

Chapter 4
Classification of FFT Processor

Architectures

There are numerous architectures for realizing FFT computations in real time

applications. In this chapter, we will only discuss two main classes: pipeline

architecture and shared memory-based architecture. We also compare different

architectures with respect to hardware requirement cost and throughput.

4.1 Pipeline Architecture

Pipeline architectures utilize parallel processing among the stages. The general

structures of these architectures [12] are as shown in Figure 4.1. These structures

consist of one butterfly element between commutators at each stage. The function of

butterfly element is to compute the data addition and subtraction. The commutator is

like a switch to rearrange the data from the butterfly element in order to perform

subsequent calculations more conveniently.

Pipeline architecture is widely used to attain high-speed operation. The problem

with this architecture is the relatively large die area required by the butterfly

elements. Pipeline architecture can be roughly classified into three types:

logN
r

• single path delay feedback (SDF) architecture,

• multiple path delay commutator (MDC) architecture and

• single path delay commutator (SDC) architecture.

These types have different properties, each with advantages and disadvantages. We

will describe these properties in the following subsections.

-25-

radix-r butterfly
processing
element
(BF_PE) co

m
m

ut
at

or

radix-r butterfly
processing element

(BF_PE)

co
m

m
ut

at
or radix-r butterfly

processing
element
(BF_PE) co

m
m

ut
at

or

Figure 4.1 Pipeline architecture

4.1.1 Single Path Delay Feedback (SDF) Architecture

In the general single path delay feedback architecture, the input data sequences

pass through one single path. The butterfly processing element performs the

computations on the data. This structure uses shift registers or RAM to store the

output data from the butterfly elements. As a result of the single output path, only one

complex multiplier is required.

Here, we give two examples to illustrate the principle of single path delay

feedback architecture. One example is a 16-point R2SDF and the other is a 16-point

R4SDF.

(1) Radix-2 single delay feedback (R2SDF)

Figure 4.2 is a 16-point radix-2 single path delay feedback architecture[24]. The

procedural flow of this architecture is as follows.

(a) In the beginning, the input data with indices 0 to 7 are stored in the shift

register (D8 in Figure 4.2). The radix-2 butterfly elements operate on

these data and on the remaining input data with indices 8 to 15.

(b) The data resulting from the butterfly addition operations are passed to

the second stage and the subtraction results are fed back to the shift

register (D8).

-26-

(3)0 (3)1 (3)2 (3)12(3)11(3)10(3)9(3)8(3)7(3)6(3)5(3)4(3)3 (3)15(3)14(3)13

(4)0 (4)1 (4)2 (4)12(4)11(4)10(4)9(4)8(4)7(4)6(4)5(4)4(4)3 (4)15(4)14(4)13

 output C data

 final output data

 output B data

-27-

(c) After all the 8-point data addition results are output, the subtraction data

from the registers are passed to the second stage with a multiply twiddle

factor coefficient. The symbol A in Figure 4.2 and Figure 4.3 represents

the last output data of the first stage.

(d) The procedure flow of the latter three stages for the 16-point R2SDF are

similar to the first stage. The routing of data for R2SDF is given in

Figure 4.3.

radix-2 butterfy

D 1

radix-2 butterfy

D 8

twiddle
factor

coefficient

radix-2 butterfy

D 2

twiddle
factor

coefficient

radix-2 butterfy

D 4

twiddle
factor

coefficient

input
data

A B C output
data

0 1 2 1211109876543 151413data

 output A data

input

Figure 4.2 A 16- point radix-2 single path delay feedback architecture

(1)0 (1)1 (1)2 (1)12(1)11(1)10(1)9(1)8(1)7(1)6(1)5(1)4(1)3 (1)15(1)14(1)13

(2)0 (2)1 (2)2 (2)12(2)11(2)10(2)9(2)8(2)7(2)6(2)5(2)4(2)3 (2)15(2)14(2)13

Figure 4.3 Routing of data for R2SDF (N=16)

(2) Radix-4 single delay feedback (R4SDF)

Radix-4 single delay feedback (R4SDF) is a variant of R2SDF. In R4SDF, the

butterfly operation is based on the radix-4 algorithm. The procedural flow of this

architecture [25] is identical to that of R2SDF. Figure 4.4 is a block diagram of the

radix-4 single delay feedback architecture. The schematic timing diagram is given in

-28-

Figure 4.5. The data output A in Figure 4.5 represents the data resulting from the

16-point radix-4 butterfly computation of the first stage. The output data in Figure 4.5

represents the data resulting from butterfly computation in the second stage.

D
input
data output

data

shift register

DDDD

DDDD

DDD

D

D

D

shift register

A

co
m

m
ut

at
or

co
m

m
ut

at
or

co
m

m
ut

at
or

co
m

m
ut

at
or

ra

di
x4

B
F

ra
di

x4

B
F

twiddle factor coefficient

where D= delay

(1)0 (1)1 (1)2 (1)12(1)11(1)10(1)9(1)8(1)7(1)6(1)5(1)4(1)3 (1)15(1)14(1)13

0 1 2 1211109876543 151413input
data

 data of output A

Figure 4.4 A 16- point radix-4 single path delay feedback architecture

output
data

(2)0 (2)1 (2)2 (2)12(2)11(2)10(2)9(2)8(2)7(2)6(2)5(2)4(2)3 (2)15(2)14(2)13

Figure 4.5 Timing diagram for R4SDF (N=16)

4.1.2 Multiple Path Delay Commutator (MDC) Architecture

In the general multiple path delay feedback architecture [14], the input data

sequences are organized into a parallel data path entering the commutator by suitable

delays and data summation is performed by the butterfly element at each stage. The

intermediate data is not fed back to register. It has a higher throughput data rate than

the single path delay feedback architecture.

Here, we give an example to illustrate the principles of the multiple path delay

commutator architecture. The architecture of a 16-point Radix-4 multiple path delay

commutator architecture (R4MDC) is as shown in Figure 4.6. The data routing

diagram is depicted in Figure 4.7. The workflow for this architecture is

(a) In the beginning, the input data from index 0 to 15 is decomposed into

four parallel data streams of four points each after the first commutator.

(b) These data are passed through different delay registers.

(c) After the delay, the resulting data are operated on by radix-4 butterfly

processing elements (BF4) and then multiplied by a twiddle factor.

(d) The result data are stored in the delay register.

(e) The function of the second commutator is to reorder the desired adjacent

data.

(f) Before the second butterfly operation, the ordered data are stored in an

appropriate delay register. The first parallel data stream must be shifted

by 3 delays. The second parallel data stream must be shifted by 2 delays.

The third parallel data stream must be shifted by 1 delay and the last

data stream is directly passed to the butterfly input in the second stage.

D
12

D
4

D
8commuta

tor 1
BF4

D
3

D
1

D
2commuta

tor 2
BF4

D
1

D
3

D
2

input
data

output
data

twiddle factor coefficient

twiddle factor coefficient

twiddle factor coefficient

Figure 4.6 A 16-point radix-4 multiple path delay commutator architecture

-29-

-30-

input
data

radix 4
butterfly

data

0 1 2 3
7654

111098
12 151413

0 1 2 3 7654 111098 12 151413

commutator 1

commutator 2

0 1 2 3
7654
111098

12 151413

radix 4
butterfly

data

output
delay

delay 12

delay 4

delay 8

delay 3

delay 2

delay 1
input
delay

0 1 2 3
7654

111098
12 151413

output
delay

delay 3

delay 1

delay 2

0 4 8 12
1 5 9 13

3 7 11 15
2 6 10 14

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Figure 4.7 Timing diagram for R4MDC (N=16)

2c 1c 2c3c 3c1c

-31-

4.1.3 Single Path Delay Commutator (SDC) Architecture

The single path delay commutator (SDC) architecture [15][16] is based on the

modified multiple path delay commutator. In each word cycle, each stage produces a

single output rather than 4 outputs as in the multiple path delay commutator. Each

stage requires one complex multiplier, a delay commutator to correct the order of the

data, and a butterfly element. Here, we give an example to illustrate the principle of

single path delay commutator architecture. The architecture of a 16-point radix-4

single path delay commutator (R4SDC) is as shown in Figure 4.8.

commu
tator 1

butterfly
element

commu
tator 2

butterfly
element

twiddl
factor

e
input
data

output
data

Figure 4.8 A 16-point radix-4 single path delay commutator architecture

Figure 4.9 is the commutator for the R4SDC at each stage. There are six shift

registers. The symbol Nt represents the number of delays for each shift register. The

multiplexer control parameters c1,c2, and c3 select the required data. The parameters

m1 and m2 are switch control signals to reorder data. Its function is graphically charted

in Figure 4.10 and Table 4.1. The timing diagram for the 16-point R4SDC is described

in Figure 4.11.

1

0

1

0

1

0

1c

2c

3c

G

F

E

input data
A DCB

sw itch

1m 2m

x[n]

x[n+N /4]

x[n+ 2N /4]

tN

t

x[n+ 3N /4]tN

N

tN

tNtN

Figure 4.9 Delay commutator for R4SDC at each stage

data0 data12

data12

data8

data4

data8

data4

data0

data4data12

data0

data0 data8

data8

data4 data12 data8 data12

data8

data12

data4

data4data0

data0

data12 data12

data8 data8

data4data4

data0data0

(a) (d)(c)(b)

Figure 4.10 Action of switch in Figure 4.9 for 16-point FFT

Table 4.1 Control signals at each stage in Figure 4.9

1 2 3c c c 1 2m m Figure

1 1 1 0 0 Figure 4.10 (a)

0 1 1 0 1 Figure 4.10 (b)

0 0 1 1 0 Figure 4.10 (c)

0 0 0 1 1 Figure 4.10 (d)

-32-

-33-

output
data

 A

(2)0 (2)1 (2)2 (2)12(2)11(2)10(2)9(2)8(2)7(2)6(2)5(2)4(2)3 (2)15(2)14(2)13

input
data

B

0 1 2 1211109876543 151413

0 1 2 1211109876543 151413

0 1 2 1211109876543 11413 5

0 1 2 1211109876543 11413 5

0 1 2 1211109876543 151413

0 1 2 1211109876543 151413

0 1 2 1211109876543 151413

G

F

E

D

Ccom
m

utator 1

Radix 4 butterfly

Radix 4 butterfly

(1)0 (1)1 (1)2 (1)12(1)11(1)10(1)9(1)8(1)7(1)6(1)5(1)4(1)3 (1)15(1)14(1)13 data of output A

com
m

utator 2

(1)0 (1)1 (1)2 (1)12(1)11(1)10(1)9(1)8(1)7(1)6(1)5(1)4(1)3 (1)15(1)14(1)13

(1)0 (1)1 (1)2 (1)12(1)11(1)10(1)9(1)8(1)7(1)6(1)5(1)4(1)3 (1)15(1)14(1)13

(1)0 (1)1 (1)2 (1)12(1)11(1)10(1)9(1)8(1)7(1)6(1)5(1)4(1)3 (1)15(1)14(1)13
(1)0 (1)1 (1)2 (1)12(1)11(1)10(1)9(1)8(1)7(1)6(1)5(1)4(1)3 (1)15(1)14(1)13

(1)0 (1)1 (1)2 (1)12(1)11(1)10(1)9(1)8(1)7(1)6(1)5(1)4(1)3 (1)15(1)14(1)13

(1)0 (1)1 (1)2 (1)12(1)11(1)10(1)9(1)8(1)7(1)6(1)5(1)4(1)3 (1)15(1)14(1)13G

F

E

D

C

B

Figure 4.11 Timing diagram for 16-point R4SDC

4.2 Memory-Based Architecture

Memory based architectures, unlike pipelined architectures, generally use only

one butterfly processor. Thus, their advantage is to save hardware cost. Because a

single butterfly processing element can complete only one butterfly operation per

clock cycle, it implies a loss in overall processing speed. We can compensate for this

disadvantage by using the high radix algorithm [17]. Furthermore, we can increase the

system clock rate to achieve the required speed.

Besides the butterfly processor, a memory based architecture as shown in Figure

4.12 also includes main memory, an address generator, and commutators. The

radix r butterfly PE

shared memorycommutator commutator

partition 1

partition r

partition 2

-34-

butterfly input and output are connected to main memory. The function of the address

generator is to control the read/write addresses for memory access. The commutator

arranges the data after reading from and writing back to the memory so as to generate

the correct order for FFT computation.

Figure 4.12 Schematic diagram of memory architecture

4.2.1 Memory–Based Processing Method

(1) Single memory-based architecture

The simplest memory-based architecture is the single memory-based architecture

[18]. It has only one memory, as shown in Figure 4.13. Hence it can be used in place

of a memory addressing strategy that stores the new FFT operation data in the same

location used by the previous FFT operation data.

processor memory

Figure 4.13 Single memory-based architecture block diagram

processor memory 2memory 1

-35-

(2) Dual memory-based architecture

Dual memory-based architecture [11] performs “ping-pong-like” actions to

accomplish read-and-then-write operations. Each of the two memories alternates their

functions between butterfly inputs and butterfly outputs. This means that it can read

out input data from the memory and write the output results back to the memory

simultaneously. Figure 4.14 is the schematic diagram of dual memory-based

architecture.

Figure 4.14 Dual memory-based architecture block diagram

(3) Cache memory-based architecture

Cache memory-based architecture shown in Figure 4.15 consists of one

processor, a small cache memory and a main memory. It is similar to the single

memory architecture shown in Figure 4.15, but with a cache memory. The purpose of

this architecture is to reduce the number of main memory accesses and to reduce

power consumption even if the FFT length is large [11][19].

cacheprocessor memory

Figure 4.15 Cache memory-based architecture block diagram

4.2.2 Radix-2 Memory-Based Architecture

Reference [20] describes memory-based FFT implementations based on one

radix-2 butterfly structure, as shown in Figure 4.16. It uses an in-place memory

addressing scheme and a memory bank structure in order to increase the efficiency of

memory access. In addition, [20] proposes using an address generator only for the

fixed radix-2 algorithm. It partitions the main memory into two N/2 location banks.

Here, we introduce the in-place memory addressing scheme that stores the

butterfly output data, overwriting the memory locations being simultaneously read.

This scheme provides the N-data points stored in an r-bank memory without conflicts

in memory read/write access. The algorithm in [20] is as follows:

1 2 2 1

1 2 2 1 0

2 1

0

1 2

_ [, ,.........., , ,
log
_ (..........) mod

_ [, ,.........., ,

n n

r

n n

n n

Data count d d d d
n N

]

]

r

r

Bank index d d d d d r
Address ind

d

ex d d d d

− −

− −

− −

=

=   
= + + + + +

=

 (4.1)

In Equation (4.1), Data_count represents the original data index. Bank_index

expresses the appropriate value of bank after memory partition. Address_index is the

new address location in the assigned Bank_index.

-36-

radix 4
butterfly

shared memorycommutator commutator

bank0

bank1

bank3

bank2

-37-

radix 2
butterfly

shared memorycommutator commutator

bank0

bank1

Figure 4.16 Radix-2 memory-based FFT processor

4.2.3 Radix-4 memory-Based Architecture

The architecture proposed in [18] uses a single memory. To achieve high speed,

it uses the radix-4 algorithm, as illustrated in Figure 4.17. It applies the in-place

memory addressing in Section 4.2.2, but modifies the address generation unit and

control unit.

Figure 4.17 Radix-4 memory-based FFT processor

R4SDF

architecture

R4SDC

R4MDC

R2SDF

25 %

utilization of
multipliers

75 %

25 %

50 %

25 %

utilization of adders

100 %

25 %

50 %

100 %

utilization of
registers

100 %

25 %

100 %

-38-

4.3 Comparison of Different Architectures

In this subsection, we summarize different architectures with different hardware

requirements.

Table 4.2 Comparison hardware of different pipelined FFT processor

No. of complex
multipliers

No. of complex
adders

throughput No. of registers

R4SDF

R4SDC

R4MDC

, .FFT r PET T N=

, .FFT r PET T N=

, .FFT r PE
NT T
r

=

4log 1N −

4log 1N −

43log 3N −

43log N

48 log N

48 log N

N-1

(5/2)N-4

4log

1

6 2(1)
4

N

i
i

N N
=

= −∑

R2SDF 2log 2N − , .FFT r PET T N= N-1
22 log N

Table 4.3 Comparison utilization of different pipelined FFT processor [13]

Table 4.4 Comparison hardware of different memory based FFT processor

architecture

radix-4 memory
based architecture

radix-2 memory
based architecture

No. of computation
cycles

No. of complex
multipliers

3

1 2log 2
2
N N +

4log
4
N N

