Chapter 5
Implementation of the Proposed FFT

Architecture

This chapter is discusses our architecture. First, we explain the reason for our
algorithmic and architectural design selection. Next, we introduce the physical design
for our FFT architecture including the purpose and principles of each individual

design circuit.

5.1 Algorithmic and Architectural Design

Some types of algorithms have already been discussed in Chapter 3. We choose
the radix-8 algorithm to realize our design-to-achieve high speed. However, this
algorithm results in large dic area in fabrication. So we restructure the signal flow of
the radix-8 butterfly operation resulting in four complex multipliers.

To achieve high throughput and small area, we propose a memory-based variable
length FFT architecture despite the fact that pipeline architectures are commonly used
in academic research. The reason is that the latter require a large hardware cost for
long length FFTs. Our architecture uses a dual port synchronous SRAM and a
pipelined butterfly operation and thus can satisfy the high-speed requirement. To
require a minimum amount of memory, we use an effective in-place memory
addressing scheme for both fixed radix and mixed radix algorithms. We also consider
a method to realize a suitable address pointer generator for both fixed and mixed radix

algorithms concurrently.



5.2 Proposed Architecture Design

We implement an FFT processor that operates on variable data lengths of 512,

1024, 2048 and 4096 points to be used in the DMT based VDSL system with TSMC

0.25 pum CMOS Technology. The typical choice of the required wordlength (with sign

bit) for input and output data is 16 bits. The internal FFT architecture for our design is

composed of the following individual components:

FFT control block

Serial to parallel module

Radix-8 butterfly processing element
Complex multiplier

Reduced twiddle factor ROM table
Static RAM (SRAM)

Address pointer generator

Data reordering unit

The following sections will discuss the purpose and principle of the detailed

design circuit. Figure 5.1 illustrates the internal architecture of the FFT Processor.
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Figure 5.1 Schematic block diagrams of internal architecture for proposed architecture

5.3 FFT Control Block Design

This design includes a state machine to generate the required control signals. The

[ft_mode signal selects the input data length N.

fft_ mode =00, N=512
fit mode =01, N=1024
fit_ mode =10, N=2048

fit mode =11, N=4096

The fft start signal controls the overall system operation. The signal

first valid=1 indicates that data is being written to the SRAM. The signal

fft_core valid=1 indicates that the radix-8 butterfly operation is being performed. The

signal /ast valid=1 indicates that data reordering and data output is complete. Figure
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5.2 shows a simulation waveform involving these signals.
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Figure 5.2°Simulation of FET-Precessor control signal

5.4 Serial to Parallel Design

The block diagram of the serial to parallel module is shown in Figure 5.3. The
function of this module is to load the first incoming sequential data into SRAM before
the FFT operation begins. We must transform the sequential data to parallel data so
that the correct data can be written into memory. After transformation, we must write
all data into SRAM. So we use the write commutator shown in Figure 5.24 to rotate
data one position in each column address at the same time. The objective of this
method is to complete successful reading of the required data in one clock cycle to

satisfy the condition of no data conflict. The block Butterfly count in Figure 5.3
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determines the value of block index. The block index determines which commutator
is used. This means that if block index=0, we use the commutator in Figure 5.24 (a)
to correctly order the data before writing it into SRAM. If the block index=1, we use
the commutator in Figure 5.24 (b). If the block index=7, we use the commutator in

Figure 5.24 (g), and so forth.
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Figure 5.3 Block diagram of serial to parallel design

5.5 Radix-8 Butterfly Processing Element

A butterfly processing element (BF _PE) is the fundamental component of the
FFT architecture. We will explain the details of our butterfly operation and how to

share the addition hardware in the following subsection.
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5.5.1 Butterfly Computation

The proposed butterfly processing is based on the radix-8 algorithm and is also
capable of mixed-radix butterfly processing (i.e. processing when the FFT transform
length is not a power of 8). As shown in Figure 5.4, the radix-8 butterfly operation can
be divided into three parts in order to realize the mixed radix butterfly calculation
using the radix-8 hardware. These parts are designated BF PE1, BF PE2 and
BF PE3. Eight data values are read from the SRAM and processed by the butterfly
module. The system uses the in-place memory addressing method. Therefore, after
completion of the butterfly calculation, the results are stored in the same memory

locations that were used by the input data.
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Figure 5.5 depicts the proposed hardware architecture with support for multiple
radix operations. The BF _PE1 block computes the radix-2 butterfly. Both the BF PE1
and BF PE2 blocks compute the radix-4 butterfly. So additional hardware is not
required for radix-2 and radix-4 butterfly computations. Radix-8 computation is
collectively performed by BF PE1, BF PE2 and BF PE3.

The function of data latch is only required for the radix-8 butterfly operation.
The data latch module latches eight data values to provide static data for the

following BF PE3 block.
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Figure 5.5 Block diagrams of implementation hardware with butterfly operation

Figures 5.6~5.8 describe the proposed pipelined butterfly data processing
algorithms. The pipelined radix-8 butterfly data processing algorithm is shown in
Figure 5.6 and described as follows:

(1) In the first cycle, the first eight data inputs are read out from SRAM.
(2) In the second cycle, BF PE1 and BF_PE2 process these eight data inputs. Each

output of these blocks is separated into an upper half and a lower half.

45.-



(3) In the third cycle, BF_PE3 processes the upper halves. At the same time, the next
eight data values are read from the memory.

(4) In the fourth cycle, BF PE3 processes the lower halves. At the same time,
BF PEI and BF_PE2 process the next eight data values.

(5) In the fifth cycle, all results are written back to SRAM. At the same time, BF PE3
processes the upper halves of the results from the fourth cycle.

(6) In the sixth cycle, BF_PE3 processes the lower halves of the results from the
fourth cycle.

(7) In the seventh cycle, the results from steps (5) and (6) are written back to SRAM,
and so on.

We can iterate the foregoing procedure to' complete the N-point butterfly
operation. Similarly, the proposed pipelined radix-4" and radix-2 butterfly data
processing operations are described in Figure 5.7 and Figure 5.8, respectively. The

procedures of both the radix-4 and radix-2 operations are similar to that of radix-8.
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Figure 5.6 Schematic data path of the pipelined butterfly radix-8 processing element
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Figure 5.7 Schematic data pathof the pipelined butterfly radix-4 processing element
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Figure 5.8. Schematic data path of the pipelined butterfly radix-2 processing element
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5.5.2 Sharing the Addition Operator Hardware

Figure 5.9 shows sharing the addition operator hardware among different radix
modes of BF PEl. Figure 5.10 shows sharing addition operator hardware among
different radix modes of BF PE2. When sel mux=100, the adder performs radix-2
addition. When sel mux=010, the adder performs radix-4 addition. When
sel mux=001, the adder performs radix 8 addition. To better understand these
schematic diagrams, we can examine Table 5.1~5.3 listed according to radix mode

and data organization.



(1) BF_PE1 addition operator sharing architecture with radix-2,4,8
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Figure 5.9 Sharing addition hardware with radix- 2, 4, 8
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Table 5.1 Select addition control signal with radix 2, 4, 8

sel_mux[2:0]

Input number

Figure

(2, I, 0) (mux1,mux?2)
Radix-2 1 0 0 (data0,datal)
Radix-4 0 1 0 (data0,data2) |Figure 5.9(a)
Radix-8 0 0 1 (data0,data4)
Radix-2 1 0 0 (data0,datal)
Radix-4 0 1 0 (datal,data3) |Figure 5.9(b)
Radix-8 0 0 1 (datal,data5)
Radix-2 1 0 0 (data2,data3)
Radix-4 0 1 0 (data0,data2) |Figure 5.9(c)
Radix-8 0 0 1 (data2,data6)
Radix-2 1 0 0 (data2,data3)
Radix-4 0 1 0 (datal,data3) |Figure 5.9(d)
Radix-8 0 0 1 (data3,data7)
Radix-2 1 0 0 (data4,datas)
Radix-4 0 1 0 (data4,data6) |Figure 5.9(e)
Radix-8 0 0 1 (data0,data4)
Radix-2 1 0 0 (datad,datas)
Radix-4 0 1 0 (data5,data7) |Figure 5.9(f)
Radix-8 0 0 1 (datal,datas)
Radix-2 1 0 0 (data6,data7)
Radix-4 0 1 0 (data4,data6) |Figure 5.9(g)
Radix-8 0 0 1 (data2,data6)
Radix-2 1 0 0 (data6,data?7)
Radix-4 0 1 0 (data5,data7) |Figure 5.9(h)
Radix-8 0 0 1 (data3,data?7)




(2) BF_PE2 addition operator sharing architecture with radix-4,8
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Figure 5.10 Sharing addition hardware with radix- 4, 8
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Table 5.2 Select addition control signal with radix 4, 8

sel_mux[2:0] Input number Figure

(2, 1, 0) (mux1,mux2)
Radix-4 0 1 0 (data0,datal)
Radix-8 0 0 1 (data0,data2) |Figure 5.10(a)
Radix-4 0 1 0 (data0,datal)
Radix-8 0 0 1 (datal,data3) |Figure 5.10(b)
Radix-4 0 1 0 (data2,data3)
Radix-8 0 0 1 (data0,data2) |Figure 5.10(c)
Radix-4 0 1 0 (data2,data3)
Radix-8 0 0 1 (datal,data3) |Figure 5.10(d)
Radix-4 0 1 0 (datad,datas)
Radix-8 0 0 1 (datad,data6) |Figure 5.10(e)
Radix-4 0 1 0 (data4,data¥)
Radix-8 0 0 1 (data5,data7) |Figure 5.10(f)
Radix-4 0 1 0 (data6,data?)
Radix-8 0 0 1 (data4,data6) |Figure 5.10(g)
Radix-4 0 1 0 (data6,data7)
Radix-8 0 0 1 (data5,data7) |Figure 5.10(h)

(3) BF_PE3 addition operator sharing architecture with radix-8

Table 5.3 Select addition control signal with radix 8

Input number

(mux1,mux2)

Radix-8 (data0,datal)
Radix-8 (data2,data3)
Radix-8 (data4,data¥)
Radix-8 (data6,data?7)




5.5.3 Complex Multiplier Hardware Design

Figure 5.4 demonstrates that the butterfly operation requires three types of
multiplication. One is the multiplication by —j. The second is multiplication by a

constant twiddle factor. The third is multiplication by a complex twiddle factor.

(1) Multiplication by -j
The three multiplications by —j can be realized with no extra hardware cost by

simply interchanging the real and imaginary part of the product as shown in Equation
(5.1).

(a+ jb)yx(—j)=b—ja (5.1)

(2) Multiplication by constant twiddle factor

The two constant multiplications % 7and W, can be implemented with 10

complex additions by shift adders as shown in Figure 5.11. These multiplications with

constant twiddle factor can be expressed in mathematical form as in Equation (5.2)(a)

and (b). The Value,Tz, can also be replaced by shift adders and four real adders as

given in Figure 5.12.

(p+j)x Wy =(p+ jq)x (%—j%) (5.2)(a)
(p+J@)x W =(p+ jq)x (—%— j%) (5.2)(b)

where g =0.70710678 =27 +27° +2* 4276427
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Figure 5.12 Implementation hardware of 72 in Figure 5.11

(3) Multiplication by complex twiddle factor

One complex multiplier can be realized by four real multiplications and two real
additions as shown in Figure 5.13. Its mathematical form can be expressed as
(p+Jjq)(r+ js)=(pr—gqs)+ j(ps+qr). One complex multiplier occupies large chip
area in hardware implementations. Fortunately, complex multiplication can also be
performed by three real multiplications and five real additions as shown in Figure
5.14 and expressed mathematically as

(p+Jjg)r+js)={r(p—q)+q(r—=s)}+ jis(p+q)+q(r—s)}.
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Figure 5.13 Complex multiplier with four real multiplications and two real additions
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Figure 5.14 Complex multiplier with thrée real multiplications and five real additions

5.6 Twiddle Factor ROM Design

In this section, we first introduce the reduced twiddle factor coefficient design.
Next, we describe how to design the twiddle factor circuit design for the fixed length

FFT. Finally we introduce an implementation for the variable length FFT.

5.6.1 Reduced Twiddle Factor ROM Design

N-point radix-8 FFT implementations can require seven complex twiddle factor

coefficients W, ,W.",...,W,". Such implementations can require a twiddle factor

ROM table to store the real and imaginary parts of these values which have phase



angles in the range (0, 27) in the complex plane. If we store all required coefficient
values in a ROM table, we must use a large chip area. Thus, this subsection presents a
method to reduce the size of the twiddle factor ROM table.

Our method is modified from the techniques in [21] and is also an efficient
design for long length FFTs. It is only necessary to store the twiddle factor
coefficients between the interval 0~N/8. We denote the interval 0~N/8 as region 0.The

remaining interval regions are listed in Figure 5.15 and Table 5.4. The storage

coefficients in region 0 are only in (Q%j to save hardware cost because it can

represent all the angles in (0, 27) by exploiting the symmetry of the sine and cosine
functions. This means that the sine of elements in [0,773 are equal to the cosine of

elements in (5,7_[) and vice'versa. Thus; if the values in region 0 are known (stored
42

in a reduced size ROM)), the values from all the regions can be computed.

Table 5.4 Interval regions of twiddle factor design

No region Interval boundary
(a) 0 o<l N boundary0=0
8 boundary1=N/8
(b) 1 N l<m< N | boundary2=(N/4)-1
8 4
(©) 2 N 3N boundary3=3N/8
—<m<=—
4 8
(d) 3 3N o <N [boundaryd=(N/2)-1
8 2
©) 4 N 5N boundary5=5N/8
—<m<—
2 8
(H 5 SN l<m< 3N ! boundary6=(3N/4)-1
8 4
(8) 6 3 TN boundary7=7N/8
—<m<—
4 8
h
®) ! %H <m<N-1
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Figure 5.15 Twiddle factor boundary diagram
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No.(a) region0 addr =actual _addr(t—2:0] 0<m<

actual _data =[R, .00 waar )t T U egiono adar ] (5.3)
No.(b) region0 addr =~ actual _addr[t—2:0]+1 %+ I<m< % -

actual _data =[~ 1,010 aiar 1 JL~ Rregiono_aiar] (5.4)
No.(c) region0 _addr =actual _addr{t—2:0] % <m< 3?N

actual _data =[1,,40.0 -1 71~ Recgiono_adar] (5.5)
No.(d) region0 _addr =~ actual _addrt—2:0]+1 3?]\] +1<m< % -1

actual _data =[~ R, ;0 wasr 1t Il iedionn dlaed (5.6)
No.(e) region0 _addr = actual _addr(t—2:0] % Sm< %

actual _data =[~ R, .50 wiar )+ T 1= Lragionaiar ] (5.7)
No.(f) region0 addr == actual addrlt=270]+1 % +1<m< 3TN_1

actual _data =[1,,y0 wair 1% I Regiono._aaar] (5.8)

No.(g) region0 _addr =actual _addr(t—2:0] 3TN <m< %

actual _data=[~ R, ,n0 atar]t I Lrcgiono_adar] (5.9)
No.(h) region0 _addr =~ actual _addr{t—2:0]+1 % +1<m<N-1

actual _data =[R. .00 waar )t JL~ Lregiono adar] (5.10)

In order to understand more clearly, we explain the concept of the reduction of
the twiddle factor ROM table with the help of a 64-point FFT. Table 5.6 describes
some various coefficient values from different regions. When the actual address m is

010100, the region is 2. So we use Equation (5.5) (which corresponds to region 2) to



obtain the corresponding address in region 0.

Example:

region0 _addr = actual _addr|3:0] 16<m<24

actual — data = [Iregionoiaddr] + .] [N RregionOfaddr]

When we know the corresponding address of region 0, we obtain the coefficient
values in region 2 by complementing the real and imaginary parts of those values at
this address in region 0. For example, if the coefficient value in region 0 is
0.923880+) (-0.382683), then the coefficient values in region 2 would be

(-0.382683)+j (-0.923880) (fromTable 5.6).



Table 5.6 Some various coefficient values with different regions for 64-point FFT

address Coefficient 12bit quantized coefficient region
(m) real Imag real imag
0 1.000000 0.000000 400 000 region 0
1 0.995185 -0.098017 3FB FoC
2 0.980785 -0.195090 3EC F38
3 0.956940 -0.290285 3D4 ED7
4 0.923880 -0.382683 3B2 E78
5 0.881921 -0.471397 387 E1D
6 0.831470 -0.555570 353 DC7
7 0.773010 -0.634393 318 D76
8 0.707107 -0.707107 2D4 D2C
9 0.634393 -0.773010 28A CES8 region 1
10 0.555570 -0.831470 239 CAD
11 0.471397 -0.881921 1E3 C79
12 0.382683 -0.923880 188 C4E
13 0.290285 -0.956940 129 c2cC
14 0.195090 -0.980785 0C8 Cl4
15 0.098017 -0.995185 064 Co05
16 0.000000 -1.000000 000 C00 region 2
17 -0.098017 *|. -0.995185 FoC C05
18 -0.195090 | -0.980785 F38 Cl4
19 -0.290285 | -0.956940 ED7 Cc2C
20 -0.382683 | -0.923880 E78 C4E
21 -0.471397 | -0.881921 E1D C79
22 -0.555570 | -0.831470 DC7 CAD
23 -0.634393 | -0.773010 D76 CES8
24 -0.707107 | -0.707107 D2C D2C
25 -0.773010 | -0.634393 CE8 D76 region 3
26 -0.831470 | -0.555570 CAD DC7
27 -0.881921 | -0.471397 C79 E1D
28 -0.923880 | -0.382683 C4E E78
29 -0.956940 | -0.290285 C2C ED7
30 -0.980785 | -0.195090 Cl4 F38
31 -0.995185 | -0.098017 CO05 FoC




5.6.2 Twiddle Factor Circuit Design for Fixed FFT Length

Section 5.6.1 presented the mathematical description of the reduced twiddle
factor ROM table design. In this section, we propose a hardware implementation for it.
Our hardware design for the fixed-length FFT twiddle factor as shown in Figure 5.16
is required only for the storage coefficient values in region0. All remaining twiddle
factors from other regions are generated by first mapping into region0. This mapping
is illustrated in Figure 5.17 and described in the following procedure:

Step (1) Decide the boundary region according to the actual address m. (Figure

5.15 and Table 5.4 in Section 5.6.1)
Step (2) Convert address, (First line in Equation (5.3~5.10) in Section 5.6.1)

Step (3) Convert data (Second line in Equation (5.3~5.10) in Section 5.6.1)

regionQ
address = ) 1 val
| address [9:0] region0 Tl data rom_ real valne
"1 converter data S| converter .
> > rom_ image value
1 N iS )
design region

actual boundar0~
address boundary7
[11:0] [11:0]

Figure 5.16 Block diagram of a twiddle factor circuit design for fixed FFT length

actual address

region 0 address |::> region (0 data

‘ <Z)dgls ‘
“ (¢)dars ‘e

Figure 5.17 Twiddle factor mapping diagram for fixed FFT length
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5.6.3 Twiddle Factor Design for Our Variable FFT Length

For use with variable lengths of 512, 1024, 2048, and 4096 points, we modified
the dotted block in Figure 5.16 to become the dotted block in Figure 5.18. The
4096-point FFT needs 4096 twiddle factor coefficients. Using the concepts from
Section 5.6.1, we design ROM table hardware for the FFT where we only store the
512 coefficients in region0. The remaining coefficients can be computed from these
stored values.

Again, we introduce how to share the ROM table hardware with variable FFT
length architectures of 512, 1024 and 2048 points. The concept of the twiddle factor
calculation for variable FFT length is illustrated in Figure 5.19. First, we decide the
actual address m of any FFT length and which interval region m is in, as shown in
Figure 5.15 and Table 5:4 in Section 5.6.1. Second, we convert from the actual
address to the address in region0, given-in-the-first-line of Equation (5.3~5.10). Third,
we perform the operation shown in the dotted box of Figure 5.19 in order to get the
required coefficient values with variable FFT length. The meaning of this method is as
follows.

For a 512—point FFT operation, we read out coefficients with multiple of eight
address values from the ROM. For 1024-point FFT operation, we read out
coefficients with multiple of four address values from the ROM. For 2048—point FFT
operation, we read out coefficients with multiple of two address values from the ROM.
For 4096—point FFT operation, we read out all coefficients in the ROM.

Finally, we convert the data from region0 to the desired actual data by using the

second lines in each of the Equations (5.3 ~ 5.10).
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tage number(1:0]
FFT mode[1:0]

address
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t+——» rom_ real value

——» rom_ image value

!

f

design region

A
actual boundar0~
address boundary7

[11:0] [11:01

Figure 5.18 Block diagram of a twiddle factor circuit design for variable FFT length
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>
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Figure 5.19 Concept of twiddle factor interchanging for variable FFT length
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5.7 SRAM Model Design

Figure 5.20 is a block diagram of our SRAM model. The input signals ff¢ real
and fft_image are from the serial to parallel circuit design. When first op=1, the input
data is written to SRAM. When first op=0, the data from the radix-8 butterfly
operation has already finished writing back to SRAM. The signal ports of the
read/write data commutator are connected to the memory. The objective of the
read/write enable signals is to control the input data assigned to the correct memory

bank. The data mapping block in Figure 5.20 is only used for the mixed radix

algorithm.
-l Y 1
1 main SRAM !
i e i
fft_real i1 write enable SRAM bank7 |
[15:01 | y \
it fmage i _ SRAM_bank5 |
e ‘ ’ !
y L —address SRAM bankd | e N| readdata LN g j\> e [-I’;Bi‘”ue
mul 4 /| commuator [}/| mepping :
: SRAM_bank3 : ﬂ image_outvalue
H 1 15:0.
rzldlePrfEclesB(])r_realout — i SRAM, bani2 i [15:0]
o | |
wa DN writedata | N[ SRAM bankl i
radix8Processor_imageout ————— f‘\/ mfr:;ng ﬁ c\grlr:ncmt:tgr — !
[15:0] 1 SRAM_bank0 1
% i i
| hary -y g [y s I 1
T SRAM Model
first_op

Figure 5.20 Sketch block diagram of our SRAM model

5.7.1 SRAM Design

This section discusses details of the main memory (Figure 5.20) of our FFT
design. The data memory is configured as dual port synchronous SRAM using TSMC
0.25um fabrication technology. There are two main types of RAM: dynamic RAM

(DRAM) and static RAM (SRAM). Since the control of SRAM is simple, we choose
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to use SRAM (Appendix). Each RAM is available as single port or dual port. When
we design the radix-8 butterfly with pipeline unit, read/write operations may be
executed simultaneously. To avoid a conflict in memory access, it is necessary to use
one read address port and one write address port. For this reason, we use a dual port
SRAM. However, dual port memory cells have one read port and one write port and
so require 33% more chip area than a single port memory.

The dual port SRAM has seven control signals as shown in Figure 5.21 and
described as the following Table 5.7.

Table 5.7 Description of SRAM parameters

CEn chip select control
rd_Addr. read address control
wr_Addr write address control
WEn write enable

REn read enable

data_in data mput

data_out data output

The SRAM for our FFT design requires N complex memory locations. The
word-length for each memory location has a 4byte (32bits) complex datum. This

means that the real components are high byte (x;,x;,Xy,...,X,) and the image

components are low byte (X,5X,,X3,...,X;)-

clk _

CEn ——
WEn ——

dual port

data_out
SRAM

REn —_—

wr_Addr ———
rd_Addr ———

data_in —— |

Figure 5.21 Basic block diagram of dual port SRAM
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In accordance with the foregoing analysis of Chapter 3, we select the radix-8
algorithm. Therefore, we separate the SRAM into 8 memory banks (SRAM_bankO,
SRAM bankl, SRAM bank2,..., SRAM bank7), as shown in Figure 5.20. Each
bank of SRAM has 512x(4byte/ word) =2048byte for variable-length FFT (512,
1024, 2048, 4096). Therefore, the total number of words in the SRAM is
8% 2048 byte =16384 byte.

We perform concurrently eight data read/ write operations from/to the memory at
an assigned address. For this reason, each bank of SRAM has its own read address
(rd_Addr0, rd Addrl, rd Addr2, ..., rd Addr7) and write address (wr Addr0 ,
wr_Addrl , wr_Addr2, ... ,wr _Addr7 ),as shown in Figure 5.22. When we do each
iteration read/write operation, each bank address can be controlled together. The
design of address generator$ for data and twiddle factor coefficients will be discussed

in the next section.

clk — clk —iel
WEn — : WEn  ——1 .
REn ——| 2&5\(4 35 blkt; ——data_out7 R —4 gg& 35 bﬂ; L data_out3
wr_AdG7 —— RN wr_Addr3 ——| —oan
1‘d_Addr7 I l‘d_ Addr3a |
data_in T | data_in
ck  —— dk —
CEn — CEn —
WEn — . WE — .
REn — ;?X;ﬁéﬁ:g data_out6 REX? | 5‘12 X 32 bits data_out2
wr_Addr6 —— = wr Addr2 — SRAM_bank2
rd_Addr6 —— rd_Addr2 —
data_in | data_in T |
ck — dk  —
CEn — CEn ——
WEn —— " WEn —— -
REn ~ —— ;IQZA;\(/[ 35, bg; ——data_out5 RErrl1 — 312 % 32’ bits +——data_outl
wr_Addr5s —— -oan wr Addr] ——]  SRAM bankl
rd_AddrS — rd_Addrl
data_in — | data_in
ck — cdk —
CEn — CEn —
WEn — . WE .
REn ~—— ;IQZAEI% ?11: data_out4 REr[1l —| 32x 35 blktb data_out0
wr_Addrd —— -oa wr_Addr0 SRAM_banko
rd_Addrd 1 Add0
data_in data_in T |

Figure 5.22 Detailed block diagram of our SRAM design
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5.7.2 Read /Write Data Commutator

Eight types of commutators for the data-in port and eight types of commuters for
the data-out port (corresponding to the eight banks of SRAM) are necessary for
implementation of the proposed radix-8 operation because eight separate data
reordering configurations are required as depicted in Figure 5.24. Since the data
reorderings are different from one another, we utilize eight different commutators to
exchange the required data so that computation of the radix-8 butterfly is convenient.
We explain the commutator operation with the help of a 64-point data index diagram
shown in Figure 5.23. We assume that the data index order reading from each bank of
SRAM is {57,1,9,17,25,33,41,49}, but the butterfly. computation needs the index
order {1,9,17,25,33,41,49,57}. Therefore, we use the correct commutator to exchange
the desired data ordering. To understand more clearly, the necessary butterfly
orderings along with the eight read/write—index orderings and corresponding
commutators are listed in Table 5.8. This method is also similar to other transform

lengths of 512, 1024, 2048 and 4096.



main memory

SRAM_bank7
«— < 70|20 28|35 |25 -«
SRAM bark6
« < 6| 13|20 (27|34 |86 |« -«
SRAM_bark5
-« < s 12192633 0|6« -
5 SRAM barkA =
1 L 4|8 25| 2|47 54| 6l e S ole——
5 SRAM_bark3 g
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«— < 015|229 |3 |50 -«

Figure 5.23 Function of commutator with thethelp of 64-point data index

Table 5.8 Function of gight types of commutator with the help of 64-point FFT

Figure

read data index from
SRAM

butterfly necessary order

write data index to
SRAM

Figure
5.24 (a)

{0,8,16,24,32,40,48,56}

{0,8,16,24,32,40,48,56}

10,8,16,24,32,40,48,56}

Figure
5.24 (b)

{57,1,9,17,25,33,41,49}

{1,9,17,25,33,41,49,57}

{57,1,9,17,25,33,41,49}

Figure
5.24 (c)

{50,58,2,10,18,26,34,42}

{2,10,18,26,34,42,50,58}

{50,58,2,10,18,26,34,42}

Figure
5.24 (d)

{43,51,59,3,11,19,27,35}

{3,11,19,27,35,43,51,59}

{43,51,59,3,11,19,27,35}

Figure
5.24 (e)

{36,44,52,60,4,12,20,28}

{4,12,20,28,36,44,52,60}

{36,44,52,60,4,12,20,28}

Figure
5.24 (f)

{29,37,45,53,61,5,13,21}

{5,13,21,29,37,45,53,61}

{29,37,45,53,61,5,13,21}

Figure
5.24 (g)

{22,30,38,46,54,62,6,14}

{6,1422,30,38,46,54,62}

{22,30,38,46,54,62,6,14}

Figure
5.24 (h)

{15,23,31,39,47,55,63,7}

£7,15,23,31,39,47,55,63}

{15,23,31,39,47,55,63,7}
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data7 data7 data7
data6 ~ data6 < datad
data$ [~ data$ data5
g data4 < datad < datad
2 data3 < data3 < data3
data2 < data2 < data2
datal datal < datal
data0 < data0 < data0
write required data read required data
(a)
data7 data7 data7
datab data6 data6
data$ data$ data$
é data4 data4 data4
g data3 data3 data3
data2 data2 data2
datal datal datal
data0 data0 data0
write required data read required data
©)
data7 data7 data7
data6 data6 data6
- dataS datas data5
g datad data4 data4
g data3 data3 data3
data2 data2 data2
datal datal datal
data0 data0 data0
write required data read required data
©
data7 data7 data7
data6 data6 data6
datas data5 datas
E datad datad datad
ig data3 data3 — data3
data2 data2 data2
datal datal datal
data0 data0 data0
write required data read required data
(€3}

Figure 5.24 Eight types of read/write commutators

from SRAM

from SRAM

from SRAM

from SRAM
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datal datal datal
data0 data0 data0
write required data read required data
®
data7 data7 — | — data7
data6 data6 — | — datab
data5 dataS — data5
% data4 datad datad
2 data3 data3 data3
data2 data2 — | — data2
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data0 data0 data0
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(h)

from SRAM

from SRAM
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5.8 Address Pointer Generation

The purpose of address generators is to control the input and output data from
SRAM with the correct addresses. There are two address generators. One is the data
address generator and the other is the twiddle factor coefficient address generator. The

details of their functions will be discussed in the following subsection.

5.8.1 Data Address Pointer Generation

The data address pointer generation is based on a 12-bit shift register. Different
FFT modes generate variable transform-lengths. “The schematic diagram of
variable-length FFT for the data address generator is shown in Figure 5.25. The
address generator keeps track of which butterfly is being:performed in which stage

number and generates the correct address.

Ini_Addr0 L . .

ini_Addrl initial data ~ ———) barrel shift —— + |————) barrel shift :>

Ini_Addr2

Ini_Addr3

Ini_Addrd

Ini_Addr5 Addr0

Ini_Addr6 > L Addrl

ini_Addr7 Addr2
Addr3
Addr4
Addrs
Addr6
Addr7

FFT mode FFT mod de
sel addr control
‘ mixed raidx addr control }—>
butterfl
E— Y P stage count

count

‘ fixed raidx addr control }—>

Figure 5.25 Schematic diagram of data address generator for variable length
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In Table 5.9, FFT mode 00 stands for the 512-point FFT operation. For 512-point,
there are three stages based on radix-8 computation and each stage contains 64
butterflies. Figure 5.26 represents the data address generation scheme with different
stages of the 512-point FFT. We can see that all data addresses are 3-bit shifted. This
bit-shifted property is performed in every stage except for the first stage. A 4096-point
FFT is selected with FFT mode 11. The method of its address generation (Figure 5.27)
is the same as the 512-point mode.

FFT mode 01 is the 1024-point FFT. For this mode, the first three stages use the
radix-8 algorithm and the final stage uses the radix-2 algorithm. The data address
generation for stagel is obtained by 3-bits shifted from the stage0 address and that for
stage2 is performed by 3-bit shifted from the stagel address. But for the final stage,
the address generates a one bit shifted, as shown in Figure 5.28.

When FFT mode 10 is selected, the FFT operation is computed with 2048 points.
There are four stages altogether; three stages with radix-8 and one stage with radix-4.
Figure 5.29 represents the data address generation scheme for different stages of the
2048-point FFT. The address generation for radix-4 is 2-bit shifted and that for
radix-8 is still 3-bit shifted except for the first stage.

To better understand the forgoing description, the detailed tables that show the
particular address generation with 512, 1024 and 2048-point FFT are illustrated in

Table 5.10, 5.11 and 5.12.



Table 5.9 Mode control of FFT with variable length

FFT FFT stage number algorithm
transform | mode
0 1 2 3

length

512 00 Radix-8 |Radix-8| Radix-8 - Fixed radix
1024 01 Radix-8 |Radix-8| Radix-8 | Radix-2 | Mixed radix
2048 10 Radix-8 |Radix-8| Radix-8 | Radix-4 | Mixed radix
4096 11 Radix-8 |Radix-8| Radix-8 | Radix-8 | Fixed radix

512-point address

stage( bg b7 b(, bs b4 b3 bz bl bO

stagel b2 bl bo b8 b7 b6 bs b4 b3

stage? b

Figure 5.26 Address generation scheme with different stages of 512-point FFT

4096-point address

stage0 b, b, b| b b bl b b b|[b b b,
e |

stagel b, b b,||b, by b| b b, b | |b b b
e |

stage? b, b, b| |b, b b||b, b, b | |b b b,
N

stage3 bx b7 be bs b, b3 b, b bo by, b10 bo

Figure 5.27 Address generation scheme with different stages of 4096-point FFT



1024-point address

stage0 b9 bg b7 be 5 b4 b3 bz bl bO
stagel b, b by| |b| |b b, b| |b b, b
Stage? b, b, b| |b, b by||b]||b b b

< __Y
stage3 bé bs b4 b3 b2 bl bo b9 bg b7

Figure 5.28 Address generation scheme with different stages of 1024-point FFT

stageQ

stagel

stage2

stage3

2048-point address
blO b9 bs b7 b6 bs b4 b3 bz bl bo
e
b, b by |bo by| |b by b| |bs b, b
e,
bS b: b3 b2 bl bO blO b9 b8 b7 bé

Figure 5.29 Address generation scheme with different stages of 2048-point FFT



Table 5.10 Representation of data address generation scheme at different stages of

fixed radix-8 for 512-point FFT

stage address in decimal form address in Octal form note

0 [448|449|450|... ... |...|510|511}700{701|702|...|...|...|776(777
384(385/386] ... ... |... [446]447|600|601|602|...|...|... (676|677
320(321|322|...|... ... [382]383]|500/501(502|...]...|...|576|577|a base-8 digit
256(257|258|...|...|...|318|319]400(401|402|...|...|...|476|477|shifted
192[193{194...|...|...|254|255]300(301{302|...|...|...|376|377|address
128]129(130] ... |...[...[190{191]200(201{202| ... ... |...|276|277| —
6465|166 |...]...]...]126/127|100{101{102|...|...|...|176(177
O(1]2]...]...]...[62]63]000/001|002|...|...|...[076]|077

1 [56(120/184|... ...|...|447|511|070(170|270|...|...]|...|677(777
48 (112(176)|...|... ... |439]503[060[160[260|...]...|...|667|767| <
40 (104(168| ... ... | ... |431(495[050/150/250...|...|... 657|757
32196 |160|... ... |...|423/487|040(140|240|... |...|... (647|747
24|88 |152]......]...[415/479]030/130]230] ... ]...|...|637|737|a base-8 digit
16 | 80 [144]...|... |%.|407|471]020|120(220|...|..+|...|627|727|shifted
8 | 72 136]... ... 1%.. [399/463|010{110/210| ..+ |...]... |617|717|address
0 |64 128]...|...]...|3911455]000({100{200 ... |...}... 607|707} —

2 17115023, |...}+..|503|5111007]017[027] ... | ..o ... 767|777
6 (1422 ]...]...].1.]502(510]006{016/026| ... |...|... 766|776
511321 ...]...]...1501}509]005|015|025|..%|...]|...|765|775
4 [12]20(...]...]...|500[508]004{014(024| ... ... |...|764|774| <4
3 111(19]...]...]...|499(507|003|013]|023|...|...]|...|763|773
2 [10]18]...]... ... [498]506]|002|012(022|...|...|...|762|772
1 17]...]...|...[497|505|001|011(021]...]...|...|761|771
0 16]...]...|...[496]504|000/010(020|...|...|... 760|770




Table 5.11 Representation of data address generation scheme at different stages of

mixed radix-8+2 for 1024-point FFT

stage address in decimal form address in Octal form note

0 [896(897|898|...|...|...]1022|1023]1600/1601{1602|...|...|...|1776|1777|]a  base-8
768(769|770]...|...|...| 894 | 895 [1400(1401{1402|...|...|...|1576|1577|digit
640(641(642|...|...|...| 766 | 767 |1200/1201{1202|...|...|...|1376/1377|shifted
512|513|514...|...|...| 638 | 639 |1000{1001{1002|...|...|...|1176|1177|address
384(385|386|...|...]...| 510 | 511 | 600 | 601 | 602 |...|...|...| 776 | 777 |~
256(257|258|...|...]...| 382 [ 3831400 | 401 | 402 |...|...|...| 576 | 577
128]129(130...|...|...| 254 | 2551200 | 201 | 202 |...|...|...| 376 | 377
O 1]2]..].[.]126]| 127 (000|001 | 002 |...|...|...| 176 | 177

1 |112]240/368|...|...|...| 895 [1023] 160 | 360 | 560 |...|...|...[1577|1777| <4
96 |224/352|...|...|...| 879 |1007| 140 | 340 | 540 |...|...|...|1557|1757
80 [208(336|...|...|...| 863 | 991 [ 120 | 320 | 520 |...|...|...|1537|1737]a  base-8
64 [192(320|...]...|...| 8474975100300 500 |...|...|...|1517|1717|digit
48 |176|304|...|...|...| 83119591 060.1260.| 460 |...|...|...|1477|1677|shifted
32 |160(288|......|.. 5815 | 943 | 040 |-240 | 440 |..+|...|...|1457|1657[address
16 (144(272|...|...|.25] 799 927 | 020 | 220 [ 420 |...]...|...|1437|1637
0 [128]256]...|...]...| 78371911 | 000 {200 | 400 |...|...|...|1417]1617

2 |14(30(46|...|...[.«{1006({1022] 16216 [ 416 |..4...|...|1757|1777
1212844 |...]...|...]1004|1020] 14| 214|414 .........17551775<_
1012642 |...]...|...[1002{1018| 12 | 212 {412 |...|...|...[1753(1773
8 124 1401...|...]...]1000({1016} 10 | 2101410 |...|...|...|1751|1771
6 |22(38]...]...]...[| 998 |1014] 6 | 26 | 46 ...|1747|1767|one bit
4 120(36|...[...]...[ 996 [1012] 4 | 24 | 44 ...[1745(1765|shifted
2 [18(34]...|...[...| 994 [1010] 2 | 22 | 42 ...[1743]1763|address
0 |16(32]...]...]...[ 992 |1008] 0 | 20 | 40 17411761

3 115(31(47]...|...[...[1015/1023] 7 | 17 | 27 1767|1777
13129 45|...]...]...|1014]1022] 6 | 16 | 26 ...|1766|1776
112743 |...[...]...]1013({1021] 5 | 15| 25 ...|1765(1775
9 |25(41|...]...|...[1012]1020] 4 | 14 | 24 ...|1764{1774| 4=
7 123(39]...]...|...[1011]1019| 3 | 13 | 23 ...|1763|1773
5121(37]...]...|...[1010[|1018| 2 | 12 | 22 ...[1762|1772
3 119(35]...]...|...[1009[1017[ 1 | 11 | 21 ..[1761|1771
1 (17]33]...]...|...]1008|1016[ O | 10 | 20 ..|1760{1770




Table 5.12 Representation of data address generation scheme at different stages of

mixed radix-8+4 for 2048-point FFT

stage address in decimal form address in Octal form note
0 |1792[1793|1794|...]...]...]12046/2047|3400|3401|3402|...|...|...|3776|3777]a  base-8
1536(1537(1538|...]|...|...{1790{1791|3000(3001|3002|...|...|...|3376|3377|digit
1280(1281(1282|...]|...|...[1534(1535]2400(2401|2402|...|...|...|2776|2777|shifted
1024{1025(1026|...|...|...[1278[1279]2000(2001|2002|...|...|...|2376|2377|address
768 | 769 | 770 |...|...|...|1022]1023]1400(1401|1402|...|...|...[1776|1777| —
512|513 | 514 |...|...|...| 766 | 767 [1000{1001|1002|...|...|...|1376(1377
256 (257258 |...|...|...| 510 | 511 | 400 | 401 [ 402 |...|...|...| 776 | 777
0 | 1 [ 2 |.]..].]254[255]000 | 001|002 ]...|...|...| 376 | 377
1 [224(480|736|...]...]...[1791]2047| 340 | 740 [1340|...]...|...|3377|3777| <
192|448 | 704 |...|...|...|1759]2015] 300 | 700 |1300|...|...|...|3337|3737|a  base-8
160 | 416 | 672 |...|...|...|1727]1983] 240 | 640 |1240|...|...|...|3277|3677|digit
128 | 384 | 640 |...|...|...| 16951951 200 | 600 |1200|...|...|...[3237|3637|shifted
96 352608 |...|...|+.11663|1919] 140 |.540 [1140|...|...|...|3177|3577|address
64 320|576 |...|.4{...|1631]1887] 100| 500 |1100|...|...|...[3137]3537
32 | 288 | 544 |...|.5.]. .«[1599/1855] 040 | 440 |1040]...|...|...]3077(3477
0 [256|512]...|...|...[1567{1823| 000 [ 400 (1000}...|...|...|3037|3437
2 |28 ]6092 ...|20152047] 34 1 74 | 134...|...|...|3737|3777
24 | 56 | 88 ..+{2011/2043|30"*70 [130|...|...|...|3733|3773 <
20 | 52 | 84 ...12007(2039| 24 | 64 ['124 |...|...|...|3727|3767
16 | 48 | 80 ...|2003[2035| 20 | 60 |120|...|...|...[3723|3763|]a  base-4
12 | 44 | 76 ...|[199912031| 14 | 54 | 114 |...|...|...[3717|3757|digit
8 | 40 | 72 ...11995[2027| 10 | 50 | 110 |...|...|...|3713|3753|shifted
4 | 36 | 68 ...|[1991[2023 4 | 44 | 104 |...|...|...[3707|3747|address
0 | 32| 64 ..|19872019] 0 | 40 | 100 |...|...|...]3703|3743| —
317 | 1523 |...]...]...]20392047} 7 | 17 | 27 ...[3767|3777
6 | 14 | 22 |...|...|...|]2038[2046] 6 | 16 | 26 ...[3766|3776
511321 ...[2037|2045| 5 | 15 | 25 ...[3765|3775
4 |12 |20 ...[2036|2044] 4 | 14 | 24 ...|3764(3774]| <=
311 |19 ...[2035]2043] 3 | 13 | 23 ...[3763|3773
2 |10 | 18 |...|...|...|2034[2042] 2 | 12 | 22 ...[3762|3772
1| 9 |17 ]...]...]...]20332041] 1 | 11 | 21 ...[3761|3771
0| 8 |16 ..|2032{2040] 0 | 10 | 20 ..|3760(3770




5.8.2 Twiddle Factor Coefficient Address Pointer Generation

The coefficient address pointer generator of Figure 5.30 is similar to the data
address generator which keeps track of which butterfly is being performed in which
stage. Our design uses the radix—8 butterfly operation with four complex multipliers

and so having 8 parallel input data and 4 output data. The radix-8 algorithm requires

seven  complex  twiddle  factor  coefficients W, W.",...,W.)" where

N is transform length , excluding W,". So we need a multiplexer to select the values

of k where £=0,1,2,3,4,5,6,7. This means when ctr/=0, the butterfly output data is

multiplied by W', Wy, Wo" W3 . When ctri=1, the butterfly output data is
multiplied by W', Wy, Wy, W,
The symbol n in“ W, ,W.",...,Wy" tepresents thé interval 0~N/8 and is

represented by the signal romaddr mul. The bit rotation scheme for these values is
charted in Figure 5.31. For the 512-point FFT, the 7 interval is from 0 to 63 and so it
needs 6 bits. All bit numbers in stagel are obtained from the bit numbers in stage0 by
dividing by eight. Similarly, all bit numbers in stage2 are obtained from the bit
numbers in stagel by dividing by eight. This can be seen in Figure 5.31 (a).

The bit rotation scheme is similar to other cases such as the 1024,2048 and
4096-point FFTs given in Figure 5.31 (b) (c) (d). To better understand the description
in Figure 5.31, the detailed tables that show the particular coefficient address
generation with 512, 1024, 2048 and 4096-point FFTs are illustrated in Table 5.14

through Table 5.17.



ctrl ‘(sel up or down part )

i—  rom_addr0
romaddr_mt

L rom_addrl
rom addr

stage count

mul romaddr_mul romaddr_m

L—  rom_addr2

romaddr_mt

ik

rom_addr3

romaddr_mul

mode ==jpm

sel addr control

base data

mixed raidx addr control
butterfly

count

fixed raidx addr control

Figure 5.30 Block diagram of twiddle factor coefficient address generation

Table 5.13 Description of cogfﬁéiéﬁt

X ENTNT
11

address generation parameters in Figure5.30

rom_addr0 &

rom_addr_l‘-_ [
rom_addr2

rom_addr3.

.
= 27nk

_JN

o b
values ofs W' =W =e
5 |

romaddr_mul®

(0,1,2,3,4,5,6,7 ) in dotted block

n (ﬁs interval: 0~N/8-1)

values of k

stage0:b; b, b, b, b, b,
stagel: 0 0 0 b, b, b,
stage2: 0 0 0 0 0 0

(a) for 512-point FFT

stage0:b, b, b b, b, b, b, b,
stagel: 0 0 0 b, b b, b, b,
stage2: 0 0 0 0 0 0 b, b,
stage3:0 0 00 0000

(c) for 2048-point FFT

stage0:b, b, b, b, b, b, b,
stagel: 0 0 0 b, b, b, b,
stage2: 0 0 0 0 0 0 b,
stage3: 0 0 0 0 000

(b) for 1024-point FFT

stage0 :b, b, by b, b, b, b, b, b,
stagel: 0 0 0 by b, b, b, b, b,
stage2: 0 0 0 0 0 0 b, b, b,
stage3:0 0 0 0 00000

(d) for 4096-point FFT

Figure 5.31 Rotation bit number scheme for romaddr _mul (n) with different stages



Table 5.14 Address (m) generation in W™

at different stages for 512-point FFT

0 0,0,0,0 0,0,0,0

1 0,4,2,6 1,5,3,7

2 0,8,4,12 2,10,6,14

61 0,244,122,366 61,305,183,427
62 62,310,186,434
63 63,315,189,441
0 le s v

1

2

3

4

5

6 6,30,18,42

7 0,28,14,42 7,35,21,49

0 0,0,0,0 0,0,0,0
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Table 5.15 Address (m) generation in W™

at different stages for 1024-point FFT

0 0,0,0,0 0,0,0,0
1 0,4,2,6 1,5,3,7
2 0,8,4,12 2,10,6,14
125 0,500,250,750 125,625,375,875
126
127
0
1
2
13
14 14,70,42,98
15 0,60,30,90 15,75,45,105
0 0,0,0,0 0,0,0,0
1 0,4,2,6 1,5,3,7
0 0,0,0,0 0,0,0,0
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Table 5.16 Address (m) generation in W™ at different stages for 2048-point FFT

Stage |romaddr mull  rom addrO, rom addrl, rom addr2, rom addr3 Note
(n) (m)
ctrl =0 ctrl =1
k=(0,4,2,6) k=(1,5,3,7)
0 0,0,0,0 0,0,0,0
1 0,4,2,6 1,5,3,7
2 0,8,4,12 2,10,6,14
253 0,1012,506,1518 253,1265,759,1771
254 0,1016,508,1524 254,1270,762,1778
255 0,1020,510,1530 255,1275,765,1785
0 0,0,0,0 0,0,0,0
1 0,4,2,6 1,5,3,7
2 0,8,4,12 2,10,6,14
29 0,116,58,174 29,145,87,203
30 0,120,60,180 30,150,90,210
31 0,124,62,186 31,155,93,217
0 0,0,0,0 0,0,0,0
1 0,4,2,6 1,5,3,7
2 0,8,4,12 2,10,6,14
3 0,12,6,18 3,15,9,21
0 0,0,0,0 0,0,0,0




Table 5.17 Address (m) generation in W™ at different stages for 4096-point FFT

Stage |romaddr _mul|  rom_addr0, rom_ addrl, rom addr2, rom addr3 Note
(n) (m)
ctrl =0 ctrl =1
k=(0,4,2,6) k=(1,5,3,7)
0 0 0,0,0,0 0,0,0,0
1 0,4,2,6 1,5,3,7
2 0,8,4,12 2,10,6,14
509 0,2036,1018,3054 509,2545,1527,3563
510 0,2040,1020,3120 510,2550,1530,3570
511 0,2044,1022,3066 511,2555,1533,3577
1 0 0,0,0,0 0,0,0,0
1 0,4,2,6 1,5,3,7
2 0,8,4,12 2,10,6,14
61 0,244,122,366 61,305,183,427
62 0,248,124,372 62,310,186,434
63 0,252,126,378 63,315,189,441
2 0 0,0,0,0 0,0,0,0
1 0,4,2,6 1,5,3,7
2 0,8,4,12 2,10,6,14
3 0,12,6,18 3,15,9,21
4 0,16,8,24 4,20,12,28
5 0,20,10,30 5,25,15,35
6 0,24,12,36 6,30,18,42
7 0,56,28,84 7,35,21,49
3 0 0,0,0,0 0,0,0,0
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5.9 Hardware Implementation Rules for Address and

Data Control

In section 5.8.1, we introduced how to generate the data address. Here, we will
illustrate how to obtain the addresses for each bank of SRAM using our design
method.

The following steps are the workflows of the implementation for the 512-point
address generator, depicted as the solid line in Figure 5.32. The workflows for the
4096-point address generator are similar to that of the 512-point one and so we will
not explain further.

Stepl (Figure 5.32(a)): Give initial -address {0,64,128,192,256,320,384,448}.
These initial addresses are added to every counter and then generated all
addresses in the first stage. When we know the address in the first stage,
we use the bit-shifted property to generate the other stages. (See Table
5.10)

Step2 (Figure 5.32(c)): If we assume that the address index from address
generation in stage0 is {1,65,129,193,257,321,385,449}, we must use the
address commutator in Figure 5.35(h) to get the practical assigned
address {449,1,65,129,193,257,321,385} in each bank of SRAM. The
SRAM memory location can be calculated by Equation (4.1). Similarly,
the remaining address indices can also use the address commutator in
Figure 5.35 to get the corresponding bank index assignment. Some

memory address assignment for the 512-point FFT is in Table 5.18.
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Step3

(Figure 5.32(f)): The data index order read from SRAM is
{449,1,65,129,193,257,321,385}. However, FFT calculation requires the
order {1,65,129,193,257,321,385,449}. For this reason, we use the
commutator in Figure 5.24(b) to switch to the required order. The method
of data index writing to SRAM is equal to that of read from SRAM.

Table 5.18 Memory assignment for a 512-point FFT

data index memory bank index memory address index
385 7 48
321 6 40
257 5 32
193 4 24
129 3 16
65 2
1 1
449 0 56

The workflows of the implementation for 1024-points are given by the dotted

line in Figure 5.32.

Stepl (Figure 5.32(a)): Give ‘initial address {0,128,256,384,512,640,768,896}.

Step2

These initial addresses are added to every counter and then all addresses
are generated in the first stage. When we know the address in the first
stage, we use the bit-shifted property to generate other stages. (See Table
5.11)

(Figure 5.32(b)): If the address index from address generation in stageQ
is {2,130,258,386,514,642,770,898}, we use the address mapping in
Figure 5.33 to reorder address index {2,514,130,642,258,770,386,898}.
The first three stages for the 1024-point FFT butterfly use the address

index mapping scheme shown in Figure 5.33(a) and the last stage uses
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the scheme shown in Figure 5.33(b).

Step3 (Figure 5.32(c)): Using the results {2,514,130,642,258,770,386,898} from
Step2, we again use the address commutator in Figure 5.35(g) to get the
practical assigned address {386,898,2,514,130,642,258,770} in each
bank of SRAM, as listed in Table 5.19.

Table 5.19 Memory assignment for a 1024-point FFT

data index memory bank index memory address index
770 7 96
258 6 32
642 5 80
130 4 16
514 3 64
2 2 0
898 1 112
386 0 48

Step4 (Figure 5.32(f)): The data index read order from SRAM is
{386,898,2,514,130,642,258,770}. We use the read commutator in Figure
5.24(c) to switch to the desired order {2,514,130,642,258,770,386,898}.

Step5  (Figure 5.32(d)): But the final order'in step4 cannot support the butterfly
operation. To support this operation, we need to achieve index order
{2,130,258,386,514,642,770,898} by performing the data mapping
strategy of Figure 5.36(a).

Step6 (Figure 5.32(e)): After the butterfly computation, we employ the data
mapping scheme of Figure 5.36(b) to switch the data again to arrive at the
address index ordering {2,514,130,642,258,770,386,898}.

Step7 ((Figure 5.32(f)): Finally, we use the write commutator of Figure 5.24(c) to
exchange the address index in order to write back to SRAM with the

practical assigned address {386,898,2,514,130,642,258,770}.
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The workflows of the implementation for 2048-points are given by the dotted
line in Figure 5.32.

Step1 (Figure 5.32(a)): Give initial address
{0,256,512,768,1024,1280,1536,1792}. These initial addresses are added
to every counter and then generate all addresses in the first stage. When
we know the address in the first stage, we use the bit shifted property to
generate other stages. (See Table 5.12)

Step2  (Figure 5.32(b)): If the address index from address generation in stage0
is {2,258,514,770,1026,1282,1538,1794}, we use the address mapping of
Figure 5.34 to reorder the address index
{2,514,1026,1538,258,770,1282,1794} » The first three stages for the
2048-point FET butterfly uses the address index mapping scheme of
Figure 5.34(a) and the last stage uses the scheme of Figure 5.34(b).

Step3 (Figure 5.32(c)): Using the tresults {2,514,1026,1538,258,770,1282,1794}
from in Step2, we again use the address commutator in Figure 5.35(g) to
get the practical assigned address {1282,1794,2,514,1026,1538,258,770}
in each bank of SRAM, given in Table 5.20.

Table 5.20 Memory assignment for a 2048-point FFT

data index memory bank memory address
770 7 96
258 6 32
1538 5 192
1026 4 128
514 3 64
2 2 0
1794 1 224
1282 0 160
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Step4

StepS

(Figure 5.32(f)): The data index order read from SRAM is
{1282,1794,2,514,1026,1538,258,770}. We use the read commutator in
Figure 5.24(c) to switch the desired order to
{2,514,1026,1538,258,770,1282,1794}.

(Figure 5.32(d)): But the final order in step4 cannot do butterfly
calculation. ~ So, we have to  perform  index  order
{2,258,514,770,1026,1282,1538,1794} that can operate butterfly by

doing mapping data strategy in Figure 5.37(a).

Step6 (Figure 5.32(e)): After the FFT computation, we employ the data mapping

scheme of Figure 5.37(b) to switch the data again that get the address

index {2,514,1026,1538,258,770,1282,1794}.

Step7 ((Figure 5.32(f)): Finally, we use the write commutator in Figure 5.24(c) to

exchange the address index in order to write back to the SRAM with the

practical assigned address {1282,1794,2,514,1026,1538,258,770}.

SRAM

i
"> mixed radix- for 1024 and 2048-point

Figure 5.32 Workflow of the implementation hardware rules for address control
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(1) Address mapping

® For mixed radix-8+2 case,

to address commutator

addr7
addr6
addr5
addr4
addr3
addr2

addrl

addr0

(a) radix-8

addr7

addr6

addr5
addr4
addr3
addr2
addrl

addr0

from address generator

to address commutator

addr7 <
addr6 <
addr5 <
addr4 <
addr3 <
addr2 <
addrl <
addr0 <
(b) radix-2

addr7
addr6
addr5
addr4
addr3
addr2
addrl

addr0

Figure 5.33 Addressimapping for mixed radix-8+2 case

® For mixed radix-8+4 case,

to address commutator

addr7

addr6

addr5

addr4

addr3

addr2

addrl

addr0

(a) radix-8

addr7

addr6

addr5
addr4
addr3
addr2
addrl

addr0

from address generator

to address commutator

addr7 <
addr6 <
addr5 <
addr4 <
addr3 <
addr2 <
addrl <
addr0 <
(b) radix-4

addr7
addr6
addr5
addr4
addr3
addr2
addrl

addr0

Figure 5.34 Address mapping for mixed radix-8+4 case
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(2) Address commutator

to SRAM

to SRAM

to SRAM

addr7
addr6
addr5
addr4
addr3
addr2
addrl

addr0

addr7
addr6
addr5
addr4
addr3
addr2
addrl

addr0

addr7
addr6
addr5
addr4
addr3
addr2
addrl

addr0

addr7

addr6

addr5

addr4

addr3

addr2

addrl

(@)

addr0

addr7

addr6

addrS

addr4

addr3

addr2

addrl

(d)

addr0

addr7

addr6
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addr4

[ addr3

addr2

addrl

(@

addr0

Figure 5.35 Eight types of address commutator
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(3)Read /write data mapping

® For mixed radix-8+2 case,

data read mapping data write mapping

data7 < data7 data7 € data’

datab datab datab — data6
. - -
8 data5 data5 £ £ dataS — data5 'S
2 : = Z
L
& datad data4 g g datad datad 2
= = s =
& data3 data3 & S data3 —— data3 =
= 2 £ B
O [} =
e data2 data2 £ = data2 — data2

S = =
datal datal - datal — datal
data0 < data0 data0 < data0
(a) radix-8 (b) radix-8

data7 < data7 data? < data7

data6 < data6 data6 < data6
5 g 5 g
% datas < dataS = g datas < data5 g
k5] 5]
& datad < datad g g datad < data4 &
> O >
i) = s §=
S data3 < datad" S T data3 < data3 2
5 = [} E
2 g g
2 data2 < dat2 - E data? < data2 §

g e =
datal < datal & datal < datal
data0 < data0 data0 < data0
(c) radix-2 (d) radix-2

Figure 5.36 Read and write data mapping for mixed radix8+2 algorithm
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® For mixed radix-8+4 case,

data read mapping data write mapping
data7 < data’ data7 < data7
data6 — data6 data6 datab
g & 5
5 data5— — dataS é é data5 data5 '§
'CE ()
g dawd —— datad 5 §  dawd datad S
> s S &
T data3 — data3 S S data3 data3 2
2 CRE- z
o datad — data2 2 data data2  §
S 8 =]
datal — datal - datal datal
data0 < data0 data0 < data0
(a) radix- 8 (b) radix-8
data7 data7 data7 < data7
data6 data6 data6 < data6
= g 8 g
2 datas dataS £ S dat5——< data5 &
5} 5]
S datad datad § § ditad—€ datad S
= S S >
&= S 3 Es
8 data3 data3 'S 5 data3 < data3 2
3 2 8 2
S =
2 data? data2 £ £ data2 < data2 S
S 2 e
datal datal datal < datal
data0 < data0 data0 < data0
(c) radix-4 (d) radix-4

Figure 5.37 Read and write data mapping for mixed radix8+4 algorithm
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5.10 Data Reorder Design

The DIF radix-8 FFT butterfly uses the in-place computation method. Thus, it
has the natural input data order and the bit-reversed output data order. But the output
data of our modified radix-8 operation is in natural order. We need to design the
hardware implementation in order to obtain the bit-reversed output order. The way to
accomplish this is to reverse the binary address bits. That is, if the address bits of the
output data are x,x,x,x,X,X,X, , then its reorder output becomes x,x,x,X, X, XX, .

After reordering the output data (represented by data reorder), we have to read
out the necessary data from the SRAM. Figure 5.38 details our scheme to read out
data from SRAM after performing the bit-reversed reordering.

The first step is to read the necessary column address of SRAM by using

data_reorder[11 :O]—‘ (5.11)

column address index=[ s

Next, from the resulting column address in the first step, we use a multiplexer to

select the SRAM bank index we need according to

bank index=(data_reorder[2:0]+data reorder[5:3]+data_reorder[8:6]+

(5.12)
data_reorder[11:9])modulo 8
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Figure 5.38 Data reorderdesign

5.11 Performance Evaluation

The comparison between our proposed design and the other designs is depicted
in Table 5.21. It completes a 512-point FFT 'in 384 clock cycles. It takes 896 clock
cycles to compute a 1024-point FFT and takes 1792 clock cycles for a 2048-point FFT.
To compute a 4096-point FFT operation, it requires 4096 clock cycles. Under the

constraints of the VDSL requirements, the maximum operation clock frequency for all

points is 50 MHz.
Table 5.21 Performance comparisons
radix(@) il of ol 512-point 1024-point 2048-point 4096-point 8192-point
cycles for T,
Hsin-Fu Lo[20] radix-2 1;—( log, N) 2306 5122 11266 24578 53250 power of 2
B v N X
S.SSQ;YE%S] radix-4 —4 (log, N) - 1280 _ 6144 ~ power of 4
Sang_Chul - N B N power of 4 and
Moon(23] radix-4 s (log, N -2)+ 1 576 1280 2816 6144 13312 ot power of 4
adivs | (log, N)x 2 384 . . 409 : i
e 8 power of 8 and
t f 8
mixed radix %mgg Nx2+ % - 896 1792 - 9216 notpover @
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