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Abstract: In this paper, we present a new method for solving nonlinear multicommodity network flow
problems with convex objective functions. This method combines a well-known projected Jacobi method
and a new dual projected pseudo-quasi-Newton (DPPQN) method which solves multicommodity flow
quadratic subproblems induced in the projected Jacobi method. The DPPQN method is a dual Newton-
type method that differs very much from the conventional Lagrangian Newton method; our method fully
exploits the structural advantages of network-type linear equality constraints to obtain a constant sparse
approximate Hessian matrix with a decoupling structure and includes a novel finite-iteration successive
projection and (truncated) seal algorithm to resolve the difficulty caused by coupling capacity constraints.
The DPPQN method also consists of two decomposition effects, the commodity decomposition effect
and the arc decomposition effect, which resolve the potential numerical difficulties caused by large
dimensions. We show the convergence of our method including the convergence of the finite-iteration
successive projection and (truncated) seal algorithm. Compared with the Frank–Wolfe with PARTAN
algorithm in which a price-directive decomposition method is used to solve linearized multicommodity
flow problems, our method is dramatically faster in terms of the CPU time on a Sparc-10 workstation at
solving numerous nonlinear multicommodity network flow examples. q 1997 John Wiley & Sons, Inc. Net-
works 29: 225–244, 1997

Keywords: nonlinear multicommodity flow; optimization methods; decomposition; projection; sparse
matrix technique

1. INTRODUCTION Er f k Å bk
r , k Å 1, . . . , K (1b)

f k ¢ 0, k Å 1, . . . , K (1c)In this paper, we consider a nonlinear multicommodity net-
work flow problem (NMNFP) of the following form [1]:

∑
K

kÅ1

f k
a ° da , a Å 1, . . . , m , (1d)

min ∑
m

aÅ1

Za( fa) , (1a)

where the notations adopted from [1] are defined based
on a directed graph G Å (N, A) , so that a denotes thesubject to
index of an arc in the set A; m , the total number of arcs
of A; k , the index of a commodity; and K , the totalCorrespondence to: S.-Y. Lin; e-mail: sylin@cc.nctu.edu.tw
number of commodities; f k Å ( f k

1 , . . . , f k
m) , with f k

aContract grant sponsor: National Science Council (Taiwan); con-
tract grant number: NSC83-0404-E009-115 being the flow of commodity k on arc a ; fa Å (K

kÅ1 f k
a

q 1997 John Wiley & Sons, Inc. CCC 0028-3045/97/040225-20
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226 LIN AND LIN

denotes the total flow on arc a , and E , the node–arc method—the dual projected pseudo-quasi-Newton
(DPPQN) method. This method differs from the conven-incidence matrix of G . Letting Fk denote the value of the

flow of commodity k to be sent from source node s to tional Lagrangian Newton method in the way it handles
the inequality constraints, (1c) and (1d). The latter em-destination node t , then bk Å (bk

1 , . . . , bk
n) with

ploys a Lagrange multiplier m associated with the inequal-
ity constraints that may cause a dense and indefinitely
dimensioned Hessian matrix because of the presence of
coupling capacity constraints (1d) and the change of indi-

bk
i Å

Fk
i if i Å s ,

0Fk
i if i Å t ,

0 otherwise

, ces for the active set of inequality constraints. Our
DPPQN method treats the inequality constraints, (1c) and
(1d), as the primal variable domain in the dual function.
It was this trick that made it possible for us to obtain a

where i denotes the index of a node in the set N and n fixed-dimension sparse approximate Hessian matrix.
is the total number of nodes in N. Thus, E f k Å bk denotes However, to calculate the gradient of the dual function
the flow conservation law of commodity k . Since E f k in each iteration of the DPPQN method, we need to solve
Å bk consists of one redundant equation that can be de- for the optimal dual-function primal variables, for which
leted to form Er f k Å bk

r , where Er is formed by deleting we developed a two-phase method. The first phase solves
one row from E and bk

r is formed by deleting the corre- the dual-function primal variables by relaxing the inequal-
sponding component from bk . Without loss of generality, ity constraints on the primal variables. The second phase
we may delete the n th equation. f k ¢ 0 denotes the non- projects the solution of primal variables obtained in phase
negativity condition on flow. We let d Å (d1 , . . . , dm) , 1 onto the set of inequality constraints. To achieve the
with da being the capacity of arc a , then (K

kÅ1 f k
a ° da projection required in the second phase, we developed an

denotes the capacity constraint on the total flow of arc a . efficient K-iteration successive projection and ( trun-
The arc cost Za( fa) is a convex function of fa ; therefore, cated) seal algorithm. This efficient two-phase method

overcomes complications caused by the coupling capacitythe objective function (m
aÅ1 Za( fa) , the sum of all arc

costs, is convex. constraints. Therefore, the proposed DPPQN method is a
Newton-type method that fully exploits ( i) the structureSuch NMNFPs with convex objective functions are

usually raised in traffic-assignment problems [9, 20, 23, of network-type linear equality constraints to obtain a
sparse approximate Hessian matrix of fixed dimensions,26] and data network routing problems [6, 11, 12, 30].

Solution techniques for NMNFPs have mostly originated and (ii) the special type of multicommodity flow coupling
capacity constraints, to develop an efficient K-iterationfrom nonlinear programming algorithms and have been

specialized to exploit the structure of the linear con- successive projection and (truncated) seal algorithm. In
straints, e.g., the feasible direction approach [17], linear addition, our method also achieves two decomposition
approximation algorithms [12, 14, 18, 19, 24], the equili- effects, commodity decomposition and arc decomposi-
bration approach [8, 9, 20, 29], reduced gradient method tion, which also contribute to its computational efficiency
[20, 24], the gradient projection method [27], and certain and resolve the potential numerical difficulties caused by
other methods [7, 13, 15]. large dimensions.

All the above-mentioned methods take the primal ap- However, the DPPQN method cannot be applied di-
proach. Recently, Bertsekas et al. [4] and Ohuchi and rectly to solve the NMNFP formulated in (1a) – (1d)
Kaji [25] used dual-relaxation methods to solve the non- because the objective function that we consider is gener-
linear minimum-cost single-commodity flow problem. ally not a strictly convex function as in [22]. Therefore,
Nagamochi et al. [22] presented a dual-relaxation method we have to combine our method with the well-known
for the nonlinear multicommodity flow problem with a projected Jacobi method, which provides a strictly convex
strictly convex objective function, and they considered objective function for the multicommodity flow quadratic
the coupling capacity constraints (1d). These dual meth- subproblem and makes the sparse approximate Hessian
ods [4, 22, 25] are gradient-type methods. To develop an matrix of the dual function a constant sparse matrix with
efficient Newton-type approach to the NMNFP is not an a decoupling structure, enhancing the merit of the DPPQN
easy task because the coupling capacity constraints (1d) method. Throughout the paper, we make the follow-
may induce a dense Hessian matrix that will cause severe ing two assumptions about the objective function Z( f )
computational inefficiency; in fact, the difficulty resulting å (m

aÅ1 Za( fa) :
from the coupling capacity constraint complications has
been bypassed in some of the recently published efficient

Assumptionsmethods [3, 10, 28] by authors who ignored the (explicit )
1. Z( f ) , as well as Za( fa) , are convex and bounded fromcoupling capacity constraints (1d) in their formulation.

In this paper, we present a new dual Newton-type below for every feasible f .
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NONLINEAR MULTICOMMODITY NETWORK FLOW PROBLEMS 227

2. Z( f ) is twice continuously differentiable in the inte- method is a descent method and that converges under
certain conditions has been given in [5, Proposition 3.7];rior of the feasible set of f .
we restate it here as a lemma.

We say that f is feasible if f satisfies (1b), (1c) , and
(1d); furthermore, the set of all feasible f is called the Lemma 1. Starting from a feasible f, if there exists a g
feasible set of f . The assumptions are easily satisfied in ú 0 such that
most of the practical applications [6, 9, 11, 12, 20, 23,
26, 30] or problems involving quadratic objective func- ( f *a 0 f 9a )THa( l)( f *a 0 f 9a ) ¢ g\ f *a 0 f 9a \ 2

2 , (5)
tions [10]. If we apply the mean-value theorem, Assump-
tion 2 implies that a Lipschitz constant K1 exists such

for any f *a , f 9a √ RK, every arc a and every l, and if the
that the Lipschitz condition is satisfied; i.e., \ÇfZ( f *)

step-size a( l) is sufficiently small, then the projected Ja-0 ÇfZ( f 9)\2 ° K1\ f * 0 f 9\2, for every feasible f * and f 9.
cobi method (2) is a descent method and any limit point
of the sequence { f ( l ) } generated by ( 2 ) will solve
( 1a ) – (1d ) .

2. PROJECTED JACOBI METHOD

In the above sufficient conditions, (5) is satisfied by
The projected Jacobi method uses iterations of the follow- the definition of Ha( l) given in (4); however, the suffi-
ing form to solve the NMNFP (1a) – (1d): ciently small a( l) will cause ambiguity in practice. To

cope with this difficulty, we can further develop the fol-
f ( l / 1) Å f ( l) / a( l)df *( l) , (2) lowing formula based on the proof in [5] that shows (2)

is a descent method; i.e., if 0 õ a( l) õ [(2g) /K1] , then
where l denotes the index of iteration, a( l) ú 0 is a step-
size, and df *( l) Å (df *1 ( l) , . . . , df *m ( l)) is the vector Z( f ( l) / a( l)df *( l))
of increment of f that solves the following multicommod-
ity flow quadratic subproblem: õ Z( f ( l)) 0 a 2( l)S g

a( l)
0 K1

2 D \df *( l) \ 2
2 ,

(6)

min ∑
m

aÅ1

[ 1
2df T

a Ha( l)dfa / Çfa Z T
a ( l)dfa] , (3a)

which provides a range of a( l) to ensure the descent
property of (2) . However, we need to restrict a( l) ° 1subject to
to ensure the feasibility of f ( l) / a( l)df *( l) when f ( l)
is feasible. Thus, we have the following lemma:

Er( f k( l) / df k) Å bk
r , k Å 1, . . . , K (3b)

f k( l) / df k ¢ 0, k Å 1, . . . , K (3c) Lemma 2. Starting from a feasible f, if Ha( l) is con-
structed according to (4) , and if 0õ a( l)õ min(1, (2g /

∑
K

kÅ1

f k
a( l) / df k

a ° da , a Å 1, . . . , m , (3d) K1)) for every l, then method (2) is a descent method and
any limit point of the sequence { f ( l)} generated by (2)
will solve (1a) – (1d) .

where Za( l) denotes Za( fa( l)) , the K 1 K matrix Ha( l)
is a diagonal matrix such that the k th diagonal element However, in most of the applications [6, 9, 11, 12, 20,

23, 26, 30], prior knowledge of the Lipschitz constant
K1 is not available. Thus, to ensure convergence, we need
to develop an Armijo-type step-size rule to determinehk

a( l) Å
Ì 2Za( l)
Ì f k2

a

if
Ì 2Za( l)
Ì f k2

a

¢ g,

g, otherwise,

(4)
the step-size a( l) . First, we need to further develop the
inequality (6) , as follows: If 0 õ a( l) õ (g /K1) , we
can derive from (6) that

where g is a small positive real number, Çfa Za( l) denotes
the gradient of Za with respect to fa evaluated at fa( l) , T Z( f ( l) / a( l)df *( l))
denotes the transpose, and dfa Å (df 1

a , . . . , df K
a ) .

In general, a basic requirement for a method that solves õ Z( f ( l)) 0 g

2
a( l) \df *( l) \ 2

2 .
(7)

a minimization (or maximization) problem is that the
method be a descent (or ascent) method. This requirement

Let 0 õ tJ õ 1. The sequence tm
J , m Å 0, 1, 2, . . . , isensures the existence of a point with a smaller (or larger)

then monotonically decreasing. There must exist a non-objective value along the descent (or ascent) direction.
Starting from a feasible f , proof that the projected Jacobi negative integer m such that 0 õ tm

J õ (g /K1) . Thus,
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228 LIN AND LIN

the Armijo-type step-size can be determined by increasing max
l

f(l) , (10)
m from 0 in increments of 1 and checking whether the
following inequality holds:

where the dual function

Z( f ( l) / tm
J df *( l))

f(l) Å min f (l )/df√F ∑
K

kÅ1
F1

2
df kT

Hk( l)df k

õ Z( f ( l)) 0 g

2
tm

J \df *( l) \ 2
2 .

(8)

/ ∑
m

aÅ1

ÌZa( l)
Ì f k

a

df k
aG

We set a( l) Å tm( l )
J , where m( l) is the smallest nonnega-

tive integer m for which (8) holds, and this a( l) satisfying
0 õ a( l) ° 1 ensures the descent property of (2) and / ∑

K

kÅ1

lkT
[Er f k( l) 0 bk

r / Erdf k]

(11)

the feasibility of f ( l / 1). Then, from Lemma 2, we have
the following theorem:

is a function of l Å (l 1 , . . . , lK) , which is a K(n
0 1)-dimensional vector of Lagrange multipliers and l kTheorem 1. Starting from a feasible f, if Ha( l) is con-
√ R(n01) for each k . We order f and df in the followingstructed according to (4) and if a( l) Å tm( l )

J , where 0
sequences: f 1

1 , . . . , f 1
m , f 2

1 , . . . , f 2
m , . . . , f K

1 , . . . ,õ tJ õ 1 and m( l) is the smallest nonnegative integer
f K

m , and df 1
1 , . . . , df 1

m , df 2
1 , . . . , df 2

m , . . . , df K
1 ,m for which (8) holds, then method (2) is a descent

. . . , df K
m , respectively. Under this ordering of f and df ,method and any limit point of the sequence { f ( l)} gener-

we let the K(n 0 1) 1 Km block diagonal matrix Er beated by (2) will solve (1a) – (1d) .

From Theorem 1, we see that we do not need any
knowledge of the Lipschitz constant K1 to determine the

Er Å

Er 0 ??? 0
0 Er ??? 0
: : ??? :

0 0 ??? Er

(12)step-size a( l) .

and let the mK 1 mK diagonal matrix H( l) be3. THE DUAL PROJECTED PSEUDO-
QUASI-NEWTON METHOD

3.1. Preliminaries H( l) Å

H 1( l) 0 ??? 0
0 H 2( l) ??? 0
: : ??? :

0 0 ??? HK( l)

. (13)

Let the set F denote the set of f that satisfies the inequality
constraints on flows, i.e., f √ F if and only if f satisfies
(1c) and (1d), or f / df √ F if and only if f / df Then, (9a) – (9b) can be rewritten as
satisfies (3c) and (3d). We see that if both f and f
/ df √ F then f / adf √ F for 0 õ a ° 1. Using this

min
f (l )/df√F

1
2df TH( l)df / ÇfZ

T( l)df , (14)notation, we may rewrite (3a) – (3d) as

subject to
min

f (l )/df√F
∑
m

aÅ1

[ 1
2df T

a Ha( l)dfa / Çfa Z T
a ( l)dfa] , (9a)

Er f ( l) 0 br / Erdf Å 0, (15)

subject to
where br Å (b 1

r , . . . , bk
r ) . Since H( l) is positive definite

and Er is of full rank, the constraint qualification of (9a) –
Er f k( l) 0 bk

r / Erdf k Å 0. (9b) (9b) is ensured. By the strong duality theory [2] , solving
(9a) – (9b) is equivalent to solving the dual problem

We define the m 1 m diagonal matrix Hk( l) to be such (10). Thus, we have the following theorem:
that the ath diagonal element of Hk( l) is the k th diagonal
element of the K 1 K diagonal matrix Ha( l) . Thus, Theorem 2. Let df*, l*, and dO f (l*) be the optimal
(m

aÅ1 [ 1
2df T

a Ha( l)dfa / Çfa Z T
a ( l)dfa] can be written as solutions of (9a) – (9b) , (10) , and the minimization

(K
kÅ1 [ 1

2df kT
Hk( l)df k / (m

aÅ1 [ÌZa( l) /Ì f k
a]df k

a] . Then, problem on the rhs of (11) with l Å l*, respectively;
then df* Å dO f (l*) .the dual problem of (9a) – (9b) is shown in (10):
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NONLINEAR MULTICOMMODITY NETWORK FLOW PROBLEMS 229

3.2. Ascent Direction an ascent method. Although we will prove the existence
of and present a value for K* in Section 3.6, this K* gives

Thus, we can use the proposed DPPQN method to solve
us a very conservative step-size that will cause method-

(10) instead of solving (3a) – (3d). The DPPQN method
ological inefficiency. Therefore, we next present a vari-

uses the following iterations:
able step-size rule similar to the step-size rule in Section
2 that relaxes the strong sufficient condition on the range

l( t / 1) Å l( t) / b( t)Dl( t) , (16) of the step-size b( t) .

where t denotes the iteration index, b( t)ú 0 is a step-size,
and Dl( t) is obtained by solving the following linear

3.3. Determination of a Variable Step Sizeequations:

Let 0 õ tD õ 1. The Armijo-type step-size rule for de-
[Ç 2

llf
u(l( t)) 0 dI]Dl( t) / Çf(l( t)) Å 0, (17) termining b( t) is to increase m from 0 in increments of

1 and check whether the following inequality holds:
where Çf(l( t)) is the gradient of f(l) with respect to
l at l( t) , and f u(l) is the unconstrained dual function

f(l( t) / tm
DDl( t))defined by relaxing the inequality constraints on primal

variables df from f(l) in (11), as shown below:
ú f(l( t)) / d

2
tm

D\Dl( t) \ 2
2 .

(22)

f u(l) Å min ∑
K

kÅ1
F1

2
df kT

Hk( l)df k

We set b( t) Å tm( t )
D , where m( t) is the smallest nonnega-

tive integer m for which (22) holds. From (22), we see
/ ∑

m

aÅ1

ÌZa( l)
Ì f k

a

df k
aG that (16), being an ascent method, is ensured without

requiring b( t) √ (0, (2d /K *)) . [The existence of m( t)
is shown in Section 3.6, and further discussion of step-
size is given in the comments following the proof.]/ ∑

K

kÅ1

lkT
[Er f k( l) 0 bk

r / Erdf k] .

(18)

Ç2
llf

u(l(t)) is the Hessian matrix of fu(l(t)), d is a 3.4. Advantages of Commodity
positive real number, and I is an identity matrix. From [21, Decomposition and Network Sparsity
Chap. 13], we see that Çlf(l(t)) and Ç2

llf
u(l(t)) can

be computed by 3.4.1. Commodity Decomposition

Because H( l) as shown in (13) is a diagonal matrix, itÇl
kf(l( t)) Å Er f k( l) 0 bk

r / ErdO f k(l( t)) ,
can thus easily be observed from (20) and the structure

k Å 1, . . . , K ,
(19)

of Er in (12) that Ç2
llf

u(l( t)) as well as Ç2
llf

u(l( t))
0 dI are (n 0 1)K 1 (n 0 1)K-block diagonal matrices,Ç2

llf
u(l( t)) Å 0ErH01( l)ET

r . (20)
with each diagonal block submatrix corresponding to one
commodity. Thus, the (n 0 1)K 1 (n 0 1)K linearEquation (19) can also be written as
equations (17) can be decomposed into K independent
sets of n 0 1 1 n 0 1 linear equations, as shown in (23):

Çlf(l( t)) Å Er f ( l) 0 br / ErdO f (l( t)) . (21)

[Ç 2
llf

u(l( t)) 0 dI] kDl k( t) / Çl
kf(l( t)) Å 0,The dO f (l( t)) in (19) or in (21) is the optimal solution

of the constraint-minimization problem on the rhs of
k Å 1, . . . , K ,

(23)

(11), with l Å l( t) . The value of dO f (l( t)) should be
obtained before solving (17) for Dl( t) ; the method for
obtaining dO f (l( t)) is presented in Section 3.5. Since where the n 0 1 1 n 0 1 matrix
H( l) is positive definite, and Er has full rank,
Ç2

llf
u(l( t)) as well as Ç2

llf(l( t)) 0 dI are negative
[Ç 2

llf
u(l( t)) 0 dI] k Å ErH

k( l)ET
r 0 dI k (24)

definite. Thus, the Dl( t) obtained from (17) is an ascent
direction for (10).

As will be shown later in Section 3.6, if the step-size denotes the kth diagonal block submatrix of Ç2
llf

u(l(t))
0 dI corresponding to commodity k , and Ik is an n 0 1b( t) √ (0, (2d /K *)) , where K* is the Lipschitz constant

of the dual function f(l) , then (16) is guaranteed to be 1 n 0 1 identity matrix.
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3.4.2. The Applicability of the Efficient Ha( l) Å gaI . (27)
Sparse-Matrix Technique

Thus, the problem of constraint-minimization on the rhsFrom (24), we see that only if node i and node n are
of (25) can be viewed as a projection problem that canconnected will there be a nonzero entry in the off-diagonal
be solved in two phases, as described in the following( i , n) th position of [Ç 2

llf
u(l( t)) 0 dI] k . Consequently,

lemma:the matrix [Ç 2
llf

u(l( t)) 0 dI] k is as sparse as the net-
work. Hence, for each commodity k , we may use an
efficient sparse-matrix technique to solve the linear equa- Lemma 3. The solution, dO f (l( t)) , for the problem of
tion (23) once the optimal solution dO f (l( t)) for the con- constraint-minimization on the rhs of (25) , with l
straint-minimization on the rhs of (11) is obtained. Å l( t) , can be solved in two phases.

Remark 1. The K-independent sets of linear equations Phase 1: Calculate
(23) can be solved in parallel if parallel processors are
available.

Remark 2. In the solution process of the DPPQN dH fa(l( t)) Å 0

ÌZa( l)
Ì fa

/ la^( t) 0 la(( t)

ga

,
method, [Ç 2

llf
u (l ( t ) ) 0 dI ] k is a constant matrix for

all k.
for every a.

(28)

3.5. The Two-phase Method for Solving Phase 2: Project dH fa(l( t)) onto the set Fa 0 fa( l) for
dO f (l (t ) ) and the Successive Projection every arc a; the projection is dO f (l( t)) .
and (Truncated) Seal Algorithm

Proof. The problem of constraint-minimization on the
3.5.1. The Two-phase Method rhs of (25), with l Å l( t) , is equivalent to the following

problem:To calculate the Çlf(l( t)) needed in (23) to solve for
Dl( t) , we have to solve the problem of constraint-mini-
mization on the rhs of (11) to obtain the value of the

min
f (l )/df√F

∑
m

aÅ1

[ 1
2df T

a Ha( l)dfa / Çfa Z T( l)dfavector dO f (l( t)) .
(K

kÅ1 l
kT

Erdf k can be written as (m
aÅ1 [la^ 0 la(]Tdfa ,

/ (la^( t) 0 la(( t))Tdfa] ,
(29)

where (a^, a() denotes the directed arc a from node
a^ to node a(, la^ Å (l1

a^ , . . . , lK
a^) , and la(

Å (l1
a( , . . . , lK

a( ) ; furthermore, la( Å (0, . . . , 0) if a( because l( t) , f ( l) and br are constants. From the defini-
Å n . Thus, we can rewrite (11) as tion of F, we see that F 0 f ( l) Å <m

aÅ1(Fa 0 fa( l)) , and
(Fa = 0 fa =( l)) > (Fa 0 0 fa 0( l) Å M if a* x a 9; then, also
by (27), we can rewrite (29) asf(l) Å min

f (l )/df√F
∑
m

aÅ1

[ 1
2df T

a Ha( l)dfa

∑
m

aÅ1

min
fa (l )/dfa√Fa

[ 1
2gadf T

a dfa / (Çfa Za( l)/ Çfa Z T
a ( l)dfa] / ∑

m

aÅ1

[la^ 0 la(]Tdfa (25)

/ la^( t) 0 la(( t))Tdfa] ,
(30)

/ ∑
K

kÅ1

lT
k [Er f k( l) 0 bk

r ] .

which is separable and can be solved independently by
Thus, the problem of constraint-minimization on the rhs solving the m subproblems with each subproblem in the
of (25) is equivalent to that on the rhs of (11). form

Since the value of Ì 2Za( l) /Ì f k2

a is the same for each
k , we define

min
fa (l )/dfa√Fa

[ 1
2gadf T

a dfa / (Çfa Za( l)

/ la^( t) 0 la(( t))Tdfa] .
(31)

ga Å
Ì 2Za( l)
Ì f k2

a

if
Ì 2Za( l)
Ì f k2

a

¢ g,

g otherwise.

(26)

Since ga and Çfa Za( l) / la^( t) 0 la(( t) are constants
in (31), the solution of (31) is equivalent to the solution
of the following problem:Then, from (4), the K 1 K diagonal matrix
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min
fa (l )/dfa√Fa

F1
2
gadf T

a dfa

/ (Çfa Za( l) / la^( t) 0 la(( t))Tdfa

/ 1
2ga

(Çfa Za( l) / la^( t) 0 la(( t))T

(Çfa Za( l) / la^( t) 0 la(( t))G .

(32)

It can easily be observed that the solution of (32) is
equivalent to the solution of the following projection
problem:

min
fa (l )/dfa√Fa

ZZdfa /
1
ga

[Çfa Za( l)

Fig. 1. Successive straightforward projection example.

/ la^( t) 0 la(( t)]ZZ2

2

.

(33)

ple, Figure 1 shows the process of a straightforward suc-
cessive projection for projecting a point P onto the con-
straint set {(df 1

a , df 2
a) Éf k

a( l) / df k
a ¢ 0, k Å 1, 2,The solution of (33) is dO fa(l( t)) , which is the projection

f 1
a( l) / df 1

a / f 2
a( l) / df 2

a ° da}, which is Fa 0 fa( l)of the following vector:
for K Å 2 denoted by the shaded area in Figure 1; this
process takes infinite iterations to obtain the solution

dH fa(l( t)) Å 0 1
ga

[Çfa Za( l) / la^( t) 0 la(( t)] point (0 f 1
a , da 0 f 2

a( l)) , as shown in Figure 1. To cir-
cumvent this disadvantage, we propose a K-iteration suc-
cessive projection and (truncated) seal algorithm to ob-

onto the set Fa 0 fa( l) . This completes the proof. j
tain the dO f (l( t)) .

The above lemma motivated us to develop an efficient Successive Projection and Truncated (Seal) Algorithm
projection algorithm to obtain the projection dO f (l( t)) in
Phase 2. As we can see in the proof, an arc decomposi- Notation: The set K Å {1, 2, . . . , K}; É(r)É denotes
tion—the second decomposition effect—is achieved in the cardinality of the set (r) .
this two-phase method, which also contributes to the com-

STEP SP0. Execute the following for every arc a .putational efficiency of our method.

STEP SP1. Set K(a) Å K and repeat the following for
3.5.2. Successive Projection and (Truncated) every k : if f k

a( l) / dH f k
a(l( t)) õ 0, set dH f k

a(l( t))
Seal Algorithm Å 0 f k

a( l) and K *(a) Å K *(a)" {k}.

Han pointed out in [16] that for projection onto the inter- STEP SP2. If (k√K = (a ) ( f k
a( l) / dH f k

a(l( t))) ú da , then
section of closed convex sets formed from linear inequal- calculate
ity constraints cases exist in which straightforward suc-
cessive projection may fail; for this reason, he proposed
a successive projection method to solve the general pro- h Å

da 0 (
k√K = (a )

( f k
a( l) / dH f k

a(l( t)))

ÉK *(a)É
,

jection problem. He modified the straightforward succes-
sive projection method by adding to the projected point

and go to Step SP3; otherwise, set dO f k
a(l( t))a calculated outward normal vector before each projec-

Å dH f k
a(l( t)) , for every k √ K, and stop.tion. He showed that the sequence of normal vectors will

converge to the solution of the dual projection problem. STEP SP3. Update dH f k
a(l( t)) Å dH f k

a(l( t)) / h, for
His method is an infinite iterative process; however, the every k √ K *(a) .
constraint set Fa 0 fa( l) is a case to which the straightfor-

STEP SP4. Calculate t Å mink√K = (a ) ( f k
a( l) / dH f k

a(l-ward successive projection method can apply, but the
disadvantage is it also takes infinite iterations. For exam- ( t)) . If t¢ 0, set dO f k

a(l( t)) Å dH f k
a(l( t)) , for every

8U11 765/ 8U11$$0765 05-09-97 15:53:27 netwa W: Networks



232 LIN AND LIN

k √ K, and stop; otherwise, set dH f k
a(l( t)): dO f (l( t)) of the constraint-minimization problem on the

rhs of (11). We can then proceed to set up the K-indepen-Å dH f k
a(l( t)) 0 t, for every k √ K *(a) . Then, repeat

dent sets of linear equations (23) that will be solvedthe following for every k √ K *(a) : If f k
a( l)

independently for each k using a sparse-matrix technique/ dH f k
a(l( t)) Å 0, set dH f k

a(l( t)) Å 0 f k
a( l) and

to obtain Dl( t) . After that, we determine the variableK *(a) Å K *(a)" {k}. Return to Step SP2.
step-size b( t) according to (22) and update l( t / 1)
using (16) and then proceed with the next iteration ofOur successive projection and (truncated) seal algo-
the DPPQN method. In this section, we prove the conver-rithm can be illustrated as follows. Let F *a Å {(df 1

a , . . . ,
gence of this iterative method for solving the dual prob-df K

a )É0 ° f k
a(l) / df k

a , for every k} and F9a Å {(df 1
a ,

lem (10).. . . , df K
a )É(K

kÅ1 f k
a( l) / df k

a Å da}. If dH fa(l( t)) is not
Because Dl( t) is an ascent direction as indicated pre-in F *a , then in Step SP1, we project it onto F *a ; otherwise,

viously in Section 3.2, and the objective function f(l)we skip this step. However, it should be noted that in
is concave and bounded from above, we can modify theStep SP1 if any component dH f k

a(l( t)) is ever set equal
convergence theorem in [5, Proposition 2.3] to obtain theto 0 f k

a( l) it will be kept fixed at that value for the rest
following lemma:of the process; this action is the seal step. In other words,

when the component dH f k
a(l( t)) is projected to the corre-

Lemma 4. Suppose that there exists a positive constantsponding boundary f k
a( l) / dH f k

a(l( t)) Å 0, it will stay
K* such thatat that boundary for the rest of the process. After Step

SP1, if the solution has not yet been obtained, we project
\Çlf(l*) 0 Çlf(l9) \2 ° K * \l* 0 l9\2 ,the resulting point onto F 9a , as described by Steps SP2

and SP3. If the resulting point obtained after Step SP3
∀l*, l9 √ R(n01)K ,

(34)

belongs to F *a , we stop; otherwise, we pull that point along
the opposite projection direction obtained in Step SP2

then (a)back to the boundary of F *a , as shown in Step SP4 and
check which component dH f k

a(l( t)) lying on the corre-
f(l( t) / b( t)Dl( t))sponding boundary, f k

a( l) / dH f k
a(l( t)) Å 0, and that

component will be fixed at the value0 f k
a( l) —this action

is the truncated seal step. Execution then returns to Step ¢ f(l( t)) / b 2( t)S d

b( t)
0 K *

2 D \Dl( t) \ 2
2 ;

SP2 to continue the process.
Advantages of the Algorithm: ( i ) Because of the seal

and truncated seal steps, our algorithm converges within
(b) if 0 õ b( t) õ 2d

K *
, then (16) is an ascent method;K iterations. This can easily be observed since in each

iteration at least one component is sealed and there are
only K components in dH f (l( t)) . ( ii ) Because the projec- and (c) if 0 õ b( t) õ 2d

K *
, for every t, then any limit

tion procedures for different arcs are independent, our
point l* generated by (16) satisfies limtr` Çlf(l( t))algorithm is suitable for parallel processing if parallel
Å 0 and maximizes f(l) .processors are available.

However, we need to show the existence of theConvergence of the Algorithm: That K-iteration suc-
Lipschitz constant K* required in the assumption ofcessive projection and (truncated) seal algorithm obtains
Lemma 4 as follows:the exact projection in at most K iterations is stated in

the following theorem, while the proof, which is very
Lemma 5. There exists a positive constant K* such thatcomplicated, is given in the Appendix.
\Çlf(l*) 0 Çlf(l9) \2 ° K * \l* 0 l9\2 for every l* , l9
√ R(n01)K.Theorem 3. For each arc a, the successive projection

and ( truncated) seal algorithm will stop at the solution Proof. From (21),
point of projecting dH fa(l( t)) onto the set Fa 0 fa( l) in at
most K iterations.

Çlf(l*) Å Er f ( l) 0 br / ErdO f (l*)

Çlf(l9) Å Er f ( l) 0 br / EdO f (l9) ,
(35)

3.6. Proof of the Convergence of the Dual
Projected Pseudo-Quasi-Newton Method

where dO f (l*) and dO f (l9) are solutions of the r.h.s. con-
straint-minimization problem of (11) for l Å l* and lWe can summarize the DPPQN method in the following:

For a given l( t) , using (28) and the successive projection Å l9, respectively.
From (35), we haveand (truncated) seal algorithm, we can obtain the solution
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NONLINEAR MULTICOMMODITY NETWORK FLOW PROBLEMS 233

\Çlf(l*) 0 Çlf(l9) \2 f(l( t) / b( t)Dl( t))

Å \ErdO f (l*) 0 ErdO f (l9) \2 ú f(l( t)) / d

2
b( t) \Dl( t) \ 2

2 .
(41)

° \Er\2\dO f (l*) 0 dO f (l9) \2 .

(36)

Because 0õ tDõ 1, {tm
D} is a monotonically decreas-

Since dO f (l) is the projection of dH f (l) onto the set F ing sequence; there must exist a nonnegative integer m
0 f ( l) , then by the projection theory in [5, p. 211], such that 0 õ tm

D õ (d /K *) . Then, using (41), we prove
the existence of m for which (22) holds. j

\dO f (l*) 0 dO f (l9) \2 ° \dH f (l*) 0 dH f (l9) \2 . (37)
Comment 1. A first glance at the proof shows that the
Armijo-type step-size does not seem to improve upon theFrom (26), we see that g ° ga for every a . Then, from
magnitude of the step-size provided in Lemma 4 . In fact,(28), we obtain
the smallest m( t) for which (22) holds is very likely to
have tm( t )

D @ (d /K *) , because the inequality 0 õ b( t)
\dH f (l*) 0 dH f (l9) \2 °

1
g

\ET
r l* 0 ET

r l9\2 õ (d /K *) is a sufficient condition for (41) to hold.

From Lemmas 4, 5, and 6 and Theorem 3, the follow-
° 1

g
\ET

r \2\l* 0 l9\2 .

(38)

ing theorem for the convergence of the DPPQN method
can be easily proven:

From (36), (37), and (38), we obtain
Theorem 4. Any limit point l* of the sequence {l( t)}
generated by (16) with a step-size determined according
to (22) satisfies Çlf(l) Å 0 and maximizes f(l) .\Çlf(l*) 0 Çlf(l9)\2 °

1
g

\Er\2\ET
r \2\l* 0 l9\2 .

Let 4. THE COMPLETE ALGORITHM
FOR NMNFPs

K * Å 1
g

\Er\2\ET
r \2 , (39) Theorems 1 and 4 together show the convergence of the

projected Jacobi method combined with the DPPQN
method. We now summarize the overall method for solv-

and the proof is complete. j
ing (1a) – (1d) in the following algorithm steps:

STEP 1. Set values for the parameters d ú 0, tJ , tD , (0Because the value of K* is large, as shown in (39),
õ tJ , tD õ 1); set l Å 1 and initially guess the valueas previously printed out in Section 3.3, the conservative
of f , which can be infeasible, and set f ( l) Å f .range (0, (2d /K *)) for the step-size b( t) provided in

Lemma 4 makes (16) inefficient. To cope with this inef- STEP 2. If l Å 1 and the value of l has not yet been
ficiency, we presented in Section 3.3 an Armijo-type step- assigned, guess the value of l based on some rule;
size determination rule, in which the existence of a non- otherwise, set l at its previous value. Set t Å 1.
negative integer m for which the inequality (22) holds

STEP 3. Compute dH f (l( t)) using (28).should be verified; this justification is given below.

STEP 4. Use the successive projection and (truncated)
Lemma 6. There exists a nonnegative integer m such seal algorithm to obtain the projection dO f (l( t)) by
that inequality (22) holds. projecting dH f (l( t)) onto the set F 0 f ( l) .

Proof. From (a) of Lemma 4, STEP 5. ComputeÇl
kf(l( t)) , [Ç 2

llf
u(l( t)) 0 dI] k , for

every k by (19) and (24), respectively.
f(l( t) / b( t)Dl( t))

STEP 6. Use a sparse-matrix technique to solve (23) for
every k individually and obtain Dl( t) .

ú f(l( t)) / b 2( t)S d

b( t)
0 K *

2 D \Dl( t) \ 2
2 ,

(40)

STEP 7. Determine a value for b( t) Å tm( t )
D , where m( t)

is the smallest nonnegative integer such that (22)
holds, and update l( t / 1) by (16).

from which we can further derive that if 0 õ b( t) õ (d /
K *) , STEP 8. Check whether \b( t)Dl( t) \ ° 11 to test the
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234 LIN AND LIN

Fig. 2(a) .

convergence of (16); if yes, set df *( l) Å dO f (l( t))
and go to Step 9; otherwise, set t Å t / 1 and return
to Step 3. Fig. 2(c) .

STEP 9. If l Å 1, update f ( l / 1) Å f ( l) / df *( l) ;
otherwise, determine a( l) Å tm( l )

J , where m( l) is the 10. This is because the convergence rate of the projected
smallest nonnegative integer for which (8) holds, and Jacobi method is linear, not quadratic. However, there are
update f ( l / 1) using (2). only negligible deviations between the objective values

obtained using 12 Å 1003 and the exact optimal objectiveSTEP 10. Check whether \a( l)df *( l) \ ° 12 to test the
values as verified by commercial optimization tools forconvergence of (2); if yes, stop; otherwise, go to Step
numerous examples. Therefore, we normally select the2.
accuracies 11 Å 12 Å 1003 for our algorithm. However,
we apply a postprocessing step to refine the final solutionRemark 3. Because the initially guessed f (1) may be
that we obtained to enhance the degree of feasibility. Theinfeasible, we have to set a(1) Å 1 in Step 9 in the first
postprocessing step executes the inner loop, which rangesiteration of the projected Jacobi method so as to obtain
from Step 2 to Step 8, of our complete algorithm onea feasible f (2) . Consequently, the condition required in
more time after the final solution has been obtained, butTheorem 1 that the sequence { f ( l)} start from a feasible
this time using 11 Å 1006 in \b( t)Dl( t) \` õ 11 for thef is satisfied.
convergence check in Step 8. The magnitude of df *( l)
obtained from the postprocessing step should be negligi-
ble; however, when we add this df *( l) to the final solu-5. SIMULATION EXAMPLES
tion, the flow-balance equation will be satisfied up to the
sixth significant decimal place.5.1. A Programming Consideration

Theoretically, it takes an infinite number of iterations to 5.2. Examples
achieve infinite accuracies in the convergence check of

Since our method fully exploits the structural advantagesSteps 8 and 10. In general, a good finite accuracy is
of the NMNFP in the aspects of commodity decomposi-sufficient for practical applications.

We observed from extensive simulated examples that
it takes many iterations of the projected Jacobi method
to push the accuracy from 12 Å 1003 to 12 Å 1004 in Step

Fig. 2(b). Fig. 2(d).
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Fig. 2(e) .

Fig. 2(f ) .tion, arc decomposition, special types of coupling capac-
ity constraints, and network sparsity, as described in Sec-
tion 3, we have chosen example networks of various sizes 30 NMNFPs on a Sparc-10 workstation. The consumption
and have simulated cases involving different commodities of CPU time and the final objective value obtained by
in each network so as to test the computational efficiency our method for each case on each network are reported
of our proposed algorithm, as well as to compare it with in Tables I–VI. Note that the CPU time was clocked for
typical network-based methods like Frank–Wolfe and the complete algorithm listed in Section 4.
Frank–Wolfe with PARTAN algorithms for NMNFP. To demonstrate the computational efficiency of our

We selected six grid-type networks, as shown in Fig- method and verify our solution, we used the Frank–Wolfe
ures 2(a) – (f ) , with varying numbers of nodes and arcs algorithm and Frank–Wolfe with PARTAN algorithm to
for testing and comparing our algorithm. In each network, solve the same 30 NMNFPs on the same Sparc-10 work-
we tested five cases from two commodities to six com- station.
modities. We set the capacity of each arc, da , at 30 and One point we would like to emphasize is the use of
assumed the flow value of each commodity sent from the price-directive decomposition method to solve the lin-
source node to destination, Fk

i , to be 10. We considered earized multicommodity flow problems induced in the
a quadratic cost function of the following form: 1

2 (m
aÅ1 Frank–Wolfe and Frank–Wolfe with PARTAN algo-

rithms. The price-directive decomposition method is one((K
kÅ1 f k

a)2 .
With the following setup: 11 Å 12 Å 1003 , tJ Å 0.8, of the most efficient methods for dealing with linear

MNFPs with coupling capacity constraints.tD Å 0.8, initial zero flow, and a postprocessing step in
which 11 Å 1006 , we used our method to solve the above The consumption of CPU time and the final objective

TABLE I. Comparison of our method with Frank–Wolfe and Frank–Wolfe with PARTAN algorithms
for solving the network NMNFP shown in Figure 2(a)

CPU time (seconds)
Final objective value

F–W
F–W Our F–W PARTAN Speed-up ratio

No. Our F–W PARTAN method algorithm algorithm
commodities method algorithm algorithm (I) (II) (III) II/I III/I

2 159.7 160.2 159.7 0.06 1.90 0.85 31.67 14.17

3 297.6 298.2 297.9 0.09 9.95 1.86 110.56 20.67

4 449.3 450.0 449.5 0.17 25.30 4.36 148.82 25.65

5 560.1 560.5 560.3 0.12 42.69 4.62 355.75 38.50

6 662.6 663.3 662.8 0.19 97.52 9.19 513.26 48.37
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236 LIN AND LIN

TABLE II. Comparison of our method with Frank–Wolfe and Frank–Wolfe with PARTAN algorithms
for solving the network NMNFP shown in Figure 2(b)

CPU time (seconds)
Final objective value

F–W
F–W Our F–W PARTAN Speed-up ratio

No. Our F–W PARTAN method algorithm algorithm
commodities method algorithm algorithm (I) (II) (III) II/I III/I

2 134.6 135.2 135.0 0.1 23.18 23.18 231.8 125.40

3 220.2 220.8 202.7 0.15 60.37 29.46 402.47 196.40

4 298.4 299.0 298.6 0.23 133.23 36.23 579.26 157.50

5 387.7 388.4 388.0 0.51 308.06 83.25 604.04 163.64

6 469.7 470.4 469.9 0.33 615.97 92.82 1866.58 281.27

values obtained by the Frank–Wolfe and Frank–Wolfe rithm increased dramatically from 900 in the two-com-
modity case to 4000 in the six-commodity case. Thesewith PARTAN algorithms for each case on each network

are also reported in Tables I–VI. However, for the cases observations strongly support the claim that our method
is very efficient for large-dimensioned NMNFPs with re-involving five and six commodities on the network shown

in Figure 2(f ) , the Frank–Wolfe and Frank–Wolfe with spect to network size and number of commodities.
PARTAN algorithms have numerical difficulties in get-
ting the solution for such large-dimensioned NMNFPs. Comment 2. (a) The setups for testing the CPU times of

our method, the Frank–Wolfe algorithm, and the Frank–From Tables I–VI, we see that the Frank–Wolfe with
PARTAN algorithm is better than the Frank–Wolfe algo- Wolfe with PARTAN algorithm were consistent and ex-

cluded the I/O times in all computer runs. (b) The CPUrithm with respect to computational efficiency as we ex-
pected. From the final objective value columns of Tables times for our complete algorithm reported in Tables I–

VI include the CPU times for the sparse-matrix linearI–VI, we can see that our method obtained better objec-
tive-value solutions than did either the Frank–Wolfe or equation solver and successive projection and ( trun-

cated) seal algorithm subroutines. However, the CPUFrank–Wolfe with PARTAN algorithm in all cases. Fur-
thermore, the computational efficiency of our method can time for executing the sparse-matrix linear equation

solver alone was too brief to be recorded in the worksta-also be easily observed in terms of the CPU time con-
sumption. For example, in the case involving four com- tion. The same situation occurred with the successive

projection and ( truncated) seal algorithm.modities, the speed-up ratio of our complete algorithm
compared with the Frank–Wolfe with PARTAN algo-
rithm increase dramatically from 25 in the nine-node net- Comment 3. Concerning the striking speed-up ratio of

our method compared with the Frank–Wolfe with PAR-work to 4000 in the 64-node network. For the 36-node
network [Fig. 2(d)] , the speed-up ratio of our method TAN algorithm, we have the following observations: (a)

The Frank–Wolfe with PARTAN algorithm is a gradient-compared with the Frank–Wolfe with PARTAN algo-

TABLE III. Comparison of our method with Frank–Wolfe and Frank–Wolfe with PARTAN algorithms
for solving the network NMNFP shown in Figure 2(c)

CPU time (seconds)
Final objective value

F–W
F–W Our F–W PARTAN Speed-up ratio

No. Our F–W PARTAN method algorithm algorithm
commodities method algorithm algorithm (I) (II) (III) II/I III/I

2 120.5 121.1 121.0 0.33 103.74 49.47 314.36 149.91

3 183.1 183.8 183.6 0.35 217.87 162.06 622.49 463.03

4 250.9 251.5 251.4 0.42 477.04 303.22 1135.81 721.95

5 420.1 420.7 420.5 0.49 1708.04 857.69 3485.80 1750.39

6 510.9 511.5 511.3 0.74 3070.54 1526.26 4149.38 2062.51
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TABLE IV. Comparison of our method with Frank–Wolfe and Frank–Wolfe with PARTAN algorithms
for solving the network NMNFP shown in Figure 2(d)

CPU time (seconds)
Final objective value

F–W
F–W Our F–W PARTAN Speed-up ratio

No. Our F–W PARTAN method algorithm algorithm
commodities method algorithm algorithm (I) (II) (III) II/I III/I

2 174.4 175.0 174.9 0.23 258.67 213.97 1124.65 930.30

3 263.3 263.9 263.8 0.51 981.85 726.01 1925.20 1423.55

4 318.4 319.0 318.8 0.87 2213.39 1664.85 2544.13 1913.62

5 381.3 381.9 381.8 0.91 4383.18 2982.57 4816.68 3277.55

6 471.9 472.5 472.4 1.27 8359.68 5067.42 6582.43 3990.09

type feasible direction method; it suffers from the slow IMSL quadratic programming subroutine requires a large
computer memory. When the size of the NMNFP on aconvergence rate especially when the dimension of the

problem is large. Furthermore, the coupling capacity con- grid network exceeds 36 nodes and four commodities, the
memory space of our workstation is insufficient to executestraints may severely restrict the Frank–Wolfe algorithm

in obtaining a reasonable step-size; this factor makes the the IMSL subroutine. The IMSL quadratic programming
subroutine uses a sophisticated technique to deal with theFrank–Wolfe algorithm even more numerically stiff. It

may be this point as to why researchers usually used the coupling capacity constraints; however, it does not have
the structural advantages of NMNFP. Therefore, for theFrank–Wolfe algorithm to deal with NMNFPs without

coupling capacity constraints [10, 17]. In contrast to the 36-node network, the speed-up ratio of our algorithm
compared with the IMSL subroutine is about 200 in theFrank–Wolfe algorithm, our method is a quasi-Newton-

type method, we developed efficient methods to deal with four-commodity case.
the coupling-capacity constraints, and we employ the
sparse-matrix technique to solve for the ascent direction. Comment 4. The existing dual-type methods [4, 22, 25]

do not explore the structural advantages of NMNFPs withWe successfully applied decomposition techniques to re-
duce the complications caused by large dimensions. Be- coupling capacity constraints as we have achieved in the

proposed method. Thus, the efficiency of our methodcause our method has so many advantages and the con-
ventional methods such as the Frank–Wolfe algorithm should not be attributed to the dual approach.
have difficulties in dealing with coupling capacity con-
straints, our method results in a dramatic performance
vs. the Frank–Wolfe with PARTAN algorithm. (b) To 6. CONCLUSION
further verify the advantages of our method, we also solve
NMNFPs by the quadratic programming subroutine in We have developed a method that combines the well-

known projected Jacobi method with a new dual projectedthe commercial optimization software package IMSL. The

TABLE V. Comparison of our method with Frank–Wolfe and Frank–Wolfe with PARTAN algorithms
for solving the network NMNFP shown in Figure 2(e)

CPU time (seconds)
Final objective value

F–W
F–W Our F–W PARTAN Speed-up ratio

No. Our F–W PARTAN method algorithm algorithm
commodities method algorithm algorithm (I) (II) (III) II/I III/I

2 148.0 148.5 148.5 0.64 764.44 571.74 1194.44 893.34

3 199.1 199.7 199.6 1.47 2031.72 1657.92 1382.12 1127.84

4 282.3 282.9 282.8 1.34 5303.73 3993.94 3958.01 2980.55

5 351.5 352.1 351.9 1.19 10213.32 7400.61 8582.62 6219

6 421.8 422.4 422.2 1.73 17838.4 13176.9 10311.2 7616.7
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TABLE VI. Comparison of our method with Frank–Wolfe and Frank–Wolfe with PARTAN algorithms
for solving the network NMNFP shown in Figure 2(f)

CPU time (seconds)
Final objective value

F–W
F–W Our F–W PARTAN Speed-up ratio

No. Our F–W PARTAN method algorithm algorithm
commodities method algorithm algorithm (I) (II) (III) II/I III/I

2 177.2 177.8 177.6 1.13 1938.02 1658.37 1715.06 1467.58

3 235.8 242.8 242.7 2.18 5409.83 4245.44 2481.57 1947.45

4 306.7 307.3 307.2 2.31 11735.93 9211.74 5080.49 3987.77

5 391.7 — — 2.49 — — — —

6 497.0 — — 4.92 — — — —

pseudo-quasi-Newton method for solving NMNFPs with 3 and change the intersection points of the slanted line
and axes as we have shown in Figure 1. If a point lies inconvex objective functions.

We have experienced a dramatic speed-up ratio com- region I, III, or V, the corresponding projection will be
i, iii, or v, respectively, as indicated in Figure 3. Forpared with the Frank–Wolfe with PARTAN algorithm

associated with the price-directive decomposition points in region II (or IV), the corresponding projection
should lie on the edge connecting points i and iii (or themethod. Although it may not be the best network-based

code for solving NMNFPs, among existing ones, its popu- edge connecting points iii and v). For example, ii is the
projection of point A onto the edge connecting points ilarity served as a sufficient qualification for reference.

The major factors contributing to the computational and iii. Similarly, iv is the projection of point B. Thus,
by applying our successive projection and (truncated)efficiency of our method are that ( i) it fully exploits the

structural advantages of NMNFP—the network sparsity seal algorithm to a point lying in region I, II, III, IV, or
V, we can obtain the corresponding projection at the endand the special type of inequality constraints including

coupling capacity constraints, and (ii) it utilizes commod- of Step SP1 of the first iteration. Furthermore, if a point
ity decomposition and arc decomposition to resolve the
potential numerical difficulties caused by the large dimen-
sion.

Our method has potential application to other network
problems, and it is very likely that we can enlarge the
applications of the successive projection and (truncated)
seal algorithm to a larger class of projection problems.
Furthermore, the efficiency of our method can be in-
creased further if parallel processors are available.

APPENDIX

We prove Theorem 3 using the induction rule. However,
the proof is rather complicated, so we will proceed step
by step and concatenate all the results at the end. For the
sake of simplicity, we omit (l( t)) in dO fa(l( t)) and
dH f (l( t)) .

Lemma 7. Theorem 3 is true for K Å 2 .

Proof. Consider the constraint set Fa0 fa( l) , as shown
in the shaded area of Figure 3. For simplicity, we assume
f k

a( l) Å 0, for every k . We can make this assumption
without loss of generality, because without it we need Fig. 3. Illustration of successive projection and (truncated)

seal algorithm for the case of K Å 2.only change the origin of the coordinate system in Figure
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is in region VI, the corresponding projection should lie We claim the following: If (dO f 1
a , . . . , dO f n01

a ) is the
on the edge connecting points i and v. For example, point projection of (dH f 1

a , . . . , dH f n01
a ) in the case of K Å n

vi is the projection of point C, and we can obtain point 0 1, then (dO f 1
a , . . . , dO f n01

a , 0) is the projection of
vi at the end of Step SP3 in the first iteration and we (dH f 1

a , . . . , dH f n
a) onto the set S1(n) .

have t ¢ 0 in Step SP4; therefore, the algorithm stops. We will prove the above claim by contradiction. Sup-
The most complicated case occurs when a point lies in pose that the claim is false. We assume that (df 1*a , . . . ,
region VII (or VIII) , for which the corresponding projec- df n*a ) √ S1(n) is the projection and (df 1*a , . . . ,
tion is i (or v) . In such a case, when we go through Steps df n*a ) x (dO f 1

a , . . . , dO f n01
a , 0) . Then, df n*a must be 0,

SP1 to SP3 in the first iteration, we will obtain a negative because if df n*a ú 0, then since dH f n
a õ 0, we have

value for t in Step SP4. The algorithm will then carry \(dH f 1
a , . . . , dH f n

a) 0 (df 1*a , . . . , df n*a ) \ 2
2 ú \(dH f 1

a ,
out a truncation of the values of dH f 1

a and dH f 2
a obtained . . . , dH f n

a) 0 (df 1*a , . . . , df n01*a , 0) \ 2
2 . This contradicts

from Step SP3 and adjust the set K *(a) and proceed with (df 1*a , . . . , df n01*a , df n*a ) being the projection. We
the next iteration. After going through Steps SP2 and SP3 may write (dH f 1

a , . . . , dH f n
a) 0 (df 1*a , . . . , df n01*a , 0)

in the second iteration, the corresponding projection i (or Å (0, . . . , 0, dH f n
a ) / (dH f 1

a 0 df 1 *a , . . . , dH f n01
a

v) is obtained. This shows that for K Å 2, at most two 0 df n01*a , 0) . By inspection, (0, . . . , 0, dH f n
a) and

iterations of the algorithm are needed to obtain the projec- (dH f 1
a 0 df 1*a , . . . , dH f n01

a 0 df n01*a , 0) are orthogonal.
tion. This completes the proof of this lemma. j Thus,

For the sake of explanation, in the rest of the proof, \(dH f 1
a , . . . , dH f n01

a , dH f n
a)

we assume the following:
0 (df 1*a , . . . , df n01*a , 0)\ 2

2

Assumption. f k
a( l) Å 0, for every k . Å \(0, . . . , 0, dH f n

a)\ 2
2

/ \(dH f 1
a 0 df 1*a , . . . ,As we have stated in the proof of Lemma 7, this as-

sumption does not sacrifice generality. To proceed further,
dH f n01

a 0 df n01*a , 0)\ 2
2 .

(42)

we need to define certain notations: For K Å n , we let
the sets S1(n) , < n

jÅ1 S j
2(n) , S3(n) , < n

jÅ1 S j
4(n) be such

Furthermore,that S1(n) Å {(df 1
a , . . . , df n

a)Édf k
a ¢ 0, k Å 1, . . . ,

n , and ( n
kÅ1 df k

a ° da}; S j
2(n) Å {(df 1

a , . . . ,
\(dH f 1

a , . . . , dH f n01
a , dH f n

a)df n
a)Édf j

a õ 0}, S3(n) Å {(df 1
a , . . . , df n

a)Édf k
a ¢ 0,

k Å 1, . . . , n , and ( n
kÅ1 df k

a ú da , 0(n 0 1)df j
a 0 (dO f 1

a , . . . , dO f n01
a , 0)\ 2

2

/ (kx j d f k
a ° da , j Å 1, . . . , n}, and S j

4(n) Å \(0, . . . , 0, dH f n
a)\ 2

2

(43)

Å {(df 1
a , . . . , df n

a)Édf k
a ¢ 0, k Å 1, . . . , n , and

( n
kÅ1 df k

a ú da , 0(n 0 1)df j
a / (kx j d f k

a ú da}. Then, / \(dH f 1
a 0 dO f 1

a , . . . , dH f n01
a 0 dO f n01

a , 0) \ 2
2 ,

S1(n) < (< n
jÅ1 S j

2(n)) < S3(n) < (< n
jÅ1 S j

4(n)) Å Rn .
Note that S1(n) denotes the constraint set Fa 0 fa( l) on because (0, . . . , 0, dH f n

a) and (dH f 1
a 0 dO f 1

a , . . . ,
our projection problem under the assumption that f k

a( l) dH f n01
a 0 dO f n01

a , 0) are also orthogonal. By assumption,
Å 0 for every k . To examine the above four subsets, we (df 1*a , . . . , df n01*a , 0) is the projection of (dH f 1

a , . . . ,
can take the case of n Å 2 shown in Figure 3 as an dH f n

a) ; then,
example. The shaded area in Figure 3 corresponds to the
set S1(2) . The set < 2

jÅ1 S j
2(2) corresponds to the union \(dH f 1

a , . . . , dH f n
a)

of the regions I, II, III, IV, and V. The set S3(2) corre-
0 (df 1*a , . . . , df n01*a , 0)\ 2

2sponds to region VI, and the set < 2
jÅ1 S j

4(2) corresponds
to the union of regions VII and VIII. Thus, any point õ \(dH f 1

a , . . . , dH f n
a)

(df 1
a , . . . , df n

a) √ Rn must belong to one of the above
0 (dO f 1

a , . . . , dO f n01
a , 0)\ 2

2 .

(44)

four subsets.

Then, from (42) and (43), the inequality (44) becomesLemma 8. If Theorem 3 is true for K Å n 0 1 and if
(dH f 1

a , . . . , dH f n
a) √ < n

jÅ1 S j
2(n) , then Theorem 3 is true

\(dH f 1
a 0 df 1*a , dH f 2

a 0 df 2*a , . . . ,for K Å n.

Proof. If the point (dH f 1
a , . . . , dH f n

a) √ < n
jÅ1 S j

2(n) , dH f n01
a 0 df n01*a , 0)\ 2

2

then there must exist a j , say n , such that dH f n
a õ 0. Then, õ \(dH f 1

a 0 dO f 1
a , dH f 2

a 0 dO f 2
a , . . . ,

at the end of Step SP1 of the first iteration dH f n
a is set at

0, because we have assumed that f k
a( l) Å 0 for every k . dH f n01

a 0 dO f n01
a , 0)\ 2

2 ,

(45)
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implying that of Lemma 7, we described how the truncated seal step is
applied to points lying in these regions. The following
five lemmas (Lemmas 10–14) will generalize this case\(dH f 1

a 0 df 1*a , . . . , dH f n01
a 0 df n01*a ) \ 2

2
from n Å 2 in Lemma 7 to a general n .

õ \(dH f 1
a 0 dO f 1

a , . . . , dH f n01
a 0 dO f n01

a ) \ 2
2 .

(46)

Lemma 10. If (dH f 1
a , . . . , dH f n

a) √ < n
jÅ1 S j

4(n) , then at
This contradicts the assumption of the claim. Thus, we the end of the first iteration, the resulting point will be
have proven that (dO f 1

a , . . . , dO f n01
a , 0) is the projection (dO f 1

a 0 dO f l
a , . . . , dO f l01

a 0 dO f l
a , 0, dO f l/1

a 0 dO f l
a , . . . ,

of (dH f 1
a , . . . , dH f n

a) onto S1(n) . dO f n
a 0 dO f l

a) , where
By assumption of this lemma, it takes at most n 0 1

iterations to obtain the projection (dO f 1
a , . . . , dO f n01

a )
starting from the point (dH f 1

a , . . . , dH f n01
a ) . Thus, it takes

at most n iterations to obtain the projection (dO f 1
a , . . . , dO f k Å dH f k

a /
da 0 (

n

jÅ1
dH f j

a

n
, (49)

dO f n01
a , 0) . This completes the proof. j

and dO f l is the most negative component among allLemma 9. If Theorem 3 is true for K Å n 0 1 and if
dO f k , k Å 1, 2, . . . , n. Without loss of generality, we maythe point (dH f 1

a , . . . , dH f n
a) √ S3(n) then Theorem 3 is

assume that l Å n; then, at the end of the first iteration,true for K Å n.
the resulting point is (dO f 1

a 0 dO f n
a , . . . , dO f n01

aProof. If the point (dH f 1
a , . . . , dH f n

a) √ S3(n) , then, 0 dO f n
a , 0) . Furthermore, the points (dH f 1

a , . . . , dH f n
a) ,

in the first iteration, the algorithm skips Step SP1 and
(dO f 1

a , . . . , dO f n
a) , and (dO f 1

a 0 dO f n
a , . . . , dO f n01

agoes through Steps SP2 and SP3. The resulting point 0 dO f n
a , 0) are on the surface 0(n 0 1)df n

a / (kxnbecomes (dH f 1
a / h, . . . , dH f n

a / h) , where h Å (da df k
a Å Ca for some Ca ú da.0 ( n

kÅ1 dH f k
a) /n . By the definition of S3(n) , we have

Proof. If (dH f 1
a , . . . , dH f n

a) √ < n
jÅ1 S j

4(n) , then
0(n 0 1)dH f j

a / ∑
kxj

dH f k
a ° da , j Å 1, . . . , n , (dH f 1

a , . . . , dH f n
a) √ S j

4(n) for some j . Therefore,

0(n 0 1)dH f j
a / ∑

kxj

dH f k
a ú da . (50)which implies that

Then, after going through Step SP3 of the first iteration,
we have thatdH f j

a /
da 0 (

n

kÅ1
dH f k

a

n
¢ 0, j Å 1, . . . , n ; (47)

i.e., dH f j
a / h¢ 0, for every j Å 1, 2, . . . , n . Furthermore,

dO f k
a Å dH f k

a /
da 0 (

n

jÅ1
dH f j

a

n
, k Å 1, . . . , n , (51)from the value of h, we can obtain

∑
n

kÅ1

(dH f k
a / h) Å da . (48) which is (49). Then, from (50), we see that dO f j

a õ 0.
Assuming that dO f l

a is the most negative component
among dO f k

a , k Å 1, . . . , n , then at the end of Step SP4Combining (47) and (48) shows that the point (dH f 1
a of the first iteration, the resulting point is (dO f 1

a 0 dO f l
a ,/ h, . . . , dH f n

a / h) is in S1(n) and on the surface
. . . , dO f l01

a 0 dO f l
a , 0, dO f l/1

a 0 dO f l
a , . . . , dO f n

a( n
kÅ1 df k

a Å da . Furthermore, the vector (h, h, . . . , h) , 0 dO f l
a) . Assuming that l Å n , we have the resultingwhich is (dH f 1

a / h, . . . , dH f n
a / h) 0 (dH f 1

a , . . . ,
point as (dO f 1

a 0 dO f n
a , . . . , dO f n01

a 0 dO f n
a , 0) , anddH f n

a) , is perpendicular to the surface ( n
kÅ1 df k

a Å da .
dO f n

a õ 0; then, from (51),Thus, the point (dH f 1
a / h, . . . , dH f n

a / h) has the shortest
distance from (dH f 1

a , . . . , dH f n
a) among all points in S1(n) .

Thus, it takes only one iteration of the algorithm to com-
plete this projection. This completes the proof. j dO f n

a Å dH f n
a /

da 0 (
n

kÅ1
dH f k

a

n
õ 0, (52)

The case for the point (dH f 1
a , . . . , dH f n

a) √ < n
jÅ1

S j
4(n) is more complicated than are the cases in the pre- which implies that

ceding two lemma proofs. As mentioned previously, the
region represented by < n

jÅ1 S j
4(n) when n Å 2 is the 0(n 0 1)dO f n

a / ∑
kxn

dO f k
a ú da . (53)

union of regions VII and VIII in Figure 3. In the proof
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the surfaces 0 (n 0 1)df n
a / (kxn df k

a Å Ca and ( n
kÅ1

df k
a 0 da Å 0 are perpendicular to each other.

Lemma 11. Suppose that the point (dH f 1
a , . . . , dH f n

a)
√ < n

jÅ1 S j
4(n) ; then, if (df 1*a , . . . , df n01*a ) is the pro-

jection of (dO f 1
a 0 dO f n

a , . . . , dO f n01
a 0 dO f n

a) in the case
of K Å n 0 1 , ( i) both (df 1*a , . . . , df n01*a , 0) and
(dO f 1

a , . . . , dO f n01
a , dO f n

a) are on the surface ( n
kÅ1 df k

a

0 da Å 0 , and ( ii) \(df 1*a , . . . , df n01*a , 0) 0 (dO f 1
a

0 dO f n
a , . . . , dO f n01

a 0 dO f n
a , 0) \ 2

2 Å \(df 1*a , . . . ,
df n01*a , 0) 0 (dO f 1

a , . . . , dO f n
a)\ 2

2 / \(dO f n
a , . . . ,

dO f n
a) \ 2

2 .

Proof. We see that (df 1*a , . . . , df n01*a , 0) must be
on the surface ( n

kÅ1 df k
a 0 da Å 0, because, otherwise,

( n01
kÅ1 df k*a / 0õ da , the intersection point of the surface

( n
kÅ1 df k

a 0 da Å 0 and the line connecting points
(df 1*a , . . . , df n01*a , 0) and (dO f 1

a 0 dO f n
a , . . . , dO f n01

a

0 dO f n
a , 0) is a shorter distance from (dO f 1

a 0 dO f n
a , . . . ,

dO f n01
a 0 dO f n

a , 0) . This contradicts the assumption ofFig. 4. Illustration of geometrical relationships of points
this lemma.(dH f1

a , . . . , dH f n
a ) , (dO f 1

a , . . . , dO f n
a ) , and (dO f 1

a 0 dO f n
a , . . . ,

dO f n01
a 0 dO f n

a , 0) , and the surfaces 0 (n 0 1)df n
a / (kxn From (49) of Lemma 10 and from Figure 4, we see

df k
a Å Ca and (n

kÅ1 df k
a 0 da Å 0. that (dO f 1

a , . . . , dO f n01
a , dO f n

a) is on the surface (K
kÅ1

df k
a 0 da Å 0; it then follows that both (df 1*a , . . . ,

df n01*a , 0) and (dO f 1
a , . . . , dO f n01

a , dO f n
a) are on the

Therefore, surface ( n
kÅ1 df k

a 0 da Å 0. This proves (i) .
We can write

0(n 0 1)dO f n
a / ∑

kxn

dO f k
a Å Ca

(df 1*a , . . . , df n01*a , 0)
for some Ca ú da .

(54)

0 (dO f 1
a 0 dO f n

a , . . . , dO f n01
a 0 dO f n

a , 0)

From (51) and (54), we have Å [(df 1*a 0 dO f 1
a , . . . ,

df n01*a 0 dO f n01
a , 0 dO f n

a)]0(n 0 1)dH f n
a / ∑

kxn

dH f k
a Å Ca . (55)

/ [(dO f n
a , dO f n

a , . . . , dO f n
a)] .

(56)

Thus, both (dH f 1
a , . . . , dH f n

a) and (dO f 1
a , . . . , dO f n

a) are
Because the surfaces ( n

kÅ1 df k
a 0 da Å 0 and 0(non the surface 0 (n 0 1)df n

a / (kxn df k
a Å Ca . Further-

0 1)df n
a / ( n01

kÅ1 df k
a Å Ca are perpendicular to eachmore,

other, as shown in Figure 4, and (dO f n
a , dO f n

a , . . . ,
dO f n

a) Å (dO f 1
a , . . . , dO f n

a) 0 (dO f 1
a 0 dO f n

a , . . . , dO f n01
a0(n 0 1)r0 / ∑

kxn

(dO f k
a 0 dO f n

a)
0 dO f n

a , 0) , then from (i) and Lemma 10, (df 1*a

0 dO f 1
a , . . . , df n01*a 0 dO f n

a , 0dO f n
a) is orthogonal toÅ 0(n 0 1)dO f n

a / ∑
kxn

dO f k
a

(dO f n
a , dO f n

a , . . . , dO f n
a) .

From (56), we then have

shows that (dO f 1
a 0 dO f n

a , . . . , dO f n01
a 0 dO f n

a , 0) is also
on the surface 0 (n 0 1)df n

a / (kxn df k
a Å Ca . This \(df 1*a , . . . , df n01*a , 0)

completes the proof. j
0 (dO f 1

a 0 dO f n
a , . . . , dO f n01

a 0 dO f n
a , 0)\ 2

2

Figure 4 shows the geometrical relationships of the Å \(df 1*a , . . . , df n01*a , 0)
points (dH f 1

a , . . . , dH f n
a) , (dO f 1

a , . . . , dO f 1
a) , and (dO f 1

a

0 (dO f 1
a , . . . , dO f n

a) \ 2
2/ \dO f n

a , . . . , dO f n
a) \ 2

2 .

(57)

0 dO f n
a , . . . , dO f n01

a 0 dO f n
a , 0) , and the surfaces 0(n

0 1)df n
a / (kxn df k

a Å Ca and ( n
kÅ1 df k

a

0 da Å 0. Furthermore, it can be seen from Figure 4 that This proves (ii ) .
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Lemma 12. Suppose that the point (dH f 1
a , . . . , dH f n

a) Adding \(dO f 1
a , . . . , dO f n

a) \ 2
2 to both sides of (60), we

obtain√ < n
jÅ1 S j

4(n); then, if (df 1*a , . . . , df n01*a ) is the pro-
jection of (dO f 1

a 0 dO f n
a , . . . , dO f n01

a 0 dO f n
a) in the case

of K Å n 0 1 , (df 1*a , . . . , df n01*a , 0) is the projection \(dU f 1
a , . . . , dU f n01

a , 0) 0 (dO f 1
a , . . . , dO f n

a) \ 2
2

of (dO f 1
a , . . . , dO f n01

a , dO f n
a) in the case of K Å n. / \(dO f n

a , . . . , dO f n
a) \ 2

2

Proof. We will prove this lemma by contradiction.
õ \(df 1*a , . . . , df n01*a , 0)Suppose that there exists another point (dU f 1

a , . . . ,
dU f n01

a , dU f n
a) √ S1(n) and (dU f 1

a , . . . , dU f n01
a , dU f n

a) 0 (dO f 1
a , . . . , dO f n01

a , dO f n
a , 0)\ 2

2

x (df 1*a , . . . , df n01*a , 0) such that / \(dO f n
a , . . . , dO f n

a) \ 2
2 .

(61)

\(dU f 1
a , . . . , dU f n

a) 0 (dO f 1
a , . . . , dO f n

a) \2 From (ii) of Lemma 11 and (59), we obtain the following
from (61)õ \(df 1

a , . . . , df n
a) 0 (dO f 1

a , . . . , dO f n
a) \2

for every (df 1
a , . . . , df n

a) √ S1(n) \(dU f 1
a , . . . , dU f n01

a , 0)

0 (dO f 1
a 0 dO f n

a , . . . , dO f n01
a 0 dO f n

a , 0)\ 2
2and (df 1

a , . . . , df n
a) x (dU f 1

a , . . . , dU f n
a) .

(58)

õ \(df 1*a , . . . , df n01*a , 0)
We see that dU f n

a must equal 0, because if dU f n
a ú 0, then,

0 (dO f 1
a 0 dO f n

a , . . . , dO f n01
a 0 dO f n

a , 0)\ 2
2 ,

(62)

since dO f n
a õ 0, the intersection point of the set S1(n)

and the line connecting the points (dO f 1
a , . . . , dO f n01

a ,
which implies thatdO f n

a) and (dU f 1
a , . . . , dU f n01

a , dU f n
a) is a shorter distance

from (dO f 1
a , . . . , dO f n01

a , dO f n
a) . This contradicts (58);

\(dU f 1
a , . . . , dU f n01

a )therefore, dU f n
a Å 0. From (i) of Lemma 11, (dO f 1

a , . . . ,
dO f n

a) is on the surface ( n
kÅ1 df k

a 0 da Å 0, (dU f 1
a , . . . , 0 (dO f 1

a 0 dO f n
a , . . . , dO f n01

a 0 dO f n
a)\ 2

2
dU f n01

a , 0) must also be on the surface ( n
kÅ1 df k

a 0 da

Å 0; otherwise, it contradicts (58). Since both (dU f 1
a , õ \(df 1*a , . . . , df n01*a )

. . . , dU f n01
a , 0) and (dO f 1

a , . . . , dO f n
a) are on the surface 0 (dO f 1

a 0 dO f n
a , . . . , dO f n01

a 0 dO f n
a) \2 .

(63)

( n
kÅ1 df k

a 0 da Å 0, and by Lemma 10 that both (dO f 1
a ,

. . . , dO f n01
a , dO f n

a) and (dO f 1
a 0 dO f n

a , . . . , dO f n01
a Inequality (63) contradicts the assumption of this lemma.0 dO f n

a , 0) are on the surface 0 (n 0 1)df n
a / (kxn This completes the proof. jdf k

a Å Ca , then (dU f 1
a , . . . , dU f n01

a , 0) 0 (dO f 1
a , . . . ,

dO f n01
a , dO f n

a) is orthogonal to (dO f n
a , dO f n

a , . . . , dO f n
a)

Lemma 13. Suppose that the point (dH f 1
a , . . . , dH f n

a)because the surfaces ( n
kÅ1 df k

a 0 da Å 0 and 0(n
√< n

jÅ1 S j
4(n) , then if (df 1*a , . . . , df n01*a ) is the projec-0 1)df n

a / ( n01
kÅ1 df k

a Å Ca are perpendicular to each
tion of (dO f 1

a 0 dO f n
a , . . . , dO f n01

a 0 dO f n
a) in the case ofother. Thus, we have

K Å n 0 1 , (df 1*a , . . . , df n01*a , 0) is the projection
of (dH f 1

a , . . . , dH f n01
a , dH f n

a) .
\(dU f 1

a , . . . , dU f n01
a , 0)

Proof. We prove this lemma by contradiction. Sup-
0 (dO f 1

a 0 dO f n
a , . . . , dO f 1

a 0 dO f n01
a , 0)\ 2

2 pose that (dc f 1
a , . . . , dc f n

a) is the projection of (dH f 1
a ,

. . . , dH f n
a) and (dc f 1

a , . . . , dc f n
a) x (df 1*a , . . . ,Å \(dU f 1

a , . . . , dU f n01
a , 0)

df n01*a , 0) . By the definition of S j
4(n) , ( n

kÅ1 dH f k
a ú da ,

0 (dO f 1
a , . . . , dO f n

a) \ 2
2 thus, (dc f 1

a , . . . , dc f n
a) must be on the surface ( n

kÅ1

df k
a 0 da Å 0 because, otherwise, the intersection point/ \(dO f n

a , . . . , dO f n
a)\ 2

2 .

(59)

of the surface ( n
kÅ1 df k

a 0 da Å 0 and the line segment
connecting points (dH f 1

a , . . . , dH f n
a) and (dc f 1

a , . . . ,
From (58), we have dc f n

a) is a shorter distance from (dH f 1
a , . . . , dH f n

a) . Then,
from (i) Lemma 11 and previous statements, both

\(dU f 1
a , . . . , dU f n01

a , 0) (dO f 1
a , . . . , dO f n

a) and (dc f 1
a , . . . , dc f n

a) are on the surface
( n

kÅ1 df k
a 0 da Å 0. From Lemma 10, both (dH f 1

a , . . . ,
0 (dO f 1

a , . . . , dO f n01
a , dO f n

a)\ 2
2 dH f n

a) and (dO f 1
a , . . . , dO f n

a) are on the surface 0(n
0 1)df n

a / (kxn df k
a Å Ca . Therefore, (dc f 1

a 0 dO f 1
a ,õ \(dO f 1*a , . . . , dO f n01*a , 0)

. . . , dc f n
a 0 dO f n

a) is orthogonal to (dO f 1
a 0 dH f 1

a , . . . ,
dO f n

a 0 dH f n
a) . We can write (dc f 1

a , . . . , dc f n
a) 0 (dH f 1

a ,0 (dO f 1
a , . . . , dO f n01

a , dO f n
a)\2 .

(60)
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Proof of Theorem 3. We will prove this theorem by. . . , dH f n
a) Å [(dc f 1

a , . . . , dc f n
a) 0 (dO f 1

a , . . . , dO f n
a)]

the induction rule:/ [(dO f 1
a , . . . , dO f n

a)0 (dH f 1
a , . . . , dH f n

a)] . Consequently,

( i ) From Lemma 7, we have shown that this theorem\(dc f 1
a , . . . , dc f n

a) 0 (dH f 1
a , . . . , dH f n

a) \ 2
2

is true for K Å 2.Å \(dc f 1
a , . . . , dc f n

a) 0 (dO f 1
a , . . . , dO f n

a) \ 2
2

( ii ) We assume that this theorem is true for the case K
/ \(dO f 1

a , . . . , dO f n
a) 0 (dH f 1

a , . . . , dH f n
a) \ 2

2 .

(64)

Å n 0 1. We shall now show that
( iii ) this theorem is true for K Å n .

From (i) of Lemma 11, (df 1*a , . . . , df n01*a , 0) is on
the surface ( n

kÅ1 df k
a 0 da Å 0, so that (df 1*a , . . . , Since S1(n) < (< n

jÅ1 S j
2(n)) < S3(n) < (< n

jÅ1
df n01*a , 0)0 (dO f 1

a , . . . , dO f n01
a , dO f n

a) is also orthogonal S j
4(n)) Å Rn , we can consider the projection of any point

to (dO f 1
a , . . . , dO f n

a) 0 (dH f 1
a , . . . , dH f n

a) . Thus, (dH f 1
a , . . . , dH f n

a) in Rn in the following four cases:

CASE (A). For any point that belongs to S1(n) , no pro-
\(df 1*a , . . . , df n01*a , 0) 0 (dH f 1

a , . . . , dH f n
a) \ 2

2 jection is needed.
Å \(df 1*a , . . . , df n01*a , 0) CASE (B). If (dH f 1

a , . . . , dH f n
a) √ < n

jÅ1 S j
2(n) , then from

Lemma 8, this theorem is true for K Å n .0 (dO f 1
a , . . . , dO f n

a) \ 2
2

CASE (C). If (dH f 1
a , . . . , dH f n

a) √ S3(n) , then from/ \(dO f 1
a , . . . , dO f n

a) 0 (dH f 1
a , . . . , dH f n

a) \ 2
2 .

(65)

Lemma 9, this theorem is true for K Å n .

From Lemma 12, we have CASE (D). If the point (dH f 1
a , . . . , dH f n

a) √ < n
jÅ1

S j
4(n) , then from Lemma 14, this theorem is true for

\(df 1*a , . . . , df n01*a , 0) 0 (dO f 1
a , . . . , dO f n

a) \ 2
2 K Å n .

Thus, we have completed the proof. jõ \(dc f 1
a , . . . , dc f n01

a , dc f n
a) (66)

0 (dO f 1
a , . . . , dO f n

a) \ 2
2 . The authors wish to thank the anonymous reviewer who has

given us a great many valuable, constructive, and instructive
comments which helped us to rewrite the paper completely.Then, from (64) and (65), the following inequality can
Especially, the presentation of the proof of Theorem 3 is in-be obtained from (66):
debted to him (or her) .

\(df 1*a , . . . , df n01*a , 0) 0 (dH f 1
a , . . . , dH f n

a) \ 2
2

õ \(dc f 1
a , . . . , dc fan) 0 (dH f 1

a , . . . , dH f n
a) \ 2
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