
  

Chapter 4 
Classification of FFT Processor 

Architectures 
 

There are numerous architectures for realizing FFT computations in real time 

applications. In this chapter, we will only discuss two main classes: pipeline 

architecture and shared memory-based architecture. We also compare different 

architectures with respect to hardware requirement cost and throughput. 

 

4.1 Pipeline Architecture 
 

Pipeline architectures utilize parallel processing among the stages. The general 

structures of these architectures [12] are as shown in Figure 4.1. These structures 

consist of one butterfly element between commutators at each stage. The function of 

butterfly element is to compute the data addition and subtraction. The commutator is 

like a switch to rearrange the data from the butterfly element in order to perform 

subsequent calculations more conveniently.  

Pipeline architecture is widely used to attain high-speed operation. The problem 

with this architecture is the relatively large die area required by the  butterfly 

elements. Pipeline architecture can be roughly classified into three types:  

logN
r

• single path delay feedback (SDF) architecture, 

• multiple path delay commutator (MDC) architecture and  

• single path delay commutator (SDC) architecture.  

These types have different properties, each with advantages and disadvantages. We 

will describe these properties in the following subsections.  
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Figure 4.1 Pipeline architecture 

 

4.1.1 Single Path Delay Feedback (SDF) Architecture  

 

In the general single path delay feedback architecture, the input data sequences 

pass through one single path. The butterfly processing element performs the 

computations on the data. This structure uses shift registers or RAM to store the 

output data from the butterfly elements. As a result of the single output path, only one 

complex multiplier is required.  

Here, we give two examples to illustrate the principle of single path delay 

feedback architecture. One example is a 16-point R2SDF and the other is a 16-point 

R4SDF. 

 

(1) Radix-2 single delay feedback (R2SDF) 

Figure 4.2 is a 16-point radix-2 single path delay feedback architecture[24]. The 

procedural flow of this architecture is as follows. 

(a) In the beginning, the input data with indices 0 to 7 are stored in the shift 

register (D8 in Figure 4.2). The radix-2 butterfly elements operate on 

these data and on the remaining input data with indices 8 to 15.  

(b) The data resulting from the butterfly addition operations are passed to 

the second stage and the subtraction results are fed back to the shift 

register (D8). 
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(c) After all the 8-point data addition results are output, the subtraction data 

from the registers are passed to the second stage with a multiply twiddle 

factor coefficient. The symbol A in Figure 4.2 and Figure 4.3 represents 

the last output data of the first stage. 

(d) The procedure flow of the latter three stages for the 16-point R2SDF are 

similar to the first stage. The routing of data for R2SDF is given in 

Figure 4.3. 
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Figure 4.2 A 16- point radix-2 single path delay feedback architecture 
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Figure 4.3 Routing of data for R2SDF (N=16) 

 

(2) Radix-4 single delay feedback (R4SDF) 

Radix-4 single delay feedback (R4SDF) is a variant of R2SDF. In R4SDF, the 

butterfly operation is based on the radix-4 algorithm. The procedural flow of this 

architecture [25] is identical to that of R2SDF. Figure 4.4 is a block diagram of the 

radix-4 single delay feedback architecture. The schematic timing diagram is given in 
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Figure 4.5. The data output A in Figure 4.5 represents the data resulting from the 

16-point radix-4 butterfly computation of the first stage. The output data in Figure 4.5 

represents the data resulting from butterfly computation in the second stage. 
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Figure 4.5 Timing diagram for R4SDF (N=16) 

 

4.1.2 Multiple Path Delay Commutator (MDC) Architecture  

 

In the general multiple path delay feedback architecture [14], the input data 

sequences are organized into a parallel data path entering the commutator by suitable 

delays and data summation is performed by the butterfly element at each stage. The 

intermediate data is not fed back to register. It has a higher throughput data rate than 

the single path delay feedback architecture.  



  

Here, we give an example to illustrate the principles of the multiple path delay 

commutator architecture. The architecture of a 16-point Radix-4 multiple path delay 

commutator architecture (R4MDC) is as shown in Figure 4.6. The data routing 

diagram is depicted in Figure 4.7. The workflow for this architecture is  

(a) In the beginning, the input data from index 0 to 15 is decomposed into 

four parallel data streams of four points each after the first commutator. 

(b) These data are passed through different delay registers. 

(c) After the delay, the resulting data are operated on by radix-4 butterfly 

processing elements (BF4) and then multiplied by a twiddle factor. 

(d) The result data are stored in the delay register. 

(e) The function of the second commutator is to reorder the desired adjacent 

data. 

(f) Before the second butterfly operation, the ordered data are stored in an 

appropriate delay register. The first parallel data stream must be shifted 

by 3 delays. The second parallel data stream must be shifted by 2 delays. 

The third parallel data stream must be shifted by 1 delay and the last 

data stream is directly passed to the butterfly input in the second stage. 
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Figure 4.6 A 16-point radix-4 multiple path delay commutator architecture 
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Figure 4.7 Timing diagram for R4MDC (N=16) 
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4.1.3 Single Path Delay Commutator (SDC) Architecture 

 

The single path delay commutator (SDC) architecture [15][16] is based on the 

modified multiple path delay commutator. In each word cycle, each stage produces a 

single output rather than 4 outputs as in the multiple path delay commutator. Each 

stage requires one complex multiplier, a delay commutator to correct the order of the 

data, and a butterfly element. Here, we give an example to illustrate the principle of 

single path delay commutator architecture. The architecture of a 16-point radix-4 

single path delay commutator (R4SDC) is as shown in Figure 4.8. 
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Figure 4.8 A 16-point radix-4 single path delay commutator architecture 

 

Figure 4.9 is the commutator for the R4SDC at each stage. There are six shift 

registers. The symbol Nt represents the number of delays for each shift register. The 

multiplexer control parameters c1,c2, and c3 select the required data. The parameters 

m1 and m2 are switch control signals to reorder data. Its function is graphically charted 

in Figure 4.10 and Table 4.1. The timing diagram for the 16-point R4SDC is described 

in Figure 4.11. 
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Figure 4.9 Delay commutator for R4SDC at each stage 
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Table 4.1 Control signals at each stage in Figure 4.9 

 

1 2 3c c c  1 2m m  Figure 

1 1 1 0 0  Figure 4.10 (a) 

0 1 1  0 1  Figure 4.10 (b) 

0 0 1  1 0  Figure 4.10 (c) 

0 0 0  1 1 Figure 4.10 (d) 
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Figure 4.11 Timing diagram for 16-point R4SDC 

 

4.2 Memory-Based Architecture 
 

Memory based architectures, unlike pipelined architectures, generally use only 

one butterfly processor. Thus, their advantage is to save hardware cost. Because a 

single butterfly processing element can complete only one butterfly operation per 

clock cycle, it implies a loss in overall processing speed. We can compensate for this 

disadvantage by using the high radix algorithm [17]. Furthermore, we can increase the 

system clock rate to achieve the required speed.  

Besides the butterfly processor, a memory based architecture as shown in Figure 

4.12 also includes main memory, an address generator, and commutators. The 
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butterfly input and output are connected to main memory. The function of the address 

generator is to control the read/write addresses for memory access. The commutator 

arranges the data after reading from and writing back to the memory so as to generate 

the correct order for FFT computation. 

 

Figure 4.12 Schematic diagram of memory architecture 

 

4.2.1 Memory–Based Processing Method 

(1) Single memory-based architecture 

The simplest memory-based architecture is the single memory-based architecture 

[18]. It has only one memory, as shown in Figure 4.13. Hence it can be used in place 

of a memory addressing strategy that stores the new FFT operation data in the same 

location used by the previous FFT operation data. 
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Figure 4.13 Single memory-based architecture block diagram 
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(2) Dual memory-based architecture 

Dual memory-based architecture [11] performs “ping-pong-like” actions to 

accomplish read-and-then-write operations. Each of the two memories alternates their 

functions between butterfly inputs and butterfly outputs. This means that it can read 

out input data from the memory and write the output results back to the memory 

simultaneously. Figure 4.14 is the schematic diagram of dual memory-based 

architecture. 

 

Figure 4.14 Dual memory-based architecture block diagram 

 

(3) Cache memory-based architecture 

Cache memory-based architecture shown in Figure 4.15 consists of one 

processor, a small cache memory and a main memory. It is similar to the single 

memory architecture shown in Figure 4.15, but with a cache memory. The purpose of 

this architecture is to reduce the number of main memory accesses and to reduce 

power consumption even if the FFT length is large [11][19].  
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Figure 4.15 Cache memory-based architecture block diagram 

 

 



  

4.2.2 Radix-2 Memory-Based Architecture 

 

Reference [20] describes memory-based FFT implementations based on one 

radix-2 butterfly structure, as shown in Figure 4.16. It uses an in-place memory 

addressing scheme and a memory bank structure in order to increase the efficiency of  

memory access. In addition, [20] proposes using an address generator only for the 

fixed radix-2 algorithm. It partitions the main memory into two N/2 location banks. 

Here, we introduce the in-place memory addressing scheme that stores the 

butterfly output data, overwriting the memory locations being simultaneously read. 

This scheme provides the N-data points stored in an r-bank memory without conflicts 

in memory read/write access. The algorithm in [20] is as follows: 
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In Equation (4.1), Data_count represents the original data index. Bank_index 

expresses the appropriate value of bank after memory partition. Address_index is the 

new address location in the assigned Bank_index.  
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Figure 4.16 Radix-2 memory-based FFT processor 

 

4.2.3 Radix-4 memory-Based Architecture 

 

The architecture proposed in [18] uses a single memory. To achieve high speed, 

it uses the radix-4 algorithm, as illustrated in Figure 4.17. It applies the in-place 

memory addressing in Section 4.2.2, but modifies the address generation unit and 

control unit. 

Figure 4.17 Radix-4 memory-based FFT processor 
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4.3 Comparison of Different Architectures  
 

In this subsection, we summarize different architectures with different hardware 

requirements.  

Table 4.2 Comparison hardware of different pipelined FFT processor 
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Table 4.3 Comparison utilization of different pipelined FFT processor [13] 

Table 4.4 Comparison hardware of different memory based FFT processor 

architecture
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