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A New Approach to Analytically Solving the Two-
Dimensional Poisson’s Equation and Its Application
in Short-Channel MOSFET Modeling

POLE-SHANG LIN, STUDENT MEMBER, IEEE, AND CHING-YUAN WU, MEMBER, IEEE

Abstract—An analytical selution for the potential distribution of the
two-dimensional Poisson’s equation with the Dirichlet boundary condi-
tions has been obtained for the MOSFET device by using Green’s func-
tion method and a new transformation technique, in which the effects
of source and drain junction curvature and depth are properly consid-
ered, Based on the calculated potential distribution, the subthreshold
current considering the drain-induced barrier lowering effects’has been
computed by a simple current equation that considers only the diffusion
component with an effective length determined by the potentiﬁl distri-
bution at the SiQ,~Si interface. From the calcnlated subthreshold cur-
rent, the threshold voltage of the MOSFET’s is determined. It has been
verified that the dependences of the calculated threshold voltage and
subthreshold current on device channel length, drain, and substrate
biases are in good agreement with those computed by whele two-di-
mensional numerical analysis and experimental data.

NOMENCLATURE

Var The built-in potential between the source and
the substrate when the substrate bias is
Zero.

Tox The gate oxide thickness.

R; The source~drain junction depth.

Ny The substrate doping concentration.

Y0 The minimum depletion depth.

Rss/Rps The radius of the depletion edge of the cylin-
drical source—drain junction.

L/b The length/width of the specified rectangular
coordinate system. '

Vig The flat-band voltage of the MOSFET.

g1(0;)  The effective image charge density at the in-
terface.

L* The effective length in which the diffusion
current dominates.

D, The diffusivity of electrons.

w The effective width of a MOSFET.

W * The minimum surface potential.

ol The potential on the boundaries.

¥

The two-dimensional potential distribution.
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Vs The substrate voltage with respect to the
source.

Vps The drain voltage with respect to the source.

Vas The gate voltage with respect to the source.

1. INTRODUCTION

OR A VERY large-scale integration of MOS circuits,

- the miniaturization of the MOSFET device has been
the general trend of technology development. However,
due to the scaling of device channel length, the short-
channel length effects become extremely important, which
have been shown to deteriorate some important device
characteristics [1]-[3]. Due to the high sensitivity of the
electrical characteristics of short-channel MOSFET’s to
the process fluctuation, the device design to satisfy a given
circuit performance is becoming more difficult, but the
problems can be solved by using an accurate device anal-
ysis. In the last decade, two-dimensional numerical anal-
ysis has been used to investigate many device properties
[4],. [5]. However, due to excessive computer-time cost
and the problem of numerical stability, numerical analysis
is not a cost-effective method for circuit simulation and/
or statistical modeling in process diagnosis.

Recently, the analytical techniques to characterize
short-channel MOSFET’s have been obtained by solving
the two-dimensional Poisson’s equation with approximate
boundary conditions. However, the accuracy of the ana-
Iytical solution for Poisson’s equation is strongly depen-
dent on the simplified assumptions used in the derivation.

_Toyabe et al. [6] derived an analytical threshold voltage

model, based on a quasi-two-dimensional Poisson’s equa-
tion; however, they introduced some arbitrary constants
to give the best fit in certain ranges of process parameters.
Further improvements in this direction were proposed by
Wu and Yang [7], in which the effects of source-drain
junction depth were included and no empirical constants.
were required. However, the improved model is only ap-
plicable to MOSFET’s with uniform substrate doping. In
another approach, Ratnakumar and Meind]l [8] solved the
two-dimensional Poisson’s equation with the assumption
of infinite junction depth and a constant surface potential
along the surface channel. Poole and Kwong [9] improved
the model in [8] by replacing the constant surface poten-
tial with the normal electric displacement; however, an

0018-9383/87/0900-1947$01.00 © 1987 IEEE



1948

infinite source~drain junction depth was still assumed in
order to simplify mathematical derivation. It is well
known from the whole two-dimensional numerical anal-
ysis that the assumption of infinite source~drain junction
depth will overestimate the short-channel effects of MOS-
FET’s. Pfiester et al. {10] improved the model in [8] by
considering the effects of finite source-drain junction
depth; however, the boundary conditions on the source-
drain junction were assumed to be the rectangular shape
of finite junction depth. It will be discussed later that the
short-channel effects are still overestimated by this im-
proved model [10} becaunse the junction curvature is as-
somed to be too abrupt.

In this paper, we propose a generalized method to solve
the electrostatic potential of the two-dimensional Pois-
son’s equation for a MOSFET operated in the subthresh-
old region. The finite source-drain junction depth is ap-
proximated by the cylindrical junction with a radius of R
Based on the calculated potential distribution, the
subthreshold current and threshold voltage of MOSFET’s
are investigated. Comparisons between the developed
model and the results of whole two-dimensional numeri-
cal analysis and experimental data show good agreement
for wide ranges of device parameter variations.

. ANaALYTIC CALCULATIONS FOR THE POTENTIAL
DiSTRIBUTION

A. Green’s Function

~ Considering the two-dimensional Poisson’s equation in
a rectangular coordinate system shown in Fig. 1, the sec-
ond-order elliptical differential equation for the potential
distribution in an n-channel MOS structure can be written
as

V¥ (x, y)
0, for0 <y < Ty
=93 _p(xy) _ aNaf(y)

Esi €si

, for Ty, <y < Yy(x)
(1)

where N, is the substrate doping concentration and f(y)
is the nonuniform doping function.

The solution of the two-dimensional Poisson’s equation
in a finite region with the Dirichlet boundary conditions
can be obtained by means of Green’s function technique.
Using Green’s theorem in which the Green function on
the boundaries is zero for the Dirichlet boundary condi-
tions, the potential distribution ¥ (x, y) is [11]

px" ' ! r r I
Y(x,y) = SS—(—E-L)G(x,y;x,y)dx dy

oG
~ o) e @)

where V2G = —8(x — x') 86(y — y'), ¢(x', y') is the
potential distribution on the boundaries, n’ is the outward
direction on the boundaries, and e is the dielectric per-
mittivity that is a constant for a homogeneous system.
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Pig. 1. The schematic cross section of an n-channel transistor in which the
rectangular coordinate system is indicated.

The Green function G for a rectangular system shown
in Fig. 1 is expressed by

G(x, y; x',¥") | |
= % 21 sin (k,x) sin (kyx') H(y; 3’5 ki)
2 - . . .
=3 21 sin (k,y) sin (k,y") F(x; x'; k,)
e ‘ .
(3)
in which H(y; y¥'; k,,) and F(x; x'; k,) are
H(y; y'; kn)
sinh (k,y) sinh k(b —~ y")
fory <y’
k,, sinh (k,.b) > Ty =Y @
| sinh (k,y’) sinh k(b — y)
, fory’ <
k, sinh (knb) oy sy
F(x; x'; k,)
sinh (k,x) sinh k,(L — x") ,
, sinh (k,L) , forx < x 5
" | sinh (k,x’) sinh k,(L —
sinh (k,x") si ( x) forx’' < x

k, sinh (k,L) ’

where k,, = mrn /L, k, = nx /b, and m and n are the in-

tegers.
Substituting (3) into (2), we obtain
‘I’O(x, y)
o 0 (m) Tox + Yao
= 3 sin (kux) =5 S FONYH(y: ' k) dy’
o . sinh k,,(b — y) 4V ad
. L . + 2
+ m=zodd sin (k) sinh (k,,b) mx m=odd

sinh (k,y) 4Vps & .
sinh (k.b) mm + 2 sin (k)

- b v .
(=9 2 () a4 3

sin (k,x) -

sigh (k,L) b !
_ sinh (k,x) 2 S” ,
. .= r Y dy'
sin (k,y) (L) b 0qb(L,y)sm (kuy') dy

(6)
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and
5 L
pam) = 2 | (i sin (k@ ()
where ¥((x, y) is the potential distribution in a homoge-
neous system with the same dielectric constant and Vgg
= Vs — Vig-

In general, the potentials across the source-drain junc-
tions will cause the barrier-lowering effect for short-chan-
nel devices, as illustrated in the fourth and the fifth terms
on the right side of (6). As the channel length becomes
shorter, the perturbations of the potential become serious
due to the proximity of the source and drain regions. Note
that two approximations have been made in (6). First, the
charge contribution to the potential is only evaluated in-
side the region 7,, <= y = T, + Y. This is plausible
because the contribution of the other ionized region, i.e.,
the hatched parts shown in Fig. 1, is proportional to

SYd(mT“" sinh (ko) sinh [k, (b = y")]
sinh (k,,b)

dy’. (8)

Yao+ Tox

If b — y’' << b is valid in this region, the value of the
integral in (8) is negligible. Therefore, the depletion re-
gion can be assumed to be independent of the coordinate
x for simplicity. Second, it has been assumed in (6) that
the dielectrics are uniformly distributed due to the intrin-
sic property of (2). The different dielectric permittivities
for the oxide and the semiconductor always cause diffi-
culty in solving Poisson’s equation for a MOSFET. Pfies-
ter et al. [10] proposed a transformation method in which
the y-coordinate is scaled by a factor of ¢ /¢, throughout
the oxide region while assuming an oxide di-
electric permittivity of ¢;. However, as the channel length
is reduced, the perturbation of the electric-field lines by
the lateral field in the oxide layer as well as in the deple-
tion region will extend over the entire length of the chan-
nel [12]. Therefore, the transformation method using the
scaled €, /e, becomes less accurate. In the next subsec-
tion, a new method called the image charge method will
be proposed to solve this problem.

B. Interface Problems for Different Dielectrics

In order to solve the problem resulting from different
dielectric permittivities for the oxide and the semiconduc-
tor region, a transformation technique is taken and is
shown in Fig. 2. From Fig. 2, the effective image charge
density o((x) is located at the Si-Si0O, interface and the
dielectric permittivity will be assumed to be uniformly
distributed with a constant of ¢; throughout the oxide layer
and the silicon region when the observation point is in the
silicon region (T,, < y < b); similarly, the effective im-
age charge density o,(x) is located at the Si-SiO, inter-
face and the dielectric permittivity is a constant of ¢,, for
everywhere when viewed from the oxide region (0 < y
=< T,x). According to this transformation technique, the
potential ¥ (x, y) must satisfy the continuities of the
transverse electric field and normal electric displacement
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Fig. 2. The transformation technique considering different dielectrics is
that the image charge density (o) is located at the Si-SiO, interface and
the ionized impurity density ( —gN,) is distributed from y = T, to T,
+ Y, by assuming the same dielectric permittivity (e) for both oxide
and semiconductor regions. (a) € = €,, and o = 0,(x) when viewed from
the oxide region; (b) € = eg and ¢ = o,(x) when viewed from the semi-
conductor region

at the Si0,-Si interface, i.e.

3 d
5;‘1’(.7@ y)l)’—’:T;;( - a‘y(x’ y)ly=T,; =0

(9a)

and

3 | :
_esia—'y ‘I’(x, y)|y=T;; + eox'ag)_‘l’(xa y),y=T§x =0.
(9b)

Note that the fixed charge density at the interface has been
lumped into the flat-band voltage V5. Substituting all the
charge densities shown in Fig. 2 into (2), we obtain the
potential distribution as follows:

For the oxide region (0 = y < T,,)

\I’(x’ y) = ‘I,O(x, y)|

€ = €ox

o5(m)

EOX

+ 20 sin (k,x) -

_sinh k(b — T,,) sinh (k,)

&y, sinh (k,b) (10)
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For the silicon region (T, = y < To,; + Yy0)

‘I'(x’ y) = ‘IIO(X’ y)

€ =¢€si

o(m)

si

+ 2 sin (kyx) -
m=0

nh (kaox) sinh km(b - y)
K, sinh (k,b)

(11)
where

oy(m) =

L
7 SO o1(x") sin (k,x') dx’

and
5 (L
a(m) = I So ox(x') sin (k,x") dx’.

The unknown parameters in (10) and (11) are o,(m),
a,(m), and Y,,. The values of o and o, are defined by
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boundary values at the source—drain junction and its cur-
vature must be carefully chosen. It is more practical to
consider the cylindrical shape than the rectangular shape
inherent in the fabrication process; hence, in this paper
the finite junction depth is approximated by the cylindri-
cal junction with a radius R;. It should be noted that this
general electrostatic potential distribution can deal with
any arbitrary shape and doping profile of the source-drain
junction if the specified junction boundaries are given.
Similarly, this general solution can be applied to any ar-
bitrary doping profile in the substrate if the nonuniform
function f( v) is specified.

C. The Boundary Conditions

In order to demonstrate the applicability of the calcu-
lated potential distribution, the doping distribution in the
substrate is assumed to be uniform and the boundary con-
ditions for the cylindrical source-drain junction can be
expressed as

b (x, 0) = Vis (122)
¢(x, b) = Vgg (12b)
Vor — V¢
Vig + 2By for0=y=T,
Tox
gN4 N4 [ ( — ox) }
0,y) =< Vg + -7, RiIn 12¢
¢ (0, y) o e (¥ x) he S R (12¢)
for T, <y < Iy + (R — R
VBS: for Tox + (RE)S - Rjz)l/2 = y_<_ b
Vit + Vpg — V¢
Vs + B D3 o8 y, forO0=<sy=<T,
Ty
qN ( - ox)
&(L, y) =3 Vo + Vps + 4631 - ox) - fs bs In {1 Rf jla (12d)
for Ty <y =< T, + (Rbs — R)'?
Vs, for Toe + (Rs — RD)'> <y < b
- where Ry is determined by
matching the interface boundary conditions that are de- ' N
rived in the Appendix. The parameter Y,,, as shown in Vi — Vig + -4 N4 (R — R]?)
Fig. 1, is determined by ¥ (Xpin, Tox + Yzo) = Vs, in 4eg;
which X, is the position of the minimum potential point gN, ,
along the surface. ~ 4o Rssln (Rss/R;) = 0 (13a)
Using (10) and (11) the analytic solution for the poten- 8
tial distribution of a MOSFET can be obtained. This gen- and Rpy is determined by
eral solution is uniquely determined by the given Dirichlet qN, ;
boundary conditions along the rectangular region. It has Ve + Vps — Vs + — e, (RDS R;)
been stated before that the perturbation of the potential N
distribution by the source-drain junction is increased as _ 9y R2<In (R /R = 0. 13b
the channel length becomes shorter. Therefore, the deg ps (Ros/ ) ( )
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Note that all of the potential voltages are referred to the
substrate with Vzg = 0 and Vpg is negative for the p-type
substrate. The above Dirichlet boundary conditions are
different from those used by Ratnakumar and Meindl [8]
and Toyabe and Asai [6]. From (12), the boundary at y
= L is at the neutral region and the potential along this
line is equal to Vpg. The potential in the oxide along the
boundaries, x = 0 and x = L, is assumed to have the
uniform electric field and, therefore, its potential is a lin-
ear function of y. The resulting errors due to the above
assumption are small because the oxide thickness (T,,) is
much less than the box width (»). Therefore, the contri-
bution of these parts of boundaries to the potential distri-
bution is negligible. Forr,, < y < balongx = Q0 and x
= L, the potential distributions in the cylindrical junction
as shown in (12¢) and (12d) are calculated by using a one-
dimensional model. Note that we have assumed that the
electric field along the rectangular boundary (7T, < y <
b) is almost induced by the nearest cylindrical junction
and the potential distribution is equal to that of the iso-
lated junction. This approximation therefore is valid be-
fore the onset of hard drain-induced punchthrough.

D. Some Results and Discussions

The convergent rate in (11) depends on the magnitude
of the effective channel length. It is shown that the shorter
the effective channel length, the less number of terms
needed in (11) because the value of hyperbolicsine func-
tion decays very quickly. If we are only interested in some
local behavior (e.g., the potential distribution in the cer-
fain portion of the surface channel), the computation time
is much less than that of the two-dimensional numerical
analysis. Fig. 3 shows the calculated potential distribu-
tion along the surface, under the condition that the gate
voltage strongly inverts the minimum surface potential
point, It is shown that the potential distribution has a min-
imum value and the minimum point shifts to the source
as the channel length is decreased. This fact is consistent
with the result calculated by the two-dimensional numer-
ical analysis [6]. Fig. 4 shows that the depletion depth Yy
is increased with decreasing channel length. This effect is
due to the divergence of the lateral electric field [12]. Fig.
5 shows the potential distribution along y = Y, + Tk
versus different channel lengths. It is clearly seen that al-
though the ionized impurity concentration outside the
minimum depletion depth Y;q has been ignored, the po-
tential along this line (v = T, 4+ Y,0) is not a constant.
Therefore, the error produced by our previous assumption
that the depletion depth is independent of the coordinate
x is negligible. Moreover, the effect of the wider deple-
tion depth on the surface potential is not significant. From
(6), the contribution of the ionized impurity concentration

to the surface potential distribution is proportional to
jTOHYdQ sinh k,, (b — y') dy’
Tox sinh (knb) 2

(14)

Tox + Yao .
= ST exp (—k,y') dy’
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Fig. 3. The calculated band bending along the surface channel (y = T,,)
when the gate voltage strongy inverts the minimuwm surface potential
.point.
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Fig. 4. The calculated minimum depletion depth ( ¥,,) versus the effective
channel length, in which the normalized factor is the depletion depth of
‘long-channel MOSFET’s.

in which the exponential function decays very quickly as
the channel length is reduced. Although the depletion re-
gion of short-channel MOSFET’s is wider than that of
long-channel devices, the threshold voltage is still de-
creased for short-channel devices because of the screened
impurity effect as illustrated in (14) and the barrier-low-
ering effect by the potentials across the source—drain junc-
tions. Therefore, the minimum depletion depth (¥z) can
be obtained by the depletion depth calculated by the one-
dimensional model when only the surface potential distri-
bution is concerned.
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Fig. 5. The calculated potential distributions along the minimum depletion
depth for different channel lengths.

Fig. 6 shows the potential distribution along the surface
channel for L = 0.7 um under the specified bias condi-
tions, i.e., Vgg = =2V, Vps =5V, and Vg = 0.8 V.
The symbol ““*’’ represents the data generated by the
two-dimensional numerical analysis—MINIMOS with in-
put parameters illustrated in Table I. The solid curve rep-
resents the calculated results using our developed modz:l
with the specified source—drain cylindrical- junction, and
the dash curve represents the results of our developed
model with a rectangular-shaped junction and the same
junction depth of R; = 0.25 pm. It is clearly seen that
comparisons between the solid curve and the MINIMOS’s
data show quite satisfactory. Moreover, it is obviously
shown that the barrier lowering effect for a rectangular-
shaped junction is larger than that for a cylindrical junc-
tion. This result substantiates our previous statement that
the short-channel effects are very sensitive to the specifizd
boundary conditions. Note that the Gaussian profile in the
source—drain diffusion islands used in MINIMOS has bezn
chosen to be as abrupt as possible in order to reasonably
compare with the abrupt profile used in our model.

IIT. A SiMPLIFIED SUBTHRESHOLD CURRENT MODEL

In the previous section, the solution of the two-dimen-
sional Poisson’s equation has been obtained by neglect.ng
the electron concentration in the conducting channel. This
assumption is valid for the MOS device operated in the
subthreshold region where the potential distribution is de-
termined primarily by the device geometries, the ionized
impurity concentration, and the applied biases. As shown
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Fig. 6. The calculated potential distributions along the surface channel for
different models.

TABLE 1
THE INPUT PARAMETERS FOR MINIMOS

Oxide Thickness Substrate Doping Channel Width Source/Drain
° Concentration Junction Depth

Tox(A ) NA(cm‘3) W (um) Rj(um)

250 1.0x 10® 13.5 0.25

Source/Drain Curvature
Cylindrical

Source/Drain Profile

3

ToxS V< Tox + 0.21 um 1.0%x10%%cm

2
20 {y=Tex~0.21 um)
- T <Y 1.0 x10 sexp - ——————— ]
ox 2+(9.32x10"Tcm) 2

in Fig. 3, the surface potential distribution exhibits a flat-
band bending over a certain range along the channel, and
the current within this region must be driven by the dif-
fusion component alone. Therefore, the diffusion current
in this region can be written as

A n’
e = onn() ()
_ q¥* [ N _qVps }
exp_(kBT> 1 exp< kT (15)

where A is the cross-sectional area of the current flow, D,
is the electron diffusivity, L* is the effective length of the




LIN AND WU: SOLUTION FOR POISSON’S EQUATION

region in which the diffusion current dominates, and ¥*
is the minirhum surface potential. :

The electron distribution from the surface to the bulk in
the subthreshold region can be approximated by the charge
sheet model and is expressed by

2
n; q‘I’*
1 (Xmin, ¥) = N, &P <kBT>

E,(y — T,y
. exp [—_———" y(iBT ”J (16)
where
E, = _ oY (3:;;“, 21
y =Tox

It has been shown that the maximum error produced by
the charge sheet model under the weak inversion is only
about 4.5 percent [13]. Therefore, the average cross sec-
tion of the current flow can be approximately written as

S n (xmins y ) dy
) Tox kBT
A=W = W-— (17)
n(xmins Tox) q‘Ey‘

where W is the width of the channel.

1t should be noted that the effective length L* in (15) is
approximately equal to the channel length (L) for the
long-channel MOSFET. However, as the channel length
becomes shorter, the derivation between L* and L be-
comes much larger. Note that the value of L* can be self-
generated by the calculated surface potential distribution
and the criterion is that the region within which the sur-
face potential change is within the value of ¥* + kzT/gq.
In order to check the accuracy of the developed subthresh-
old current model, the numerical results calculated by
MINIMOS [4] are used to compare with our model. The
curvature of the source—drain junction is taken to be cy-
lindrical with a radius of 0.25 pm and the doping concen-
tration in the source-drain diffusion island is assumed to
be uniform, as listed in Table 1. The mobility of electrons
() is chosen to be 500 (cm®/V - s) as in (15). Com-
parisons between the results of our model and those com-
puted by MINIMOS are shown in Figs. 7-9 with the spec-
ified biases of Vpg = 5V, Vs = 0to —2 V. It is clearly
seen that the agreement is very satisfactory. It should be
noted that no fitting parameters are needed for our devel-
oped subthreshold model.

IV. Tur THRESHOLD VOLTAGE

' In general, the threshold voltage deduced from the nu-
merical analysis is often defined as the gate voltage with
the drain current equal to a specified value. In order to
test the accuracy of the threshold voltage deduced by the
subthreshold current model, the numerical results calcu-
lated by CADDET [6] with the threshold voltage defined
at Ing = 107® A are used to compare with those calculated
by our subthreshold current model. Fig. 10 shows (V; —
Vep) versus the effective channel length with the substrate
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Fig. 7. The calculated subthreshold current versus the applied gate-source
voltage for different channel lengths with Vs = 0.
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Fig. 8. The calculated subthreshold current versus the applied gate— source
voltage for different channel lengths with Vgg = —1 V.

bias as a parameter and under a drain voltage of 5 V. Note
that the data points in Fig. 10 are deduced from CADDET
and the solid curves are generated by our subthreshold
current model. It is clearly seen that the agreement be-
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Fig. 9. The calculated subthreshold current versus the appliéd gate-source
voltage for different channel lengths with Ve = —2 V.
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Fig. 10. The calculated V' —~ Vg versus the effective channel lengih for
different applied biases.

tween comparisons is very good. Moreover, it is known
that the electrical characteristics of short-channel MOS-
FET’s are sensitive to the curvature of the source~drain
junction and the profile gradient as well as the junction
depth. Therefore, the slight discrepancy for the channel
length below 1 um is mainly due to.different doping pro-
files used in the source-drain islands. Figs. 11 and 12
show (Vr — Vpp) versus the effective channel length for
different oxide thicknesses and substrate doping cor.cen-
trations, respectively. Comparisons between the experi-
mental data deduced from [6] and the results deduced from
our subthreshold current model are shown in Fig 13.
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Fig. 11. The calculated V; — Vg versus the effective channel length for
different gate-oxide thicknesses.
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Similarly, good agreement between comparisons has been
obtained. Therefore, it is verified that our simplified
subthreshold current model is very accurate to deduce the
threshold voltage for wide ranges of process parameter
variations and applied biases.

V. CONCLUSION

A two-dimensional model for the potential distribution
of short-channel MOSFET’s has been developed in this
paper. The analytical solution for the two-dimensional
Poisson’s equation has been obtained by Green’s function
technique with the appropriate boundary conditions in
which the cylindrical curvature with a finite source—drain
junction depth is considered. Moreover, no trial solution
has been used in our model to calculate the particular so-
lution of the two-dimensional Poisson’s equation and the

problem of different dielectric permittivities for the oxide

and the semiconductor have been solved by the image-
charge method. Although the depletion depth is assumed
to be independent of the coordinate x, it has been illus-
trated that the resulting errors are quite negligible. More-
over, it has been demonstrated that the potential distri-
bution of short-channel MOSFET’s is very sensitive to
the boundary conditions on the source—drain junction. The
short-channel effect is overestimated if the source-drain
junction is assumed to have a rectangular shape with a
finite junction depth. Based on the calculated potential
distribution, the subthreshold current and the threshold
voltage can be easily calculated. The accuracy of the de-
veloped technique has been verified by comparing with
the results obtained by two-dimensional numerical anal-
ysis and experimental data. Although only the uniform
substrate doping is considered in this paper, the devel-
oped model can be easily applied to the case with non-
uniform substrate doping profile. In future work, the ex-
plicit analysis of the subthreshold behavior for short-
channel MOSFET’s with channel implantation will be de-
veloped using the present model.

APPENDIX
DETERMINATION OF IMAGE CHARGE DENSITIES

The values of ¢;(m) and o,(m) can be determined by
matching the boundary conditions at the interface y = 7,,,
as illustrated in (9a) and (9b). Expanding the potential
Y¥o(x, y) in terms of the eigenfunction sin (%,,x), we ob-
tain

Wz, y) = B sin (k) 227

Tox+Yd0
: ST f(y)H(y; y's k) dy’

ox

+ mgl sin (k,x) B,(y). (A1)

For the uniform doping case, f(y’') = 1 and B, (y) in
(A1) can be expressed as

1955
sinh k(b = y) 4V
sinh (k,b)

sinh (k,y) 4V
sinh (k,,b)

B,(y) = s

+
mw

2%k, (P '
+ T’” S (0, y") H(y; y's k) dy’
~ 0
b
m 2km ’ ' '
HT SO &(L,y') H(y; y'; kn) dy'.
(A2)

+ (1)

Substituting the above equations into (9a) and (9b), we
obtain

a(m) _ oy(m)

€si €ox

_1-(=n" _
T 2 (l/eox 1/esi)

cosh k(b — T,) — cosh k,(b — Tpx — Yy)

- pA(m) km sinh km(b - Tox) .
(A3)
and
| cosh ki (b ~ Toy) sinh (k, Tox)
o1(m) sinh (k,b)
cosh (kaox) sinh km(b - Tox)
+ om) sinh (k,b)
]
= \6&i — €ox _Bm (A4)
( 0. ) ay (y)y=Tox

Therefore, the values of ¢,(m) and o,(m) can be ob-
tained by the above equations.
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