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A  New  Approach to Analytically  Solving  the Two- 
Dimensional  Poisson’s  Equation  and  Its  Application 

in Short-Channel MOSFET Modeling 

Abstruct-An analytical solution for the  potential distribution of  the VBs 
two-dimensional Poisson’s equation with  the  Dirichlet  boundary condi- 

The substrate voltage with respect to the 

tions has been obtained for the MOSFET device  by  using  Green’s func- 
tion method  and a new transformation technique, in  which  the effects vDS The drain voltage with respect to  the source. 
of source  and drain junction curvature and depth are properle consid- VGS The  gate voltage with respect to the source. 
ered. Based  on  the calculated potential distribution, the  subthreshold 
current  considering  the  drain-induced  barrier  lowering  effects has been I. INTRODUCTION 

source. 

computed by a simple  current  equation  that  considers  only  the  @iffusion 
component  with an effective length determined by the  potenti61 distri- 
bution at the Si0,-Si interface. From the calculated subthreshold cur- 
rent, the threshold voltage of the MOSFET’s is determined.  It  has  been 
verified  that  the  dependences  of  the calculated threshold voltage and 
subthreshold  current  on  device  channel length, drain,  and substrate 
biases are  in  good  agreement  with those computed by whole two-di- 
mensional  numerical analysis and  experimental data. 

NOMENCLATURE 

vBI The built-in potential between the  source and 
the  substrate when the substrate bias is 
zero. 

To,  The  gate  oxide thickness. 
4 The source-drain junction  depth. 
N A  The  substrate doping concentration. 
ydO The minimum depletion depth. 
Rss/RDs The radius of the depletion edge of the cylin- 

drical source-drain junction. 
L / b  The  length/width of the specified rectangular 

coordinate system. 
VFB The flat-band voltage of the  MOSFET. 
CJ~( 13.) The effective image charge density at  the in- 

terface. 

current dominates. 
L* The effective length in which the diffusion 

Dn The diffusivity of electrons. 
W The effective width of a MOSFET. ** The minimum surface potential. 
4 The potential on  the boundaries. * The two-dimensional potential distribution. 

F OR A VERY large-scale integration of MOS circuits, 
the miniaturization of the  MOSFET device has been 

the general trend of technology development. However, 
due to the scaling of device channel length,  the short- 
channel length effects become extremely important, which 
have been shown to deteriorate some important device 
characteristics [1]-[3]. Due  to  the high sensitivity of the 
electrical characteristics of short-channel MOSFET’s to 
the process fluctuation, the device design to satisfy a given 
circuit performance is becoming more difficult, but the 
problems can be solved by using an  accurate  device anal- 
ysis.  In  the  last  decade, two-dimensional numerical anal- 
ysis has been used to investigate many device properties 
[4], [5]. However,  due  to excessive computer-time cost 
and the problem of numerical stability, numerical analysis 
is not a cost-effective method for circuit simulation and/ 
or statistical modeling in process diagnosis. 

Recently, the analytical techniques to characterize 
short-channel MOSFET’s have been obtained by solving 
the two-dimensional Poisson’s equation with approximate 
boundary conditions. However,  the accuracy of the ana- 
lytical solution for Poisson’s equation is strongly depen- 
dent  on  the simplified assumptions used in the derivation. 
Toyabe et al. [6] derived an analytical threshold voltage 
model, based on a quasi-two-dimensional Poisson’s equa- 
tion; however, they introduced some arbitrary constants 
to give the best fit in certain ranges of process parameters. 
Further improvements in this direction were proposed by 
Wu and Yang 171, in which the effects of source-drain 
junction depth were included and no empirical constants 
were required. However, the improved model is only ap- 
plicable to MOSFET’s with uniform substrate doping. In 
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infinite source-drain junction depth was still assumed in 
order  to simplify mathematical derivation. It is well 
known from the whole two-dimensional numerical anal- 
ysis that the assumption of infinite source-drain junction 
depth will overestimate the short-channel effects of MOS- 
FET’s. Pfiester et al. [lo] improved the model in 181 by 
considering the  effects of finite source-drain junction. 
depth; however, the boundary conditions on the source-. 
drain junction were assumed to be  the rectangular shape 
of finite junction  depth.  It will be discussed later that thr: 
short-channel effects are still overestimated by this im- 
proved model [lo] because the  junction curvature is as- 
sumed to be too abrupt. 

In  this  paper, we propose a generalized method to  solve 
the electrostatic potential of the two-dimensional Pois- 
son’s equation for a MOSFET operated in the subthresh- 
old region. The finite source-drain junction depth is ap- 
proximated by the cylindrical junction with a radius of Rd..  
Based on  the calculated potential distribution, the 
subthreshold current and threshold voltage of MOSFET’s 
are investigated. Comparisons between the developed 
model and the results of whole two-dimensional numeri- 
cal analysis and experimental data show good agreement 
for wide ranges of device parameter variations. 

IT. ANALYTIC CALCULATIONS FOR THE POTENTIAL 
DISTRIBUTION 

A. Green’s Function 
Considering the two-dimensional Poisson’s equation in 

a rectangular coordinate system shown in Fig. 1, the sw- 
ond-order elliptical differential equation for the potential 
distribution in an n-channel MOS structure can be written 
as 

v2* (x, Y )  

for 0 < y < Tox 

where NA is  the substrate doping concentration and J’( y )  
is  the nonuniform doping function. 

The solution of the two-dimensional Poisson’s equation 
in a finite region with the Dirichlet boundary conditions 
can be obtained by means of.Green’s function technique. 
Using Green’s theorem in which the Green function on 
the boundaries is  zero  for  the Dirichlet boundary condi- 
tions,  the potential distribution \E (x, y)  is [ll] 

where V2G = - 6 ( x  - x’) S ( y  - y ‘ ) ,  $(x1, y ’ )  is  the 
potential distribution on the boundaries, n’ is the outward 
direction on  the boundaries, and E is the dielectric per- 
mittivity that is a constant for a homogeneous system. 

Fig. 1 .  The schematic  cross  section of an  n-channel  transistor  in  which  the 
rectangular  coordinate  system is indicated. 

The Green function G for a rectangular system shown 
in Fig. 1 is expressed by 

= - sin (k ,x)  sin (k ,x’ )  H(  y ;   y ’ ;   k , )  
2 

L m = l  

= - sin ( k , y )  sin ( k , y r )  F(x;  x‘; k,) L 
b n = l  

( 3 )  
in which H (  y ;  y ’ ;  k,)  and F ( x ;  x‘; k , )  are 

F(x;  x‘; k,) 
sinh (k ,x)  sinh k,(L - x’) 

k, sinh (k,L) 

sinh (k ,x ‘ )  sinh k,(L - x) 
k, sinh (k ,L)  

, for x < x’ 
( 5 )  

, for x’ < x 

where k, = m.lr/L, k, = n n / b ,  and m and n are the in- 
tegers. 

Substituting (3) into (2), we obtain 

01 sinh k,( b - y)  4V& W 

+ sin (k ,x )  * 
. - + c  

m = odd sinh (k,b) m.lr ,=odd 

sinh (kmy)  . 41/,s 
sinh ( a b )  rnr , = I  

OD 

sin ( k m x )  

sinh k , (L  - x) 2 

+ C sin (/cay) 

W 

- - S b  +(O, y ’ )  sin ( k , y ‘ )   d y ’  + 
sinh ( k J )  b o n =  1 

b 

sin ( k n y )  sinh (k ,L)  b o 
( k n x )  - 2 $(I,, y ’ )  sin ( k , y ‘ )   d y ’  
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and 

2 L 

p A ( m >  = 1, ( - ~ N A )  sin (krnx') h' (7)  

where \ko(x,  y)  is  the potential  distribution in a homoge- 
neous system  with  the  same  dielectric  constant and V &  

In  general,  the  potentials  across  the source-drain junc- 
tions  will  cause  the  barrier-lowering effect for  short-chan- 
ne1 devices, as illustrated  in  the  fourth  and  the fifth terms 
on the  right  side of (6). As the  channel  length becomes 
shorter,  the  perturbations of the  potential become serious 
due  to  the  proximity of the  source  and  drain  regions.  Note 
that two approximations  have  been made in (6). First,  the 
charge  contribution  to  the  potential is only evaluated  in- 
side  the region To, s y (. To, + Ydo. This  is  plausible 
because  the  contribution of the  other  ionized  region,  i.e. , 
the  hatched  parts shown in Fig. 1, is proportional  to 

yd(x )+Tox  sinh (krnTo,) sinh [km( b - y ')I 

= v,, - V F B .  

s sinh ( kmb) dY'. (8 )  
YdO + Tox 

If b - y ' << b is  valid in this  region,  the  value of the 
integral  in (8) is  negligible.  Therefore,  the  depletion re- 
gion  can  be assumed to  be  independent of the  coordinate 
x for  simplicity.  Second,  it  has  been assumed in (6) that 
the  dielectrics  are  uniformly  distributed  due  to  the  intrin- 
sic  property of (2). The different dielectric  permittivities 
for  the  oxide and the  semiconductor  always  cause diffi- 
culty in solving  Poisson's  equation  for  a  MOSFET. Pfies- 
ter et al. [lo] proposed a  transformation method in which 
the  y-coordinate is scaled by a  factor of  throughout 
the  oxide  region  while  assuming an oxide di- 
electric  permittivity of E , ~ .  However, as the  channel  length 
is  reduced,  the  perturbation of the electric-field lines by 
the  lateral field in  the  oxide  layer as well as in the  deple- 
tion region will  extend  over  the  entire  length of the  chan- 
nel [12]. Therefore,  the  transformation method using the 
scaled E,~/E,, becomes  less  accurate.  In  the next subsec- 
tion,  a new method called  the  image  charge method will 
be proposed to  solve  this  problem. 

B. In te~ace  Problems for Different Dielectrics 
In  order to solve  the  problem  resulting  from different 

dielectric  permittivities  for  the  oxide and the  semiconduc- 
tor  region, a transformation  technique  is  taken and is 
shown in Fig. 2 .  From  Fig. 2, the  effective  image  charge 
density q(x) is  located at  the  Si-Si02  interface and the 
dielectric  permittivity will be assumed to be uniformly 
distributed with a  constant of eSi throughout  the  oxide  layer 
and the  silicon  region when the  observation point is in the 
silicon region (To, 5 y 5 b ) ;  similarly,  the  effective im- 
age charge  density uz(x) is  located at the  Si-Si02  inter- 
face  and  the  dielectric  permittivity  is  a  constant of eo, for 
everywhere when viewed from  the  oxide  region (0 5 y 
I To,). According to this transformation  technique,  the 
potential * (x, y )  must satisfy  the  continuities of the 
transverse  electric field and normal electric  displacement 

-9NA 

I 

P(L,Yl 

1949 

Fig. 2. The transformation  technique  considering  different  dielectrics is 
that  the  image  charge  density (u) is located at  the  Si-Si02  interface  and 
the  ionized  impurity  density ( -qN,)  is distributed  from y = To, to To, 
+ YdD by assuming the same  dielectric  permittivity ( E )  for both  oxide 
and  semiconductor  regions.  (a) e = E,, and u = uz(x)  when  viewed  from 
the  oxide  region; (b) E = eSi and u = ul(x) when  viewed  from  the  semi- 
conductor  region 

at the  Si02-Si  interface,  i.e. 

( 9 4  
and 

Note that  the fixed charge  density at the  interface has been 
lumped into the flat-band voltage V&. Substituting  all  the 
charge  densities  shown in Fig. 2 into (2), we obtain  the 
potential  distribution as follows: 

For the  oxide region (0 5 y I To,) 

sinh km(b - To,) sinh (krny )  
km sinh (krnb) * (10) 
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For the silicon region (To, 5 y d To, + Ydo) 

* ( x ,  Y )  = * o h  Y) I E = e d  

sinh (k,Tox) sinh k,(b - y )  
k, sinh (k,b) (11) 

where 

al (xr)  sin (k ,x’)  d x ’  

boundary values at  the source-drain junction and its cur- 
vature must be carefully chosen. It is more practical to 
consider the cylindrical shape than the rectangular shape 
inherent in the fabrication process; hence, in this paper 
the finite junction depth is approximated by the cylindri- 
cal junction with a radius Rj . It should be noted that this 
general electrostatic potential distribution can deal with 
any arbitrary shape and doping profile of the source-drain 
junction if the specified junction boundaries are given. 
Similarly, this general solution can be applied to any ar- 
bitrary doping profile in the substrate if the nonuniform 
functionf( y )  is specified. 

and C. The Boundary Conditions 
In order  to demonstrate the applicability of the calcu- 

lated potential distribution, the doping distribution in the 
substrate is assumed to  be uniform and the boundary con- 

The unknown parameters in (10) and (1 1) are 1y1 ), ditions for the cylindecal source-drain junction can be 

a2(m) = - 0 2 ( x ‘ )  sin (k ,x‘)  a%’. 
L o  2 S  

9 ( m ) ,  and Ydo. The values of a1 and a2 are defined by expressed as 

I 

I 1 ox 

for To, cr y cr Tox + (R& - R j )  1 /2 

VBs, for To, + ( I t &  - R;)l/’ 5 y 5 b 

where Rss is determined by 
matching the  interface boundary conditions that are de- 
rived in the Appendix. The parameter Ydo, as shown in VBI - VBs + - q N A  (Rgs - R j )  
Fig. 1 ,  is determined by iP (Xmin, To, + Ydo) = V g S ,  in 4 ~ s i  

which Xmin is  the position of the minimum potential point 
along the  surface. - - Rss In (Rss/Rj) = 0 

Using (10) and (1 1) the analytic solution for the poten- 4 ~ s i  

tial distribution of a MOSFET can be obtained. This gen- and RD, is determined by 
eral solution is uniquely determined by the given Dirichlet 
boundary conditions along the rectangular region. It has 
been stated before that  the perturbation of the potential 4 ~ s i  

distribution by the source-drain junction  is increased as 
the channel length becomes shorter. Therefore,  the 

qNA 2 
( 1 3 4  

VBI + V D S  - VBs + - (R& - R;) q N A  

- - R ,  In (RDs/Rj) = 0. q N A  2 

4 ~ s i  
(13b) 
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Note that all of the potential voltages are referred to the 
substrate with VBs = 0 and VBs is negative for  the p-type 
substrate. The  above Dirichlet boundary conditions are 
different from those used by Ratnakumar and Meindl [SI 
and Toyabe and Asai 161. From  (12),  the boundary at y 
= L is at the neutral region and the potential along this 
line  is equal to V,, . The potential in the oxide along  the 
boundaries, x = 0 and x = L,  is assumed to have  the 
uniform electric field and,  therefore,  its potential is a lin- 
ear function of y .  The resulting errors due to the above 
assumption are small because the oxide thickness (Tax) is 
much less than the box width ( b ) .  Therefore, the contri- 
bution of these  parts of boundaries to  the potential distri- 
bution is negligible. For tox I y I b along x = 0 and x 
= L ,  the potential distributions in  the cylindrical junction 
as shown in (12c) and (12d) are calculated by using a one- 
dimensional model. Note that we have assumed that the 
electric field along the rectangular boundary (To, I y I 
b )  is almost induced by the nearest cylindrical junction 
and the potential distribution is equal  to  that of the iso- 
lated junction.  This approximation therefore is valid be- 
fore the onset of hard drain-induced punchthrough. 

D. Some Results and Discussions 
The convergent rate in (1 1) depends on the magnitude 

of the effective channel length.  It  is shown that the shorter 
the effective channel length,  the less number of terms 
needed in (11) because the  value of hyperbolicsine func- 
tion decays very quickly. If we are only interested in some 
local behavior (e.g., the potential distribution in the cer- 
tain portion of the surface channel), the computation time 
is much less than that of the two-dimensional numerical 
analysis. Fig. 3 shows the calculated potential distribu- 
tion along the  surface, under the condition that the gate 
voltage strongly inverts the minimum surface potential 
point.  It is shown that the potential distribution has a min- 
imum value and the minimum point shifts to  the source 
as the channel length is decreased. This fact is consistent 
with the result calculated by the two-dimensional numer- 
ical analysis [6]. Fig. 4 shows that the depletion depth Y d o  
is increased with decreasing channel  length. This effect is 
due to the divergence of the lateral electric field [ 121. Fig. 
5 shows the potential distribution along y = Ydo + To, 
versus different channel lengths.  It  is clearly seen that al- 
though the ionized impurity concentration outside the 
minimum depletion depth Y,, has been ignored,  the po- 
tential along this line ( y = To, + Ydo) is not a constant. 
Therefore, the  error produced by our previous assumption 
that the depletion depth is independent of the coordinate 
n is negligible. Moreover,  the effect of the wider deple- 
tion depth on the  surface potential is not significant. From 
(6), the contribution of the ionized impurity concentration 
to the surface potential distribution is proportional to 

sinh k,(b - y ' )  
sinh (k ,b)  

Tox + YdO 

dY ' 

Tox f YdO 

= !Tox 
exp ( -k,Y '1 dY' (14) 

1951 

5 r  

3 
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Fig. 3. The  calculated  band  bending  along the surface  channel ( y = Tax) 
when  the  gate  voltage  strongy  inverts the minimum surface potential 
point. 
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Effective Channel Length , C ( wm) 

Fig. 4. The calculated  minimum  depletion  depth ( Ydo) versus  the  effective 
channel  length,  in  which  the  normalized  factor is  the  depletion  depth of 
long-channel MOSFET's. 

in which the exponential function decays very quickly as 
the channel length is reduced. Although the depletion re- 
gion of short-channel MOSFET's  is wider than that of 
long-channel devices,  the threshold voltage is still de- 
creased for short-channel devices because of the screened 
impurity effect as illustrated in (14) and  the barrier-low- 
ering effect  by the potentials across the source-drain junc- 
tions.  Therefore,  the minimum depletion depth ( Ydo) can 
be obtained by the depletion depth calculated by  the one- 
dimensional model when only the surface potential distri- 
bution is concerned. 
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Fig. 5. The calculated potential  distributions  along  the minimum depletion 
depth for different channel  lengths. 

Fig. 6 shows the potential distribution along the surface 
channel for L = 0.7 pm under  the specified bias condl- 
tions, i.e., VBs = -2 V, VDs = 5 V, and VGs = 0.8 t'. 
The symbol " * " represents the data generated by tF.e 
two-dimensional numerical analysis-MINIMOS with in- 
put parameters illustrated in Table I. The solid curve rep- 
resents the calculated results using our developed mod':l 
with the specified source-drain cylindrical junction, and 
the dash curve represents the results of our developed 
model with a rectangular-shaped junction and the same 
junction depth of Rj = 0.25 pm.  It  is clearly seen that 
comparisons between the solid curve and the MINIMOS's 
data show quite satisfactory. Moreover, it is obviously 
shown that the barrier lowering effect for a rectangu1a.r- 
shaped junction is larger than that  for a cylindrical junc- 
tion. This result substantiates our previous statement that 
the short-channel effects are very sensitive to the specifi'sd 
boundary conditions. Note that the Gaussian profile in the 
source-drain diffusion islands used in MINIMOS has bezn 
chosen to  be  as abrupt as possible in order to reasonably 
compare with the abrupt profile used in our model. 

111. A SIMPLIFIED SUBTHRESHOLD CURRENT MODEL 
In the previous section,  the solution of the two-dimen- 

sional Poisson's equation has been obtained by neglect.ng 
the electron concentration in the conducting channel. This 
assumption is valid for  the MOS device operated in the 
subthreshold region where the potential distribution is (de- 
termined primarily by the device geometries, the ionized 

Tox=250A I N ~ = l O ' ~ / c r n ~  I L:0.7gm , R j  =0.25pm 
vDS=5v , vBS=-2v ~ V G S = 0 . 8 V  

l 
--- our model 

I 

Cylindrical 
0 

I 

3 

Normalized  distance , X / L  

Fig. 6 .  The calculated potential distributions  along  the  surface channel for 
different models. 

TABLE I 
THE INPUT PARAMETERS FOR MINIMOS 

Thickness Source/Drain Channel Width Substrate  Doping 
Concentration 

T~~ (A' ) 
Junction  Depth 

NA(cK3) R j  (urn) W (urn) 

250 I 1.0 x 1016 1 13.5 I 0.25 

I 
I 

Source/Drain  Curvature 
Cylindrical 

source/Drain  Profile 

T O X l  Y-C TOX+ 0.21 urn 1.0 x 1 0 ~ ~ / ~ ~ ~  

To, 2 Y 1. o x iozo .exp I- 
(y-To,-O. 21 urn)' 

2-(9.32~10-7crn)~ 
I 

in  Fig. 3, the surface potential distribution exhibits a flat- 
band bending over a certain range along the channel, and 
the current within this region must be driven by the dif- 
fusion component alone. Therefore, the diffusion current 
in this region can be written as 

where A is the cross-sectional area of the current flow, D, 
impurity concentration, and the applied biases. As shown is the electron diffusivity, L* is the effective length of the 
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region in which the diffusion current  dominates, and !k* 
is the minimum surface  potential. 

The electron distribution from the surface to the bulk in 
the subthreshold region can be approximated by the charge 
sheet model and is expressed by 

where 

It has been shown that  the maximum error produced by 
the charge sheet model under  the weak inversion is only 
about 4.5 percent [13]. Therefore,  the  average cross sec- 
tion of the current flow can be approximately written as 

n m  

J n(Xmin2 Y >  dY 
TO,  

A = W  = w- kB T 
n(xrnin, G X )  4PYI 

(17) 

where W is the width of the channel. 
It should be noted that  the effective length L* in (15) is 

approximately equal to the channel length ( L )  for the 
long-channel MOSFET.  However,  as  the channel length 
becomes shorter, the derivation between L* and L be- 
comes much larger. Note that the value of L* can be self- 
generated by the calculated surface potential distribution 
and the criterion is that the region within which the sur- 
face potential change is within the value of XJ! * + kB T / q .  
In order  to  check  the accuracy of the developed subthresh- 
old current model,  the numerical results calculated by 
MINIMOS [4j are used to compare with our  model.  The 
curvature of the source-drain junction  is taken to be cy- 
lindrical with a radius of 0.25 pm and the doping concen- 
tration in the source-drain dihsion island is assumed to 
be uniform,  as listed in Table I. The mobility of electrons 
( f i n )  is  chosen  to  be 500 (cm2/V * s) as in (15). Com- 
parisons between the results of our model and those com- 
puted by MINIMOS are shown in Figs. 7-9 with the spec- 
ified biases of VDs = 5 V, VBs = 0 to -2 V. It is clearly 
seen that the agreement is very satisfactory.  It should be 
noted that no fitting parameters are needed for  our devel- 
oped subthreshold model. 

IV. THE THRESHOLD VOLTAGE 
In general,  the threshold voltage deduced from  the nu- 

merical analysis is often defined as the  gate voltage with 
the drain current equal to a specified value. In  order to 
test  the accuracy of the threshold voltage deduced by the 
subthreshold current model,  the numerical results calcu- 
lated by CADDET [6] with the threshold voltage defined 
at l~, = lo-* A  are used to compare with those calculated 
by our subthreshold current model. Fig. 10 shows ( V, - 
V F ~ )  versus the effective channel length with the substrate 
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Gate-Source  Voltage , VGS (Volts) 

Fig. 7.  The  calculated  subthreshold  current  versus  the  applied  gate-source 
voltage for different  channel  lengths  with Vas = 0. 

lo-*, 
Tox = 250A , NA = 1 0l6/ crn3 , Rj  = 0.25pm(cylindrical 
pn =500 crn2/v-sec 

+ + + MlNlMOS 
vDS=5.ov , vsS= -1.ov 

- our model 

1 o - ~  i 

.- C 

e 

1 o-'O- 

lo-" 

1 0-l2 0 L 
J 

Gate -Source  Voltage I VGS (Volts) 

Fig. 8. The calculated  subthreshold  current  versus  the  applied  gate-source 
voltage  for  different  channel  lengths  with Vss = - 1 V. 

bias as  a parameter and under a  drain voltage of 5 V. Note 
that  the  data points in Fig. 10 are deduced from CADDET 
and the solid curves  are generated by our subthreshold 
current model. It is clearly seen that the agreement be- 
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Gate-Source  Voltage , VGs(V0lts) 

Fig. 9. The calculated  subthreshold  current  versus  the  applied  gate-source 
voltage for different  channel  lengths with VBs = -2 v. 
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Fig. 10. The  calculated V, - VFB versus  the  effective  channel  length for 
different  applied  biases. 

tween comparisons is very good. Moreover, it is known 
that the electrical characteristics of short-channel MOS- 
FET's are sensitive to  the curvature of the source-drain 
junction and the profile gradient as well as the junction 
depth.' Therefore,  the slight discrepancy for the channel 
length below 1. pm is mainly due  to different doping pro- 
files used in the source-drain islands.  Figs. 11 and 12 
show ( VT - VFB) versus the effective channel length for 
different oxide thicknesses and substrate doping .cor.cen- 
trations, respectively. Comparisons between the experi- 
mental data deduced from [6] and the results deduced from 
our subthreshold current model are shown in Fie 13. 

2.5 
NA = 10'6/cm3, Rj=0.25pm(cylindrical) 
vas= 5v , vss = -2V 

0.5 l , . . r l , . , . l , . . . l , . . . l ,  . . .  , . , . . I . . , . I . . .  
0 2.0 4 .O 6.0 8.0 10.0 

Effective  Channel  Length , L (pm) 

Fig. 11.  The calculated V ,  - V,, versus  the  effective  channel  length for 
different  gate-oxide  thicknesses. 
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Fig. 12. The  calculated V ,  - VFB versus  the  effective  channel  length  for 
different  substrate  doping  concentrations. 
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Fig. 13. Comparisons  between  the  calculated V ,  - VFB versus  the  effec- 
~ - - -  tive  channel  length and the  experimental  measurements. 



LIN AND  WU:  SOLUTION FOR POISSON’S  EQUATION 1955 

Similarly, good agreement between comparisons has been 
obtained. Therefore,  it is verified that our simplified 
subthreshold current model is very accurate to  deduce  the 
threshold voltage for wide ranges of process parameter 
variations and applied biases. 

V. CONCLUSION 
A two-dimensional model for  the potential distribution 

of short-channel MOSFET’s has been developed in this 
paper.  The analytical solution for  the two-dimensional 
Poisson’s equation has been obtained by Green’s function 
technique with the appropriate boundary conditions in 
which the cylindrical curvature with a finite source-drain 
junction depth is considered. Moreover, no trial solution 
has been used in our model to calculate the particular so- 
lution of the two-dimensional Poisson’s equation and the 
problem of different  dielectric permittivities for  the oxide 
and the semiconductor have been solved by the image- 
charge method. Although the depletion depth is assumed 
to be independent of the coordinate x, it has been illus- 
trated that the resulting errors are quite negligible. More- 
over,  it has been demonstrated that the potential distri- 
bution of short-channel MOSFET’s is very sensitive to 
the boundary conditions on the source-drain junction. The 
short-channel effect is overestimated if the source-drain 
junction is assumed to .have a rectangular shape with a 
finite junction  depth. Based on  the calculated potential 
distribution, the subthreshold current and the threshold 
voltage can be easily calculated.  The accuracy of the de- 
veloped technique has been verified by comparing with 
the results obtained by two-dimensional numerical anal- 
ysis and experimental data. Although only the uniform 
substrate doping is considered in this paper,  the devel- 
oped model can be easily applied to  the case with non- 
uniform substrate doping profile. In  future  work, the ex- 
plicit analysis of the subthreshold behavior for short- 
channel MOSFET’s with channel implantation will be de- 
veloped using the present model. 

APPENDIX 
DETERMINATION OF IMAGE CHARGE DENSITIES 

The values of al(rn) and c2(rn) can  be determined by 
matching the boundary conditions at the interface y = To,, 
as illustrated in (9a) and (9b). Expanding the potential 
\Eo(x, y ) in terms of the eigenfunction sin (k,x), we ob- 
tain 

Therefore,  the values of q ( m )  and u 2 ( m )  can  be ob- 
tained by the above equations. 
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