## LIST OF TABLES

| Table 2.1    | Parameters of DMT modulation in VDSL standard                           | 8  |
|--------------|-------------------------------------------------------------------------|----|
| Table 4.1    | Control signals at each stage in Figure 4.9                             | 32 |
| Table 4.2    | Comparison hardware of different pipelined FFT processor                | 38 |
| Table 4.3    | Comparison utilization of different pipelined FFT processor             | 38 |
| Table 4.4    | Comparison hardware of different memory based FFT processor             | 38 |
| Table 5.1    | Select addition control signal with radix 2, 4, 8                       | 50 |
| Table 5.2    | Select addition control signal with radix 4, 8                          | 52 |
| Table 5.3    | Select addition control signal with radix 8                             | 52 |
| Table 5.4    | Interval regions of twiddle factor design                               | 56 |
| Table 5.5    | Description of twiddle factor parameters                                | 57 |
| Table 5.6    | Some various coefficient values with different regions of 64-point FFT  | 60 |
| Table 5.7    | Description of SRAM parameters                                          | 65 |
| Table 5.8    | Function of eight types of commutator with the help of 64-point FFT     | 68 |
| Table 5.9    | Mode control of FFT with variable length                                | 72 |
| Table 5.10   | Representation of data address generation scheme at different stages of |    |
| fixed radix- | 8 for 512-point FFT                                                     | 74 |
| Table 5.11   | Representation of data address generation scheme at different stages of |    |
| mixed radix  | -8+2 for 1024-point FFT                                                 | 75 |
| Table 5.12   | Representation of data address generation scheme at different stages of |    |
| mixed radix  | -8+4 for 2048-point FFT                                                 | 76 |
| Table 5.13   | Description of coefficient address generation parameters in Figure 5.30 | 78 |
| Table 5.14   | Address (m) generation in $W^m$ at different stages for 512-point FFT   | 79 |
| Table 5.15   | Address (m) generation in $W^m$ at different stages for 1024-point FFT  | 80 |
| Table 5.16   | Address (m) generation in $W^m$ at different stages for 2048-point FFT  | 81 |
| Table 5.17   | Address (m) generation in $W^m$ at different stages for 4096-point FFT  | 82 |
| Table 5.18   | Memory assignment for a 512-point FFT                                   | 84 |
| Table 5.19   | Memory assignment for a 1024-point FFT                                  | 85 |
| Table 5.20   | Memory assignment for a 2048-point FFT                                  | 86 |

| Table 5.21 | Performance comparisons         | 93    |
|------------|---------------------------------|-------|
| Table 6.1  | FFT pin configuration           | . 107 |
| Table 6.2  | Features of our FFT chip design | . 110 |



## **LIST OF FIGURES**

| Figure 2.2 Wire pair coupling causing Near End Crosstalk and Far End Crosstalk       |
|--------------------------------------------------------------------------------------|
|                                                                                      |
| Figure 2.3 Schematic diagram of subcarrier in frequency domain of DMT system         |
| Figure 2.4 Block diagrams of DMT system                                              |
| Figure 3.1 Separation procedure for radix-2 algorithm                                |
| Figure 3.2 Butterfly structure of radix-2 DIF FFT                                    |
| Figure 3.3 Signal flow graph of complete decomposition of a 16 point radix-2 DIF FFT |
|                                                                                      |
| Figure 3.4 Butterfly structure for radix-4 algorithm                                 |
| Figure 3.5 Signal flow graph of complete decomposition of a 16 point radix-4 DIF FFT |
|                                                                                      |
| Figure 3.6 Butterfly structure of radix-8 algorithm                                  |
| Figure 3.7 Signal flow graph of a 8-point radix-8 DIF FFT 19                         |
| Figure 3.8 Butterfly structure of split radix-2/4 algorithm                          |
| Figure 3.9 Computation of a 16-point split radix-2/4 algorithm                       |
| Figure 3.10 Butterfly structure of radix-2/8 algorithm                               |
| Figure 3.11 A 16-point split radix-2/8 algorithm                                     |
| Figure 4.1 Pipeline architecture                                                     |
| Figure 4.2 A 16- point radix-2 single path delay feedback architecture               |
| Figure 4.3 Routing of data diagram for R2SDF (N=16)                                  |
| Figure 4.4 A 16- point radix-4 single path delay feedback architecture               |
| Figure 4.5 Timing diagram for R4SDF (N=16)                                           |
| Figure 4.6 A 16-point radix-4 multiple path delay commutator architecture            |
| Figure 4.7 Timing diagram for R4MDC (N=16)                                           |
| Figure 4.8 A 16- point radix-4 single path delay commutator architecture             |
| Figure 4.9 Delay commutator for R4SDC at each stage                                  |
| Figure 4.10 Action of switch in Figure 4.9 for 16-point FFT                          |
| Figure 4.11 Timing diagram for 16-point R4SDC                                        |

| Figure 4.12 Schematic diagram of memory architecture                                        | 34  |
|---------------------------------------------------------------------------------------------|-----|
| Figure 4.13 Single memory-based architecture block diagram                                  | 34  |
| Figure 4.14 Dual memory-based architecture block diagram                                    | 35  |
| Figure 4.15 Cache memory-based architecture block diagram                                   | 35  |
| Figure 4.16 Radix-2 memory-based FFT processor                                              | 37  |
| Figure 4.17 Radix-4 memory-based FFT processor                                              | 37  |
| Figure 5.1 Schematic block diagrams of internal architecture for proposed architecture      | :41 |
| Figure 5.2 Simulation of FFT Processor control signal                                       | 42  |
| Figure 5.3 Block diagram of serial to parallel design                                       | 43  |
| Figure 5.4 Signal flow of the radix-8 butterfly operation                                   | 44  |
| Figure 5.5 Block diagrams of implementation hardware with butterfly operation               | 45  |
| Figure 5.6 Schematic data path of the pipelined butterfly radix-8 processing element        | 46  |
| Figure 5.7 Schematic data path of the pipelined butterfly radix-4 processing element        | 47  |
| Figure 5.8. Schematic data path of the pipelined butterfly radix-2 processing element.      | 47  |
| Figure 5.9 Sharing addition hardware with radix- 2, 4, 8                                    | 49  |
| Figure 5.10 Sharing addition hardware with radix- 4, 8                                      | 51  |
| Figure 5.11 (a) Multiplication with constant twiddle factor $W_8^1$ (b) Multiplication with | h   |
| constant twiddle factor $W_8^3$                                                             | 54  |
| Figure 5.12 Implementation hardware of $\frac{\sqrt{2}}{2}$ in Figure 5.11                  | 54  |
| Figure 5.13 Complex multiplier with four real multiplications and two real additions.       | 55  |
| Figure 5.14 Complex multiplier with three real multiplications and five real additions      | 55  |
| Figure 5.15 Twiddle factor boundary diagram                                                 | 57  |
| Figure 5.16 Block diagram of a twiddle factor circuit design for fixed FFT length           | 61  |
| Figure 5.17 Twiddle factor mapping diagram for fixed FFT length                             | 61  |
| Figure 5.18 Block diagram of a twiddle factor circuit design for variable FFT length        | 63  |
| Figure 5.19 Concept of twiddle factor interchanging for variable FFT length                 | 63  |
| Figure 5.20 Sketch block diagram of our SRAM model                                          | 64  |
| Figure 5.21 Basic block diagram of dual port SRAM                                           | 65  |
| Figure 5.22 Detailed block diagram of our SRAM design                                       | 66  |
| Figure 5.23 Function of commutator with the help of 64-point data index                     | 68  |

| Figure 5.24 Eight types of read/write commutators                                                | 69    |
|--------------------------------------------------------------------------------------------------|-------|
| Figure 5.25 Schematic diagram of data address generator for variable length                      | 70    |
| Figure 5.26 Address generation scheme with different stages of 512-point FFT                     | 72    |
| Figure 5.27 Address generation scheme with different stages of 4096-point FFT                    | 72    |
| Figure 5.28 Address generation scheme with different stages of 1024-point FFT                    | 73    |
| Figure 5.29 Address generation scheme with different stages of 2048-point FFT                    | 73    |
| Figure 5.30 Block diagram of twiddle factor coefficient address generation                       | 78    |
| Figure 5.31 Rotation bit number scheme for <i>romaddr_mul</i> ( <i>n</i> ) with different stages | 78    |
| Figure 5.32 Workflow of the implementation hardware rules for address control                    | 87    |
| Figure 5.33 Address mapping for mixed radix-8+2 case                                             | 88    |
| Figure 5.34 Address mapping for mixed radix-8+4 case                                             | 88    |
| Figure 5.35 Eight types of address commutator                                                    | 89    |
| Figure 5.36 Read and write data mapping for mixed radix8+2 algorithm                             | 90    |
| Figure 5.37 Read and write data mapping for mixed radix8+4 algorithm                             | 91    |
| Figure 5.38 Data reorder design                                                                  | 93    |
| Figure 6.1 Fixed and mixed radix-8 FFT algorithm flowchart                                       | 96    |
| Figure 6.2 Comparison of input and output data for 512 –point FFT simulation with                |       |
| radix-8 algorithm                                                                                | 97    |
| Figure 6.3 Processing flow chart of simulation with twiddle factor and databus                   |       |
| wordlength                                                                                       | 99    |
| Figure 6.4 Simulation of the optimal wordlength for data bus and twiddle factor                  | . 100 |
| Figure 6.5 Flow chart of FFT chip design                                                         | . 101 |
| Figure 6.6 Simulation waveform of 512-point with read/ write address generation                  | . 102 |
| Figure 6.7 Simulation of 2048-point with input/output data and butterfly operation               | . 102 |
| Figure 6.8 Verification for FFT IC system block                                                  | . 103 |
| Figure 6.9 Verification for FFT IC flowchart                                                     | . 104 |
| Figure 6.10 Compare coding and decoding data to verify FFT IC design                             | . 105 |
| Figure 6.11 A sketch of FFT chip floorplan                                                       | . 106 |
| Figure 6.12 FFT package definition                                                               | . 106 |
| Figure 6.13 Layout view of our variable length FFT chip                                          | . 110 |