbers of frames in 

a clip, and thus it minimizes problems in synthesizing the discontinuous motion, which is 

also able to perform in real-time application. 

 However, the critical side effect of using this method is latency time. Namely the 

numbers of frames in a training motion clip increase, the accumulative time from online 

received sensors' data should also be longer. Besides, the searching time for a training motion 

clip also increases. Finally, the problem of synthesis still exists, and merely the frequency to 

combine two motion clips decreases. Therefore, in order to prevent the problem of 

smoothness from synthesizing two discontinuous motion clips due to ambiguity of sensor' 

data, we propose constructing an action graph to avoid it. The idea of action graph is similar 

to motion graph in [KGP02]. The graph node represents a training motion clip from the 

training motion, and the graph edge is automatically generated transitions.  

 

3.6.1 Detecting candidate transitions 

  

 When we have training motion clips from training motion database, we calculate the 

total Euclidean distance for each pair of clips, that is the difference from the positions of 

one's end frame to the position of other's start frame. It is not necessary that consider the 

middle frames of clip since a clip is short. After we have the distance between each pair of 
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training motion clips, we normalize the difference for finding the candidate transition. Then 

we construct a distance grid plot, whose element contains the normalized difference from one 

training motion clip to the other. It is beneficial to find candidate transitions and for 

probabilistic computation in hidden Markov Model. 

 In order to automatically search for the candidate transition, the user has to set Gthreshold, 

a threshold value between zero and one. Then the difference that is under the Gthreshold will 

form the candidate transition, or what will be the edge of the graph. About the threshold 

setting, there is no definite value for all of motions. It depends on what motion categories 

that user wants to perform. If the motion is common in everyday life, such as walking, 

jumping or running, it is suggested that threshold should be set lower. The lower threshold 

provides a smoother transition of clips. Because people are sensitive to those common 

motions and can be easily aware if the transition is unusual.  However, if the motion is a 

specific type like ballet or yoga, it is recommended that threshold is ought to be higher. 

Setting the higher threshold provides a higher connective graph. Therefore, the stretching or 

spinning move with huge differences is able to have flexible candidate transitions from those 

motion types. 
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Figure 3.11: Taking 3 motions as an example. The distance grids plot shows that the distance 

between each pair of clips. (White point represents shorter distance. Red point represents 

distance under threshold. Black point represents longer distance.) 

 

3.6.2 Constructing action graph 

 

 The action graph can be built after we have training motion clips and the candidate 

transitions in the database. A training motion clip contains a set of frames with all 

information of the character, such as the position of the root joint, the orientation of each 

joint, the reduced-dimensionality sensors' training data, and the corresponding number of 

cluster. The training motion clip represents the node of the graph. The length of the node, or 

the number of frames in a clip, should not set too long due to latency time. The longer size a 

clip is, the longer accumulating time (latency) we have for collecting sensors' online received 

data. We set ten to twenty frames per clip in our experiment, and the frame per second (FPS) 

is about sixty in the system. A candidate transition contains the incoming node and outgoing 

node, and the auto-generated a small set of frame containing with the information of the 

position of the root joint and the orientation of each joint. A candidate transition represents 
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the edge of the graph. 

 To construct action graph, we place all of training motion clips as nodes, and connecting 

two nodes with an edge if these two nodes are a candidate transition. However, the sink 

nodes or dead end nodes may exist in the graph, and they make the following motion 

infeasible. A dead end node occurs if there is no outgoing edge from this node, and a sink 

node happened if this node does not connect at least two other nodes. Consequently, the 

process of driving human motion by sensors will be halted if the system entered these nodes. 

To fix this problem, we eliminate sink and dead end nodes by traversing all nodes and edges. 

 When the system is traversing the graph for reconstructing motion of avatar in run time, 

it is able to synthesize the smooth motion from nodes and edges without spending extra time 

on calculating the transit frames. 

 

 

Figure 3.12: An example of action graph. 
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3.7 Hidden Markov Model 

 

 Signals received by motion sensors are continuous, time-varying, and easily interfere 

with noises. Therefore, for generality reasonable and visually pleasant motion, we 

characterize the statistical property of the signal data, and build a statistical model that is 

assumed to be a Markov process with unobserved states. This model is capable of providing 

the basis for a theoretical description of a signal processing system, and also can be used to 

provide us a desired output sequence of clips for reconstructing human motion. More 

specifically, instead of traversing the node of graph by calculating the nearest neighbor, we 

make use of a probabilistic model, hidden Markov Model, to search the reasonable sequence 

of training motion clips efficiently and accurately. 

 The hidden Markov Model (HMM) is a finite state machine that can be considered as 

the simplest dynamic Bayesian network. Since the sequence of states in HMM is hidden, 

they can only be conjectured by the given the sequence of observations. There are a number 

of researches using HMM to learn the various signals such as speech recognition, gene 

prediction, alignment of bio-sequence, etc. In our approach, the HMM is to be utilized in 

human motion recognition. 

 A standard hidden Markov Model contains the following elements: states, possible 

observations, state transition probability, observation (or emit) probabilities, and initial state 

distribution. 

 States: We denote the individual state as S = { s1, s2, s3, … , sn }, where n is the numbers 

of state, and the state at time t as qt. Though the state is hidden, but the physical significance 

is attached to sets of states of the model. Hence, a training motion clip represents as single 

state in our approach, and each state dependently decides the next state.  

 Possible observations: We denote the individual possible observations as O = { o1, o2, 

o3, … , om }, where m is the numbers of distinct possible observation per state. It is 
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correspondent with the output of the system being modeled. A data cluster obtained by 

motion sensor represents the possible observation in our approach. 

 State transition probability: We denote the state transition probability distribution as Α = 

{ αij }, where 

 

𝛼𝑖𝑗 = 𝑃[𝑞𝑡+1 = 𝑠𝑗  | 𝑞𝑡 = 𝑠𝑖] , 1 ≤  𝑖 , 𝑗 ≤  𝑛 (12) 

 

 Observation probability: We denote the observation probability distribution as Β = 

{ βi(k) }, where 

 

𝛽𝑖(𝑘) = 𝑃[𝑜𝑘𝑎𝑡 𝑡 | 𝑞𝑡 = 𝑠𝑖] , 1 ≤  𝑖 ≤  𝑛,   1 ≤  𝑘 ≤  𝑚 (13) 

 

 Initial state distribution: We denote the initial state distribution as Γ = { γi }, where 

 

𝛾𝑖 =  𝑃[𝑞1 = 𝑠𝑖] , 1 ≤  𝑖 ≤  𝑛 (14) 

 

We denote the parameter of the model as π = ( Α, Β, Γ ) for convenience. To derive the Α, 

Β, Γ in our approach, we will discuss it in the following section. Besides, there are a few of 

important constrains on the above three probability distributions, which are as the following: 

 

{
 
 
 

 
 
 

 
0 ≤  𝛼𝑖𝑗  ,   𝛽𝑖(𝑘)  ,   𝛾𝑖 ≤ 1,              1 ≤  𝑖 , 𝑗 ≤  𝑛

∑ 𝛼𝑖𝑗 = 1,
𝑛

𝑗=1
                                      1 ≤  𝑖 ≤  𝑛

∑  𝛽𝑖(𝑘) = 1,
𝑚

𝑘=1
                                 1 ≤  𝑖 ≤  𝑛

∑   𝛾𝑖 = 1  
𝑛

𝑖=1
                                                              

 (15) 
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 Given a HMM, there are three basic problems: 

 Given the model π and observation sequence O, how do we efficiently calculate the 

probability P ( O | π )? 

 Given the model π and observation sequence O, how do we generate the state sequence 

S that is most likely the optimal one? 

 Given the model π = ( Α, Β, Γ ), how do we adjust the parameters to maximize the 

probability P ( O | π )? 

 There are standard solutions to solve these problems. For the first one, instead of 

computing all of the possible state sequences, it is better to efficiently perform forward 

algorithm by dynamic programming. For the second one, a formal solution to find a state 

sequence is also a dynamic programming algorithm, which is called Viterbi algorithm. This 

algorithm is closely related to forward algorithm for the computation of maximum 

probability, and thus the state sequence is derived by backtracking method. Besides, it is the 

most related to our approach. Namely, the problem of our system is how we generate the 

optimal sequence of motion clips based on the clusters obtained by motion sensor. For the 

final, the Baum-Welch method is the formal solution to adjust parameters to maximize the 

probability. 

 Therefore, our system applies the dynamic programming algorithm to derive the clip 

sequence, which is a method modified by the solution of Viterbi algorithm. Instead of finding 

a single Viterbi path, we compute more than one paths to blend them into one. To do so, we 

first compute the transition probability distribution Α and the initial probability distribution Γ 

in action graph, and the observation probability distribution Β from each node in graph to 

each cluster. With the probability distribution, we are able to build the hidden Markov Model 

π = ( Α, Β, Γ ) for the later usage. 
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3.7.1 Generate states and observations  

 

 Before we construct the model π, we first generate two sets. They are states S = { s1, s2, 

s3, … , sn }, and observations O = { o1, o2, o3, … , om }, where n is the numbers of states and 

m is the numbers of distinct possible observation per state. 

 As we mention, the training motion is divided into several clips, and action graph 

connects each smoothly pair of clips. Assume that the directed action graph is G = ( V , E ). 

The set of vertices is denoted by V = { v1, v2, v3, … , vn }, and the set of edges is denoted by E 

= { e1, e2, e3, … , ew }, where w is the numbers of edge. The amount of nodes is the same as 

the amount of motion clips. Then we are now utilizing nodes of the action graph as the states 

of HMM. More specifically, we assign each vertex vi to the state si, for all i is from 1 to n. 

 The online received data obtained by motion sensors for driving avatar are set into a 

group ct using LDA method in each duration time t. When the t = m occurs, we form the 

sequence of clusters C = { c1, c2, c3, … , cm }. Then we assign each cluster cj to the 

observation oj, for all j is from 1 to m. Given the model π and states S, this procedure is 

iteratively running in real-time in order to uncover the hidden states for reconstructing 

human motion. 

 

3.7.2 Probability distributions 

 

 Now we are going to generate three probability distributions, the state transition 

probability distribution Α = { αij }, the observation probability distribution Β = { βi(k) }, and 

the initial state distribution as Γ = { γi }, where 1 ≤  𝑖 , 𝑗 ≤  𝑛, n is the numbers of states, 

and 1 ≤  𝑘 ≤  𝑚, m is the numbers of cluster. Therefore, our system is able to build the 

model π = ( Α, Β, Γ ). 

 



34 

 

Figure 3.13: An example of hidden Markov Model that combines the action graph and the 

clusters with probability distribution. (The state transition probability distribution is denoted 

as Α = { αij }. The observation probability distribution is denoted as Β = { βi(k) }. The initial 

state distribution is denoted as Γ = { γi }.) 

 

 Given the directed action graph G = ( V , E ), V = { v1, v2, v3, … , vn }, and E = { e1, e2, 

e3, … , ew }, where w is the numbers of edge. In order to generate the state transition 

probability, we first simply assign the state probability αij = 0 if the edge ex connecting from 

node i to node j does not exist, namely the edge ex ∉ E, where 1 ≤  𝑖 , 𝑗 ≤  𝑛 and 

1 ≤  𝑥 ≤  𝑤. If the edge ex ∈ E, we compute the probability as follows. Considering our 

action graph is constructed dependent on normalized Euclidean distance, and the intuition is 
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that human usually tend to act the similar motion rather than the dissimilar. Hence, we 

calculate the probability by that the longer distance having with the lower probability and the 

shorter distance having with the higher probability. 

 We denote the normalized distance from node i to node j as Disti,j, and the Gthrehold 

represents the user-define threshold for automatically candidates generation. The state 

probability distribution is computed by equation (16). 

 

𝛼𝑖𝑗 = 
𝐺𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝐷𝑖𝑠𝑡𝑖,𝑗

∑ (𝐺𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝐷𝑖𝑠𝑡𝑖,𝑗)∀(𝑣𝑖,𝑣𝑗)∈𝐸

, ∀𝑣𝑖   , 1 ≤  𝑖 , 𝑗 ≤  𝑛 (16) 

 

 About observation probability, concerning that the clusters are partitioned by applying 

LDA on the online received data by sensors. Therefore, we calculate the discriminant value 

for each cluster and normalize these values to be the probability distribution from one state to 

each cluster. Besides, we subtract normalized discriminant value from one since the smaller 

value implies the larger probability. 

 We denote the normalized discriminant value from node i to cluster k as Disci(k). The 

observation probability distribution is computed by equation (17). 

 

𝛽𝑖(𝑘) =
1.0 − 𝐷𝑖𝑠𝑐𝑖(𝑘)

∑ (1.0 − 𝐷𝑖𝑠𝑐𝑖(𝑘′))
𝑚
𝑘′=1

 ,    1 ≤  𝑖 ≤  𝑛,   1 ≤  𝑘 ≤  𝑚 (17) 

 

 Every time the system starts to reconstruct motion, we ask user to stand the same pose 

as the avatar in the first training motion clip. Therefore, we generate the initial probability 

distribution by equation (18). 

 

{
𝛾1 = 1.0                                 
𝛾𝑖 = 0.0, 2 ≤  𝑖 ≤  𝑛

  (18) 
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3.7.3 Viterbi algorithm 

 In order to get the maximum probability of the path in states, we adapt a dynamic 

programming algorithm, Viterbi algorithm, to derive the most likely sequence of hidden 

states. This path is sometimes called Viterbi path, and it represents the optimal sequence of 

hidden state corresponding to given observations. 

 There are a few of assumptions satisfied in a first-order hidden Markov Model before 

we apply Viterbi algorithm. The state sequence S and observation sequence O must be 

aligned by time point t with the same amount. Besides, to uncover the hidden state st, it can 

only be computed by the dependence on the observation ot and the optimal sequence at point 

( t – 1 ). 

 

 

Figure 3.14: An example of Viterbi algorithm by given states and observations. 
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 We are going to apply the Viterbi algorithm with the given hidden Markov Model π = 

( Α, Β, Γ ) and states S = { s1, s2, s3, … , sn }. Say we observe online received data O = { o1, 

o2, o3, … , om } from motion sensors, and the state sequence X = { x1, x2, x3, … , xm } most 

likely be produced by the recurrence relations. 

 We denote the probability of optimal sequence as Zk(i), that is in charge of the first k 

observations on state i. 

 

{
 𝑍1(𝑖) =  𝛽𝑖(𝑜1) ∙ 𝛾𝑖                                         , 𝑘 = 1              , 1 ≤  𝑖 ≤  𝑛

 𝑍𝑘(𝑖) =  𝛽𝑖(𝑜𝑘) ∙ 𝑚𝑎𝑥𝑥∈𝑆(𝛼𝑥𝑖  ∙ 𝑍𝑘−1(𝑖)) , 2 ≤  𝑘 ≤  𝑚, 1 ≤  𝑖 ≤  𝑛
 (19) 

 

 Since the Viterbi algorithm is based on dynamic programming method, the optimal 

sequence, or Viterbi path, can be retrieved by saving back pointers, Uk(i), for the first k 

observations on state i.  

 

{
𝑈1(𝑖) = 0                                                   , 𝑘 = 1              , 1 ≤  𝑖 ≤  𝑛

𝑈𝑘(𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝑆 (𝛼𝑥𝑖  ∙ 𝑍𝑘−1(𝑖)) , 2 ≤  𝑘 ≤  𝑚, 1 ≤  𝑖 ≤  𝑛
 (20) 

 

 Then, we need a temporary state sequence Y = { y1, y2, y3, … , ym }. 

 

𝑦𝑘
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥

1 ≤ 𝑖 ≤ 𝑛
(𝑍𝑘(𝑖)) , 1 ≤  𝑘 ≤  𝑚 (21) 

 

 Finally, the Viterbi Path can be derived by the back tracking by the following 

recursively equation. 

 

𝑥𝑘
∗ = 𝑈𝑘+1(𝑦𝑘+1

∗ ) , 𝑘 = 𝑚 − 1,𝑚 − 2,𝑚 − 3,… , 1 (22) 

 



38 

3.8 Motion Blending 

 

 In order to produce the motion which is not in the database, we propose performing 

motion blending methods. Rather than finding a single Viterbi path with the maximum 

probability, we find more than one path. If their maximal probabilities are close enough, or 

larger than user-define threshold, we blend the motion clips from paths. 

 A optimal sequence of hidden states is obtained by the given model π, states S and 

observations O using canonical Viterbi algorithm, and this sequence possess the maximum 

probability comparing with other sequences. This optimal sequence, Viterbi path, is formed 

the sequence of motion clips for reconstructing human motion. But there is a limitation. For 

example, we have training motion that character swings a bat upward and downward. If a 

user tries to swing forward, the system derives the Virterbi path either swinging upward or 

swinging downward, depending on whose probability is larger. However, this motion might 

be blended using exist training clips. Therefore, we obtain the first v maximum probability D 

= { d1, d2, d3, … , dv } and the corresponding Virterbi paths H = { h1, h2, h3, … , hv }, where v 

is the user-defined threshold of path amount. Probability di is assigned by the ith maximal 

value of Zm(j) and hi is derived by the recurrence equation, 1 ≤  𝑖 ≤  𝑣, 1 ≤  𝑗 ≤  𝑛. 

 Then, we collect the probability di such that  𝑝𝑡ℎ𝑟𝑒ℎ𝑜𝑙𝑑 ≤ 𝑑𝑖, 2 ≤  𝑖 ≤  𝑣, where pthreshold 

is a user-defined threshold from zero to one. This threshold constrains the smallest 

probability that the corresponding state sequence can be blended. More specifically, we blend 

the sequence hi into h1 with setting the ratio of weights if the di meets the threshold; otherwise 

we drop the sequence hi. The ratio of blending weight is denoted by W = { w1, w2, w3, … , 

wl }, where l is the last sequence which dl meets the constraint if l = v or pthreshold > dl+1. The 

elemental value of W is computed by the following equation. 
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𝑤𝑖 = 
𝑑𝑖

∑ 𝑑𝑗
𝑙
𝑗=1

, 1 ≤  𝑖 ≤  𝑙 (23) 

 

3.9 Real-time Motion Reconstruction 

 

 The user should wear a few of Wii remotes with MotionPlus as the motion sensors. In 

the beginning, we put all sensors on a flat surface, and the system automatically detects the 

background noise to revise the coming sensors' data every time. Then, the online received 

data are collected into data pool for duration, and the system reduce the dimension of data by 

applying PCA as section 3.3. By user-defined weights, the significance between acceleration 

and angular velocity can be evaluated by the user. The final online received data is 

partitioned by performing LDA as section 3.5, and its group is represented as an observation 

in HMM. These procedures are iterative operated until the number of observations reaches to 

the expected number. 

 When the number of observations is sufficient, the HMM is integrated with action graph 

and clusters. This model provides the final motion more reliable and of theorization. To 

reconstruct motion, we apply modified Viterbi algorithm on multiple paths as section 3.8. 

Namely, we blend closet clips and transitions for unseen motions beyond the database. The 

blended clips and transitions are synthesized into a series of frames displaying on the screen, 

and the above procedures are also running for reconstructing next motion in the meanwhile. 

 Besides, since reconstructing the combination of different motion categories is more 

complex than a specific motion, we should ask the user to wear more sensors to provide 

sufficient information. That is, our system calculates the variation of angular rate on two 

wrist and two legs from the training motion database and those variations are normalized into 

percentage. For example, the percentages on two wrists are higher than two legs on sword 

playing motion. On the contrary, the percentages on two wrists are lower on walking motion. 
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Finally, our system also performs on various motions with training data and sensors’ 

percentage information of angular rate. To implement it, we give a user-defined bonus on 

probability Zk(i) from equation (19) if percentages on two wrists and legs are matched. 

 In our multi-threading system, reconstructed motions can be run at a rate of 0.016 

seconds/frame, which are around 60 frames per second (FPS) animation. Therefore, this 

system provides the user to drive avatar’s motion by inexpensive sensors in real-time 

performance. Furthermore, this easy-to-use system can also be applied to advanced 

interaction systems, such as games, computer animation, or virtual environment. 

 

 

Figure 3.15: The framework to reconstruct human motion by sensors. 
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4. Implementation of Our System 

 

 Our system is implemented by using C++ language of object-oriented programming and 

built based on .NET Framework 3.5 with Visual Studio 2008. Several external library are 

utilized as well, such as OpenGL, MATLAB and WiiYourself. OpenGL library renders the 

scene and avatar, MATLAB calculates the singular value decomposition for polynomial 

function, and WiiYourself connects the Wii Remotes with MotionPlus via Bluetooth 

technology. The graphic user interface (GUI) is developed through windows form. Besides, 

Our system performs in multi-threading styles: one for collecting and processing the online 

received data by sensors, and another for rendering the reconstructed human motion. 

 The procedure of this system includes loading motion, training motion, and connecting 

motion sensors for driving character animation in real-time. Furthermore, we also implement 

four other methods to reconstruct motion in comparison with our approach, which are 

k-nearest neighbor (KNN), principle component analysis (PCA), linear discriminant analysis 

(LDA), and polynomial function. 

 KNN: We have motion sensors' data associated with training motion clips. During 

runtime, we search for k clips that are the closest to the incoming sensing data in the database, 

and blending them into one for playing back human motion. 

 PCA: We have reduced-dimensionality motion sensors' data associated with training 

motion clips. During runtime, we search for the closet training motion clips from incoming 

reduced-dimensionality sensors' data in the database, and playing back human motion. 

 LDA: We have motion sensors' data associated with training motion clips, and we 

compute the linear discriminant function fi for each training motion clip i. When new input 

data comes, we play back human motion clip j if fj returns the minimum discriminant value 

from all of functions. 
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 Polynomial: We assume that positions of skeleton joints create a vector, sensors' data are 

variables, and degree of polynomial is dynamically selected by the user. Then coefficients are 

calculated by applying singular value decomposition (SVD), which is the canonical solution 

of linear least squares, and they are stored in the database. Finally, when new input data 

comes, we are able to reconstruct human motions by polynomial function. 

 

 

Figure 4.1: A simple tree of system framework is showed. Five methods to drive character’s 

animation for comparison will be displayed by different colors. 

 

 This system begins with loading motion capture data from CMU MoCap library as the 

exemplar training motion, and the data contains the information of the position of root joint 

and the local rotations of other joints on each frame. Then, the global positions of the 

skeleton are computed for rendering skeleton, and we apply the training process with these 

information. Finally, the training motions are stored in the database for later driving avatar's 
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motion in real-time. Since we present four other methods in our implementation, those 

avatars are separated with different colors in order to distinguish the reconstructed motion 

from different methods. The red avatar is our approach, the purple one is KNN method, the 

orange one is PCA method, the pink one is LDA method, and the yellow one is polynomial 

method. Besides, the blue avatar represents the training motion from motion capture device. 

 

 

Figure 4.2: A screenshot of our system. The blue avatar represents the motion from training 

database. The red avatar represents the motion reconstructed by our approach. The purple 

avatar represents the motion reconstructed by KNN. The orange avatar represents the motion 

reconstructed by PCA. The pink avatar represents the motion reconstructed by LDA. The 

yellow avatar represents the motion reconstructed by polynomial. 
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Figure 4.3: Tab pages to all functions. 

 

  

Figure 4.4: Tab pages in "Wii Remote." 
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5. Experiments and Results 

 

 Our experiments perform on a desktop with Intel® Core™ i7-930 Processor, 6GB main 

memory, and ATI Radeon HD 5770 graphics card. In our experiments, there are five motions 

in our training database, which are walking, running, sword playing, basketball free throw, 

and baseball pitch. 

 To drive a specific motion, our approach is able to provide a smooth and high quality of 

reconstructed motion by wearing one or two motion sensors. However, few sensors are 

unfeasible to be applied to combination of motions, due to insufficient information for 

distinguish from one motion to the other. 

To drive a series of motions, such as running, sword playing, and then walking, we need 

to ask the user wears three or four sensors. Since the ratios of variations of orientations on 

two wrists and two legs are different for each motion category, and they can be calculated 

from training database in pre-processing, those attached sensors can provide the reliable 

information on variations of orientation. Therefore, when the user is trying to drive a 

character from one motion to the other, such as from walking to sword playing, we can 

evaluate that the variation of orientations on legs decreases and on wrists increases. 

The variation of orientations θ is defined as below. 

 

𝜃 =   √
∑ (𝜏𝑓,𝑖 − 𝜏𝑓−1,𝑖)

2𝑛
𝑓=2

𝑛
 

(24) 

 

where n is the total frame number, 𝜏𝑓,𝑖 represents in frame f and joint i, the summation 

of orientation on x, y, z rotations in training motion data, or pitch, roll, yaw rotations in 

sensors’ data. 
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Table 5.1: Average ratio of orientation on five motions. 

 

 

Motions Data 

Average ratio of orientation  

Right hand Left hand Right foot Left foot 

Walking 

Sensors data 0.183 0.208 0.330 0.279 

Training database 0.149 0.180 0.319 0.352 

Running 

Sensors data 0.179 0.181 0.324 0.316 

Training database 0.130 0.123 0.366 0.381 

Sword playing 

Sensors data 0.558 0.117 0.171 0.154 

Training database 0.415 0.153 0.216 0.216 

Basketball free 

throw 

Sensors data 0.517 0.255 0.120 0.108 

Training database 0.365 0.479 0.076 0.080 

Baseball pitch 

Sensors data 0.470 0.280 0.123 0.127 

Training database 0.353 0.208 0.188 0.251 

 

Figure 5.1: Average ratio of orientation on five motions. 
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5.1 Experimental Design 

 

 In our experiment, we use four motion sensors attached on user's wrists and legs to 

derive acceleration and angular velocity with the same data weights in 60Hz frame rate 

(16.6667ms). All parameters of our approach are described as follows. We set 10 frames for a 

training motion clip, 10 clusters for training data, 3 observations length for the hidden 

Markov Model. Besides, for the action graph, we set the distance threshold 𝐺𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to 0.2 

for a specific motion and 0.35 for the combination of different motions. The blending 

probability threshold pthreshold is set to 0.2 for the modified Viterbi algorithm. 

 The motion capture data from CMU Mocap library is used as the ground truth data. 

They are walking, running, sword playing, basketball free throw, and baseball pitch. To 

measure the accuracy of our approach, we perform the evaluation by applying Root Mean 

Square (RMS). Besides, the accuracy of four other methods are compared as well. The 

ground motion and reconstructed motions are converted from joint angle data to joint local 

position data for error calculation, and the error value ε of RMS is computed by Euclidean 

distance by the equation defined as below. 

 

𝜀 =  𝑅𝑀𝑆(𝜔𝑓 , 𝜔̃𝑓) =  
√∑ (𝜔𝑓,𝑖 − 𝜔̃𝑓,𝑖)

2𝑛
𝑖=1

𝑛
 (25) 

 

 where 𝜔𝑓 is the ground truth motion data, 𝜔̃𝑓 is the reconstructed motion, f is the 

frame index number, n is the total dimension, and 𝜔𝑓,𝑖 is the i
th

 dimension of 𝜔𝑓. 

 For comparison, we also compute RMS for other reconstructing methods, and those are 

k-nearest neighbor (KNN), principle component analysis (PCA), linear discriminant analysis 

(LDA), and polynomial function. 
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5.2 Experimental Result 

 

Table 5.2: Average RMS on five motions. 

Motions 
Processing 

time (sec.) 

Frame 

numbers 

Average RMS 

Our 

approach 
KNN PCA LDA Polynomial 

Walking 8.71 529 2.927 3.857 3.480 3.479 3.793 

Running 3.53 202 2.082 4.185 4.723 4.790 3.597 

Sword 

playing 
12.15 749 6.542 7.540 6.708 7.893 6.526 

Basketball 

free throw 
6.24 362 6.809 7.180 7.262 6.842 7.9695 

Baseball 

pitch 
5.26 320 5.242 7.936 7.981 6.999 7.108 

 

 

Figure 5.2: Average RMS on five motions. 
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Figure 5.3: Screen shots on reconstructing walking motion. The avatars from left to right are 

ground truth, our approach, KNN, PCA, LDA, and Polynomial functions. 
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Figure 5.4: Screen shots on reconstructing running motion. The avatars from left to right are 

ground truth, our approach, KNN, PCA, LDA, and Polynomial functions. 



51 

 

Figure 5.5: Screen shots on reconstructing sword playing motion. The avatars from left to 

right are ground truth, our approach, KNN, PCA, LDA, and Polynomial functions. 
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Figure 5.6: Screen shots on reconstructing basketball free throw motion. The avatars from left 

to right are ground truth, our approach, KNN, PCA, LDA, and Polynomial functions. 
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Figure 5.7: Screen shots on reconstructing baseball pitch motion. The avatars from left to 

right are ground truth, our approach, KNN, PCA, LDA, and Polynomial functions. 
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5.3 Discussion 

  

 In experiments, we demonstrate that our approach possesses the better results than other 

four methods, according to the lower RMS error. Though, we perform motion blending 

method, which makes the reconstructed motion with beyond to the training motion but similar 

to user's action. This RMS value is also accounted. 

 Our approach is also applicable if the user suddenly stops an action or changes one 

motion to the other. Namely, if we observe that variations of orientations from all sensors 

suddenly decrease substantially, our model is able to stop reconstructing motion with keeping 

the same pose as the user. If the significant variation of orientations alters, such as from hands 

to legs or from legs to hands, the probability on Viterbi algorithm can be tuned automatically 

by system in the meanwhile. Then, it computes the maximum possibility on motion sequence 

to follow up the user's action. 

 Furthermore, we solve the problem of synthesizing motions by applying graph structure, 

and thus the final reconstructed motion is much more continuous than others without using 

graph structure. Although this problem can also be solved by setting considerable frames in a 

training motion clip, the longer latency time to accumulate online sensors' data is a critical 

side effect. 

 Finally, in our approach, the PCA method reduces the dimension of sensors' data and it 

preserves the 99% of the motion variance. The LDA method analyzes separating each cluster 

by subspace projection, and it also preserves as much of the cluster discriminatory 

information as much as possible. Therefore, our system is able to run in real-time 

performance, which is around 60 frames per second (60 FPS) rate. 
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6. Conclusions 

 

 In this thesis, we propose a novel method to drive avatar’s motion by utilizing sparse 

motion sensors. We ask a user to follow training motion and record the data of acceleration 

and angular velocity to retrieve features associating with training motion. Then, the training 

motion is divided into several small overlaying clips, and these clips are partitioned based on 

Euclidean distance by applying K-means method. Besides, we solve motion synthesis 

problem by constructing an action graph to connect each smooth pair of clips. While 

applying hidden Markov Model and performing the modified Viterbi algorithm on multiple 

paths, the reconstructed motion is much more reasonable and is capable of playing motion 

unseen in the database. Finally, a user can drive character animation by motion sensors. 

 The Wii remotes with MotionPlus are the only requirements for capturing motion 

features, and the automatic pre-processing and post-processing can be prevent users from 

setting a few of threshold constraints. Therefore, our approach is able to provide low-cost but 

high quality full-body motion in interactive applications, and it performs in environment 

without motion capture device. 
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