Chapter 6

FFT Chip Design Simulation and Analysis

In the previous chapter, we introduced our new architecture including, the radix-8 butterfly operation, variable length twiddle factor ROM table, and new address pointer generation for any length FFT. We designed a variable length (512/1024/2048/4096) real to complex FFT processor chip. In this chapter, we discuss and analyze the Matlab simulation. After Matlab simulation, we write verilog code to implement the FFT hardware design. Finally, the pad location, the floorplan and the layout of our FFT chip are listed in section 6.3.

6.1 Matlab Simulation and Analysis

We simulate fixed radix-8 and mixed radix algorithm by using the Matlab software package. We also determine the number of bits for the data bus and twiddle factor by using Matlab simulation.

6.1.1 Simulation for Fixed and Mixed Radix FFT Algorithm

Figure 6.1 is the flow chart of fixed and mixed radix FFT algorithm. The procedures are as follows:

- (1) Select FFT length 512,1024,2048 or 4096 point.
- (2) Input sine waveform
- (3) If FFT length is power of 8, the fixed radix-8 algorithm is used. If the length

is not a power of 8, the mixed radix algorithm is used.

- (4) The resulting FFT data can be transformed by the IFFT by using Equation
 - (6.1). $DFT: X(k) = DFT(x(n)) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$ $IDFT: x(n) = \frac{1}{N} \sum_{n=0}^{N-1} X(n) W_N^{-nk}$ $= \frac{1}{N} \times j [DFT\{jX^*(n)\}]^*$ (6.1)
- (5) If the output waveform is equal to the input waveform, our algorithm has been verified to be correct. We can see the simulation results for a 512-point FFT given in Figure 6.2 (a) and (b).

Figure 6.1 Fixed and mixed radix -8 FFT algorithm flowchart

(a) Input signal

(b) Output signal

Figure 6.2 Comparison of input and output data for 512 -point FFT simulation with

radix-8 algorithm

6.1.2 Simulation of Twiddle Factor and Databus Bit Length

Before the implementation of the FFT IC design, we need to know the data bus size (in bits) and the length of the twiddle factor coefficient value. So, we simulate the whole DMT modulation to determine the optimal data and coefficient wordlength. The processing flow of this simulation, depicted in Figure 6.3 is as follows:

- (1) We perform I and Q values from 256 QAM constellation.
- (2) Input coding data is randomly generated.
- (3) We set initial databus and coefficient lengths.
- (4) The resulting input coding data are mapped to the complex input of the FFT.
- (5) The IFFT of the mapped data values is computed and a Guard Interval (GI) is added to the result.
- (6) After removing the Guard Interval, we perform the FFT operation to recover the complex data values.
- (7) These data values are demapped into binary data values.
- (8) Finally, we decode the data.
- (9) We compare the coded data and the decoded data.
- (10) If the databus and coefficient wordlengths are optimal, the DMT simulation is OK.
- (11) If we get the non-optimal values, we adjust their bit length and run this processing flow again.

After simulation, we find that the optimal length of the input and output databus is 16 bits (1 bit for the sign bit, 5 bits for the integer portion, and 10 bits for the fractional portion). Again, the optimal length of the twiddle factor coefficient is 12 bits (1 bit for the sign bit, 1 bit for the integer portion, and 10 bits for the fractional portion). Figure 6.4 gives SNR ratios of different size fractional portions for the data and twiddle factor coefficients. From this simulation, 10 bits is sufficiently large for input and out put wordlength and twiddle factor.

Figure 6.3 Processing flow chart of simulation with twiddle factor and databus

wordlength

Figure 6.4 Simulation of the optimal wordlength for data bus and twiddle factor

6.2 Verilog Simulation and Analysis

The new fabrication process used is TSMC 0.25 μ m CMOS technology. It is synthesized with the Synopsys cell library. Figure 6.5 gives the design flow chart and CAD tools used in our new FFT architecture. The simulation result for 512-point FFT with read/write address generation is described in Figure 6.6. Figure 6.7 is the simulation result of 2048-point with input/output data and butterfly operation.

(1) FFT chip design flow and CAD tools used

Figure 6.5 Flow chart of FFT chip design

(2) Simulation results for FFT processor

Figure 6.6 Simulation waveform of 512-point with read/write address generation

896

		5 1 4	2		115		
File Signal Yiew Waveform	Analog Too	ls Window <u>H</u> elp					
9 - C & Ba 🛍 📐	320289	5 176093	-144	1196	Q Q 100	By: 🗊 🔫 🔶 🔶	x 1ns
				Innease	• • •	langage	
		P 1		, 1209000			⁼
fft mode[2:0]	3				3		
in fft real[15:0]	fet8	0				fef8	
<pre>radix4_enable</pre>	1		Ĩ				
= 62			1				
fft_real7(15:0)	4608	0	1.				900
fft_real6[15:0]	1018	0	65348				15281
fft_real5[15:0]	511	<u> </u>	246				15217
fft_real4[15:0]	3074	0 ζ 653	350				54143
fft_real3[15:0]	55808		133				62222
fft_real2[15:0]	6660		311				49882
fft_real0[15:0]	£604	0 <u> </u>					
= 64		1					
real fin grap2[15:0]	1020					0	
real fin grouf[15:0]	0215	-				0	
real fin sran5[15:0]	5114					0	
real fin sran4[15:0]	13298	0				0	
real_fin_sran3[15:0]	15357	0				0	
<pre>real_fin_sram2[15:0]</pre>	58363	0				0	
real_fin_sran1[15:0]	60428	0				0	
real_fin_sran0[15:0]	996	0				0	
= G3							
ou_fft_real(15:0)	0		0				0
ou_fft_ing[15:0]	0	L	0 1				0
		P		[200000		400000	
	لاست						

Figure 6.7 Simulation of 2048-point with input/output data and butterfly operation

(3) Verification for FFT IC design

We must determine whether the FFT IC design is correct or not. Here we will describe how we verify our FFT IC design in Figure 6.8. We perform the procedure of the shaded region as shown in Figure 6.9. First, we dump the FFT output data from the Matlab simulation to produce the input data to the FFT. Second, we implement the FFT IC according to the flow chart of Figure 6.5. Third, we dump the output data of the FFT IC operation. Fourth, we use the resulting IC data output to deQAM mapping with Matlab simulation. Finally, we perform data decoding and comparison with input coding data, described in Figure 6.10.

Figure 6.8 Verification for FFT IC system block

• Verification for FFT IC flowchart

Figure 6.9 Verification for FFT IC flowchart

M 檔案 E 编辑	E 搜	尊⑤ 専案① 檢視	① 格式	(D) 医塊(L) 巨集(M)	進階(点)	城窗(W) 説明(H)			_8×
🗅 🛸 🖬 🖡	3 6	👌 🗄 Aa 👎	6 H	📰 🕺 🖻 🛍	= =	: 📰 📰 10m_1	value 💌 🕯	h 🔥 hi	🖉 🏹 🗌
II cause and									
decoomg_data.os	a1+								
1									
2 number=	1,	coding data=	ο,	decoding data=	ο,	diff data =	0;		=
3 number=	2,	coding data=	251 ,	decoding data=	251 ,	diff data =	0;		
4 number=	з,	coding_data=	206 ,	decoding_data=	206 ,	diff_data =	ο;		
5 number=	4,	coding_data=	179 ,	decoding data=	179 ,	diff_data =	0;		
6 number=	5,	coding_data=	124 ,	decoding_data=	124 ,	diff_data =	0;		
7 number=	6,	coding_data=	29,	decoding_data=	29,	diff_data =	0;		
8 number=	7,	coding_data=	170 ,	decoding_data=	170 ,	diff_data =	0;		
9 number=	8,	coding_data=	93,	decoding_data=	93,	diff_data =	0;		
10 number=	9,	coding_data=	36,	decoding_data=	36,	diff_data =	0;		
11 number=	10 ,	coding_data=	145 ,	decoding_data=	145 ,	diff_data =	0;		
12 number=	11 ,	coding_data=	210 ,	decoding_data=	210 ,	diff_data =	0;		
13 number=	12,	coding_data=	172 ,	decoding_data=	172 ,	diff_data =	0;		
14 number=	13,	coding_data=	255 ,	decoding_data=	255 ,	diff_data =	0;		
15 number=	14 ,	coding_data=	245 ,	decoding_data=	245,	diff_data =	0;		
16 number=	15,	coding_data=	15,	decoding_data=	15,	diff_data =	0;		
17 number=	16,	coding_data=	92,	decoding_data=	92,	diff_data =	o ;		
18 number=	17,	coding_data=	140 ,	decoding_data=	140 ,	diff_data =	O ;		
19 number=	18,	coding_data=	67,	decoding_data=	67,	diff_data =	ο;		
20 number=	19,	coding_data=	152 ,	decoding_data=	152 ,	diff_data =	0;		
21 number=	20,	coding_data=	13,	decoding_data=	13 ,	diff_data =	0;		
22 number=	21,	coding_data=	146 ,	decoding_data=	146 ,	diff_data =	0;		
23 number=	22,	coding_data=	179 ,	decoding_data=	179 ,	diff_data =	0;		
24 number=	23,	coding_data=	245 ,	decoding_data=	245 ,	diff_data =	0;		
25 number=	24 ,	coding_data=	191 ,	decoding_data=	191 ,	diff_data =	0;		
26 number=	25,	coding_data=	189 ,	decoding_data=	189 ,	diff_data =	0;		
-									-
•									
如齋說明,請按 Fi		列 1, 櫃	1,CW	UNIX	修改	2: 2004/5/3 02:05:28	下午 大小:317	719	插入

Figure 6.10 Compare coding and decoding data to verify FFT IC design

6.3 Pad Location and Floorplan

We sketch a floor plan for the FFT chip, depicted in Figure 6.11. The objective is to determine the overall structure of the auto placement and routing. Figure 6.12 shows a schematic of QFP package for our FFT chip design. Its pin description is given in Table 6.1. Table 6.2 is the features of our FFT chip design. The die size of our FFT chip is $2600 \mu m \times 2600 \mu m$ excluding memory. It synthesizes with 146576 gate counts and the critical path delay is18 *ns* which reported by Synopsys Design Analyzer. We do the automatic placement and routing by using Apollo. Its layout view of the 4096-point our memory based FFT chip is shown in Figure 6.13.

(1) Floorplan of our FFT chip

Figure 6.11 A sketch of FFT chip floorplan

Figure 6.12 FFT package definition

(3) Pin configuration of our FFT chip

Name	Pin#	I/O	Description
Vdd	1	power	Power source (core)
N_reset	2	Input	For system reset
Ext_clk	3	Input	Clk input
Fft_mode0	4	Input	Sel fft mode
Fft_mode1	5	Input	Sel fft mode
Fft_mode2	6	Input	Sel fft mode
Fft_start	7	Input	Start fft system
Fft_valid	8	Input	Fft data valid
Vss	9	ground	Ground source (core)
In_fft_real0	10	Input	Fft real0 input
In_fft_real1	11 🔬	Input	Fft real1 input
In_fft_real2	12	Input	Fft real2 input
In_fft_real3	13	Input	Fft real3 input
In_fft_real4	14	Input	Fft real4 input
In_fft_real5	15	Input	Fft real5 input
In_fft_real6	16	Input 1896	Fft real6 input
In_fft_real7	17 🛛	Input	Fft real7 input
Vdd	18	power	Power source (core)
In_fft_real8	19	Input	Fft real8 input
In_fft_real9	20	Input	Fft real9 input
In_fft_real10	21	Input	Fft real10 input
In_fft_real11	22	Input	Fft real11 input
In_fft_real12	23	Input	Fft real12 input
In_fft_real13	24	Input	Fft real13 input
Vss	25	ground	Ground source(core)
Vdd	26	Power	Power source(pad)
In_fft_real14	27	Input	Fft real14 input
In_fft_real15	28	Input	Fft real15 input
In_fft_img0	29	Input	Fft img0 input
In_fft_img1	30	Input	Fft img1 input
In_fft_img2	31	Input	Fft img2 input
In_fft_img3	32	Input	Fft img3 input

Table 6.1 FFT pin configuration

In_fft_img4	33	Input	Fft img4 input
In_fft_img5	34	Input	Fft img5 input
In_fft_img6	35	Input	Fft img6 input
In_fft_img7	36	Input	Fft img7 input
Vss	37	Input	Ground source(pad)
In_fft_img8	38	Input	Fft img8 input
In_fft_img9	39	Input	Fft img9 input
In_fft_img10	40	Input	Fft img10 input
In_fft_img11	41	Input	Fft img11 input
In_fft_img12	42	Input	Fft img12 input
In_fft_img13	43	Input	Fft img13 input
In_fft_img14	44	Input	Fft img14 input
In_fft_img15	45	Input	Fft img15 input
Vdd	46	Power	Power source(pad)
Vss	47	ground	Ground source(pad)
Nc	48		60.
Nc	49		C.
Nc	50	ESP	A LE
	24	11	

Name	Pin#	I/O	Description
Vdd	51	power 1996	Power source (pad)
Test 0	52	Input	Sel Test pattern
Test 1	53	Input	Sel Test pattern
Test 2	54	Input	Sel Test pattern
Vss	55	ground	Ground source(pad)
Vdd	56	power	Power source (pad)
Out_data_clk	57	output	Fft output data clk
Out_data_valid	58	output	Fft output data valid
Vss	59	ground	Ground source (pad)
Ou_fft_real0	60	output	Fft real0 output
Ou_fft_real1	61	output	Fft real1 output
Ou_fft_real2	62	output	Fft real2 output
Ou_fft_real3	63	output	Fft real3 output
Ou_fft_real4	64	output	Fft real4 output
Ou_fft_real5	65	output	Fft real5 output
Ou_fft_real6	66	output	Fft real6 output
Ou_fft_real7	67	output	Fft real7 out put

vdd	68	power	Power source (pad)
Ou_fft_real8	69	output	Fft real8 output
Ou_fft_real9	70	output	Fft real9 output
Ou_fft_real10	71	output	Fft real10 output
Ou_fft_real11	72	output	Fft real11 output
Ou_fft_real12	73	output	Fft real12 output
Ou_fft_real13	74	output	Fft real13 output
Vss	75	ground	Ground source(pad)
Vdd	76	Power	Power source(pad)
Out_fft_real14	77	output	Fft real14 output
Ou_fft_real15	78	output	Fft real15 output
Ou_fft_img0	79	output	Fft img0 output
Ou_fft_img1	80	output	Fft img1 output
Ou_fft_img2	81	output	Fft img2 output
Ou_fft_img3	82	output	Fft img3 output
Ou_fft_img4	83	output	Fft img4 output
Ou_fft_img5	84	output	Fft img5 output
Ou_fft_img6	85	output E 5 💦	Fft img6 output
Ou_fft_img7	86	output	Fft img7 output
Vss	87	ground	Ground source(pad)
Ou_fft_img8	88	output 1996	Fft img8 output
Ou_fft_img9	89	output	Fft img9 output
Ou_fft_img10	90	output	Fft img10 output
Ou_fft_img11	91	output	Fft img11 output
Ou_fft_img12	92	output	Fft img12 output
Ou_fft_img13	93	output	Fft img13 output
Ou_fft_img14	94	output	Fft img14 output
Ou_fft_img15	95	output	Fft img15 output
Vdd	96	Power	Power source(pad)
Vss	97	ground	Ground source(pad)
Nc	98		
Nc	99		
Nc	100		

(4) Features of our FFT chip design

Process	TSMC 0.25 1P4M		
die size excluding memory	$2600 \mu m \times 2600 \mu m$		
Gate count	146576		
FFT length	512,1024,2048,4096		
Maximum clock speed	50 MHz		
Package	100 QFP		
Power supply	2.5V		
Input/Output data bit	16 bits		

Table 6.2 Features of our FFT chip design

(5) Layout view of our variable length FFT chip excluding memory

Figure 6.13 Layout view of our variable length FFT chip