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中文摘要 

 
 估計出參與在無線通訊系統中，想要重送封包的使用者數目，對於提升某些分散式

媒體存取控制協定系統的效能，是特別重要的。為了解決這個困難的問題，Rivest 提出

偽貝氏演算法，在穩定的時槽式 Aloha 系統中，可以不需要知道使用者的數目，簡單又

有效地解決上述的問題。他的運作方式是藉由保持住，在每一個時槽開始時，要重送的

使用者的估計值。在這篇論文裡，我們著重在以時槽式 Aloha 為基礎的分散式媒體存取

控制之協定中，維持要重送的使用者個數的估計值。最基本的協定形式是從穩定的 Aloha

開始，接著如果發生某些情況，則系統進入第二模式，第二模式是一個縮短的樹狀分裂

的演算法。今過一段有限的時間後，系統會重新回到穩定的 Aloha 模式下。第二模式是

一個提高效能的模式。如同 Rivest 的偽貝氏演算法，我們提出一個方法，可以不需要

知道使用者的個數，並且提高有效傳輸量。 

 
 
 

中華民國九十七年七月 
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Abstract 
 

Estimating the number of backlogged users participating in wireless communications is 

particularly important for enhancing the performance of some distributed MAC protocols. To 

resolve such a difficult issue, Rivest’s Pseudo- Bayesian algorithm is a simple and effective 

way to doing so in stabilized slotted aloha without knowledge of the number of nodes. It 

operates by maintaining an estimate of the backlogged user at the beginning of each slot.  In 

this thesis, we focus on estimating the number of backlogged users for the slotted-aloha-based 

distributed MAC protocols. A basic form of these protocols is starting from the stabilized 

aloha and then if certain condition occurs, the system goes to second mode which is indeed a 

truncated tree splitting algorithm. After a finite period, the system moves back to the mode of 

stabilized aloha. The second mode could be a performance boost mode. As in Rivest’s 

Pseudo-Bayesian algorithm, our proposal does not require the acknowledgement of the 

number of nodes, and increase the throughput. 
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Chapter 1                         

Introduction 

 

 

Estimating the number of active or so-called backlogged users participating in wireless 

communications is of particularly important for enhancing the performance of some 

distributed MAC protocols. For example, in slotted aloha, a distributed MAC protocol in 

use in satellite and radio communication for data transfer, packets are transmitted by various 

users. More packets sent simultaneously indicate a collision. To enhance the throughput of 

slotted aloha, the stabilized slotted aloha sets the transmission probability of sending a 

backlogged packet as 1/n, where n is number of backlogged users which have backlogged 

packets to send. It has been shown that the stabilized slotted Aloha can achieve the 

maximum throughput of slotted aloha. Due to the nature of distributed system, however, 

such a number n can only be estimated by observing the channel utilization and the 

corresponding feedback.  

 

To resolve such a difficult issue, Rivest’s Pseudo-Bayesian algorithm is a simple and 

effective way without knowledge of the number of nodes. It operates by maintaining an 

estimate n̂  of the backlog n at the beginning of each slot. Both new arrival and backlogged 

packets are transmitted with probability qr( n̂ )= }1,
ˆ
1min{
n

. The estimated backlog at the 

beginning of slot k+1 is updated from the estimated backlog and feedback for slot k. The 

maxima throughput in this algorithm is 1/e, which has been proved to be the maximum 

throughput of slotted aloha system. 

 

In this thesis, we focus on estimating n̂  for the Slotted-Aloha-based distributed MAC 
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protocols. A basic form of these protocols is starting from the stabilized aloha and then if 

certain condition occurs, the system goes to second mode. After a finite period, the system 

moves back to the mode of stabilized aloha. The second mode could be a performance boost 

mode. For example in [1], the second mode is indeed a truncated tree splitting algorithm, 

which is an approach that divides the users involved in a collision into several subsets using 

some tree like mechanism [1]. With such two modes, not only the performance can be 

improved to the maximum throughput in the tree splitting algorithm, which is about 0.43, 

but also the robustness against the inconsistent view of current tree evolution is also 

improved. 

 

As in Rivest’s Pseudo-Bayesian algorithm, our purpose is to find an algorithm that does 

not require the acknowledgement of the number of nodes, and increase the throughput. In 

our thesis, for the second mode we also consider a splitting algorithm. However, our version 

of splitting algorithm does not include the common receiver and thus doing so renders it 

more applicable to wireless access system. Using our method is to estimate n̂  of the 

backlog n by receiving the feedback and to combine our splitting algorithm police to reduce 

collision. Finally, the throughput by using our policy is 0.423. 

 

The rest of the thesis is organized as follows. In chapter 2 we introduce the background 

knowledge of our study. The system framework is presented in chapter 3. And the analysis 

of “A Pseudo-Bayesian-Broadcast-Based MAC Protocol” is described in chapter 4. 

Briefly describe our simulator and then simulation results are reported in chapter 5, 

followed by conclusion in chapter 6. 
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Chapter 2 

Background Knowledge 
 

 

In this chapter, we will introduce the basic idea of slotted Aloha,  Pseudo-Bayesian 

algorithm, and tree-splitting Algorithm. 

 

 

2.1 Slotted Aloha 
 

Slotted Aloha, which introduced discrete timeslots. The basic idea of this algorithm is that 

each unbacklogged node simply transmits a newly arriving packet in the first slot after the 

packet arrival, thus risking occasional collisions but achieving very small delay if collisions 

are rare. When a collision occurs in slotted Aloha, each node sending one of the colliding 

packets discovers the collision at the end of the slot and becomes backlogged. If each 

backlogged node were simply retransmit in the next slot after being involved in a collision, 

then the other collision would surely occur. In stead, such nodes must wait for some random 

number of slots before retransmitting.  

 

 With the infinite-node assumption, the number of new arrivals transmitted in a slot is 

Poisson random variable with parameter λ. If the retransmission from the backlogged nodes 

are sufficiently randomized, it is plausible to approximate the total number of retransmissions 

and new transmissions in a given slot as a Poisson random variable with some parameter G > 

λ. With this approximation, the probability of successful transmission in a slot is GGe− . 

Finally, in equilibrium, the arrival rate, λ, to the system should be the same as the departure 

rate, GGe− . This relationship is illustrated in Fig. 2.1. 

 

The maximum possible departure rate occurs at G=1 and is 1/e ≈0.368. if G < 1, too many 

idle slots are generated., if G > 1, leads to too many collisions.  
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Fig. 2.1 Departure rate as a function of attempted transmission rate G for slotted Aloha. 

Ignoring the dynamic behavior of G, departures (successful transmissions) occur at a rate 
GGe− , and arrivals at a rate λ. 

 

To construct a more precise model, assume that each backlogged node retransmits with 

fixed probability rq  in each successive slot until a success transmission occurs. with the 

no-buffering assumption and the infinite node assumption. The behavior of the slotted Aloha 

can be described as a discrete-time Markov chain. Let n be the backlogged nodes at the 

beginning of a given slot. Each node transmit packet independently with a probability rq . 

Each of the m-n other nodes will transmit a packet in the given slot (such packet arrived 

during the previous slot). These arrivals are Poisson distributed with mean λ/m, the probability 

of no arrivals is e-λ/m. An unbacklogged node transmits a packet in a given slot with the 

probability qa =1- e-λ/m. Let ),( niQa  be the probability that i unbacklogged nodes transmit. 

 

i
a

inm
aa qq

i
nm

niQ −−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= )1(),(                      (2.1) 

i
r

in
rr qq

i
n

niQ −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= )1(),(                           (2.2) 

 

Note that from one state to the next, the state increase by the number of new arrivals 

transmitted by unbacklogged nodes. Less one, if one new arrival and no backlogged packet, or 

no new arrival and one backlogged packet is transmitted. Thus the state transition probability, 

from one state to next is given by 
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Fig. 2.2 Markov chain for slotted Aloha. 

 

Fig. 2.2 illustrates this Markov chain. Note that the state can decrease only 1 in a single 

transition, but can increase by an arbitrary amount. Then the steady-state probability can be 

easily calculatedly. Finding pn for each successively larger in terms of  p0 , and then finding 

as a normalizing constant. From this, the expected number of backlogged node can be found, 

and from the Little’s theorem, the average delay can be calculated. 

 

Unfortunately, this system has some very strange property for a large number of nodes. 

Note that choose large retransmission probability moderately large can to avoid large delays 

after collision. In this situation, small arrival rate and not to many backlogged node, this work 

well, retransmission are normally successful. But, if backlogged packet get large enough to 

satisfy rq n>>1, then collisions will occur successively slots for a long time. 

 

To understanding this situation quantitatively, define the driff  in state n nD  as the 

expected change in backlog over one slot time, starting in state n. Thus, nD  is the expected 

number of new arrivals accepted into the system less the expected number of successful 

transmissions is just the probability of successful transmission, define as succP . Thus . 

 )( succan pqnmD −−=                             (2.4) 

where 

 ),1(),0(),0(),1( nQnQnQnQp rarasucc +=               (2.5) 
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Define the attempt rate G(n) as the expected number of attempted transmissions in a slot 

when in state n, that is 

 

ra nqqnmnG +−= )()(  

 

If aq  and rq  are small, succP  is closely approximated as the following function of the 

attempt rate: 

 
)()( nG

succ enGP −≈                              (2.6) 

 

This approximation is derived directly from Eq. (2.5), using the approximation (1-x)y ≈ e - 

xy for small x in the expressions for Qa and Qr. similarly, the probability of idle slot is 

approximately e–G(n). Thus, the number of packets in a slot is well approximated as a Poisson 

random variable, but the parameter G(n) varies with the state. Fig. 2.3 illustrate Eqs. (2.4) and 

(2.6) for the case rq  > aq . The drift is the difference between the curve and the straight line. 

Since the drift is the expected change in state from one slot to the next, the system, perhaps 

fluctuating, tends to move in the direction of the drift and consequently tends to cluster 

around the two stable points with rare excursion between the two. 

 
Fig. 2.3 Instability of slotted Aloha. The horizontal axis corresponds to both the state and 

attempt rate G, which are related by ra nqqnmnG +−= )()( , with rq > aq . 

 

There are two important conclusions from this figure (Fig. 2.3). First, the departure rate is 

at most 1/e for large m. Second, the departure rate is almost zero for long periods whenever 

the system jumps to the undesired stable point. Consider the effect of change rq . As rq  is 
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increased, the delay in retransmitting a collided packet decreases. 

 

If we replace the no-buffering assumption with the infinite-node assumption. The attempt 

rate G(n) becomes λ+ n rq  and the straight line representing arrivals in Fig. 2.3 become 

horizontal. In this case, the undesirable stable point disappears, and once the system passes 

the unstable equilibrium, it tends to be without bound. In this case, the corresponding 

infinite-state Markov chain has no steady state distribution. And the expected backlog 

increases without bound as the system continuous running. 

 

From a practical standpoint, if the arrival rate λ is very much smaller than 1/e, and if rq  

is moderate, then the system could be expected to remain in the desired stable state for a long 

time. Once unfortunately, move to the undesired stable point, the system could be started with 

backlogged packets lost. 

 

We look at modification of slotted Aloha that that cure this stability issue. One simple 

approach to achieving stability is that )()( nG
succ enGP −≈  ,which is maximized at G(n)=1. 

Thus, it is desirable to change rq  dynamically to maintain the attempt rate G(n) at 1. The 

difficult is that n is unknown to the nodes and only be estimated from the feedback. 

 

With the infinite-node assumption, no arrivals are discarded but the delays become infinite. 

Therefore, if expected delay per packet is finite, then the system is stable for a given arrival 

rate. Ordinary slotted Aloha is unstable. Our purpose with this definition is to find a algorithm 

that do not require knowledge of the number of nodes and maintain small delay. Rivest’s 

pseudo-Bayesian algorithm is a simple and effective way to stabilize Aloha. Next, we will 

illustrate this algorithm particularly. 

 

 

2.2 Pseudo-Bayesian algorithm 
 

Assume that each station has at most one packet to transmit at any time. A station is active 

if it has a packet to transmit; otherwise, it is inactive. When a slot begins each active station 

must decide, either deterministically or stochastically, whether or not to transmit its packet. 
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There are three possible outcomes: 

(1) a idle if no stations transmit; 

(2) a success if one station transmits; or 

(3) a collision if more than one station transmits. 

 

This approach has the following general form. Just before slot t begins, each station k in 

the network computes a value for its broadcast probability bk,t Then station k will transmit a 

packet (if it has one) with probability bk,t  independent of whether previous attempts had been 

made to transmit that packet. 

 

 Assume that each station k computes bk,t from the globally available network history, 

indicating whether each slot was a hole, a success, or a collision. Since the stations only use 

global information to compute the broadcast probabilities bk,t, each station will compute the 

same value  bt  for  bk,t , and updating procedure will be relatively straightforward. 

 

Let Nt  denote the number of active stations at time t. The probabilities of an idle, success, 

or collision for a given broadcast probability bt  ( and waiting probability  wt = 1 - bt ) and 

given value Nt = n : 

 

n
tbt wnInNidlep

t
=== )()|(                         (2.7) 

1)()|( −⋅⋅=== n
ttbt wbnnSnNsuccessp

t
               (2.8) 

)()(1)()|( nSnInCnNcollisionp
ttt bbbt −−===          (2.9) 

 

The optimum value for bt is  

;/1 tt Nb =                                      (2.10) 
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This maximizes )N( ttbS  Note that b, depends only on Nt. If bt is chosen optimally as l/ 

Nt, the expected number of stations attempting to transmit will be one, and the probabilities of 

holes, successes, and collisions will be 

eN
NI

t

t

N

t
tN

111)(/1 ≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=                       (2.11) 

eN
NS

t

t

N

t
tN

111)(/1 ≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=                       (2.12) 

e
NC tNt

21)(/1 −≈                               (2.13) 

(The approximations hold for large Nt ) 

 

However, the stations will typically not know the correct value for Nt,. For example, some 

inactive stations may have received newly generated packets during slot  t - 1 which they 

will be ready to transmit during slot t. In the first procedure we describe, which we call the 

Bayesian broadcast algorithm, each station will use the evidence available up to time t to 

estimate the likelihood tnp ,  that Nt= n  for each n≥0. That is, 

 

),Pr(, nNp ttn ==        for n=0,……                 (2.14) 

 

given the available evidence. According to the procedure Bayesian broadcast to estimate 

),,( ,1,0 ⋅⋅⋅= ttt ppp . 

 

In the Bayesian broadcast procedure, each station begins with the initial distribution 

),0,0,1(0 ⋅⋅⋅=p  - it assumes that all stations are inactive. Each station will compute the same 

vector tp  using the available global feedback information. The vector 
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),,( ,1,0 ⋅⋅⋅= ttt ppp summarizes the global information available about Nt. 

 

With the Bayesian broadcast procedure, each station performs the following four steps 

during each time slot. 

(1) Compute the optimal broadcast probability bt, from the initial probability vector tp . 

(2) If the station is active, transmit its packet with probability bt. 

(3) Perform a Bayesian update of tp  (the initial probability distribution for N,) to obtain 

'tp  (the final probability distribution for Nt ), using the evidence (idle, success, or 

collision) observed in time slot t. 

(4) Convert the final probabilities 'tp  for Nt, into initial probabilities 1+tp  for  Nt+1, by 

considering the generation of new packets and the fact that a packet may have been 

successfully transmitted during time slot t. 

 

Derive this algorithm by assuming that tp , can be reasonably approximated by a Poisson 

distribution with mean n̂ ( n̂  is estimated n )  ; Let 

 

!
ˆ

)(
ˆ

ˆ n
nenP

nn

n
⋅

=
−

                           (2.15) 

 

Denote the Poisson density at n for Poisson parameter ע. Each station will keep only 

n̂ ,rather than the vector tp and will approximate the initial probability tnp ,  by )(ˆ nPn . 

 

To develop the pseudo-Bayesian broadcast and probability updating procedure, we first 

consider the equations that would be used for a true Bayesian update of the  
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Poisson approximation for tp  if bt is the actual broadcast probability (and wt = 1 - bt). 

These equations represent the unnormalized final probability values: 

 

)()( ˆ)(ˆ nPenIP
t

t

t wn
b

bnn ⋅=⋅ −                          (2.16) 

)1(ˆ)( ˆ)(ˆ −⋅⋅=⋅ − nPebnnSP
t

t

t wn
b

tbnn                    (2.17) 

))()(1()( )(ˆ)(ˆ nSnIPnCP
ttt bbnnbnn −−=⋅                 (2.18) 

 

Therefore, it can easily compute broadcast probability: 

 

);1,
ˆ
1min(
n

bt =                               (2.19) 

 

From (2.16 ) and (2.17), derive decrements n̂  by 1, if the current slot is a hole or a 

success. 

 

If there is a collision, Bayes’ rule will not yield a Poisson distribution for the final 

probabilities. However, Rivest approximate the result by a Poisson distribution by setting n̂  

to be the mean of the resulting distribution, which is (using x to denote tbn ⋅ˆ ): 

1
ˆ

2

−−
+

xe
xn x                                (2.20) 

 

which simplifies in the case n̂ ≥1, 
n

bt ˆ
1

=  to 

 

2
1ˆ
−

+
e

n                                 (2.21) 

 

The Pseudo-Bayesian Broadcast Procedure: Each station maintains a copy of n̂  and, 

during each slot. Each backlogged packet is then transmitted ( independently ) with 
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probability qr = }1,
ˆ
1min{
n

(note: we replace bt with qr ), the minimum poperation limits qr to at 

most 1, and try to achieve an attempt rate G=nqr of 1. For each k, the estimated backlog at the 

beginning of slot k+1 is updated from the estimated backlog and feedback for slot k according 

to the rule 

{ }
⎩
⎨
⎧

−++
−+

= −+ collisionfor                   ,)2(ˆ
successor  idlefor                ,1ˆ,max

ˆ 11 en
n

n
k

k
k λ

λλ
          (2.22) 

The maximum operation ensures that the estimate is never less than the contribution 

from new arrivals. On successful transmission, subtracting 1 from the previous backlog. 

And subtracting 1 from the previous backlog on idle slot, has the effect to avoid that too 

many idle occur. Finally, adding (e-2)-1 on collision has the effect to decreasing n̂  when 

too many collision occur. Thus G(n) is 1,and, by the Poisson approximation , idle occurs 

with probability 1/e and collisions with probability (e-2)/e, so that decreasing n̂  by 1 on 

idles and increasing n̂  by (e-2)-1 on collisions maintains the balance between n and n̂  on 

average. On successful or idle transmission, { }1ˆ,maxˆ 1 −+=+ λλ kk nn , and On collision, 

updating with 1
1 )2(ˆˆ −
+ −++= enn kk λ . 

 

In applications, the arrival rate λ is typically unknown and slowly varying. Thus, the 

algorithm must ether estimate λ from time-average rate of successful transmissions or set 

it’s value within the algorithm to some fixed value. It has been shown by Milkhailov and 

Tsitsiklis that if the fixed value 1/e us used within the algorithm, stability is achieved for all 

actual λ <1/e. nothing has been proven about the behavior of the algorithm when a dynamic 

estimate of  λ is used within the algorithm. 

 

Note that since each station now only maintains a single parameter n̂ , it would be simple 

to broadcast n̂  with every packet. In this way stations which have just powered-up can 
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“synchronize” easily. 

 

2.3 Splitting Tree Algorithms 

 

The slotted Aloha requires some care for stabilization and is also essentially limited to 

throughputs of 1/e. We now want to look at more sophisticated collision resolution 

techniques that both maintain stability and also increase the achievable throughput. A 

splitting algorithm is an approach that divides the users involved in a collision into several 

subsets. Only the user or users in one of the subsets will transmit at the next time slot so that 

the probability of collision is reduced. 

 

    The first splitting algorithms were algorithms with a tree structure. When a 

collision occurs, say in the kth slot, all nodes not involved in the collision go into a waiting 

mode, and all those involved in the collision split into two subsets (e.g., by each flipping a 

coin). The first subset transmits in slot k+1, and if that slot is idle or successful, the second 

subset transmits in slot k+2 (see Fig. 2.2). Alternatively, if another collision occurs in slot 

k+1, the first of these two subsets split again, and the second subset waits for the resolution 

of that collision. 

 

Fig. 2.4 Tree algorithm 
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The rooted binary tree in Fig. 2.4 represents a particular pattern of idles, success, and 

collision resulting from such a sequence of splitting. S represents the set of packets in the 

original collision, and L (left) and R (right) represent the two subsets that S splits into. 

Similarly, LL and LR represent the two subsets that L splits into after L generates a collision. 

The set of packets corresponding to the root vertex S is transmitted first, and after the 

transmission of the subset corresponding to any nonleaf vertex, the subset corresponding to 

the vertex on the left branch, and all of its descendant subsets, are transmitted before the 

subset of the right branch. Given the immediate feedback we have assumed, it should be 

clear that each node, in principle, can construct this tree as the 0, 1, e feedback occurs; each 

node can keep track of its own subset in the tree, and thus each node can transmits its own 

backlogged packet. 

 

    The transmission order above corresponds to that of a stack. When a collision 

occurs, the subset involved in collision is split, and each resulting stack is pushed on the 

stack (i.e., each stack element is a subset of nodes); then the head of the stack (i.e., most 

recent subset pushed on the stack) is removed from the stack and transmitted. The list, from 

left to right, of waiting subsets in Fig. 2.4 corresponds to the stack elements starting at the 

head for the given slot. Note that a node with backlogged packet can keep track of when to 

transmit by a counter determining the position of the packet’s current subset on the stack. 

When the packet is involve in a collision, the counter is set to 0 or 1, corresponding to 

which subset the packet is placed in. When the counter is 0, the packet is transmitted, and if 

the counter is nonzero, it is incremented by 1 for each collision and decremented by 1 for 

each success or idle. 

 

    One problem with this tree algorithm is what to do with the new packet arrivals 

that come in while a collision is being resolved. A collision resolution period (CRP) is 
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defined to be completed when a success or idle occurs and there are no remaining elements 

on the stack (i.e., at the end of slot 9 in Fig. 2.4). At this time, a new CRP starts using the 

packets that arrived during the previous CRP. In the unlikely event that a great many slots 

are required in the previous CRP, there will be many new waiting arrivals, and these will 

collide and continue to collide until the subsets get small enough in the new CRP. The 

solution to this problem is as follow: At the end of a CRP, the set of nodes with new arrivals 

is immediately split into j subsets, where j is chosen so that the expected number of packets 

per subset is slightly greater than 1 (slightly greater because of the temporary high 

throughput available after a collision). These new subsets are then placed on the stack and 

the new CRP starts. 
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Chapter 3 

A Pseudo-Bayesian-Broadcast-Based MAC 

Protocol 
 

 

In this chapter we will introduce our “A Pseudo-Bayesian-Broadcast-Based MAC 

Protocol algorithm”. Because the number of nodes, n, is unknown. Each node should 

maintain the estimate n̂  to decide the transmission probability. 

 

3.1 Model 

 

We list the assumptions of the model and then discuss their implications. 

 

1. Slotted system. Assume that all transmitted packet have the same length and that 

each packet requires one time unit (call a slot) for transmission. All transmitters are 

synchronized so that the reception of each packet starts at an integer time and ends before 

the next integer time. 

 

2. Poisson arrivals. Assume that packets arrival for transmission at each of the m 

transmitting nodes according to independent Poisson process. Let λ  be the overall arrival 

rate to the system,  

 

3. Noisy collision channel. Assume that if two or more nodes send a packet in a 

given time slot, then there is a collision and receiver obtain no information about the 

contents or source of the transmitted packet. But packets can be corrupted also by noise 



 17

even when collisions are absent. 

 

4. 0,1,e Immediate feedback. At the end of each slot, each node detects whether 0 

packet, 1 packet or more than one packet were transmitted in that slot. 

 

5. Retransmission of collisions. Assume that each packet involved in a collision must 

be retransmitted in some later slot, with further such retransmission until the packet is 

successfully received. A node with a packet that must be retransmitted is said to be 

backlogged. 

 

6. A .No buffering. If one packet at a node is currently waiting for transmission or 

colliding with another packet during the transmission, new arrivals at that node are 

discarded and never transmitted. An alternative to this assumption is the following. 

 

B. Infinite set of nodes (m=∞). The system has an infinite set of nodes and each 

newly arriving packet arrives at a new node.  

 

3.2 A Pseudo-Bayesian-Broadcast-Based MAC Protocol 

 

    In the “A Pseudo-Bayesian-Broadcast-Based MAC Protocol”, we have some 

differences with the “tree splitting algorithm”. 

1. In the CRP start each node transmits with probability 1/ n̂ .The estimate n̂  is 

maintain by each node, and using Pseudo-Bayesian and “A 

Pseudo-Bayesian-Broadcast-Based MAC Protocol to update” estimate n̂ . And 

how to update estimate n̂ , we will illustrate detail in next segment. We might transmit 
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successfully in one slot with probability 1/e, when N is large enough. 

 

2. We judge that a CRP is end when the five cases occur. And there are two kind of 

CRP time period, one period is spending 1 slot time, and the other is 3 slot time.  

 

2.1 The “Success” occurs :                                               

When last CRP is end, and new CRP is start. At CRP time one, each node transmit packet 

with probability qr( n̂ )= }1,
ˆ
1min{
n

.At the beginning of the CRP, nodes which transmit packet 

split to the left subset L, and nodes which do not transmit packet split to the right subset R. 

At the end of CRP time one, if receiving feedback is 1 (mean that CRP time one 

transmission success). Then CRP is end. Therefore, this CRP period is one slot time. And 

according to the feedback, we update the estimate n̂  by using the Pseudo-Bayesian 

algorithm. (see Fig. 3.1) 

 

 
Fig. 3.1 CRP time one transmission success. CRP time period is 1. 

2.2 The “Idle” occurs : 
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When last CRP is end, and new CRP is start. At CRP time one, each node transmit 

packet with probability qr( n̂ )= }1,
ˆ
1min{
n

.At the beginning of the CRP, nodes which transmit 

packet split to the left subset L, and nodes which do not transmit packet split to the right 

subset R. At the end of CRP time one, if receiving feedback is 0 (mean that CRP time one, 

no one transmits packet). Then CRP is end. Therefore, this CRP period is one slot time. And 

according to the feedback, we update the estimate n̂  by using the Pseudo-Bayesian 

algorithm. (see Fig. 3.2) 

 

 

Fig. 3.2 CRP time one transmission feedback is idle. CRP time period is 1. 

 

2.3 The “Collision” occurs : 

2.3.1 case one: CRP time two “Idle” 

When last CRP is end, and new CRP is start. At CRP time one, each node transmit 

packet with probability qr( n̂ )= }1,
ˆ
1min{
n

.At the beginning of the CRP, nodes which transmit 

packet split to the left subset L, and nodes which do not transmit packet split to the right 

subset R. At the end of CRP time one, if receiving feedback is e (mean that CRP time one, 
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more than two node transmit packet and occur collision). And according to the feedback, we 

update the estimate n̂  by using the Pseudo-Bayesian algorithm.  

 

Then next slot enter CRP time two. The nodes in the subset L now splitting to two 

subset LL and LR with probability 1/2, and nodes which splitting to the subset LL transmit 

packet immediately. Such that if more than 2 nodes in subset LL will occur collision. Only 

if one node is in subset LL, then the feedback is 1. Otherwise, no one is in subset LL, then 

the feedback is 0 (idle). If at the end of time two, the receive feedback is 0 (mean that CRP 

time two, no one transmits packet). According to this feedback, we update the estimate n̂  

by our updating algorithm (we will illustrate detail in next segment).  

 

Then enter the CRP time three. Usually, the tree-splitting algorithm, will let nodes in 

subset LR transmit packet. But because time 2 feedback is 0, such that subset LR have more 

than 2 node ready to transmit. If we transmit node in subset LR, must occur collision. So, 

we let nodes which are in subset LR splitting again with probability 1/2. Then node which is 

splitted to subset LRL, can transmit packet. And we use the feedback to update the estimate 

n̂  by calculating our updating algorithm. Then CRP is end. CRP period is three slot time. 

(see Fig. 3.3) 
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Fig. 3.3 CRP time one transmission feedback is collision. And CRP time 2 transmission 

feedback is idle. CRP time period is 3. 

 

2.3.2 case two: CRP time two “Success” 

When last CRP is end, and new CRP is start. At CRP time one, each node transmit 

packet with probability qr( n̂ )= }1,
ˆ
1min{
n

.At the beginning of the CRP, nodes which transmit 

packet split to the left subset L, and nodes which do not transmit packet split to the right 

subset R. At the end of CRP time one, if receiving feedback is e (mean that CRP time one, 

more than two node transmit packet and occur collision). And according to the feedback, we 

update the estimate n̂  by using the Pseudo-Bayesian algorithm. 

 

Then next slot enter CRP time two. The nodes in the subset L now splitting to two 

subset LL and LR with probability 1/2, and nodes which splitting to the subset LL transmit 
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packet immediately. If at the end of time two, the receive feedback is 1 (mean that CRP time 

two, only one transmits packet). According to this feedback, we update the estimate n̂  by 

our updating algorithm (we will illustrate detail in next segment). 

 

Then next slot enter the CRP time three. And let nodes in subset LR transmit packet 

immediately. At the end of CRP time 3, we use the feedback to update the estimate n̂  by 

calculating our updating algorithm. Then CRP is end. And this CRP period is three slot time. 

(see Fig. 3.4) 

 

 

Fig. 3.4 CRP time one transmission feedback is collision. And CRP time 2 transmission 

feedback is success (1). CRP time period is 3. 
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2.3.1 case three: CRP time two “collision” 

When last CRP is end, and new CRP is start. At CRP time one, each node transmit 

packet with probability qr( n̂ )= }1,
ˆ
1min{
n

.At the beginning of the CRP, nodes which transmit 

packet split to the left subset L, and nodes which do not transmit packet split to the right 

subset R. At the end of CRP time one, if receiving feedback is e (collision). And according 

to the feedback, we update the estimate n̂  by using the Pseudo-Bayesian algorithm. 

 

Then next slot enter CRP time two. The nodes in the subset L now splitting to two 

subset LL and LR with probability 1/2, and nodes which splitting to the subset LL transmit 

packet immediately. If at the end of time two, the receive feedback is e (mean that CRP time 

two collision, and more than one node transmits packet). According to this feedback, we 

update the estimate n̂  by our updating algorithm (we will illustrate detail in next segment).  

 

Then enter the CRP time three. Because time 2 feedback is e, such that 

subset LL will split again with probability 1/2. Then node which is splitted to 

subset LLL, can transmit packet. And at the end of CRP time 3, we use the 

feedback to update the estimate n̂  by calculating our updating algorithm. 

Then CRP is end, and CRP period is three slot time. (see Fig. 3.5) 
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Fig. 3.5 CRP time one transmission feedback is collision. And CRP time 2 transmission 

feedback is collision (e). CRP time period is 3. 

 

3.3 Estimate n̂  algorithm 

 

There are two algorithms to maintain estimate n̂  in our research. One is 

Pseudo-Bayesian algorithm, and it will be use to calculate n̂  at the end of CRP time one. 

The other is our estimate n̂  algorithm, it will be apply at the end of CRP time two and 

time three. 

 

Pseudo-Bayesian algorithm is introduced in background knowledge. And this segment, we 

will introduce our estimate n̂  algorithm.  
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For each k, the estimated backlog at the beginning of slot k+1 is updated from the 

estimated backlog and feedback for slot k according to the rule 

 

{ }
⎩
⎨
⎧

+
+

=+ collision and idlefor                              ,423.0ˆ
successfor                     , 1- 423.0ˆ  ,342.0 max

ˆ 1
k

k
k n

n
n           (3.1) 

 

The maximum operation ensures that the estimate is never less than the contribution 

from new arrivals. On successful transmission, subtracting 1 from the previous backlog. 

The algorithm must ether estimate λ from time-average rate of successful transmissions or 

set it’s value within the algorithm to some fixed value. It has been shown by Milkhailov and 

Tsitsiklis that if the fixed value used within the algorithm, stability is achieved for all actual 

λ < maximum throughput. Therefore we choose 0.43 as the fixed value, stability is achieved 

for all actual λ < 0.423 (maximum throughput will be prove at next chapter). For idle and 

collision, because no one leave the system, therefore adding a estimate λ. 

In CRP, increase the estimated n at the maximum expected rate in stabilized region. 

Therefore, the only chance with positive probability is that estimated n is larger than real n. 

In the case of larger estimated n, it enters in the second mode with less chance. Besides, the 

probability of idle becomes larger and thus estimated n will be decreased around real n with 

larger probability. 
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Chapter 4 

Throughput analysis 

 

 
In this section, we will analyze the average throughput. 

 

The average throughput is equal to the total successful number divided by the total time 

slots. 

 

CRP] ain   slots  timeE[
CRP] ain  numbers successful E[                                   

CRP]ain ut E[throughpThroughput Average

=

=
              (4.1) 

To calculate the equation we need to calculate attributes first.  

    Sk: the expected value of successful nodes in a CRP given the condition that k nodes 

split to the left subset when a CRP starts. 

    Pk: the probability that k nodes split to the left subset when a CRP starts.  

 
!
1)1()1(lim
ekN

N
N

CP kNkN
kNk ⋅

≅
−

= −

∞→                (4.2)
 

So the equation (4.1) may be restated as  

               
]CRP ain   slots time[E

SP
Throughput k

kk∑
=

 

  

 

There are two kind of CRP length: 

(1).At the beginning of CRP starting, if feedback is 0 or 1. Then CRP need one slot time. 

(2).Otherwise, at the beginning of CRP starting, if feedback is e, then CRP need 3 slot 

time. 



 27

528482235.1

3211111] CRP ain slot  E[

=

×⎟
⎠
⎞

⎜
⎝
⎛ −+×⎟

⎠
⎞

⎜
⎝
⎛+×⎟

⎠
⎞

⎜
⎝
⎛=

eee               (4.3) 

E[success numbers in a CRP ] can be generalize as four type to calculate the value. 

 

Case one:   

Assume that there is one node splitting in the left subset (Fig. 4.1). Then the probability 

of transmission success is that: 
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Fig. 4.1 one nodes split to the left subset when a CRP starts 

 

Case two: 

We assume that there are k nodes (k≥2) splitting in the left subset, and CRP time 2 

feedback is 0 (Fig. 4.2), then the probability of one node transmission success is that:  
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Fig. 4.2  k≥2 nodes split to the left subset when a CRP starts and CRP time 2 feedback is 0. 

 

Case three: 

We assume that there are k nodes (k≥2) splitting in the left subset, and CRP time 2 

feedback is 1 (Fig. 4.3), then the probability of one node transmission success is that: 
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Fig. 4.3  k≥2 nodes split to the left subset when a CRP starts and CRP time 2 feedback is 1. 

 

Case four: 

We assume that there are k nodes (k≥2) splitting in the left subset L, and CRP time 2, 

there are j nodes (2≤j≤k) splitting in the left subset LL (feedback is e ), then the probability 

of one node transmission success is that: (Fig. 4.4) 
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Fig. 4.4  k≥2 nodes split to the left subset when a CRP starts and CRP time 2 feedback is e. 
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Chapter 5 

Simulator and simulation results 

 
 

In this section we will introduce our simulator briefly and then present our simulation 

results. 

 

5.1 Simulator  

 

We use UML (Unified Machine Language) to simulate the environment. The OMD 

(Object Main Diagram) is as illustrated in Fig. 5.1 below. When the simulation starts, one 

object of “nodegenerator” generates objects of “standbysystem”, of “node”, of “channel”, and 

sets all links. The object of “nodegenerator” generates nodes by Poison random arrival (State 

Chart of nodegenerator is Fig. 5.2 below). The object of “node” transmit packet with 

probability qr( n̂ )= }1,
ˆ
1min{
n

. And according to different CRP status, do corresponding 

action. The object of “channel” indicates the channel condition, all nodes listen the channel 

feedback (State Chart of channel is Fig. 5.3 below).  
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Fig. 5.1 OMD of the Simulator. 

 

 
Fig. 5.2 State Chart of “nodegenerator”. 

 

 
Fig. 5.3 State Chart of “channel”. 
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5.2 Simulation results 

 

To evaluate the performance of “A Pseudo-Bayesian-Broadcast-Based MAC Protocol”, 

two performance metrics are discussed: system throughput and the average delay of system. 

The throughput is defined as the number of success packets transmitted in one slot. The 

average delay is defined as the time from the packet generation to the packet transmitting 

successfully. 

 

For run 106 time slots, and estimate λ of Pseudo-Bayesian and our algorithm is 0.423. 

Fig.5.10 when arrival rate is 0.43, the system become unstable. 

And from Fig.5.4~Fig5.12, We can see if arrival rate much smaller than throughput 0.43, 

the backlog n is similar the estimate n̂ , and the average backlog is much smaller. 

 

 

               Backlog and estimate backlog vs. time. 

 

 

Fig. 5.4 arrival rate=0.1                  Fig. 5.5 arrival rate=0.2 
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Fig. 5.6 arrival rate=0.3                 Fig. 5.7 arrival rate=0.4 

 

Fig. 5.8 arrival rate=0.41                Fig. 5.9 arrival rate=0.42 

 
Fig. 5.10 arrival rate=0.43                 Fig. 5.11 arrival rate=0.99 

 

From Fig. 5.12 when arrival rate small than 0.43, the average delay is small, otherwise 

increasing rapidly. From Fig.5.13 when arrival rate < 0.43, the throughput is equal to arrival 

rate. In Fig.511, the result shows that if arrival rate less than 0.43, the average delay is small. 

If arrival rate is approach to 1, the delay increasing slowly, because although delay increasing 

but success transmission decreasing, this delay could not be calculated. In Fig.5.15, we can 

see the throughput larger slightly than we calculate in previous chapter. It is because n̂  is 

smaller than n, therefore transmission probability increasing, although success transmission 
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decreasing, but it decreases slowly, and two node occur collision raising, but using our 

splitting policy, can effectively result two node collision. 

 

 
Fig. 5.12 average delay time vs. arrival rate 

 

 
Fig. 5.13 throughput vs. arrival rate 
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ARRIVAL  RATE AVERAGE DELAY THROUGHPUT 

0.1 0.373199 0.100453 

0.15 0.657040 0.149691 

0.2 1.106567 0.200194 

0.25 1.873979 0.250013 

0.3 3.354199 0.300388 

0.35 7.174506 0.350682 

0.4 28.845044 0.401017 

0.41 55.942554 0.410819 

0.42 116.321966 0.420022 

0.43 6557.502004 0.424208 

Table 5.1 the average delay and throughput for each arrival rate, and simulation 106 time slot. 

 

 
Fig. 5.14 average delay time vs. arrival rate (0.1~0.99) 
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Fig. 5.15 throughput vs. arrival rate (0.1~0.99) 

 

ARRIVAL  RATE AVERAGE  DELAY THROUGHPUT 

0.1 0.388252 0.100270 

0.2 1.155163 0.200950 

0.3 3.625937 0.302730 

0.4 24.491672 0.403440 

0.41 51.135637 0.412720 

0.42 169.327422 0.421780 

0.43 719.881853 0.423710 

0.45 2829.174162 0.424950 

0.5 6631.537807 0.425710 

0.6 11635.073822 0.414510 

0.7 14692.510595 0.406800 

0.8 16151.262192 0.381820 

0.9 18167.687137 0.370290 

0.99 19113.857283 0.356230 

Table 5.2 The average delay and throughput for each arrival rate, and simulation 105 time slot. 
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Chapter 6                         

Conclusion 

 

 
As in Rivest’s Pseudo-Bayesian algorithm, our purpose is to find an algorithm that does 

not require the acknowledgement of the number of nodes, and increase the throughput. In our 

thesis, for the second mode we also consider a splitting algorithm. However, our version of 

splitting algorithm does not include the common receiver and thus doing so renders it more 

applicable to wireless access system. Using our method is to estimate n̂  of the backlog n by 

receiving the feedback and to combine our splitting algorithm police to reduce collision. 

Finally, the throughput by using our policy is 0.423. And when arrival rate < 0.423, we can 

see that estimate n̂  is similar to n and average delay time is small.   
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