

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

基於視角的連續自我碰撞偵測以及在圖形處理

器上之加速

View-based Continuous Self-Collision Detection with

Graphics Hardware Acceleration

研 究 生：鄭游駿

指導教授：黃世強 教授

中 華 民 國 一 百 年 七 月

基於視角的連續自我碰撞偵測以及在圖形處理器上之加速

View-based Continuous Self-Collision Detection with Graphics Hardware

Acceleration

研 究 生：鄭游駿 Student ：Yu-Chun Cheng
指 導 教 授：黃世強 Advisor ：Sai-Keung Wong

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2011

Hsinchu, Taiwan, Republic of China

中 華 民 國 一 百 年 七 月

基於視角的連續自我碰撞偵測以及在圖形處理

器上之加速

研究生：鄭游駿 指導教授：黃世強 教授

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

摘要

在這篇論文中，我們提出了一個新的基於視角的方法來對可變形物體進行連

續自我碰撞偵測，首先我們會利用一個點或是一條線段等簡單的幾何元件來當作

基準，這些基準元件會被放置於可變形物體的內部，在整個物理模擬過程中，我

們會確保它們不會穿過該可變形物體，接著，我們會利用這些基準元件來定義可

變形物體中所有三角形的方向，根據每一個三角形的方向將整個可變形物體的三

角形做分堆，放進不同的視角集合裡，這個過程稱為視角測試。如果所有的三角

形都朝向基準元件，則該可變形物體中是沒有自我碰撞存在的，否則，我們將會

對某些成對的視角集合做進一步地處理。視角測試的計算量遠小於傳統的方法，

使用我們的方法來偵測自我碰撞，整體的效能是比較快的。此外，由於我們的方

法適合於平行運算，所以我們進一步地利用圖形處理器來實作我們的方法，進而

加速及改進整體的效能，實驗的數據顯示，利用我們的方法來偵測可變形物體的

自我碰撞，其效能不管是在 CPU上還是 GPU上都是令人滿意的。

i

View-based Continuous Self-Collision Detection

with Graphics Hardware Acceleration

Student: Yu-Chun Cheng Advisor: Sei-Keung Wong

National Chiao Tung University

Institute of Multimedia Engineering

Abstract

In this thesis, we propose a novel view-based approach for continuous self-collision

detection with deformable triangle meshes. At first, we compute a simple geometric prim-

itive, such as a point or a line segment. The primitive is put inside the deformable object,

and we assume that it does not penetrate the object during the simulation. Then, the prim-

itive is employed to determine the orientation of all triangles of the object. The triangles

are divided into several view sets according to their orientation each frame, and this proce-

dure is called view test. If all triangles face the primitives, then the object is self-collision

free. Otherwise, self-collision is detected for certain pairs of the view sets. The computa-

tion of the view-based approach is lower than traditional methods, such as regular patches

division and contour tests. Besides, our approach is suitable for parallel computing. We

implement the view-based approach on GPUs with CUDA and improve the performance

significantly. The experimental results show that the performance of the view-based ap-

proach for continuous self-collision detection is satisfied on both CPUs and GPUs.

ii

Acknowledgements

I would like to thank my advisor, Dr. Sai-Keung Wong, for his guidance, assistance,

and inspirations. His suggestion is very helpful for me to obtain the idea and develop the

framework of the thesis. In addition to support my work, he cared about our health and

gave much useful advice of philosophy of life to us. I would also like to thank my thesis

committee members, Dr. Ming-Te Chi and Dr. Wen-Chieh Lin, who evaluated my thesis.

I would like to thank all the labmates for their comments and help. They are so kind

and cute so that I can learn in a cheerful environment. Last but not the least, I thank my

parents for their unconditional support and patient. I hope it's my turn to take care of them.

Yu-Chun Cheng

July 2011

iii

Contents

摘要 i

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Motivation . 4

1.2 Overview . 4

1.3 Contribution . 6

1.4 Organization . 7

2 Related Work 8

3 View-based Scheme 11

3.1 View-based Models . 11

3.2 View Tests with a Point . 13

3.3 View Tests with a Line Segment . 17

3.4 View-based Self-Collision Detection . 25

iv

3.5 View-Point Scheme . 29

3.6 View-Line Scheme . 32

3.7 Discussion . 34

3.7.1 View-based approach vs. traditional approach 34

3.7.2 View-point vs. view-line . 35

4 Implementation on CPUs 37

4.1 Preprocessing . 37

4.1.1 Acceleration structure construction 37

4.1.2 View primitives computation . 39

4.1.3 Feature assignments . 40

4.1.4 Ghost triangles generation . 40

4.2 View Tests . 42

4.2.1 View-point scheme . 42

4.2.2 View-line scheme . 42

4.2.3 Triangle clusters . 43

4.3 Boundary Handling . 44

4.4 Traversal . 44

4.5 Elementary Tests . 47

5 Implementation on GPUs 49

5.1 GPU Architecture . 49

5.2 Use of Data on GPUs . 52

5.2.1 Static data . 52

5.2.2 Dynamic data . 52

5.2.3 Global memory allocation in advance 54

5.3 View Tests . 55

5.3.1 Vertex region determination . 56

5.3.2 Triangle type determination . 56

5.4 Boundary Handling . 57

v

5.5 Traversal . 60

5.6 Elementary Tests . 68

6 Results and Discussion 70

6.1 Animation Benchmarks . 70

6.2 Results on CPUs . 77

6.3 Results on GPUs . 82

6.4 Differences of Each Step on CPUs and on GPUs 84

6.5 Vertex Movement within a Frame . 88

6.6 Improvement with Triangle Clusters . 88

6.7 vBVHs Construction . 88

6.8 Discussion . 89

6.8.1 Closed and unclosed meshes . 89

6.8.2 Ghost triangles with or without ghost vertices 90

6.8.3 Comparison between the view-point and view-line scheme 91

7 Conclusion and Future Work 94

7.1 Conclusion . 94

7.2 Future Work . 95

Bibliography 97

vi

List of Figures

1.1 Two types of collision detection. Let ∆t be the time step. 3

3.1 The view-based point model. 12

3.2 The view-based line segment model. 12

3.3 Triangle orientation determination with a view-point at a certain time. . . 13

3.4 Triangle orientation determination with a view-point over a time interval. 16

3.5 Triangle orientation determination with a view-line at a certain time. . . . 17

3.6 Triangle orientation determination with a view-line at a certain time when

the triangle lies in multiple regions. 20

3.7 Triangle orientation determination with a view-line at a certain time when

the triangle lies in multiple regions. 20

3.8 Triangle orientation determination with a view-line over a time interval

when the triangle moves across multiple regions. 22

3.9 Triangle orientation determination with a view-line over a time interval

when the triangle moves across multiple regions. 25

3.10 A 2D closed curve with a ray shot outward. 26

3.11 2D closed curves with self-intersection. 27

3.12 A 2D unclosed curve with self-intersection. 29

3.13 An example of handling unclosed objects. 29

3.14 Negatively oriented edges according to the view-point and view-line schemes. 36

4.1 Ghost triangles with and without a ghost vertex. 41

4.2 Triangle clusters of a deformable object. 43

vii

4.3 Marking process of vBVHs. 46

4.4 Skipped nodes in the vBVHs are adopted in order to compress the vBVHs. 47

5.1 Summary table of various GPU architecture. (The information is quoted

from [NVI09].) . 51

5.2 Level-order node list of the BVH. 53

5.3 Preprocess the triangle type list before performing boundary handling. . . 59

5.4 The triangle type list. 63

5.5 Preprocess the triangle type list before performing traversal. 64

5.6 Examples for history lists. 66

5.7 History list with many redundant nodes and reasonable nodes. 66

5.8 PCPs array preprocessing. 69

6.1 A series of snapshots of Ani. one. The first row and the second row are

viewed from different viewpoints. 72

6.2 A series of snapshots of Ani. two. The first row and the second row are

viewed from different viewpoints. 72

6.3 A series of snapshots of Ani. three. 73

6.4 A series of snapshots of Ani. four. 73

6.5 A series of snapshots of Ani. five. 74

6.6 A series of snapshots of Ani. six. 74

6.7 The snapshots of Ani. one and two in wireframe. 75

6.8 The snapshots of Ani. three with ghost triangles. 75

6.9 The snapshots of Ani. five with ghost triangles. 76

6.10 The snapshots of Ani. six with ghost triangles. 76

6.11 The numbers of triangles of all kinds of view sets with the view-point

scheme for the six benchmarks. 80

6.12 The numbers of triangles of all kinds of view sets with the view-line

scheme for the six benchmarks. 81

viii

6.13 Comparisons of the number of negatively oriented triangles without con-

sidering violated triangles between the view-point scheme and the view-

line scheme. 93

7.1 Boundary edges roll and lay down. 96

ix

List of Tables

5.1 Salient features of device memory for devices of compute capability 1.x.

The information is quoted from [NVI10a]. 50

6.1 Model complexities and information of ghost triangles for unclosed models. 71

6.2 Execution time (inms) of each step with the view-point scheme on CPUs

for continuous self-collision detection. 79

6.3 Execution time (in ms) of each step with the view-line scheme on CPUs

for continuous self-collision detection. 79

6.4 Timing comparisons (in ms) between our view-based approach, AABB,

16-DOP, and ICCD for continuous self-collision detection. 79

6.5 Execution time (inms) of performing traversal in the beginning to obtain

the initial history nodes. 82

6.6 Execution time (inms) of each step with the view-point scheme on GPUs

for continuous self-collision detection. 82

6.7 Execution time (in ms) of each step with the view-line scheme on GPUs

for continuous self-collision detection. 83

6.8 Speed-up factors of each step with the view-point scheme using CPUs and

GPUs. 83

6.9 Speed-up factors of each step with the view-line scheme using CPUs and

GPUs. 83

6.10 Boundary handling with the view-line scheme by exact and inexact meth-

ods on CPUs. 86

x

6.11 Boundary handling with the view-line scheme by exact and inexact meth-

ods on GPUs. 86

6.12 Execution time (in ms) of performing traversal on GPUs with the view-

line scheme for three different policies. 87

6.13 The number of vertices within a frame on average according to their move-

ment. 88

6.14 The numbers of vertices and clusters of the deformable objects in the six

benchmarks. 89

6.15 Execution time (inms) of performing view tests in the view-line scheme

with triangle clusters. 89

6.16 The cost of marking all of the nodes in the preprocessing stage. 89

6.17 The numbers of triangles whose types are changed between two consecu-

tive frames on average with the view-line scheme. 90

6.18 Execution time (in ms) of boundary handling that the ghost triangles are

constructed with and without ghost vertices. 91

xi

Chapter 1

Introduction

Collision detection is an important and popular technique, and it is applied to several

areas, such as computer graphics, virtual reality, physics simulation, cloth simulation, and

computer animation. In general, objects are composed of triangle meshes in 3D space. We

can employ the technique to detect collision for interactions between all the triangles of

objects. So the movement of objects is reasonable and realistic. According to the types of

objects, the complexity of collision detection can be quite different. In the object-space,

the cost of performing collision detection is proportional to the number of triangles of

objects. For rigid objects, it is easy to detect collision by using the bounding boxes such

that swept volumes of the objects are covered. But for deformable objects, the computation

is more complicated and expensive. Besides, deformable objects, such as cloth, may have

a lot of self-collisions. We propose a novel view-based approach to perform self-collision

detection with deformable objects in order to improve the performance.

At first, we can employ view primitives inside the object to determine the orientation

of all triangles of deformable objects. And then the triangles are divided into several view

sets according to their orientation. There are four view sets described as follows.

1. V +: the triangles in V + face the view primitive.

2. V −: the triangles in V − are back to the view primitive.

3. V 0: the triangles in V 0 are coplanar to the view primitive at a certain time within a

1

frame.

4. V v: the triangles in V v are violated for unclosed meshes.

Note that we determine the triangles in V + to be positively oriented, and the triangles in

V − and V 0 to be negatively oriented. If all triangles face the view primitive, i.e. they

are positively oriented, the deformable object is determined to be self-collision free. Oth-

erwise, we can prove that there must be two triangles that one faces the view primitive

and another is back to the view primitive, or these two triangle are both coplanar to the

view primitive at the colliding position for a closed deformable object. So, we can detect

self-collision for certain pairs of the view sets. On the other hand, we employ GPUs to

improve the performance of self-collision detection because there are more processors on

GPUs, and our approach is suitable to be performed in parallel.

Collision detection can be classified into two types, discrete collision detection and

continuous collision detection. For discrete collision detection, we do not consider the

movement trajectories of objects. The cost of computation is lower, and it is faster than

continuous collision detection. But some collisions may be missed, and objects may pass

through each other within a frame. Therefore, discrete collision detection is inaccurate.

For continuous collision detection, the movement trajectories of objects are considered.

We interpolate the movement trajectories of objects between two frames. If the time step

of the simulation between two frames is smaller, we can obtain more accurate contact time

of two colliding objects. But the cost of computation is higher.

We illustrate the two types of collision detection in Figure 1.1: (a) discrete collision

detection, and (b) continuous collision detection. In Figure 1.1(a), the green ball is moving

toward the red ball at time T0. After a time step, we can obtain that the green ball and

the red ball are overlapping at time T1 by performing collision detection. Appropriate

treatment will be performed for the two balls at time T1. In fact, the collision has occurred

within the time interval [T0, T1]. In Figure 1.1(b), the green ball is moving toward the

red ball at time T0. We compute the movement trajectory of the green ball by using its

movement direction and velocity, and detect the collision between the two balls at time

T ′, where T ′ ∈ [T0, T1]. In this case, the two balls may move oppositely after appropriate

2

Figure 1.1: Two types of collision detection. Let ∆t be the time step.

treatment at time T ′.

Collision detection between different objects is called inter-object collision detection.

However, collision detection for an object itself is called intra(self)-object collision detec-

tion. For rigid objects, suppose that they are independent, and there is no collision between

themselves and the objects in the beginning. Theymay collide with or penetrate each other

when moving. For deformable objects, such as cloth, collision occurs not only between

the objects but also themselves. Therefore, self-collision detection should be handled for

deformable objects. The computation of collision detection is quite expensive. A lot of

techniques are developed to improve the performance of collision detection.

We can employ acceleration structures of objects to improve the performance of col-

lision detection, such as bounding volume hierarchies (BVH). Each triangle is bounded

by a bounding volume, and the acceleration structure is constructed by a top-down or a

bottom-up manner. A leaf node of the BVH only contains a triangle. At the beginning of

collision detection, we perform traversal for the BVHs of every two objects. The process

of traversal is executed recursively by performing overlap tests of the bounding volumes

until a pair of leaf nodes is reached. After that, we get a set of triangle pairs, called po-

tentially colliding pairs. Finally, we perform elementary tests for the potentially colliding

pairs to obtain the actual colliding triangle pairs.

3

1.1 Motivation

Nowadays, computer graphics and animation are widely applied in video games,

movies, mobile products, and smart phones. Collision detection is a primary technique

to simulate activity of objects. And the performance of collision detection should be not

only accurate but also interactive. In this thesis, our focus is on continuous self-collision

detection for deformable objects. The deformable objects are cloth, such as clothes worn

on a character. For cloth, there may be numerous self-collisions. Hence, the computation

is quite expensive, and it is a challenge to improve the performance of self-collision de-

tection for cloth. On the other hand, the development of graphics processing units (GPUs)

is rapid. GPUs are very suitable for computation of vectors in computer graphics. In ad-

dition, GPUs are employed for general purpose computation in recent years. Therefore,

we employ GPUs to deal with a large number of computation of self-collision detection.

1.2 Overview

The main problem of self-collision is the high cost in checking the adjacent triangles.

In fact, most adjacent triangles do not collide with each other. For the traditional method

[VMT94], they compute normal cones and perform contour tests. A model is divided into

several regular patches with hierarchical structures. The normal vectors of all triangles

are bounded in each patch by computing a normal cone during the simulation phase. In

the procedure, a lot of vectors and normalization are computed and the normal cones are

bottom-up updated by merging the patches. Finally, contour tests are performed to check

whether or not the model is self-collision free. Tang et al. [TCYM09] proposed a method

to compute tightly bounded normal cones. However, the cost of normal cones computation

is quite large due to computing additional vectors and normalization.

Hence, we want to eliminate the computation of normal cones and contour tests. We

propose a novel view-based approach to perform continuous self-collision detection. Our

method can be applied to deformable manifold triangle meshes, and we neither compute

normal cones nor perform contour tests. Objects are determined whether or not they are

4

self-collision free by performing view tests. View tests are performed for all triangles by

calculating dot products of the face normal vectors and the view-based vectors according

to the view primitive and the triangles. The cost of performing view tests is much lower

than computing the normal cones and performing contour tests. Our approach is suitable

for column-liked models, such as dresses, pants, and shirts. In addition, the deformable

objects should be closed. For unclosed trianglemeshes, we can add some ghost triangles to

enclose the boundaries. All edges are shared by two adjacent triangles for closed meshes.

For unclosed meshes, there are some edges which only attach to one triangle. So, we can

extract the boundary edges and generate the ghost triangles.

The view-based approach mainly has four steps, including view tests, boundary han-

dling, traversal, and elementary tests. In the step of view tests, a deformable object is

divided into several view sets based on their orientation related to a view primitive. The

view primitive should be put inside the deformable object in the beginning, and we as-

sume that it does not penetrate the deformable object during the simulation. All triangles

of the deformable object are classified into three types include positive orientation, nega-

tive orientation, and violation. For closed meshes, the triangles can be positively oriented

and negatively oriented. For unclosed meshes, the triangles can be positively oriented,

negatively oriented, and violated. If all triangles of an object are positively oriented, then

the object is self-collision free. Otherwise, further checks should be performed for certain

pairs of the view sets.

After performing view tests, traversal is performed to collect potentially colliding

triangle pairs based on negatively oriented triangles and violated triangles. If the number

of negatively oriented and violated triangles is few, the cost of performing traversal for

them is low. Finally, elementary tests are performed for the potentially colliding pairs.

In recent years, the techniques of GPUs are getting mature and popular. Parallel

computing is employed massively in computer graphics. Actually, our view-based ap-

proach is suitable to be performed in parallel on GPUs. We use GPUs to accelerate our

system with Compute Unified Device Architecture (CUDA). We evaluate our view-based

approach with other methods. Our approach on CPUs outperforms other traditional meth-

5

ods, such as the approaches based on AABB [vdB99], K-DOP [KHM+98, MKE03], and

ICCD [TCYM09]. Besides, our approach implemented on GPUs is 12 times faster than

the one on CPUs on average.

1.3 Contribution

Our major contributions of the thesis are described as follows.

1. A novel view-based approach for continuous self-collision detection with lower

computation is proposed.

2. Partial BVHs for all kinds of view sets are employed to perform traversal. We do not

construct new BVHs for the view sets but mark the nodes of the original BVH to ob-

tain the partial BVHs. The cost of marking nodes is low, and the cost of performing

traversal for these partial BVHs is low.

3. The view-based approach is implemented on GPUs with CUDA.We implement two

versions: CPUs and GPUs.

4. It is easy to implement the view-based approach on both CPUs and GPUs. The

concept of the view-based approach is simple and straightforward. A deformable

object is divided into several view sets by performing view tests with computation

of dot products.

5. Self-collision detectionwith triangle-based traversal is performed onGPUs. The de-

gree of parallelism for performing traversal is higher with the triangle-basedmethod.

In other words, traversal is performed based on each triangle on GPUs.

6. The view-based approach is suitable for different kinds of models. Deformable

objects are most suitable for column-liked objects, such as dresses, pants, bags, and

shirts. Besides, a piece of cloth, which can form a sphere-liked or a cube-liked

region, is also suitable for the view-based approach.

6

7. If an object is determined to be self-collision free after performing view tests, traver-

sal is not required to be performed and the computation is reduced significantly.

8. The performance of self-collision detection using the view-based approach is ac-

ceptable for an object with a lot of self-collision. We can extract a set of triangles

from an object by performing view tests that self-collision occurs at these triangles.

On CPUs, traversal is performed for the partial BVHs of the different view sets

respectively. On GPUs, traversal is performed with the triangle-based method.

1.4 Organization

The remaining chapters of the thesis are organized as follows. Chapter 2 reports the

related work about collision detection, including implementing on CPUs and on GPUs.

We present our view-based approach in Chapter 3. Chapter 4 and 5 present the view-

based algorithms and their implementations. Chapter 6 presents the experimental results

and discussion. Finally, Chapter 7 presents the conclusion and future work.

7

Chapter 2

Related Work

Collision detection is an important technique in physics simulation. A comprehensive

overview of collision detection for deformable objects can be found in the survey paper

[TKH+05].

By a brute force method, we can perform self-collision detection for all triangle pairs

of an object. If the number of triangles of an object is n, then we need to execute
(
n
2

)
elementary tests of all triangle pairs. A lot of techniques can be employed to improve the

performance of self-collision detection, including bounding volumes, spatial partition-

ing methods, and image-based methods. Bounding volume hierarchies are AABB trees

[vdB99], OBB trees [GLM96], k-DOP [KHM+98], and Sphere [PG95]. By using BVH, it

reduces the checking of triangle pairs that collision does not happen. The method employ-

ing BVH uses many bounding volumes with different sizes to bound an object. The entire

object is enclosed with the largest bounding volume. Then, the object is divided into two

similar parts and each part is bounded by another bounding volume. This is performed

recursively until one or some triangles are enclosed with a bounding volume. BVH forms

a structure of a tree. We can obtain a set of triangle pairs that every two triangles of a pair

collide with each other by traversing the tree. Spatial partitioning includes octree [BT95]

and BSP [Mel00]. The concepts of spatial partitioning and BVH are the same. The way of

spatial partitioning is to partition the space into regular grids that bound the objects. The

image-based methods rasterize meshes to framebuffer. The framebuffer includes stencil,

8

color, and depth buffer [BW02] [KP03] [VSC01].

Volino et al. [VMT94] proposed a breakthrough method for discrete self-collision

detection. Originally, there is a lot of collision detection in checking adjacent triangle

pairs. In general, most of adjacent triangles do not collide with each other. They di-

vided a deformable object into several regular patches by computing normal cones, and

performed contour tests to eliminate the collision check between adjacent triangle pairs.

Provot [Pro97] extended the methods to handle continuous self-collision detection. After

that, [WB05] [TCYM09] further improved the methods.

Recently, many parallel approaches were proposed for collision detection. Tang et al.

[TMT09] proposed a parallel approach for collision detection with deformable models.

The method performed incremental hierarchical computations and the hierarchies were

built and updated each frame on multi-core CPUs. Kim et al. [KHH+09] combined the

techniques of CPUs and GPUs to improve the performance of continuous collision detec-

tion. The main idea of the method is that traversal for BVHs is performed on CPUs, and

elementary processing is performed on GPUs.

Due to the architecture of GPUs, they are more suitable than CPUs for performing

parallel computation. Lauterbach et al. [LMM10] proposed an approach for rigid or de-

formable models. The method proposed by Lauterbach was to perform parallel computa-

tion for building, updating, and traversal of the hierarchies. Liu [LHLK10] implemented

collision detection for massive moving rigid models. It changed the approach of Sweep

and Prune (SaP) to the one of parallel SaP. And it reduced the number of false positives

by using spatial subdivisions. Tang et al. [TMLT11] proposed a novel stream registration

method to compute the triangle pairs that can have collision. And it reduced the overhead

of the memory by using the deferred front tracking method.

Govindaraju et al. [GRLM03] used the technique of visibility-based culling to find

out a potential collision set (PCS), and two-pass rendering algorithm to find out the part

of collision. Due to the accuracy of image-based methods is affected by the resolution of

images, Govindaraju et al. [GKJ+05] combined themethod [GRLM03] with the technique

of chromatic decomposition to improve the performance and the accuracy of collision

9

detection for deformable triangle meshes. Allard et al. [AFC+10] computed layered depth

images on GPUs, and then used the information to handle the contacts of models.

In addition to physics simulation, collision detection is also used for motion planning.

Pan et al. [PM11] implemented cluster and collision-packet traversal on GPUs to improve

the performance of collision detection for motion planning.

10

Chapter 3

View-based Scheme

Themain concept of the view-based approach is to divide all triangles of a deformable

object into several view sets according to their orientation related to a view primitive. We

classify the triangles into four view sets and three types, including positively oriented,

negatively oriented, and violated. If all triangles of the object face the view primitive,

i.e. they are positively oriented, then the object is self-collision free. Thus traversal does

not be performed. Otherwise, self-collision detection is performed for certain pairs of the

view sets.

We use a point and a line segment to be the view primitives. So, there are two view-

based schemes. We introduce the view-point model and the view-line model at first, then

explain how to perform view tests according to the different view primitives. After that,

two kinds of view-based schemes are described in details. Finally, we discuss the dif-

ferences between the view-based approach and the traditional approach, and between the

view-point scheme and the view-line scheme.

3.1 View-based Models

We use two kinds of view primitives to determine the orientation of all triangles,

including a point and a line segment. The view primitives are put inside the deformable

object in the beginning. Besides, we assume that the view primitives do not penetrate the

11

deformable object during the simulation.

The view-based point model is demonstrated in Figure 3.1. Suppose that q is the

view-based point, and it is put at the center of the model.

Figure 3.1: The view-based point model.

The view-based line segment model is demonstrated in Figure 3.2. Suppose that

q0q1 is the view-based line segment, and it is put inside the model. The space and the

deformable object are divided into three regions,R0,R1, andR2, based on the line segment

q0q1. Note that L0 and L1 are perpendicular to the line segment q0q1. We can easily extend

the model to 3D space that L0 and L1 are two parallel planes perpendicular to the line

segment q0q1.

Figure 3.2: The view-based line segment model.

The view-based point is called view-point, and the view-based line segment is called

view-line.

12

3.2 View Tests with a Point

We determine the orientation of all triangles of a deformable object according to the

view primitive by performing view tests. In this section, we introduce performing view

tests with a view-point.

At a certain time

At first, we perform the view test of a triangle at a certain time. Assume that there is

a triangle T (v0, v1, v2), andN = (v1− v0)× (v2− v0) is the normal vector of the triangle.

In addition, q is the view-point, as shown in Figure 3.3. We can choose any point of the

triangle, for example vertex v0 is chosen, and obtain a vector v0 − q. Then, the view test

is performed as follow.

V Tp = (v0 − q) ·N (3.1)

Figure 3.3: Triangle orientation determination with a view-point at a certain time.

Theorem 1. Suppose that there is a triangle T (v0, v1, v2), and N is the normal vector of

the triangle. q is a fixed view-point without intersecting with the triangle. If (v0−q) ·N >

0, then for any point v of the triangle T , (v − q) ·N is always greater than 0.

Proof. We prove it as follows.

13

1. If ∃ a point v′ such that (v′ − q) ·N = 0

⇒ v′ − q and N are perpendicular

⇒ the triangle T and the point q are coplanar

This is a contradiction to (v0 − q) ·N > 0.

2. If ∃ a point v′ such that (v′ − q) ·N < 0

Because the direction for normal vectors of all points of the triangle are the same,

and (v0−q)·N > 0, there must be a point v′′ of the triangle such that (v′′−q)·N = 0.

⇒ v′′ − q and N are perpendicular

⇒ the triangle T and the point q are coplanar

This is a contradiction.

Based on that, the theorem is proved.

Corollary 1. Suppose that there is a triangle T (v0, v1, v2), and N is the normal vector of

the triangle. q is a fixed view-point without intersecting with the triangle. Then, for all

points of the triangle T , the results of view tests are the same.

By Corollary 1, we can classify the type of a triangle by performing view tests with

any point of the triangle according to the view-point. Then, by Theorem 1 and Equa-

tion 3.1, we have three conclusions. For any point of a triangle T ,

• If V Tp > 0, then the triangle faces the view-point.

• If V Tp < 0, then the triangle is back to the view-point.

• If V Tp = 0, then the triangle is coplanar to the view-point.

Over a time interval

We perform the view test of a triangle over a time interval [0,∆t], where ∆t is the

time step of the simulation. During the simulation, all vertices move with linear velocities

within a frame. Therefore, the position of a vertex v in [0,∆t] should be vt = vbgn + V t,

where vbgn is the initial position of v, vt is the new position of v, V is the linear velocity

of v, and t ∈ [0,∆t].

14

Assume that there is a triangle T (v0, v1, v2), and N = (v1 − v0) × (v2 − v0) is the

normal vector of the triangle in the beginning. After the time step∆t, the triangle T moves

to T ′(v′0, v
′
1, v

′
2), and N ′ is the normal vector of the triangle T ′. In addition, q is the view-

point, as shown in Figure 3.4. We can choose any point of the triangle T , for example

vertex v0 is chosen, and perform the view test as follow.

V Tp(t) = v0(t) ·N(t) (3.2)

V Tp(t) is a cubic function in the time domain,N(t) is the time normal vector of the triangle

T with quadratic form in the time domain, and v0(t) is a linear function in the time domain.

Hence, we want to compute v0(t) and N(t). Suppose that the velocities of vertices

v0, v1, and v2 in [0,∆t] are V0, V1, and V2. As mentioned above, the position of v0, v1, and

v2 at a certain time in [0,∆t] are

vt0 = v0 + V0 · t, t ∈ [0,∆t]

vt1 = v1 + V1 · t, t ∈ [0,∆t]

vt2 = v2 + V2 · t, t ∈ [0,∆t]

• V1(t) and v2(t) are similar to the result of v0(t).

v0(t) = (v0 − q) + ((vt0 − q)− (v0 − q))

= (v0 − q) + ((v0 + V0 · t− q)− (v0 − q))

= (v0 − q) + ((v0 − q) + V0 · t− (v0 − q))

= (v0 − q) + V0 · t

• Let Bs = v1 − v0, Bt = V1 − V0, Cs = v2 − v0, Ct = V2 − V0.

N(t) = (vt1 − vt0)× (vt2 − vt0)

= ((v1 + V1 · t)− (v0 + V0 · t))× ((v2 + V2 · t)− (v0 + V0 · t))

= ((v1 − v0) + (V1 − V0) · t)× ((v2 − v0) + (V2 − V0) · t)

= (Bs +Bt · t)× (Cs + Ct · t)

= (Bs × Ct) · t2 + (Bt × Cs +Bs × Ct) · t+Bs × Cs

15

Figure 3.4: Triangle orientation determination with a view-point over a time interval.

Theorem 2. Suppose that there is a triangle T , which moves from (v0, v1, v2) to (v′0, v′1, v′2)

in [0,∆t], and N(t) is the time normal vector of the triangle T . q is a fixed view-point

without intersecting with and passing through the triangle T in [0,∆t]. If v0(t) ·N(t) > 0,

then for any point v of the triangle, v(t) ·N(t) is always greater than 0 in [0,∆t].

Proof. We prove it as follows.

If the triangle T does not pass through the view-point q, and v0(t) · N(t) > 0, then the

triangle T always faces the view-point q in [0,∆t]. By Theorem 1, all the vertices of the

triangle face the view-point q. Therefore, for any point v of the triangle, v(t) · N(t) is

always greater than 0 in [0,∆t].

Corollary 2. Suppose that there is a triangleT , whichmoves from (v0, v1, v2) to (v′0, v′1, v′2)

in [0,∆t], and N(t) is the time normal vector of the triangle T . q is a fixed view-point

without intersecting with and passing through the triangle T in [0,∆t]. Then, for all points

of the triangle T , the results of view tests are the same in [0,∆t].

By Corollary 2, we can classify the type of a triangle by performing view tests with

any point of the triangle over a time interval according to the view-point. Then, by The-

orem 2 and Equation 3.2, we have three conclusions. For any point of a triangle T in

[0,∆t],

• If V Tp(t) > 0, then the triangle faces the view-point, and it is assigned to the view

16

set V +
p .

• If V Tp(t) < 0, then the triangle is back to the view-point, and it is assigned to the

view set V −
p .

• If V Tp(t) contains both positive and negative values, then the triangle is coplanar

to the view-point at a certain time in [0,∆t], and it is assigned to the view set V 0
p .

3.3 View Tests with a Line Segment

In this section, we introduce performing view tests with a view-line.

Figure 3.5: Triangle orientation determination with a view-line at a certain time.

At a certain time

At first, we perform the view test of a triangle at a certain time. Assume that there is

a triangle T (v0, v1, v2), andN = (v1− v0)× (v2− v0) is the normal vector of the triangle.

In addition, q0q1 is the view-line, as shown in Figure 3.5. We can choose a vertex v of the

triangle T and obtain a vector v − vp, where vp is the check point on the view-line q0q1.

Then, the view test is performed as follow.

V Tl = (v − vp) ·N (3.3)

17

vp has three types according to the location of v.

1. If v ∈ R0, then vp = q0.

2. If v ∈ R1, then vp = q1.

3. If v ∈ R2, then vp = the projective point of v on the view-line q0q1.

Therefore, view tests based on the view-point model and the view-line model are

different. For the view-line model, we divide space and deformable objects into three

regions, and the check points are different with respect to different vertices. Hence, before

performing view tests of a triangle, we determine the regions for three vertices of a triangle.

For a vertex v of the triangle T , the projective point of v on the view-line q0q1 should

be vp = q0 + u× (q1 − q0).

−−→q0q1 · (vp − v)

= (q1 − q0) · (vp − v)

= (q1 − q0) · ((q0 + u× (q1 − q0))− v)

= (q1 − q0) · (q0 − v) + u× ((q1 − q0) · (q1 − q0)) = 0

⇒ u =
(v − q0) · (q1 − q0)

(q1 − q0) · (q1 − q0)

Then, we can determine the regions for the vertex v based on the value of u.

• If u < 0, then v ∈ R0.

• If u > 1, then v ∈ R1.

• If u ∈ [0, 1], then v ∈ R2.

Theorem 3. Suppose that there is a triangle T (v0, v1, v2), and N is the normal vector of

the triangle. q0q1 is a fixed view-line without intersecting with the triangle. Then, for all

vertices of the triangle T , the results of view tests are the same.

Proof. We prove it as follows.

18

• Case 1: For any two vertices, if they are in the same region, R0 or R1, then it is

proved by Corollary 1.

• Case 2: For any two vertices, if they are in the same region, R2, then suppose that

v0 and v1 are chosen, and v0p and v1p are the projective points of v0 and v1 on the

view-line q0q1.

A = (v0 − v0p) ·N

B = (v1 − v1p) ·N

C = (v0 − v1p) ·N

D = (v1 − v0p) ·N

By Corollary 1, we have the following results.

The results of A and D are the same according to the fixed point v0p.

The results of B and C are the same according to the fixed point v1p.

The results of A and C are the same according to the fixed point v0.

The results of B and D are the same according to the fixed point v1.

Therefore, the results of V Tv0 = (v0 − v0p) ·N and V Tv1 = (v1 − v1p) ·N are the

same.

• Case 3: For any two vertices, if one vertex belongs to R0 and the other belongs to

R2, then suppose that v0 and v1 are chosen that v0 ∈ R0 and v1 ∈ R2, as shown in

Figure 3.6. We can find a point m of the triangle that the projective point of m on

the view-line q0q1 is q0. The results of V Tv0 and V Tm are the same by case1. The

results of V Tm and V Tv1 are the same by case2. So, the results of V Tv0 and V Tv1

are the same.

• case4: For any two vertices, if one vertex belongs to R1, and the other belongs to

R2, then the result is similar to case3.

• case5: For any two vertices, if one vertex belongs to R0 and the other belongs to

R1, then suppose that v0 and v1 are chosen that v0 ∈ R0 and v1 ∈ R1, as shown in

Figure 3.7. Similar to case3, we can find two pointsm0 andm1 of the triangle that

19

Figure 3.6: Triangle orientation determination with a view-line at a certain time when the

triangle lies in multiple regions.

Figure 3.7: Triangle orientation determination with a view-line at a certain time when the

triangle lies in multiple regions.

20

the projective points of m0 and m1 on the view-line q0q1 are q0 and q1. The results

of V Tv0 and V Tm0 are the same, and the results of V Tm1 and V Tv1 are the same

by case1. The results of V Tm0 and V Tm1 are the same by case2. So, the results of

V Tv0 and V Tv1 are the same.

According to the above results, it is proved. Hence, for all vertices of the triangle T ,

the results of view tests are the same.

Therefore, we can classify the type of a triangle by performing view tests with any

point of the triangle according to the view-line. In addition, the chosen vertex belongs

to only one region at a certain time, so view tests are performed for just one time. By

Theorem 3 and Equation 3.3, we have three conclusions. For any point of a triangle T ,

• If V Tl > 0, then the triangle faces the view-line.

• If V Tl < 0, then the triangle is back to the view-line.

• If V Tl = 0, then the triangle is coplanar to the view-line.

Over a time interval

Next, we perform view tests of a triangle over a time interval [0,∆t], where∆t is the

time step of the simulation. During the simulation, all vertices move with linear velocities

within a frame. Therefore, the position of a vertex v at a certain time in [0,∆t] should be

vt = vbgn + V t, where vbgn is the initial position of v, vt is the new position of v, V is the

linear velocity of v, and t ∈ [0,∆t].

Assume that there is a triangle T (v0, v1, v2) and N = (v1 − v0) × (v2 − v0) is the

normal vector of the triangle in the beginning. After the time step ∆t, the triangle moves

to T ′(v′0, v
′
1, v

′
2), and N ′ is the normal vector of the triangle T ′. In addition, q0q1 is the

view-line, as shown in Figure 3.8.

Before performing view tests of a triangle, we determine the regions that the triangle

belongs to because the triangle can spread and move across multiple regions in [0,∆t].

The regions for a triangle are determined by its three vertices. We compute the regions

21

Figure 3.8: Triangle orientation determination with a view-line over a time interval when

the triangle moves across multiple regions.

for three vertices, then the regions for the triangle are the union of the regions for its three

vertices.

Suppose that there is a vertex of the triangle, which moves from v to v′ in [0,∆t].

Then, the projective points of v and v′ on the view-line q0q1 should be vp = q0 + ubgn ×

(q1−q0) and v′p = q0+uend× (q1−q0). Because the vertices move linearly, [ubgn, uend] is

also linear. We can determine the regions that the vertices move across in [0,∆t] according

to the values of ubgn and uend.

LetRv0 ,Rv1 , andRv2 are the regions that the three vertices v0, v1, and v2 move across

in [0,∆t]. So, the regions for the triangle are Rv0 ∪Rv1 ∪Rv2 . Note that the check points

are different based on different vertices of the triangle. Actually, view tests are performed

based on the vertices. Suppose that v is one of the vertices of the triangle T . Then, the

view test is performed as follow.

V Tl(t) = v(t) ·N(t) (3.4)

V Tl(t) is a cubic function in the time domain, N(t) is the time normal vector of

triangle T with quadratic form in the time domain, and v(t) is a linear function in the time

domain for the vector variation from the vertex to the check points in [0,∆t]. Note that we

compute v(t) separately according to the region for the vertex. For example, if a vertex v

22

moves fromR0 toR2 in [0,∆t], then the check point is variable. So, the function of vector

variation from the vertex to the check point is not linear. We should compute n kinds of

v(t), where n is the number of regions for the vertex in [0,∆t].

Suppose that the velocities of vertices v0, v1, and v2 in [0,∆t] are V0, V1, and V2. As

mentioned above, the positions of v0, v1, and v2 at a certain time in [0,∆t] are

vt0 = v0 + V0 · t, t ∈ [0,∆t]

vt1 = v1 + V1 · t, t ∈ [0,∆t]

vt2 = v2 + V2 · t, t ∈ [0,∆t]

Then, v(t) and N(t) are computed as follows.

• For any vertex v, v moves across R0 or R1 in [0,∆t].

v(t) = (v − vq) + ((vt − vq)− (v − vq))

= (v − vq) + ((v + V · t− vq)− (v − vq))

= (v − vq) + ((v − vq) + V · t− (v − vq))

= (v − vq) + V · t

vq is q0 or q1 according to the location of v.

• For any vertex v, v moves across R2 in [0,∆t].

v(t) = (v − vq0) + ((vt − vqt)− (v − vq0))

= (v − vq0) + ((v + V · t− vqt)− (v − vq0))

= (v − vq0) + (v − vqt) + V · t− (v − vq0)

= (v − vqt) + V · t

vq0 is the projective point of v in the beginning, and vqt is the projective point of v

at a certain time in [0,∆t].

23

• Let Bs = v1 − v0, Bt = V1 − V0, Cs = v2 − v0, Ct = V2 − V0

N(t) = (vt1 − vt0)× (vt2 − vt0)

= ((v1 + V1 · t)− (v0 + V0 · t))× ((v2 + V2 · t)− (v0 + V0 · t))

= ((v1 − v0) + (V1 − V0) · t)× ((v2 − v0) + (V2 − V0) · t)

= (Bs +Bt · t)× (Cs + Ct · t)

= (Bs × Ct)t
2 + (Bt × Cs +Bs × Ct)t+Bs × Cs

Theorem4. Suppose that there is a triangleT , whichmoves from (v0, v1, v2) to (v′0, v′1, v′2),

and N(t) is the time normal vector of the triangle T . q0q1 is a fixed view-line without in-

tersecting with and penetrating the triangle in [0,∆t]. Then, for all vertices of the triangle

T , the results of view tests are the same in [0,∆t].

Proof. We prove it as follows.

• Case 1: For any two vertices, if they move in the same region in [0,∆t], then the

results of view tests are always the same by Theorem 3.

• Case 2: For any two vertices, if they move across multiple regions in [0,∆t], the

proof is described as follows. For example, in Figure 3.9, v0 moves from R2 to R0,

and v1 and v2 move inside R2 in [0,∆t]. Suppose that the triangle T moves to Tt

at time t, where t ∈ [0,∆t]. In [0, t], all vertices move in the same region and the

results of view tests are the same by Theorem 3. On the other hand, in (t,∆t], We

can always find a point mt that the projective point of mt on the view-line q0q1 is

q0. So, the results of view tests of v0 are equal to the point mt in (t,∆t]. And the

results of view tests of v1 and v2 are equal to the pointmt in (t,∆t]. Therefore, the

results of view tests of v0, v1, and v2 are the same.

By Case 1 and Case 2, it is proved. Hence, for all vertices of the triangle T , the results of

view tests are the same in [0,∆t].

Therefore, we can classify the type of a triangle by performing view tests with any

point of the triangle over a time interval according to the view-line. View tests are per-

formed for nr times, where nr is the number of regions that the chosen vertex moves

24

Figure 3.9: Triangle orientation determination with a view-line over a time interval when

the triangle moves across multiple regions.

across in [0,∆t]. By Theorem 4 and Equation 3.4, we have three conclusions. Suppose

that the result of view tests for a triangle T is V Tl(t) = ∪V Tli(t), where V Tli(t) are the

results of view tests according to region Ri, i = 0, ..., n − 1, and 1 ≤ n ≤ 3. For any

point of a triangle T in [0,∆t],

• If ∀V Tli(t) > 0, then V Tl(t) > 0. So, the triangle faces the view-line, and it is

assigned to the view set V +
l .

• If ∀V Tli(t) < 0, then V Tl(t) < 0. So, the triangle is back to the view-line, and it is

assigned to the view set V −
l .

• If V Tli(t) contain both positive and negative values, then the triangle is coplanar to

the view-line at a certain time in [0,∆t], and it is assigned to the view set V 0
l .

3.4 View-based Self-Collision Detection

If a deformable object has self-collision, then there are some properties for the trian-

gles at the colliding position. Let's take a look on a 2D closed curve, for example. Suppose

that there is a 2D closed curve, and there is no self-intersection. In fact, the curve is called

a Jordan curve, as shown in Figure 3.10. By the Jordan curve theorem, the curve divides

25

the 2D space into two regions, an interior region and an exterior region. For example,

in Figure 3.10, the interior region is indicated by green color, and the exterior region is

indicated by blue color.

Figure 3.10: A 2D closed curve with a ray shot outward.

Now, we shoot a ray from a fixed point P in the interior region to any point in the

exterior region, as shown in Figure 3.10. We can observe that the ray must intersect with

the curve for odd number of times. Initially, the ray lies in the interior region. After the

first time the ray intersects with the curve, the ray lies in the exterior region. However,

when the ray intersects with the curve again, the ray must lie in the interior region. In

short, after the ray intersecting with the curve, the ray lies in the different region.

Suppose that the normal vectors of the curve point to the exterior region. And there is

a ray R with direction d shot from the point P to the exterior region and intersected with

the curve at P0, P1, and P2 orderly, as shown in Figure 3.10. P0 is the first intersection

point. In this case, d · NP0 ≥ 0, where NP0 is the normal vector of the point P0. So,

we can determine that the point P0 faces the point P . Next, P1 is the second intersection

point. In this case, d · NP1 ≤ 0, where NP1 is the normal vector of the point P1. So we

can determine that the point P1 is back to the point P . Finally, P2 is the third intersection

point. In this case, d ·NP2 ≥ 0 again, where NP2 is the normal vector of the point P2. So,

we can determine that the point P2 faces the point P .

For a 2D closed curve with no self-intersection, we can now conclude that if a ray

shoots from a point P inside the curve and intersects with some points on the curve. When

26

an intersection occurs between the ray and the curve, the regions that the ray lies and the

orientation of the intersection points according to P are opposite.

Now, for a 2D closed curve with self-intersection, suppose that the colliding point is

called pc. A ray is shot from the pointP in the interior region to pc, as shown in Figure 3.11.

At the colliding position, the ray should intersect with the curve for greater than or equal

to two times. Therefore, there are at least two points that one faces P and another is back

to P at the colliding position. In addition, there is a special case. At the colliding position,

the normal vectors of the points are perpendicular to the direction of the ray, i.e. d·Ni = 0,

where i is the number of points at the colliding position.

Figure 3.11: 2D closed curves with self-intersection.

Theorem 5. Suppose that there is a 2D closed curve with self-intersection. A point P is

put in the interior region of the curve. Then, at the colliding position, there are two points

px and py that (d ·Nx) · (d ·Ny) < 0 or both Nx and Ny are perpendicular to d, where d

is the direction of a ray shot from the point P to the exterior region of the curve, and Nx

and Ny are the normal vectors of px and py.

Proof. If we shoot a ray from the point P to the colliding position, then there are two

points at least at the colliding position. By the Jordan curve theorem, the location, which

the ray passes through, should be change when the ray intersects with the curve, and the

orientation should be opposite for any two consecutive intersection points. Now, we have

two points, suppose they are px and py, at least at the colliding position, so, the orientation

27

of px and py are opposite according to P , and (d · Nx) · (d · Ny) < 0. Besides, for the

special case, Both Nx and Ny can be perpendicular to d.

We can extend the results to a 2D closed curve with a line segment in the interior

region. We divide the space and the curve into three regions. Originally, we create a ray

shot from the point P in the interior region to the exterior region. Now, we create a ray

shot from the check point on the line segment to the curve. The check point is determined

by the region that the curve belongs to. We can further extend the results to 3D closed

triangle meshes with a point or a line segment inside the meshes.

Corollary 3. Suppose that there is a 3D closed model with triangle meshes, and a point

q lies inside the meshes. If self-collision occurs, then there are at least two triangles at

the colliding position that one faces the point q, and another is back to the point q, or

the normal vectors of these two triangles are both perpendicular to the vector from q to

themselves.

Corollary 4. Suppose that there is a 3D closed model with triangle meshes, and a line

segment q0q1 lies inside the meshes. If self-collision occurs, then there are at least two tri-

angles at the colliding position that one faces the line segment q0q1, and another is back to

the line segment q0q1, or the normal vectors of these two triangles are both perpendicular

to the vector from the check points to themselves.

Handling unclosed meshes

The view-based approach is suitable for closed meshes. For unclosed meshes, there

are some modification of the view-based approach. For example, for a 2D unclosed curve,

the boundaries of the curve may roll, as shown in Figure 3.12. We can observe that the

edges a and b both face the view-point q, and they collide with each other at point pc.

This is a contradiction to Theorem 5. So, we collect the edges which are determined to

be violated. Similarly, for a 3D model, we collect the triangles which do not conform to

Corollary 3 and 4. These triangles are called violated triangles.

28

Figure 3.12: A 2D unclosed curve with self-intersection.

Figure 3.13: An example of handling unclosed objects.

For example, suppose that there is a 2D unclosed curve with a gap in the beginning,

as shown in Figure 3.13. The curve is composed of several line segments. We create a

ghost edge to enclose the gap, which is indicated by green color. The edges, which collide

with the ghost edge, are indicated by red color. We collect these red edges into a violated

view set V v. Finally, the view set V v contains the red edges and orange edges. In other

words, V v contains the edges which overlap with or pass through the ghost edge.

3.5 View-Point Scheme

For the view-point scheme, we divide the triangles of a deformable object into three

view sets at first, including V +
p , V −

p , and V 0
p . In addition, there is an additional view set,

V v
p , for unclosed meshes. We classify the types of all triangles according to the method de-

scribed in section 3.2. For all triangles, view tests are performed by V Tp(t) = v(t) ·N(t),

where v(t) is a linear function in the time domain according to the movement trajectory

of one of the vertices, and N(t) is the time normal vector with quadratic form in the time

domain.

29

Triangles in V +
p are determined to be positively oriented. Triangles in V −

p and V 0
p are

determined to be negatively oriented. Triangles in V v
p are determined to be violated.

Theorem 6. Suppose that there is a deformable objectMc and a view-point q. The view-

point is put inside the object in the beginning, and we assume that the view-point does

not pass through the deformable object during the simulation. If all triangles of Mc are

positively oriented according to the view-point in [0,∆t], then Mc is self-collision free.

Proof. We prove it as follows.

If self-collision occurs at a certain time in [0,∆t]. Then, at the colliding position, there are

two triangles at least that one faces the view-point q, and another is back to the view-point

q, or the normal vectors of these two triangles are both perpendicular to the vectors from

the view-point q to themselves. If a triangle is back to the view-point, then V Tp(t) < 0. If

a triangle is coplanar to the view-point, then V Tp(t) = 0. This is a contradiction because

the results of view tests of all triangles are V Tp(t) > 0. So, if all triangles of Mc are

positively oriented according to the view-point q, thenMc is self-collision free.

If a deformable object is determined to be self-collision free after performing view

tests, then we do not perform traversal. Otherwise, we perform traversal for certain pairs

of the view sets. By Corollary 3, for closed meshes, we observe that triangles in V +
p

and V −
p may collide with each other. And triangles in V 0

p may collide with all triangles.

Because that, for any triangle T in V 0
p , when T faces the view point at a certain time,

it may collide with triangles which are back to the view point. When T is coplanar to

the view point at a certain time, it may collide with other coplanar triangles. When T is

back to the view point at a certain time, it may collide with the triangles which face the

view point. Actually, there are several triangles at a colliding position, and two positively

oriented triangles may collide with each other, or a positively oriented triangle may collide

with a coplanar triangle. We just need to detect the collision with two triangles but not all

colliding triangle pairs at the colliding position. We have proved that there must be two

triangles at least that one faces the view point, and another is back to the view point, or the

normal vectors are both perpendicular to the vectors from the view point to themselves.

30

So, if a deformable object is not self-collision free, we perform traversal for the following

pairs to collect potentially colliding pairs.

• (V +
p , V −

p)

• (U, V 0
p)

U is the union set of all triangles of the deformable object. For unclosed meshes, after

performing view tests, we divide all triangles into three view sets. After that, violated

triangles are collected by performing boundary handling. We pick out violated triangles

from the three view sets. In other words, violated triangles are special and independent,

and they may collide with all triangles. We perform further checks for the following pairs

to collect potentially colliding pairs.

• (V +
p

′
, V −

p
′
)

• (U ′, V 0
p
′
)

• (U, V v
p)

V +
p

′
= V +

p − V v
p , V −

p
′
= V −

p − V v
p , V 0

p
′
= V 0

p − V v
p , and U ′ = U − V v

p . Note that

V +
p

′ ∩ V −
p

′ ∩ V 0
p
′ ∩ V v

p = ϕ.

The view-point scheme

1. Compute a point inside the deformable objectMc in the preprocessing stage.

2. Divide all triangles of the deformable object into three view sets, including V +
p , V −

p ,

and V 0
p . For unclosed meshes, there is an additional view set, V v

p .

3. If all triangles are in the set V +
p , then the deformable objectMc is self-collision free.

4. Otherwise, we need to perform further checks for the pairs of (V +
p , V −

p) and (U, V 0
p).

For unclosed meshes, we need to perform further checks for the pairs of (V +
p

′
, V −

p
′
),

(U ′, V 0
p
′
), and (U, V v

p).

31

3.6 View-Line Scheme

For the view-line scheme, we divide the triangles of a deformable object into three

view sets at first, including V +
p , V −

p , and V 0
p . In addition, there is an additional view set,

V v
l , for unclosed meshes. We classify the types of all triangles according to the method

described in section 3.3. For all triangle, view tests are performed by V Tl(t) = v(t)·N(t),

where v(t) is a linear function in the time domain according to the movement trajectory

of one of the vertices, and N(t) is the time normal vector with quadratic form in the time

domain.

Triangles in V +
l are determined to be positively oriented. Triangles in V −

l and V 0
l are

determined to be negatively oriented. Triangles in V v
l are determined to be violated.

Theorem 7. Suppose that there is a deformable object Mc and a view-line q0q1. The

space and the object are divided into three regions, R0, R1, and R2. The view-line is put

inside the object in the beginning, and we assume that the view-line does not penetrate

the deformable object during the simulation. If all triangles ofMc are positively oriented

according to the view-line in [0,∆t], then Mc is self-collision free.

Proof. We sketch our proof as follows.

Suppose that we divide the triangles into three sets, S0, S1, and S2 according to the three

regions, R0, R1, and R2. We can show the triangles in each set Si are self-collision free.

Then, we can show that it is collision free between two sets of the sets.

Consider that there are triangles in one set, which have collision. Then assume that

these two triangles are T0 and T1. We can show that this is not possible as there must be

the third triangle which is negatively oriented with respect to the view-line according to

the Jordan curve theorem. This is a contradiction to our assumption.

Consider that there are two triangles collide between two sets. Assume that these two

triangles are T0 and T1. Then T0 is a triangle in one set, and T1 is a triangle in another

set. However, T0 and T1 must also belong to the same set as there is at least one vertex of

a triangle belong to both set; otherwise, these two triangles cannot collide. However, we

have already shown that it is collision free in a set.

32

If a deformable object is self-collision free, then we do not perform traversal. Other-

wise, by Corollary 4, we perform further checks for the following pairs to collect poten-

tially colliding pairs.

• (V +
l , V −

l)

• (U, V 0
l)

U is the union set of all triangles of the deformable object. For unclosed meshes, we

perform further checks for the following pairs to collect potentially colliding pairs.

• (V +
l

′
, V −

l
′
)

• (U ′, V 0
l
′
)

• (U, V v
l)

V +
l

′
= V +

l − V v
l , V

−
l

′
= V −

l − V v
l , V 0

l
′
= V 0

l − V v
l , and U ′ = U − V v

l . Note that

V +
l

′ ∩ V −
l

′ ∩ V 0
l
′ ∩ V v

l = ϕ.

The view-line scheme

1. Compute a line segment inside the deformable objectMc in the preprocessing stage.

2. Divide all triangles of the deformable object into three view sets, including V +
l , V −

l ,

and V 0
l . For unclosed meshes, there is an additional view set, V v

l .

3. If all triangles are in the set V +
l , then the deformable objectMc is self-collision free.

4. Otherwise, we need to perform further checks for the pairs (V +
l , V −

l) and (U, V 0
l).

For unclosed meshes, we need to perform further checks for the pairs of (V +
l

′
, V −

l
′
),

(U ′, V 0
l
′
), and (U, V v

l).

33

3.7 Discussion

3.7.1 View-based approach vs. traditional approach

For the traditional approach proposed by [VMT94], an object is divided into several

regular patches, called normal cones. A normal cone is defined to be a triangle group that

all triangles in the group satisfy the condition: there is a vector V such that Ni · V > 0,

where Ni are the normal vectors of the triangles.

During the simulation, normal cones are computed for all the leaves of the BVH of the

object in the beginning. Then, normal cones of internal nodes are computed by merging

adjacent normal cones until the normal cones of two adjacent nodes cannot be merged.

In the procedure, there is a lot of computation of vectors and normalization. After that

contour tests are performed to check whether or not the model is self-collision free. For

example, suppose that there is a patch that contains n triangles, T1, ..., Tn. The normal

vectors of all triangles are N1, ..., Nn. If we can find a vector V that Ni · V > 0, where

i = 1, ..., n, then V is called the normal of the patch and the patch form a normal cone.

On the other hand, we project the contour of the patch onto a plane which is perpendicular

to the vector V . The projective contour in the plane is called C. The patch is determined

to be self-collision free if the following two conditions are satisfied: (1) ∃V such that

Ni · V > 0, ∀Ni, where i = 1, ..., n, and n is the number of triangles of the patch; (2)

There is no intersection for C.

Algorithm 1 and 2 show the procedures of self-collision detection with the view-

based scheme and the traditional approach for a closed deformable object. We can observe

that there are mainly four differences.

1. View primitives are computed in the preprocessing stage for the view-based scheme.

2. For the view-based scheme, we adopt performing view tests to determine whether

or not the deformable object is self-collision free. For the traditional approach, they

adopt computing normal cones and performing contour tests to determine whether

or not the deformable object is self-collision free.

34

3. If an object is determined to be self-collision free after performing view tests, then

traversal does not be performed. But for the traditional approach, in fact, traversal,

normal cones computation, and contour tests are performed at the same time.

4. For the view-based scheme, if objects are not self-collision free, the vBVHs of all

kinds of view sets are constructed. Actually, we do not reconstruct BVHs of the

view sets, but extract the partial BVHs, named vBVHs, by marking the nodes of

the original BVH according to the view sets. We just need to update the nodes of

vBVHs that the nodes contain the triangles whose types are changed between two

consecutive frames.

Algorithm 1 Self-collision detection with the view-based scheme.
1: Preprocessing phase

2: compute view primitives

3: construct BVH

4: Simulation phase

5: perform view tests

6: if the object is self-collision free then

7: return

8: end if

9: build vBVHs of positively oriented and negatively oriented triangles

10: perform traversal for the vBVHs to collect potentially colliding pairs

11: perform elementary tests

3.7.2 View-point vs. view-line

There are two differences between the view-point scheme and the view-line scheme.

1. The view-point scheme is simple, and only one point is required. In the step of view

tests, vertex region determination does not be performed. So, for the view-point

scheme, the execution time of performing view tests is faster than the view-line

scheme.

35

Algorithm 2 Self-collision detection with the traditional approach
1: Preprocessing phase

2: construct BVH

3: Simulation phase

4: perform traversal for the BVH to collect potentially colliding pairs with normal cones

computation and contour tests

5: perform elementary tests

2. In Figure 3.14, the red edges are negatively oriented, and the black edges are pos-

itively oriented according to the view primitive. We can observe that the number

of negatively oriented edges with the view-line scheme is less than the view-point

scheme. So, for the view-line scheme, the execution time of performing traversal is

faster than the view-point scheme.

If the number of negatively oriented triangles is similar after performing view tests

with the view-point and view-line scheme, the performance is better with the view-point

scheme. In general, the performance of the view-line scheme is better than the view-

point scheme. The model deforms dynamically, and we cannot predict the shape of the

deformable object. So, we can decide which schemewe should use dynamically according

to the number of negatively oriented triangles.

Figure 3.14: Negatively oriented edges according to the view-point and view-line

schemes.

36

Chapter 4

Implementation on CPUs

Continuous self-collision detection is performed with the view-based approach for

deformable triangle meshes on CPUs. The deformable objects can be closed or unclosed.

Algorithm 3 shows the procedure which is classified into preprocessing phase and simu-

lation phase. We can observe that if a deformable object is determined to be self-collision

free, then we can skip several steps in the algorithm. All steps are described in details in

the following sections.

4.1 Preprocessing

There are four parts in the preprocessing stage, including acceleration structure con-

struction, view primitives computation, feature assignments, and ghost triangles genera-

tion for unclosed meshes.

4.1.1 Acceleration structure construction

The BVHs of all objects are constructed to accelerate performing traversal. The pro-

cess is performed recursively with top-down manner. At first, the entire object is enclosed

with the largest bounding volume. Then, the object is divided into two similar parts, and

each part is bounded by another bounding volume. For a certain node, if all triangles are

grouped in one part, and another is empty after dividing, we take one of triangles to the

37

Algorithm 3 Algorithm of self-collision detection with the view-based approach
1: Preprocessing phase

2: construct BVH

3: compute view primitives

4: feature assignments

5: if the object is unclosed then

6: fill holes with ghost triangles

7: construct BVHs of ghost triangles

8: end if

9: Simulation phase

10: perform view tests

11: if the object is self-collision free then

12: if the object is unclosed then

13: clear the view set of violated triangles

14: end if

15: return

16: end if

17: if the object is unclosed then

18: perform boundary handling

19: build vBVH of violated triangles

20: end if

21: build vBVHs of positively oriented and negatively oriented triangles

22: perform traversal for the vBVHs to collect potentially colliding pairs

23: perform elementary tests

38

empty part. This is performed recursively until one triangle is enclosed with a bound-

ing volume. The type of bounding volumes we use is k-DOP [KHM+98] with degree

16. Other types of bounding volumes are allowed, such as axis-aligned bounding boxes

[vdB99], oriented bounding boxes, and spheres [JP04].

4.1.2 View primitives computation

There are many types of view primitives. In the thesis, we use a point and a line

segment for the view-based approach. We should compute the point and the line segment

lying inside a deformable object in the preprocessing stage. We can calculate the center of

all vertices to be the view-point. On the other hand, we construct the OBB of the object.

Then, we get three principle axes according to the orientation of the OBB. The longest

axis with proper length is chosen to be the view-line. We employ the method presented

by [GLM96] to construct the OBB, and the view-line computation is briefly described as

follows.

1. Compute the sum of all vertices and the mean value µ.

2. Generate a covariance matrix C based on µ.

Cjk =
1
n

∑n
i=1 p

i
j p

i
k, where n is the number of vertices, pi is one of the vertices, and

pi = pi − µ = (pi1, p
i
2, p

i
3)

3. Compute the eigenvalues and eigenvectors of the covariancematrix. The covariance

matrix is symmetric, so we employ [Smi61, Ebe06] to solve the eigensystem.

4. Extract the longest axis of the eigenvectors and determine a proper length based on

the bound of the OBB.

Our testing models contain two types of objects, rigid or semi-rigid objects and de-

formable objects. The deformable objects may interact with the rigid objects but never

pass through the rigid objects. View primitives are computed according to the rigid ob-

jects or the deformable objects, and they are put inside the deformable objects. In order to

39

ensure that the view primitives do not penetrate the deformable objects during the simu-

lation, we compute the view primitives according to the rigid objects generally. Because

the deformable objects never pass through the rigid objects, the view primitives always

lie inside the deformable objects. For a semi-rigid object, such as a moving character,

we can compute the view primitives attached to the skeleton. Because the skeleton of the

semi-rigid object does not penetrate the object, we can ensure that the view primitives lie

inside the deformable object during the simulation.

4.1.3 Feature assignments

Self-collision occurs when the distance of any two points of the object is less than δd,

where δd is a user-defined threshold. Initially, the distance of the two points is d0(p0, p1) >

δd. After a simulation time step ∆t, d(p0, p1) ≤ δd, then we determine these two points

collide with and penetrate each other. We can set δd as the thickness of cloth. For contin-

uous self-collision detection, we compute the exact contact time of two colliding triangles

within a frame. There are two cases to handle, including vertex-triangle and edge-edge.

And there are 15 elementary pairs of two triangles, including 6 vertex-triangle pairs and

9 edge-edge pairs. In other words, for a pair of triangles, we should compute elementary

tests for 15 times. In order to reduce the computation of elementary tests, we perform

feature assignments [WB06, CTM08] in the preprocessing stage. A triangle contains 6

features, including 3 vertices and 3 edges. For example, an edge, named E, belongs to

two adjacent triangles, and we just assign the edge to one of the triangles. Then, if these

two triangles both collide with another triangle T ′, we just need to perform the elementary

tests of E between one of the triangles and T ′.

4.1.4 Ghost triangles generation

Our view-based approach is suitable for closed and unclosed triangle meshes. The

meshes prefer to be closed. For unclosed meshes, we fill the holes of the object with ghost

triangles in the preprocessing stage. Note that ghost triangles should not collide with the

40

origin object. The original meshes and the ghost triangles are independent, and they form

a closed object. There are two ways to fill the holes, as shown in Figure 4.1. The first

way is to connect the vertices of a hole orderly. We can observe that the ghost triangles are

irregular. The second way is to create a ghost vertex, and generate ghost triangles based on

the vertex. The location of ghost vertices is good to be the center of all boundary vertices.

Ghost triangles with a center ghost vertex are more regular, and it is simple to generate

ghost triangles with a ghost vertex. Besides, we can adjust the location of ghost vertex to

ensure that ghost triangles do not collide with the object in the beginning. Finally, BVHs

of ghost triangles based on different holes are constructed. We briefly describe the method

of generating ghost triangles as follows.

1. Extract the boundary edges by winged edge structure.

2. Sort the boundary edges and get a order list of edges.

3. For each hole, generate ghost triangles orderly according to the list of edges with or

without a ghost vertex.

Figure 4.1: Ghost triangles with and without a ghost vertex.

41

4.2 View Tests

In the step of view tests, we determine the types of all triangles, including vertex

region determination and triangle type determination. They are performed sequentially.

4.2.1 View-point scheme

For the view-point scheme, the vertex region determination is not required. We de-

termine the type of a triangle by the result of V Tp(t) = (v − q)(t) · N(t), where v is

any point of the triangle, q is the view-based point, and N(t) is the time normal vector

of the triangle. In [0,∆t], the movement trajectory of v is linear, q is fixed, and N(t) is

a quadratic function in the time domain. Hence, V Tp(t) is a cubic function in the time

domain. We can compute the range of the cubic function in [0,∆t] by an approximate

min-max method [TCYM09].

N(t) = Dt2 · t2 +Dt1 · t+Ds (4.1)

(v − q)(t) = V s+ V t · t, V s = vbgn − q, V t = (vend − q)− V s (4.2)

(v−q)(t)·N(t) = (Dt2 ·V t)·t3+(Dt2 ·V s+Dt1 ·V t)·t2+(Dt1 ·V s+Ds·V t)·t+Ds·V s

(4.3)

vbgn is the initial position of v, and vend is the terminal position of v within a frame.

4.2.2 View-line scheme

We determine the types of all triangles, and V Tl(t) = (v − q)(t) ·N(t) is computed,

where v is one of the vertices of a triangle, q is the check point, andN(t) is the time normal

vector of the triangle. At first, we choose one of the vertices, v, and determine the regions

for the vertex. (v− q)(t) is computed in the step of vertex region determination according

to related regions of the vertex v.

• For the region R0, V s = vbgn − q0, V t = (vend − q0)− V s.

• For the region R1, V s = vbgn − q1, V t = (vend − q1)− V s.

42

• For the region R2, V s = vbgn − projvbgn , V t = (vend − projvend
)− V s.

vbgn is the initial position of v, vend is the terminal position of v, projvbgn and projvend
are

the projective points of vbgn and vend on the view-line within a frame.

Therefore, if the movement trajectory of a vertex is across multiple regions within a

frame, (v−q)(t) is not linear. We should compute (v−q)(t) separately. So, view tests are

performed for nr times, where nr is the number of regions that the chosen vertex moves

across within a frame.

4.2.3 Triangle clusters

In the view-line scheme, we determine the regions for all vertices. Now, we construct

triangle clusters of a deformable object in the preprocessing stage, as shown in Figure 4.2.

We choose a vertex first such that the number of triangles attached to the vertex is largest.

Then, all triangles adjacent to the chosen vertex form a cluster. This is performed until

all the triangles of the object have assigned to a cluster. For a single triangle cluster, if

there are nt triangles, we can determine the regions for these nt triangles according to the

center vertex in common. Suppose that the deformable object contains nv vertices and

ns triangle clusters, then we need to execute the vertex region determination for ns times

instead of nv times. Because ns < nv, we can improve the performance.

Figure 4.2: Triangle clusters of a deformable object.

43

4.3 Boundary Handling

For unclosed meshes with self-collision, boundary handling is performed. In the step

of boundary handling, we collect the triangles which are violated to the view-based ap-

proach, and then further checks are performed for the violated triangles in the step of

traversal.

We employ ghost triangles to collect violated triangles. Traversal between the BVHs

of ghost triangles and the whole object is performed to collect the violated triangles. At

first, we collect potentially colliding pairs between ghost triangles and the whole object.

Then, elementary tests are performed for the potentially colliding pairs to get the exactly

colliding triangles. We assign the violated triangles to the view set V v. The process is

performed sequentially according to the holes of the object. The violated triangles are

collected until the model is self-collision free. In other words, the violated triangles keep

their types until the model is self-collision free. When the model is self-collision free, the

view set V v is released, and the violated triangles are set to be positively oriented. In short,

the set V v contains the triangles which overlap with or pass through ghost triangles.

4.4 Traversal

After performing view tests and boundary handling, we get several view sets. If a

deformable object is not self-collision free, further checks are performed for some pairs

of the view sets. Suppose that U is the union set of all triangle of the deformable object.

• For closed objects with the view-point scheme, there are three view sets, V +
p , V −

p ,

and V 0
p . If the deformable object is not self-collision free, further checks are per-

formed for the pairs of (V +
p , V −

p) and (U, V 0
p).

• For unclosed objects with the view-point scheme, there are four view sets, V +
p , V −

p ,

V 0
p , and V v

p . If the deformable object is not self-collision free, further checks are

performed for the pairs of (V +
p

′
, V −

p
′
), (U ′, V 0

p
′
), and (U, V v

p).

• For closed objects with the view-line scheme, there are three view sets, V +
l , V −

l , and

44

V 0
l . If the deformable object is not self-collision free, further checks are performed

for the pairs of (V +
l , V −

l) and (U, V 0
l).

• For unclosed objects with the view-line scheme, there are four view sets, V +
l , V −

l ,

V 0
l , and V v

l . If the deformable object is not self-collision free, further checks are

performed for the pairs of (V +
l

′
, V −

l
′
), (U ′, V 0

l
′
), and (U, V v

l).

However, traversal is performed for the BVHs of the view sets. We do not construct

new BVHs of all view sets, but extract partial BVHs of the original BVH by marking the

nodes of the original BVH. For example, if a node of the BVH contains a triangle, which

is assigned to the view set V +
p , then the node is marked for the view set V +

p . The partial

BVHs are called vBVHs. For each view set, there is a related vBVH, and nodes in the

vBVHs of different view sets may be repeated. Traversal is performed for the vBVHs to

collect potentially colliding pairs.

For closedmeshes, there are three types of flags, P ,N , andZ, in a node of the original

BVH. For unclosed meshes, there are four types of flags, P ,N , Z, and V , in a node of the

original BVH.

1. P: If there is a triangle, which is assigned to the view set V +
p or V +

l , in a node, then

the flag P of the node is set to be true.

2. N: If there is a triangle, which is assigned to the view set V −
p or V −

l , in a node, then

the flag N of the node is set to be true.

3. Z: If there is a triangle, which is assigned to the view set V 0
p or V 0

l , in a node, then

the flag Z of the node is set to be true.

4. V: If there is a triangle, which is assigned to the view set V v
p or V v

l , in a node, then

the flag V of the node is set to be true.

We mark the flags of a node of the BVH according to the kinds of triangles within the

node. Initially, the flag P of all nodes are set to be true, and other kinds of flags are set

to be false. We mark all the nodes according to the different view sets sequentially. For

45

a view set, the marking process starts from the leaf nodes of the BVH, and bottom-up

traversal is performed recursively. When the process reaches a node, which is already

marked with same feature, then the recursion is terminal. So, we have three vBVHs for

closed meshes and four vBVHs for unclosed meshes. For example, Figure 4.3(a) shows

the original BVH, and Figure 4.3(b) shows the marking results of two different view sets.

In other words, we now have two vBVHs, as shown in Figure 4.3(c) and (d). Actually, the

cost of marking process is low. At first, we extract the triangles whose types are changed

between two consecutive frames, and update the vBVHs according to these triangles in

the runtime phase. For example, if a triangle changes its type and it is assigned from V +
p

to V −
p , then we need to update the vBVHs of the view sets V +

p and V −
p according to the

triangle.

Figure 4.3: Marking process of vBVHs.

After getting the vBVHs, we compress the vBVHs further to improve performing

traversal for these vBVHs. For example, Figure 4.4(c) and (d) are the results of the com-

pact vBVHs simplifying from the original vBVHs, which are shown by Figure 4.4(c) and

46

(d). We implement the process of compression by the following method. Traversal is per-

formed after getting the vBVHs and started from the root of the vBVHs. When the process

of traversal encounters a node, which only has a single child, we skip the node instead of

performing overlap tests, and then check its child directly, as shown in Figure 4.4. The

cost of checking the number of children of a node is less than performing bounding vol-

ume overlap tests. The checking process is performed until a node with two children or

a leaf node is reached. The number of overlap tests for the vBVHs is much less than full

traversal for the original BVH.

Figure 4.4: Skipped nodes in the vBVHs are adopted in order to compress the vBVHs.

4.5 Elementary Tests

After performing traversal for the vBVHs, we get a set of potentially colliding pairs.

Elementary tests [TCYM09] are performed for the potentially colliding pairs sequentially

with feature assignments [WB06].

47

For any two triangles, if they collide with each other, then the colliding point may

occur between a vertex and a triangle or between two edges. There are fifteen elementary

pairs of two triangles, including six vertex-triangle pairs and nine edge-edge pairs. So, we

need to compute elementary tests fifteen times for each potentially colliding pair. We com-

pute the time when the two features are coplanar for each elementary pair. Then shortest

distance between the two features is computed. The vertices and edges of triangles move

with constant velocities, so we can detect the collision by their movement trajectories. If

two features collide with each other within a frame, we can obtain a contact time. For all

effective contact time of fifteen elementary pairs, the smallest value is chosen. In addition,

we can reduce the computation of elementary tests by using feature assignments.

48

Chapter 5

Implementation on GPUs

5.1 GPU Architecture

On graphics processing units (GPUs), the number of processors is more than multi-

core platforms, and it supports higher degree of parallelism. In recent years, there are

more and more researches of computer graphics implemented by GPUs. The view-based

approach for continuous self-collision detection is suitable for executing in parallel. We

implement the approach on GPUs with CUDA.

A graphics chip is composed of several multiprocessors. A multiprocessor is com-

posed of 8 processors, which are divided into two groups. So, each group contains four

processors and forms a SIMP unit. A GPU process, called a kernel, is executed by a grid,

which is formed by several blocks. A block is mapped to a multiprocessor, and a lot of

threads can be executed in a block. Every 32 threads are grouped together and formed a

warp, which is the smallest processing unit in CUDA. 32 threads in a warp are executed

in parallel at a certain time. Besides, a multiprocessor also contains special function units,

registers, shared memory, constant memory, and local memory.

On GPUs, there are several types of memory with different performance [NVI10b].

Table 5.1 shows the property of all memory. We can observe that register and shared

memory are on chip, and the access speed are the fastest. But the number of registers and

the size of shared memory are limited. So, we use these kinds of memory efficiently. In

49

Memory
Location

Cached Access Scope Lifetime
1 on/off chip

Register On n/a R/W 1 thread Thread

Local Off n/a R/W 1 thread Thread

Shared On n/a R/W All threads in block Block

Global Off n/a R/W All threads + host Host allocation

Constant Off Yes R All threads + host Host allocation

Texture Off Yes R All threads + host Host allocation

Table 5.1: Salient features of device memory for devices of compute capability 1.x. The

information is quoted from [NVI10a].

general, variables which are accessed frequently or shared by all threads in the same block

should be stored by using shared memory. We can copy the data from global memory to

shared memory at the beginning of kernel execution.

The development of GPUs is rapid. Design mechanisms are different from different

generation of GPU architectures. Our GPU processes are performed by NVIDIA's devices

of Fermi architecture. Figure 5.1 shows the comparisons between three GPU generations.

Fermi architecture is much different from previous GPUs. There are several significant

improvements described as follows.

1. The processors are called CUDA cores, and the number of CUDA cores is much

more than before.

2. Compute capability of double precision is more than 8 times faster, and single pre-

cision is more than 2 times faster. Besides, fused multiply-add (FMA) computation

replaces multiply-add (MAD) computation.

3. The number of special function units is double. And there are 16 CUDA cores in a

multiprocessor instead of 8 CUDA cores. Therefore, two warps can be scheduled

at the same time in a block.

4. For global memory and local memory, L1/L2 cache is supported.

50

Figure 5.1: Summary table of various GPU architecture. (The information is quoted from

[NVI09].)

5. 64KB of RAM are provided for shared memory and L1 cache. We can schedule the

size manually by two policies. 16KB for shared and 48KB for L1 cache; 48KB for

L1 cache and 16KB for shared memory. So, the size of shared memory we can use

is larger.

6. Fermi supports single-error correct and double-error detect (SECDED) error cor-

recting code (ECC). The data can be maintained stably.

7. __device__ functions support recursion. Note that __device__ functions are only

called by devices.

There are two important issues that should be considered in parallel computing on

GPUs. The first issue is about the work load balancing for the threads, and each thread

should access data systematically so as to improve the degree of parallelism. The sec-

ond issue is that the calculated results of each thread are stored systematically in paral-

lel according to the related thread id. In order to handle these two issues, we employ

fundamental parallel functions, including parallel prefix sum, parallel sort, and parallel

reduction [HOS+07, NVI].

51

5.2 Use of Data on GPUs

5.2.1 Static data

int4 *m_dFaceVertIdx;

int *m_dNumFeaturePoint;

int *m_dNumFeatureEdge;

int *m_dEdgeVertIdx;

Before performing the process on GPUs, we copy the data from main memory to GPU

memory. These data are static and just need to be copied once, including vertex indices

and features of all triangles. For all triangles, we store three vertex indices into an ar-

ray and copy to GPU memory so as to access vertex positions. A triangle contains six

elementary primitives, including three vertices and three edges. Feature assignments are

performed to decide the number of primitives for each triangle in the preprocessing stage.

The data of vertices and edges are stored orderly based on the features.

5.2.2 Dynamic data

float4 *m_dVertArr;

float4 *m_dVelArr;

float *m_dFaceBVbound;

float *m_dkDopNodeList;

float *m_dGhostNodeList;

52

Because our experiments are performed based on benchmarks, we need to load and

update the information of models and copy these data frommain memory to GPUmemory

each frame, including vertex positions, vertex velocities, and bounding volume informa-

tion.

Data of BVH can be stored in a one-dimension array. We cannot use pointers to access

nodes of BVH on GPUs. We store the BVH into a node list by level-order, as shown in

Figure 5.2. For a single node, we store the data include bounding volume information, a

leaf flag, the index of its left child in the node list (if it is an internal node), the index of

the triangle in the node (if it is a leaf node). Note that the right child of a node must be

adjacent to the left child in the node list. The bounding volume information is dynamic,

and it should be updated each frame, but the index of the left child or the triangle is static.

Suppose that there are n nodes in the BVH, then we allocate 20×n spaces for the node list

that 20 is a multiple of 4. The bounding volume information of each triangle is contained

in the node list, but these data are used frequently. So, we store the bounding volume

information of all triangles additionally into an array.

Figure 5.2: Level-order node list of the BVH.

53

5.2.3 Global memory allocation in advance

float4 *m_dVs;

float4 *m_dVt;

int *m_dFaceType_Cur;

int *m_dFaceType_Record;

int *m_dCompact_Neg_Vio_TriIdx;

int *m_dNumPCPs;

int *m_dPCPsList;

int *m_dNumInitialHistory;

int *m_dInitialHistory;

int *m_dNumCurrentHistory;

int *m_dCurrentHistory;

int *m_dCompactPCPsList_1;

int *m_dCompactPCPsList_2;

float *m_dContactTime;

We need to allocate a set of GPU memory in the preprocessing stage in order to store

data in runtime. Thus, we can reduce the memory time for memory allocation in runtime.

1. We store linear vector variation from a vertex to check points for all vertices in

[0,∆t] into m_dVs[] and m_dVt[].

2. We use m_dFaceType_Cur[] to store temporary types of all triangles after perform-

ing view tests and boundary handling.

3. Before performing traversal, we compress the triangle type list and collect the in-

dices of negatively oriented and violated triangles intom_dCompact_Neg_Vio_TriIdx[].

54

4. After performing view tests and boundary handling, the types of all triangles should

be updated from m_dFaceType_Cur[] to m_dFaceType_Record[].

5. m_dNumPCPs[] records the number of potentially colliding pairs.

6. m_dPCPsList[] records the potentially colliding pairs of all triangles. We allocate

16 spaces per triangle. So, the size of m_dPCPsList[] is 16× the number of all

triangles.

7. We perform traversal in the preprocessing stage, and store the colliding situation

into m_dInitialHistory[] for each triangle. We allocate 512 spaces per triangle. So,

the size of m_dInitialHistory[] is 512× the number of all triangles.

8. m_dNumInitialHistory[] records the number of nodes for the initial traversal based

on each triangle.

9. We record the current results of traversal into m_dCurrentHistory[] and store the

number of history nodes into m_dNumCurrentHistory[] every frame. We allocate

512 spaces per triangle. So, the size of m_dCurrentHistory[] is 512× the number of

all triangles.

10. Before performing elementary tests, we compress the PCPs list based on each trian-

gle. We allocate global memory dynamically according to the number of potentially

colliding pairs, and collect potentially colliding pairs intom_dCompactPCPsList_1[]

and m_dCompactPCPsList_2[].

11. m_dContactTime[] records contact time of all potentially colliding pairs, and these

data are copied back to main memory.

5.3 View Tests

In the step of view tests, we want to determine the types of all triangles. View tests

are performed by two parts, including vertex region determination and triangle type de-

termination. The processes are performed sequentially.

55

5.3.1 Vertex region determination

int THREAD = N;

int BLOCK = #Vertices/THREAD + 1;

gpu_vertexRegionDetermination <<<BLOCK, THREAD, 0>>> (...);

The activity regions for all vertices in [0,∆t] are determined. The GPU process and

CPU process are the same. But one thread per vertex is created to execute the process. So,

totally nv threads are created andN threads per block, where nv is the number of vertices.

5.3.2 Triangle type determination

int THREAD = N;

int BLOCK = #Triangles/THREAD + 1;

gpu_faceTypeDetermination <<<BLOCK, THREAD, 0>>> (...);

The types of all triangles are determined according to their orientation related to the

view primitive in [0,∆t]. The GPU process and CPU process are the same. But one

thread per triangle is created to execute the process. So, totally nt threads are created and

N threads per block, where nt is the number of triangles.

For closed meshes, we divide all triangles into three view sets, The types of all tri-

angles are computed every frame. For unclosed meshes, we divide all triangles into four

view sets. For a certain frame, view tests are performed for non-violated triangles to deter-

mine the types that violated triangles are skipped. We keep the types of violated triangles

until the model is self-collision free.

56

On the other hand, we do not employ triangle clusters to improve the performance on

GPUs. The main improvement of employing triangle clusters is to reduce the execution

time of vertex region determination. On CPUs, vertex region determination is performed

sequentially according to each vertex, and the execution time of vertex region determina-

tion is proportional to the number of vertices. But on GPUs, vertex region determination is

performed in parallel for all vertices. The impact of the number of vertices on the perfor-

mance of vertex region determination is much less on GPUs. So, we do not adopt triangle

clusters to improve the performance.

5.4 Boundary Handling

For unclosed meshes, we need to perform boundary handling. We extract the trian-

gles which collide with or pass through ghost triangles and record these triangles until the

object is self-collision free.

int THREAD = N;

int BLOCK = #Triangles/THREAD +1;

gpu_boundaryHandling <<<BLOCK, THREAD, 0>>> (...);

Violated triangles will keep their types until the object is self-collision free. So, we

do not perform boundary handling for violated triangles. There are two policies. The sim-

plest method is to create one thread per triangle. So, totally nt threads are created, and N

threads per block, where nt is the number of triangles. Boundary handling is performed

for each thread, but threads responsible for violated triangles do not execute any compu-

tation. In other words, the process just need to perform boundary handling and update the

types for non-violated triangles.

int THREAD = N;

57

int BLOCK = #Triangles with non-violated/THREAD +1;

gpu_boundaryHandling <<<BLOCK, THREAD, 0>>> (...);

By another method, we will compress the triangle type list and collect the indices

of non-violated triangles before performing boundary handling. So, we get a compact

array which records the indices of non-violated triangles. One thread per non-violated

triangle is created. So, totally nv threads are created, and N threads per block, where

nv is the number of non-violated triangles. Compressing the triangle type list can reduce

the number of threads, and the workload of each thread is balanced. But there are some

penalties for compressing.

The steps of compression are described as follows. At first, we divide the triangle

type list into nc chunks that 8 elements per chunk and nc threads are created. Then, we

need to compute the number of non-violated triangles for each chunk and store the results

in an array A. Note that the size of elements in A is nc. Next, we calculate the exclusive

prefix sum for the array A and store the results in another array B. The elements in the

array B indicate the start index in the compact array for each chunk. Finally, we store the

indices of non-violated triangles in the compact array according to the prefix sum in the

array B, as shown in Figure 5.3. The elements in the compact array indicate the triangle

indices which are non-violated.

In the step of boundary handling, each thread is responsible for traversing between

the target triangle and the BVHs of ghost triangles. For example, if there are nh holes

in the deformable object, then the target triangle is traversed for these nh BVHs of ghost

triangles sequentially. The process is ended as long as the target triangle collides with any

ghost triangle. In fact, we determine whether or not the target triangle collides with a ghost

triangle by their bounding boxes instead of triangles. If we compute collision detection by

triangles exactly, the performance is bad. There are two reasons. On GPUs, it is good to

perform simple and consistent computation in a kernel. Performing traversal with exact

collision detection contains the computation of overlap tests for bounding volumes and

elementary tests of triangles. It is more complicated, and the ability of parallel computing

58

Figure 5.3: Preprocess the triangle type list before performing boundary handling.

is reduced. Another reason is that there are a lot of global memory accesses. We need to

access the data of bounding volumes and triangle information at the same time, and the

data in the cache is not consistent. The number of violated triangles with inexact collision

detection by bounding volumes is larger than exact collision detection by triangles. And

then, in the step of traversal, the computation and the number of potentially colliding pairs

are larger. But the entire performance is better.

On CPUs, the cache is larger and the computation ability of processors is better, so

we perform boundary handling with exact collision detection by triangles.

We employ shared memory to store the data of bounding volumes of each triangle.

In the stage of traversal for each triangle, there are a lot of overlap tests, and the data of

bounding volume of target triangles are used frequently. So, we employ shared memory

to store the data, as shown in Algorithm 4. For each thread in a block, it copies the data

from the global memory to shared memory itself in the beginning.

In the stage of traversal, we employ stack to perform traversal instead of recursion, as

shown in Algorithm 4. Fermi GPU supports recursion, but the performance of recursion

is slower. For a certain node of BVH, there are three cases.

• Case 1: There is no overlapping between the bounding volume of the target triangle

and the node. The process is ended.

59

Algorithm 4 Algorithm of coping the data of bounding volumes into shared memory
1: int tid = threadIdx.x;

2: int i = blockIdx.x*blockDim.x+threadIdx.x;

3: __shared__ float s_BVbound[N*16]; // 16-Dops

4: if i < #Triangles then

5: for k = 0 to 7 do

6: S_BVbound[tid*16+k] = g_FaceBVbound[i*16+k];

7: S_BVbound[tid*16+8+k] = g_FaceBVbound[i*16+8+k];

8: end for

9: ...

10: end if

• Case 2: The bounding volume of the target triangle collides with the node, and the

node is not a leaf. Continue to traverse for the left child of the node and store the

index of the right child in a stack. Because we store the BVH in a node list by level-

order, the right child must be adjacent to the left child. And the index of the right

child is the index of the left child plus one.

• Case 3: The bounding volume of the target triangle collides with the node and the

node is a leaf. The target triangle is violated.

If there is no overlapping between the bounding volume of the target triangle and the

node or the node is a leaf, we get the index of the next tested node from the stack. The

process is ended when the stack is empty.

5.5 Traversal

On CPUs, we usually employ some acceleration structures, like BVH and kd-trees, to

improve the performance of traversal. For collision detection, we take two roots of BVHs

and start performing traversal of two objects. If these two roots collide with each other, we

continue to traverse for four pairs based on these two roots. The process is ended until the

60

Algorithm 5 Algorithm of traversal for boundary handling with a stack
1: int stack[SIZE]

2: BVT = bounding volume of the target triangle

3: current node = the root of the BVH of a certain hole

4: while true do

5: if current node and BVT overlap then

6: if current node is a leaf then

7: The target triangle is violated.

8: else

9: current node = left child of current node

10: Push(stack, current node index + 1)

11: continue

12: end if

13: end if

14: if stack is empty then

15: break

16: end if

17: current node = Pop(stack)

18: end while

61

considered nodes are both leaf nodes. However, on GPUs, if we start to perform traversal

from the roots of BVHs, the degree of parallelism is bad for the first few steps. For ex-

ample, the first step of traversal is computed by only one thread, and the second step of

traversal is computed by four threads if the roots overlap. So, we do not perform traversal

in accordance with the way on CPUs. In general, traversal is performed according to each

triangle in order to increase the degree of parallelism. In other words, traversal on GPUs is

performed with a triangle-based manner. We can store potentially colliding pairs of each

triangle individually in an array with respect to the triangle id. We have four policies to

perform traversal on GPUs.

int THREAD = N;

int BLOCK = #Triangles/THREAD + 1;

gpu_traversal <<<BLOCK, THREAD, 0>>> (...);

The simplest method is to create one thread per triangle. So, totally nt threads are

created, and N threads per block, where nt is the number of triangles. Traversal is per-

formed for each thread, but threads responsible for positively oriented triangles do not

execute any computation. In other words, the process just needs to perform traversal for

negatively oriented and violated triangles. We employ stack to perform traversal. Be-

sides, we store the bounding volume bounds of each triangle in shared memory to reduce

global memory accesses. However, each thread needs to perform traversal from the root

to leaves for each triangle, and there are a lot of overlap tests. For a single thread on GPUs,

the computation ability is worse than CPUs, so the performance is not good.

int THREAD = N;

int BLOCK = #Triangles with negatively oriented and violated/THREAD + 1;

gpu_traversal <<<BLOCK, THREAD, 0>>> (...);

62

By the second method, We preprocess the triangle type list before performing traver-

sal. We compress the triangle type list and collect the indices of negatively oriented and

violated triangles. So, we get a compact array which records the indices of negatively

oriented and violated triangles. After performing view tests and boundary handling, we

get an array which indicates the types of all triangles. For example, Figure 5.4 shows the

results, where positively oriented triangles are indicated by 0, negatively oriented trian-

gles are indicated by 1, and violated triangles are indicated by 2. To compress the triangle

type list can reduce the number of threads we need, and the workload of each thread is bal-

anced. But some penalties are needed for compressing. After compressing, we create nnv

threads to perform traversal in parallel, where nnv is the number of negatively oriented

and violated triangles. For each triangle, it needs to be traversed to the entire BVH.

Figure 5.4: The triangle type list.

The steps of compression are similar to what we do in the step of boundary handling.

At first, we divide the triangle type list into nc chunks and 8 elements per chunk, and

nc threads are created. Then, we need to compute the number of negatively oriented and

violated triangles for each chunk and store the results in an arrayA. Next, we calculate the

exclusive prefix sum for the arrayA and store the results in another arrayB. The elements

in the array B indicate the start index in the compact array for each chunk. Finally, we

store the indices of negatively oriented and violated triangles in a compact array according

to the prefix sum in the arrayB, as shown in Figure 5.5. The elements in the compact array

indicate the triangle indices, which are negatively oriented or violated.

The following two policies are based on the front-based decomposition algorithm

presented by Tang et al. [TMT09]. There is a bounding volume test tree (BVTT) which

contains all the overlap test pairs during traversal. Some nodes in BVTT are marked by

front. Front nodes indicate the terminal points for traversing in the previous frame. In the

next frame, traversal is performed from these front nodes instead of roots. If the quality

63

Figure 5.5: Preprocess the triangle type list before performing traversal.

of the BVTT front is over than a threshold, the BVTT front have to be rebuilt.

int THREAD = N;

int BLOCK = #Triangles with negatively oriented and violated/THREAD + 1;

gpu_traversal <<<BLOCK, THREAD, 0>>> (...);

By the third policy, nnv threads are created, where nnv is the number of negatively

oriented and violated triangles. Each thread is responsible for traversing between the target

triangle and the BVH of the original object. We do not build BVTT because our traversal

is performed based on each triangle. We record a list of nodes according to each triangle

each frame, that the nodes contain two types. One collides with the target triangle, which

contains leaf nodes, and another does not collide with the target triangle, which contains

internal nodes and leaf nodes. These nodes are called history nodes. The list is composed

of 512×n elements, where n is the number of triangles. So, for each triangle, we allocate

512 spaces to store the history nodes. Initially, the list is composed of the root nodes of

the BVH. It means that, for all triangles, traversal should be started from the root. After

the initial stage, there is a list of pairs for each triangle. So, traversal is performed for the

history nodes in the next frame. The algorithm is shown in Algorithm 6.

64

Algorithm 6 Algorithm of traversing with history nodes
1: int stack[SIZE]

2: int round = the number of history nodes of the target triangle

3: BVT = bounding volume of the target triangle

4: for i = 0 to round-1 do

5: current node = the related element in the history list

6: if current node and BVT do not overlap then

7: Push(HistoryList, current node index)

8: continue

9: end if

10: if current node is a leaf then

11: Push(PCPList, the index of the triangle within current node)

12: Push(HistoryList, current node index)

13: continue

14: end if

15: current node = left child of current node

16: Push(stack, current node index + 1)

17: while true do

18: if current node and BVTT overlap then

19: if current node is a leaf then

20: Push(PCPList, the index of the triangle within current node)

21: Push(HistoryList, current node index)

22: else

23: current node = left child of current node

24: Push(stack, current node index + 1)

25: continue

26: end if

27: end if

28: if stack is empty then

29: break

30: end if

31: current node = Pop(stack)

32: end while

33: end for

65

Figure 5.6: Examples for history lists.

Figure 5.7: History list with many redundant nodes and reasonable nodes.

66

Figure 5.6(a) shows that the initial BVH. We record the root node for the target tri-

angle in the history list. In Figure 5.6(b), traversal between the target node and the initial

BVH is terminated at the nodes which are indicated by orange and blue color. The bound-

ing volume of the target triangle collide with the blue nodes, E and F, and does not collide

with the orange nodes, b and g. We record the nodes b, g, E, and F in the history list for

the target triangle. In the next frame, the target triangle starts to perform traversal from

nodes b, g, E, and F sequentially instead of the root, a. The performance is better than the

previous methods. There are two reasons. The first reason is that, for a target triangle, the

average number of performing overlap tests when traversing from its history nodes is less

than traversing from the root. The second reason is that the colliding results of a target

triangle is probably similar to the previous frame. So, we can improve the performance

of performing traversal using history nodes. But as time goes by, history nodes would

become inappropriate for performing traversal, and the number of history nodes for each

triangle would increase. So, there are a lot of overlap tests, including unnecessary tests.

For example, the history nodes may contain two sibling nodes which both not overlap with

the target triangle. We should perform overlap tests for their parent instead of two sibling

nodes, as shown in Figure 5.7. We can improve this problem by the following solution.

When the number of history nodes increases over than a threshold, we can restart to tra-

verse from the root node instead of the history nodes in the next frame.

int THREAD = N;

int BLOCK = #Triangles with negatively oriented and violated/THREAD + 1;

gpu_traversal <<<BLOCK, THREAD, 0>>> (...);

For the fourth policy, we need to preprocess traversal for each triangle and record the

colliding situation between the initial BVH and each triangle. In fact, in the initial case,

there is no self-collision between all triangles except for adjacent triangles. We want to

record the initial history nodes and start to perform traversing from these nodes instead of

the root node. We can observe that the number of performing overlap tests from the initial

67

history nodes is less than the root node. Besides, there is one more condition to discard the

history nodes. Traversal is performed from the initial history nodes for every few frames.

The performance is the best for the fourth policy.

So, there are two conditions that history nodes should be released.

1. When the number of history nodes is too large over a threshold.

2. For every few frames.

5.6 Elementary Tests

After performing traversal, we can get a set of potentially colliding pairs (PCPs) for

each triangle. PCPs based on each triangle are stored in an array which consists of 16×nt

elements, where nt is the number of triangles. So, for each triangle, we allocate 16 spaces

to store PCPs. We perform elementary tests of the PCPs with two different policies.

int THREAD = N;

int BLOCK = #Triangles/THREAD + 1;

gpu_elementaryTest <<<BLOCK, THREAD, 0>>> (...);

Because we store the PCPs in an array according to each triangle, nt threads are cre-

ated to perform elementary tests, where nt is the number of triangles. Each thread is

responsible for computation of a set of PCPs belongs to a triangle. There is a problem that

there may be 0 to 16 PCPs for a triangle. The workload of each thread is different. So we

sort the array which contains the data of the number of PCPs for each triangle, and assign

work to threads according to the number of PCPs to get the better workload balance. The

performance is improved, but some penalties are needed for sorting.

int THREAD = N;

68

int BLOCK = #PCPs/THREAD + 1;

gpu_elementaryTest <<<BLOCK, THREAD, 0>>>(...);

By another way, we create np threads to perform elementary tests, where np is the

number of PCPs. So, each thread is responsible for one PCP. We need to preprocess the

PCPs array before performing elementary tests. Initially, the PCPs are distributed in an

array based on each triangle, and we have the data of the number of PCPs for each triangle

in an array, called numPCPs array. The exclusive prefix sum of numPCPs array is com-

puted. Then, we can employ nt threads to collect the PCPs for each triangle in parallel,

where nt is the number of triangles. Finally, we get a compact array consists of the PCPs

without redundant space, as shown in Figure 5.8.

Figure 5.8: PCPs array preprocessing.

We use two methods of elementary tests on GPUs, including Interval Newton and

Cubic Solver [TCYM09]. On CPUs, the process of Interval Newton is recursive, and

recursive functions are supported by Fermi GPUs. All the processes on CPUs and on

GPUs are the same. Additionally, for Cubic Solver, we need to solve the cubic function

exactly, and all the processes on CPUs and on GPUs are the same. Besides, we employ

feature assignments [WB06] to reduce the computation of elementary tests.

69

Chapter 6

Results and Discussion

We implemented the view-based approach using both CPUs and GPUs. The experi-

ments were performed on an Intel(R) Core i7 CPU 870 @ 2.93GHz 2.93GHz 4 GB main

memory and one thread is used, and on NVIDIA Geforce GTX 480 graphics card that 2.0

compute capability is supported. On the other hand, the experiments were classified into

two types.

1. We performed the entire procedure of continuous collision detection includes inter-

object and self-object using CPUs.

2. We performed continuous inter-collision detection contains BVHupdate usingCPUs

and continuous self-collision detection using GPUs.

The type of bounding volume is K-DOPs with degree 16. Execution time of kernel func-

tions was measured by the CUDA compute visual profiler.

6.1 Animation Benchmarks

Our experiments were performed on six animation benchmarks. The benchmarks are

generated by the dynamic simulation system created by our lab. Each benchmark contains

a semi-rigid or rigid object and a deformable cloth. Table 6.1 shows the model complex-

ities, and the information of holes and ghost triangles for unclosed models. Figure 6.1,

70

6.2, 6.3, 6.4, 6.5, and 6.6 show a series of snapshots for the six animation benchmarks.

In addition, the animation benchmarks are described as follows.

Ani. Closed #Frames
Semi-rigid and

Deformable Objects
Rigid Objects

#Tri. (K) #Vert. (K) #Tri. (K) #Vert. (K) #Holes #Ghost Tri.
One Yes 1176 40 20 12 6 - -
Two Yes 721 40 20 49 25 - -
Three No 1167 34 17 50 25 4 549
Four No 971 34 17 50 25 4 549
Five No 1568 19.2 9.6 76 39 2 320
Six No 1166 34 32 80 40 1 800

Table 6.1: Model complexities and information of ghost triangles for unclosed models.

• Ani. One: A bunny and a ball with low complexity. The bunny is semi-rigid and

moves up and down inside the deformable ball. The deformable ball falls and inter-

acts with the bunny.

• Ani. Two: A bunny and a ball with high complexity. Similar to Ani. One, but the

number of triangles of the deformable ball is larger.

• Ani. Three: A character wears a dress in a windy environment. The character is

rigid. There are a lot of wrinkles for the deformable dress.

• Ani. Four: A walking character wears a dress.

• Ani. Five: A rod and a cloth. The rod is rough and its shape bends gradually. There

is a cylinder-liked deformable cloth which covers and interacts with the rod. As

time goes by, the rod is bending and the deformable cloth slips along the surface of

the rod.

• Ani. Six: A board and a cloth in a windy environment. The square board is rigid.

There is a deformable cloth spreads on the board. The cloth is affected by wind and

interacts with the board.

71

Figure 6.1: A series of snapshots of Ani. one. The first row and the second row are viewed

from different viewpoints.

Figure 6.2: A series of snapshots of Ani. two. The first row and the second row are viewed

from different viewpoints.

72

Figure 6.3: A series of snapshots of Ani. three.

Figure 6.4: A series of snapshots of Ani. four.

73

Figure 6.5: A series of snapshots of Ani. five.

Figure 6.6: A series of snapshots of Ani. six.

74

Figure 6.7: The snapshots of Ani. one and two in wireframe.

Figure 6.8: The snapshots of Ani. three with ghost triangles.

75

Figure 6.9: The snapshots of Ani. five with ghost triangles.

Figure 6.10: The snapshots of Ani. six with ghost triangles.

76

The deformable objects in Ani. one and two are closed, as shown is Figure 6.7. As

mentioned above, Ani. one and two are similar, but the number of triangles of the cloth in

Ani. two is more than Ani. one. The deformable objects in Ani. three, four, five, and six

are unclosed. Figure 6.8, 6.9 and 6.10 show the snapshots of Ani. three, five, and six that

the deformable objects are indicated by blue color, and the ghost triangles are indicated

by green color. The information of ghost triangles in Ani. three and four are the same.

6.2 Results on CPUs

Table 6.2 and 6.3 show the execution time of each step with the view-point and

view-line schemes on CPUs for continuous self-collision detection. Table 6.4 shows tim-

ing comparisons between our approach, AABB, k-DOP, and ICCD for continuous self-

collision detection. For the view-point scheme, the speedup factors are 6.1x ∼ 27.7x,

2.3x ∼ 4.4x, and 2x ∼ 3.7x compared to AABB, K-DOP, and ICCD. For the view-line

scheme, the speedup factors are 6.5x ∼ 28.6x, 2.2x ∼ 4.2x, and 2x ∼ 3.5x compared to

AABB, K-DOP, and ICCD. We can observe that the performance of the view-line scheme

is a little better than the view-point scheme on average.

Figure 6.11 and 6.12 show the numbers of triangles of all kinds of view sets with the

view-point scheme and the view-line scheme for the six benchmarks.

There are several factors that make impacts on the performance, such as the types of

simulation objects, the number of holes, the number of ghost triangles, and the deformation

of objects.

• For closed meshes, boundary handling does not need to be performed, and there are

no violated triangles. So, the number of triangles that needs to be handled in the

step of traversal is less. Thus, the performance of handling closed meshes is better

than unclosed meshes on average. For example, the performance of handling Ani.

one and two is better.

• There are more ghost triangles if the number of holes for deformable objects is

more. And the primary factor that makes a great impact on the performance is the

77

number of ghost triangles. From Table 6.1, we can observe that the number of holes

in Ani. three, four, and five are larger than the number of holes in Ani. six. But

the number of ghost triangles in Ani. six is more than other animation benchmarks.

Consequently, the performance of handling Ani. six is improved less by our view-

based approach than others.

• From Figure 6.3, we can observe that the deformable object deforms intensely. The

number of negatively oriented and violated triangles is large. The performance of

handling Ani. three is improved least by our view-based approach.

• Among the four benchmarks with unclosed meshes, Ani. five is improved most by

our view-based approach. From Table 6.1, we observe that the number of ghost

triangles is least so as to result in low cost of extracting violated triangles in the step

of boundary handling. Besides, from Figure 6.5, we can observe that the boundaries

of the deformable object slide and deform slightly, so that the number of violated

triangles is few.

• The execution time of boundary handling is proportional to the number of triangles,

the number of ghost triangles, and the deformation of the deformable object. From

Table 6.2 and 6.3, we can observe that the execution time of boundary handling is

longer if the number of ghost triangles is larger. On the other hand, the numbers of

triangles in Ani. three and four are the same. But the execution time of boundary

handling for Ani. three is longer than Ani. four. From Figure 6.3, we can observe

that the deformation of the deformable object is severer in Ani. three.

• We can observe that the performance of performing view tests is quite different with

the view-point scheme and the view-line scheme. The view-point scheme is simple

and the step of vertex region determination is not required, so the performance is

better. But the performance of performing traversal with the view-point scheme is

worse because the number of negatively oriented triangles is larger.

78

Ani.
View Boundary vBVH

Traversal
Elementary

Total
Tests Handling Update Tests

One 0.98 - <0.01 0.83 <0.01 1.88
Two 4.17 - <0.01 4.37 0.73 9.27
Three 4 4.26 0.16 8.4 0.67 17.49
Four 4 2.28 0.19 6.43 0.13 13.03
Five 5.72 0.53 0.13 6.13 0.62 13.13
Six 5.94 7.1 <0.01 6.56 <0.01 19.6

Table 6.2: Execution time (in ms) of each step with the view-point scheme on CPUs for
continuous self-collision detection.

Ani.
View Boundary vBVH

Traversal
Elementary

Total
Tests Handling Update Tests

One 1.18 - <0.01 0.83 <0.01 2.01
Two 4.65 - <0.01 4.38 0.75 9.78
Three 4.75 4.24 0.11 6.6 0.7 16.4
Four 4.75 2.22 0.11 4.72 0.13 11.93
Five 6.77 0.54 0.11 5.15 0.14 12.71
Six 7.13 7.37 <0.01 6.14 <0.01 20.64

Table 6.3: Execution time (in ms) of each step with the view-line scheme on CPUs for
continuous self-collision detection.

Ani. AABB 16-DOP ICCD View-point View-line Speed-up(point) Speed-up(line)
One 21.84 7.13 7 1.88 2.01 11.6x,3.8x,3.7x 10.8x,3.5x,3.5x
Two 131.78 41.03 30.88 9.27 9.78 14.2x,4.4x,3.3x 13.5x,4.2,3.2x
Three 106.25 40.04 35.2 17.49 16.4 6.1x,2.3x,2x 6.5x,2.4x,2.1x
Four 97.24 31.48 31.9 13.03 11.93 7.5x,2.4x,2.4x 8.2x,2.6x,2.7x
Five 364.04 45.54 42.2 13.13 12.71 27.7x,3.5x,3.2x 28.6x,3.6x,3.3x
Six 343.27 44.62 42.15 19.6 20.64 17.5x,2.3x,2.2x 16.6x,2.2x,2x

Table 6.4: Timing comparisons (in ms) between our view-based approach, AABB, 16-
DOP, and ICCD for continuous self-collision detection.

79

Figure 6.11: The numbers of triangles of all kinds of view sets with the view-point scheme

for the six benchmarks.

80

Figure 6.12: The numbers of triangles of all kinds of view sets with the view-line scheme

for the six benchmarks.

81

6.3 Results on GPUs

Table 6.5 shows the execution time of performing traversal in the beginning to obtain

the initial history nodes. We release the data of history nodes for every few frames and

restart to perform traversal from the initial traversal results. Table 6.6 and 6.7 show the

execution time of each step with the view-point and view-line scheme on GPUs for contin-

uous self-collision detection. The elements of others contain operations of compression,

parallel scan, and update of the triangle type list. Table 6.8 and 6.9 show the speed-up

factors of each step with the view-based approach using CPUs and GPUs for continuous

self-collision detection.

In the step of traversal, history nodes are adopted to improve the performance. As

mentioned previously, there are two conditions that history nodes should be released, and

traversal is performed from the initial traversal history nodes in the next frame. When the

number of history nodes is too large over than a threshold, we should release the history

nodes. By experiments, the threshold is defined to be 128. On the other hand, we should

release the history nodes for every 25 frames.

Ani. one two three four five six

time (ms) 3.2 12.4 15.35 15.34 22.15 21.09

Table 6.5: Execution time (in ms) of performing traversal in the beginning to obtain the
initial history nodes.

Ani.
View Boundary

Traversal
Elementary

Others Total
Tests Handling Tests

One 0.03 - 0.2 0.04 0.01 0.28
Two 0.09 - 0.63 0.11 0.02 0.83
Three 0.12 0.29 1.01 0.12 0.03 1.57
Four 0.12 0.27 0.79 0.04 0.03 1.25
Five 0.07 0.22 0.76 0.04 0.05 1.14
Six 0.08 0.61 0.7 0.02 0.05 1.46

Table 6.6: Execution time (in ms) of each step with the view-point scheme on GPUs for
continuous self-collision detection.

82

Ani.
View Boundary

Traversal
Elementary

Others Total
Tests Handling Tests

One 0.03 - 0.19 0.04 0.01 0.27
Two 0.08 - 0.64 0.11 0.02 0.85
Three 0.13 0.29 0.88 0.12 0.03 1.45
Four 0.13 0.27 0.62 0.04 0.04 1.1
Five 0.07 0.21 0.6 0.04 0.06 0.98
Six 0.09 0.6 0.76 0.05 <0.01 1.5

Table 6.7: Execution time (in ms) of each step with the view-line scheme on GPUs for
continuous self-collision detection.

Ani.
View Boundary

Traversal
Elementary

Total
Tests Handling Tests

One 32.7x - 4.2x - 6.7x
Two 46.3x - 6.9x 6.8x 11.2x
Three 33.3x 14.7x 8.3x 5.8x 11.1x
Four 33.5x 8.4x 8.1x 3.3x 10.4x
Five 81.7x 2.4x 8.1x 3.5x 11.5x
Six 74.3x 11.6x 9.4x - 13.4x

Table 6.8: Speed-up factors of each step with the view-point scheme using CPUs and
GPUs.

Ani.
View Boundary

Traversal
Elementary

Total
Tests Handling Tests

One 39.3x - 4.4x - 7.4x
Two 58.1x - 6.8x 6.8x 11.5x
Three 36.5x 14.6x 7.5x 5.8x 11.3x
Four 36.5x 8.2x 7.6x 1.9x 10.8x
Five 96.7x 2.6x 8.6x 2.8x 13x
Six 79.2x 12.3x 8.1x - 13.8x

Table 6.9: Speed-up factors of each step with the view-line scheme using CPUs and GPUs.

83

6.4 Differences of Each Step on CPUs and on GPUs

The procedures of our view-based approach are divided into four steps, including

view tests, boundary handling (if the deformable object is unclosed), traversal, and ele-

mentary tests. And we discuss the differences between implementing on CPUs and on

GPUs for the four steps.

View tests

We determine the types of all triangles of the deformable object by performing view

tests. And we divide view tests into two steps, including vertex region determination and

triangle type determination. The implementation of view tests on CPUs and on GPUs are

the same. But we take advantage of more processors on GPUs to improve the performance

of performing view tests.

On CPUs, we use one thread to perform the two steps of view tests sequentially. In

the step of vertex region determination, the process is performed sequentially according

to each vertex. After determining the regions of all vertices, we compute the types of all

triangles according to each triangle sequentially in the step of triangle type determination.

On GPUs, we create nv threads in the step of vertex region determination and nt

threads in the step of triangle type determination, where nv is the number of all vertices,

and nt is the number of all triangles of the deformable object. So, the computation of a

vertex or a triangle is handled by a thread, and the processes are executed in parallel. The

computation of view tests is the simplest in the view-based approach.

Boundary handling

For unclosedmeshes, we perform boundary handling to extract violated triangles each

frame. We perform traversal for the BVHs of ghost triangles and the deformable object.

On CPUs, we perform traversal sequentially according to the BVHs of all holes in the

deformable object. In other words, performing traversal in the step of boundary handling

on CPUs is BVH-based. If a triangle collides with ghost triangles, then the triangle is

84

determined to be violated. We keep the types of all violated triangles until the deformable

object is self-collision free. Note that we compute exactly whether or not collision occurs

between the deformable object and ghost triangles.

On GPUs, we also perform boundary handling sequentially according to the BVHs of

all holes. But nt threads are created, where nt is the number of triangles of the deformable

object. Each thread is responsible for the computation between a triangle and the BVHs

of ghost triangles. So, the degree of parallelism is higher. In other words, performing

traversal in the step of boundary handling on GPUs is triangle-based. On the other hand,

when traversal is performed, we collect the potentially colliding pairs, but elementary tests

are not performed for these potentially colliding pairs. We determine whether or not two

triangles collide with each other by the bounding boxes of the two triangles and determine

the type of the triangle according the result. If we perform elementary tests exactly for the

potentially colliding pairs of the deformable object and ghost triangles, the computation

is more complicated in the kernel function, and there are more global memory accesses.

Table 6.10 and 6.11 show the results on CPUs and on GPUs. On CPUs, it is better

to perform boundary handling with exact collision detection for Ani. three, four, and five

so as to reduce the number of violated triangles and the computation time of performing

traversal. But for Ani. six, the hole of the deformable object is huge, and the computa-

tion of boundary handling can be reduced a lot with inexact collision detection. So, the

performance of whole procedure for Ani. six is better with inexact collision detection.

On GPUs, we can observe that if we compute collision detection exactly in the step of

boundary handling, the number of violated triangles is smaller, and the execution time

of performing traversal is shorter, but the execution time of boundary handling increases

significantly. Therefore, the performance is reduced for the whole procedure.

Traversal

We perform traversal to collect potentially colliding pairs. The situation is similar to

the step of boundary handling.

On CPUs, after performing view tests and boundary handling, we get three kinds of

85

Ani.
Exactness Inexactness

Boundary #Violated
Traversal Total

Boundary #Violated
Traversal Total

handling triangles handling triangles
Three 4.24 2032 6.6 16.41 2.22 5548 10.9 19.26
Four 2.22 1690 4.72 11.93 1.45 3898 8.32 15.55
Five 0.54 622 5.15 12.71 0.39 1367 8.21 14.71
Six 7.37 1593 6.14 20.64 3.56 3116 8.01 18.75

Table 6.10: Boundary handling with the view-line scheme by exact and inexact methods
on CPUs.

Ani.
Exactness Inexactness

Boundary
Traversal Total

Boundary
Traversal Total

handling handling
Three 1.43 0.74 2.43 0.29 0.86 1.47
Four 0.88 0.53 1.64 0.27 0.62 1.1
Five 1.08 0.51 1.73 0.21 0.6 0.98
Six 0.91 0.71 1.78 0.6 0.76 1.5

Table 6.11: Boundary handling with the view-line scheme by exact and inexact methods
on GPUs.

view sets for closed meshes and four kinds of view sets for unclosed meshes. Then, we

build vBVHs according to all kinds of view sets. After that, we perform traversal for the

vBVHs sequentially. In other words, performing traversal on CPUs is BVH-based.

On GPUs, we get a set of triangles which are negatively oriented or violated after per-

forming view tests and boundary handling. Traversal is performed for negatively oriented

and violated triangles. nnv threads are created, where nnv is the number of triangles,

which are negatively oriented or violated. Thus, the computation of performing traversal

of a triangle is handled by a thread. Note that we do not need to build vBVHs for all kinds

of view sets. We perform traversal between the negatively oriented and violated triangles

and the BVH of the deformable object. In other words, performing traversal on GPUs

is triangle-based. Besides, we employ the front-based method presented by Tang et al.

[TMT09] to improve the performance of performing traversal, but we do not construct the

bounding volume test tree. We record a list of nodes for each triangle every frame that

traversal is terminated at these nodes. So, we do not need to perform traversal from the

root of the BVH in the next frame but start from the history nodes. In short, our approach

86

is triangle-based, and the degree of parallelism is high.

Table 6.12 shows the execution time of performing traversal on GPUs with the view-

line scheme for three different policies. For the first policy, we perform traversal without

using history nodes. For the second policy, we employ history nodes to improve perform-

ing traversal. After releasing the history nodes, traversal is performed and started from

the root node of the BVH. For the last policy, traversal is performed and started from the

initial traversal history nodes when the history nodes are released. We can observe that

the performance of the third policy is the best, and the performance of the first policy

is the worst because the cost of traversing for the BVH from the root each frame is too

expensive.

Ani.
without using using history nodes
history nodes restart from root restart from initial history nodes

One 0.66 0.23 0.19

Two 1.93 0.72 0.64

Three 3.05 1.05 0.88

Four 2.25 0.77 0.62

Five 2.31 0.73 0.6

Six 2.85 0.86 0.76

Table 6.12: Execution time (in ms) of performing traversal on GPUs with the view-line
scheme for three different policies.

Elementary tests

After collecting potentially colliding pairs, we perform elementary tests for these po-

tentially colliding pairs. We check the collision of two triangles in a colliding pair. The

implementations of elementary tests on CPUs and on GPUs are the same. But we take

advantage of more processors on GPUs to improve the performance of performing ele-

mentary tests.

On CPUs, the process is performed sequentially by one thread for all potentially col-

liding pairs. On GPUs, np threads are created, where np is the number of potentially

colliding pairs. So, the computation of a colliding pair is handled by a thread, and np

87

threads are executed in parallel.

6.5 Vertex Movement within a Frame

Table 6.13 shows the number of vertices within a frame according to their movement

on average. We can observe that most of vertices move in the same region within a frame.

The number of vertices, which move across two regions, is less than 30 for all animation

benchmarks. Therefore, in the step of view tests, we can choose any vertex of a triangle

to perform view tests with the view-line scheme, and the number of performing view tests

of a triangle is nearly one on average.

Region R0 R1 R2 R0<->R2 R1<->R2

Ani. one 684 1995 3459 2 3

Ani. two 2553 8677 13317 11 18

Ani. three 3010 6929 15269 <1 17

Ani. four 10423 6434 8352 11 5

Ani. five 5445 16616 16489 4 5

Ani. six 12805 12898 14691 3 2

Table 6.13: The number of vertices within a frame on average according to their move-
ment.

6.6 Improvement with Triangle Clusters

Table 6.14 shows the number of vertices and clusters of the deformable objects. The

number of clusters is about one-third of the number of vertices on average. Table 6.15

shows the execution time of performing view tests in the view-line scheme with triangle

clusters. We can observe that the performance is improved a little with triangle clusters.

6.7 vBVHs Construction

On CPUs, we build vBVHs based on all kinds of view sets each frame. In fact, we

neither reconstruct the BVHs of all view sets nor remark all the nodes.

88

Ani. one two three four five six

#Vertex 26148 44580 42330 42330 48240 73125

#Cluster 3256 13048 10970 10970 19200 20100

Table 6.14: The numbers of vertices and clusters of the deformable objects in the six
benchmarks.

Ani. one two three four five six

without triangle clusters 1.18 4.65 4.76 4.75 6.77 7.13

with triangle clusters 1.11 4.36 4.43 4.45 6.17 6.33

Table 6.15: Execution time (inms) of performing view tests in the view-line scheme with
triangle clusters.

Suppose that we mark the nodes of the BVH of the deformable object with P , N , Z,

and V , where P for the view set V +, N for the view set V −, Z for the view set V 0, and

V for the view set V v.

At first, all of the nodes are marked with P in the preprocessing stage because the

number of triangles in the view set V + is the most. Table 6.16 shows the cost of mark-

ing all of the nodes with P . Besides, there is a little number of triangles whose type is

changed between two consecutive frames, as shown in Table 6.17. We just need to update

the vBVHs according to the triangles whose types are different from itself between two

consecutive frames. The computation is low, and the cost is less than 0.2ms. Note that

we keep the type of violated triangles until the deformable object is self-collision free.

Ani. One Two Three Four Five Six

time (ms) 0.88 4.2 5.71 5.78 7.71 7.65

Table 6.16: The cost of marking all of the nodes in the preprocessing stage.

6.8 Discussion

6.8.1 Closed and unclosed meshes

The differences between closed and unclosed meshes with the view-based approach

for continuous self-collision detection are described as follows.

89

Ani. to V +
l to V −

l to V 0
l to V v

l V +
l to others V −

l to others V 0
l to others Total

One 3 4 7 0 4 3 7 28

Two 28 40 67 0 40 28 67 270

Three 72 74 147 78 72 147 3 593

Four 77 78 146 4 84 75 146 610

Five 61 67 128 <1 69 60 128 513

Six 35 42 70 1 43 35 70 296

Table 6.17: The numbers of triangles whose types are changed between two consecutive
frames on average with the view-line scheme.

1. For unclosed meshes, we generate ghost triangles and construct the BVHs in the

preprocessing stage.

2. We perform boundary handling for unclosed meshes to extract violated triangles.

Collision detection is performed for the BVHs of deformable objects and ghost tri-

angles.

3. The number of triangles, which are handled in the step of traversal, for unclosed

meshes is larger than the number of triangles for closed meshes because there are

violated triangles additionally for unclosed meshes. Actually, if deformable objects

do not deform severely or holes in the object is small, then the number of violated

triangles is few, and the performance is better, such as Ani. five.

6.8.2 Ghost triangles with or without ghost vertices

Our algorithm is suitable for closed and unclosed triangle meshes. We add some

ghost triangles for unclosed triangle meshes to fill the holes. As mentioned above, there

are two ways to generate ghost triangles. The first way is to connect the vertices that are

around the holes. The second way is to add ghost vertices, and then connect the boundary

vertices with the ghost vertices. In practice, we implement the second way to generate

ghost triangles. There are two reasons. First, it is simple to determine the order of all

vertices, and we can generate ghost triangles according to the boundary vertices orderly.

So it is easy to implement. Second, the ghost triangles created by the first way are irregular,

90

and the performance of performing traversal for the BVH is poorer. The spatial locality of

the BVH of ghost triangles with ghost vertices is better. Table 6.18 shows the execution

time of boundary handling that the ghost triangles are constructed with and without ghost

vertices. For CPU, boundary handling is performed by exact collision detection. For GPU,

boundary handling is performed by inexact collision detection.

Ani.
CPU GPU

with without with without
Three 4.24 28.3 0.29 0.51
Four 2.22 14.7 0.27 0.6
Five 0.54 2.92 0.21 0.23
Six 7.37 16.8 0.6 1.12

Table 6.18: Execution time (in ms) of boundary handling that the ghost triangles are
constructed with and without ghost vertices.

6.8.3 Comparison between the view-point and view-line scheme

In general, the view-line scheme is better than the view-point scheme. There are two

differences between the view-point scheme and the view-line scheme.

1. The cost of computation with the view-line scheme in the step of view tests is more

expensive than the view-point scheme. For the view-point scheme, we just need to

compute the start position and terminal position of all vertices within a time interval

[0,∆t]. And then we can get the linear information for the movement trajectories

of all vertices. For the view-line scheme, we divide the space and the deformable

object into three regions. We determine the regions of all vertices and compute

the related linear information of movement trajectories of all vertices based on the

related regions. If a vertex moves across multiple regions in [0,∆t], then view tests

are performed for multiple times.

2. In general, the number of negatively oriented triangles with the view-line scheme

is less than the view-point scheme. So, the execution time of performing traversal

91

is faster with the view-line scheme. Actually, we cannot predict the results. We

should choose a better policy according to the deformation of the object and the

situation in the previous frame. Figure 6.13 shows the comparisons of the number

of negatively oriented triangles between the view-point scheme and the view-line

scheme. In this case, we do not consider the violated triangles. In other words, we

record the number of negatively oriented triangles and do not subtract the violated

triangles.

From Table 6.2, 6.3, 6.6, and 6.7, we can observe that the types of view primitives

make a big impact on performance of performing view tests on CPUs. For the view-point

scheme, each vertex belongs only to one region, and the computation of vertex region

determination is lower. However, a chosen vertex of a triangle may move across multiple

regions within a frame with the view-line scheme, and the computation of vertex region

determination is more expensive. So, the performance of view tests with the view-point

scheme is faster than the view-line scheme. But on GPUs, the performance of performing

view tests with the view-point scheme and the view-line scheme is similar.

92

Figure 6.13: Comparisons of the number of negatively oriented triangles without consid-

ering violated triangles between the view-point scheme and the view-line scheme.

93

Chapter 7

Conclusion and Future Work

We give our conclusion and future work in this section.

7.1 Conclusion

We propose a novel view-based approach for continuous self-collision detection with

deformable manifold triangle meshes. The view-based approach is suitable for closed

triangle meshes. For unclosed triangle meshes, we generate ghost triangles in the prepro-

cessing stage to fill the holes and enclose the triangle meshes. We check the orientation

of all triangles of the deformable object based on the view primitives by performing view

tests to confirm the object is self-collision free. There are two types of view primitives,

including a point and a line segment. The view primitives are put inside the deformable

objects in the beginning, and we assume that the view primitives do not penetrate the

deformable object during the simulation.

On CPUs, if the object is determined to be not self-collision free after performing

view tests, the vBVHs are constructed for all the view sets. Performing traversal for the

vBVHs is efficient to collect potentially colliding pairs. Note that performing traversal

on CPUs is BVH-based. Finally, we perform elementary tests to check the potentially

colliding pairs so as to find the actual colliding triangle pairs.

On GPUs, if the object is not self-collision free, we collect a set of triangles which are

94

negatively oriented and violated. Traversal is performed for the BVH of the deformable

object and a triangle, and totally nnv threads are executed in parallel, where nnv is the

number of negatively oriented and violated triangles. Performing traversal on GPUs is

triangle-based. Finally, we perform elementary tests to check the potentially colliding

pairs by np threads executed in parallel so as to find the actual colliding triangle pairs,

where np is the number of potentially colliding pairs.

The experimental results show that our algorithm is more efficient than other meth-

ods for continuous self-collision detection on CPUs. Besides, performing the view-based

approach on GPUs is more efficient than performing on CPUs. There are some proce-

dures of the view-based approach that are different on CPUs and on GPUs. Because that

the degree of parallelism is higher on GPUs, and we can execute the process further in

parallel.

7.2 Future Work

If the deformable object deforms severely, and the rigid object moves every frame,

we should compute view primitives every frame. We can employ GPUs to compute view

primitives.

Besides, we can observe that the influence of violated triangles for performing traver-

sal is great. The types of violated triangles are kept until the object is self-collision free.

But the boundaries of the meshes may sometimes roll in the beginning and lay down later,

and the violated triangles become normal, as shown in Figure 7.1. The black edges pass

through the ghost edge again and become normal. But the curve is still not self-collision

free according to the results of performing view tests. So the black edges are still assigned

to the violated view set. In fact, when the boundaries of the meshes are no longer rolled,

the view set of violated triangles should be released even though the object is not self-

collision free. Then, we can reduce the cost of performing traversal for unclosed triangle

meshes.

We want to handle skeleton deformable objects with the view-based approach. For

95

Figure 7.1: Boundary edges roll and lay down.

skeleton deformable objects, triangle orientation cannot be determined appropriately ac-

cording to a single view primitive. We should divide the objects and generate related view

primitives for each part. For example, a character can be divided into five parts mainly,

including four limbs and the body. We can generate five view primitives and perform

view tests separately.

Finally, wewant to extend the view-based approach to handle continuous inter-collision

detection. For some kinds of models, the view-based approach is also suitable. For ex-

ample, if there are two objects. One of them lies in the other one, and a view primitive

is put inside the interior object. During the simulation, these two object do not penetrate

each other, and then we can observe that inter-collision should occur at two triangles with

the same orientation based on the view primitives. Finally, we will implement the whole

procedure of collision detection, including BVHs update, on GPUs.

96

Bibliography

[AFC+10] J. Allard, F. Faure, H. Courtecuisse, F. Falipou, C. Duriez, and P.G. Kry. Vol-

ume contact constraints at arbitrary resolution. ACMTransactions on Graphics

(TOG), 29(4):82, 2010.

[BT95] S. Bandi and D. Thalmann. An adaptive spatial subdivision of the object space

for fast collision detection of animated rigid bodies. In Computer Graphics

Forum, volume 14, pages 259--270, 1995.

[BW02] G. Baciu and W.S.-K. Wong. Hardware-assisted selfcollision for deformable

surfaces. In ACM Symposium on Virtual Reality Software and Technology,

pages 129--136, 2002.

[CTM08] S. Curtis, R. Tamstorf, andD.Manocha. Fast collision detection for deformable

models using representative-triangles. In Proceedings of the 2008 symposium

on Interactive 3D graphics and games, pages 61--69, 2008.

[Ebe06] D.H. Eberly. Eigensystems for 3× 3 symmetric matrices (revisited). Technical

report, Geometric Tools Inc, 2006.

[GKJ+05] N.K. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf, R. Gayle, M.C.

Lin, and D.Manocha. Interactive collision detection between deformable mod-

els using chromatic decomposition. ACM Transactions on Graphics, 24(3):

991--999, 2005.

97

[GLM96] S. Gottschalk, MC Lin, and D. Manocha. OBBTree: A Hierarchical Structure

for Rapid Interference Detection. InProceedings of the 23rd annual conference

on Computer graphics and interactive techniques, pages 171--180, 1996.

[GRLM03] N. Govindaraju, S. Redon, M. Lin, and D. Manocha. Cullide: Interactive col-

lision detection between complex models in large environments using graphics

hardware. In Proc. of ACM SIGGRAPH/Eurographics Workshop on Graphics

Hardware, pages 25--32, 2003.

[HOS+07] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and A. Davidson. CUDPP home-

page, 2007.

[JP04] D.L. James and D.K. Pai. Bd-tree: output-sensitive collision detection for

reduced deformable models. In ACM Transactions on Graphics (TOG), vol-

ume 23, pages 393--398, 2004.

[KHH+09] D. Kim, J.P. Heo, J. Huh, J. Kim, and S. Yoon. HPCCD: Hybrid Parallel

Continuous Collision Detection using CPUs and GPUs. Proceedings of the

Korea Advanced Institute of Science and Techaology, 28(7):1791--1800, 2009.

[KHM+98] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan. Effi-

cient collision detection using bounding volume hierarchies of k-DOPs. IEEE

transactions on Visualization and Computer Graphics, 4(1):21--36, 1998.

[KP03] D. Knott and K.D. Pai. Cinder: Collision and interference detection in real-

time using graphics hardware. In Graph. Interface, 2003.

[LHLK10] F. Liu, T. Harada, Y. Lee, andY.J. Kim. Real-time collision culling of amillion

bodies on graphics processing units. In ACMTransactions on Graphics (TOG),

volume 29, page 154. ACM, 2010.

[LMM10] C. Lauterbach, Q. Mo, and D. Manocha. gProximity: Hierarchical GPU-based

Operations for Collision and Distance Queries. In Computer Graphics Forum,

volume 29, pages 419--428, 2010.

98

[Mel00] S. Melax. Dynamic plane shifting bsp traversal. In Graphics interface, pages

213--220, 2000.

[MKE03] J. Mezger, S. Kimmerle, and O. Etzmuss. Hierarchical Techniques in Collision

Detection for Cloth Animation. Journal of WSCG, 11(2):322--329, 2003.

[NVI] NVIDIA Corporation. GPU computing SDK.

[NVI09] NVIDIA Corporation. NVIDIA's next generation CUDA compute architec-

ture: Fermi. 2009.

[NVI10a] NVIDIA Corporation. CUDA C best practices guide version 3.2. 2010.

[NVI10b] NVIDIA Corporation. NVIDIA CUDA C programming guide version 3.1.1.

2010.

[PG95] I.J. Palmer and R.L. Grimsdale. Collision Detection for Animation using

Sphere-Trees. In Computer Graphics Forum, volume 14, pages 105--116,

1995.

[PM11] J. Pan and D.Manocha. GPU-based Parallel Collision Detection for Real-Time

Motion Planning. Algorithmic Foundations of Robotics IX, pages 211--228,

2011.

[Pro97] X. Provot. Collision and Self-collision Handling in Cloth Model Dedicated to

Design Garments. In Graphics Interface, pages 177--189, 1997.

[Smi61] Oliver K. Smith. Eigenvalues of a symmetric 3× 3 matrix. Communications

of the ACM, 4(4):168, 1961.

[TCYM09] Min Tang, Sean Curtis, Sung-Eui Yoon, and Dinesh Manocha. ICCD: In-

teractive Continuous Collision Detection between Deformable Models Using

Connectivity-Based Culling. IEEE Transactions on Visualization and Com-

puter Graphics, 15(4):544--557, 2009.

99

[TKH+05] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi,

A. Fuhrmann, M.P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser, et al.

Collision detection for deformable objects. In Computer Graphics Forum,

pages 61--81, 2005.

[TMLT11] Min Tang, DineshManocha, Jiang Lin, and Ruofeng Tong. Collision-streams:

Fast GPU-based collision detection for deformable models. In I3D '11: Pro-

ceedings of the 2011 ACM SIGGRAPH symposium on Interactive 3D Graphics

and Games, pages 63--70, 2011.

[TMT09] M. Tang, D. Manocha, and R. Tong. Multi-core Collision Detection between

Deformable Models. In 2009 SIAM/ACM Joint Conference on Geometric and

Physical Modeling, pages 355--360, 2009.

[vdB99] G. van den Bergen. Efficient Collision Detection of Complex Deformable

Models using AABB Trees. Journal of Graphics, GPU, and Game tools, 2(4):

1--14, 1999.

[VMT94] P. Volino and N. Magnenat-Thalmann. Efficient Self-collision Detection on

Smoothly Discretized Surface Animations using Geometrical Shape Regular-

ity. In Computer Graphics Forum, pages 155--166, 1994.

[VSC01] T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast Cloth Animation on Walk-

ing Avatars. Computer Graphics Forum, 20(3):260--267, Sep. 2001.

[WB05] W.S.K. Wong and G. Baciu. Dynamic Interaction between Deformable Sur-

faces and Non-smooth Objects. IEEE Transactions on Visualization and Com-

puter Graphics, 11(3):329--340, 2005.

[WB06] W.S.K. Wong and G. Baciu. A Randomized Marking Scheme for Continuous

Collision Detection in Simulation of Deformable Surfaces. In Proceedings of

the 2006 ACM international conference on Virtual reality continuum and its

applications, pages 181--188, 2006.

100

