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Chapter 3 
Classification of FFT Processor Algorithms 

 

The computational complexity of the Discrete Fourier transform (DFT) is very 

high. It requires (N-1)2 complex multiplications and N(N-1) complex additions [5]. As 

an alternative to direct computation of the DFT, we can use Fast Fourier Transform 

(FFT) algorithms to efficiently calculate the DFT. Many computationally efficient 

FFT algorithms have been proposed. This chapter presents a brief collection of the 

FFT algorithms and their properties. 

 

3.1 Discrete Fourier Transform (DFT)  

 

Given a length N sequence x(n), a DFT generated complex sequence X(k) can be 

defined as 

If the periodic and symmetric properties of the twiddle factor  are exploited,  

then the computation of X[k] will be more efficient. 
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Two types of FFT algorithms are Decimation in Time (DIT) and Decimation in 

Frequency (DIF). The former is based on decomposition of the input sequence into 

smaller subsequences and the latter is based on dividing the output sequence into 

smaller subsequences [5]. The computational complexity of these two types are the 
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−

same. In this chapter, we only introduce the DIF FFT algorithms.  

 

3.2 Fixed Radix Algorithms 

3.2.1 Radix-2 DIF FFT Algorithm 

 

The radix-2 algorithm [5] is the most common fixed algorithm. This algorithm 

can only compute the data having a power of 2 length. The radix-2 butterfly 

calculation is very simple among the overall class of FFT algorithms. Each butterfly 

stage reads two data inputs and produces two outputs. The definition of an N-point 

DFT is given again as follows: 
1

0
[ ] [ ] 0,1,..., 1

N
nk

N
n

X k x n W k N
−

=

= =∑  

The input sequence, x(n) can be separated into the first half of the sequence and 

the second half. The mathematical expressions are defined in the following equations: 
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The even output represented in Equation (3.2) is obtained by the summation of 

the first half and the second half of the input sequence for each of the N/2 point DFTs. 
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N

The odd output represented in Equation (3.3) is obtained by the subtraction of the first 

half and the second half of the input sequence for each of the N/2 point DFTs and 

multiplying this subtractive result by . For the first stage, 2r and 2r+1 is 

substituted for index k in Equation (3.3), we get the Equation (3.4) and (3.5).  
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Figure 3.1 Separation procedure for radix-2 algorithm 

 

Figure 3.1 shows the basic concept of the separation procedure for the radix-2 

algorithm. This procedure can be applied recursively until  stages are 

produced. That is, the final stage has been reduced to 2-point DFT computations. 

2log N



  

Among the stages, there is a N/2 butterfly structure in each stage, as shown in Figure 

3.2. Radix-2 butterfly element requires only two complex adders and one complex 

multiplier. For this reason, its hardware cost is very low. 

The FFT operation has N inputs and N outputs, so we need N registers to store all 

the output data from all the butterfly stage calculations. If we use in-place 

computation, it will not be necessary to use N storage registers. To reduce registers, 

we reuse the same registers to store successive iterations of the results of each 

butterfly. This kind of calculation is called an in-place computation [5].  

The procedure shown in Figure 3.1 is depicted with a complete N=16-point 

example in Figure 3.3. It is obvious that when the input sequences of the DIF FFT 

algorithm are arranged in normal order, its output sequences are arranged in 

bit-reversed order after using the in-place computation method. 
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Figure 3.2 Butterfly structure of radix-2 DIF FFT 
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Figure 3.3 Signal flow graph of complete decomposition of a 16 point radix-2 DIF 

FFT  

 

 

 

 



( / 4) 1

/ 4
0

[4 1] {( [ ] [ ( / 2)]) ( [ / 4] [ (3 / 4)])}
N

n nu
N N

n
X u x n x n N j x n N x n N W W

−

=

+ = − + − + − +∑ (3.7) 

  

-15- 

N N N

3.2.2 Radix-4 DIF FFT Algorithm 

 

Each radix-4 butterfly stage reads four data inputs and produces four data outputs. 

For this reason, this algorithm provides higher computation speed compared to the 

radix-2 algorithm. Decomposing Equation (3.4) and (3.5) into four groups of 

frequency components: 4u, 4u+1, 4u+2, 4u+3, the radix 4 algorithm [6] can be 

obtained. 
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The butterfly signal flow graph of Equation (3.6) to Equation (3.9) is depicted in 

Figure 3.4, where the interval n is 0~(N/4)-1. We can observe that the radix-4 butterfly 

needs only the three complex multipliers , ,  and eight complex adders 

for each stage. Multiplication by the –j term causes the real and imaginary parts of the 

data to be exchanged. The signal flow graph in Figure 3.5 is illustrated for the 

computation of a16-point DFT using the radix-4 algorithm. 
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Figure 3.4 Butterfly structure for radix-4 algorithm 
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Figure 3.5 Signal flow graph of complete decomposition of a 16 point radix-4 DIF 

FFT 

 

3.2.3 Radix-8 DIF FFT Algorithm 

 

Based on the two algorithms presented in the previous subsection, we conclude 

that with increasing the radix, the cost in hardware will increase linearly, complexity 

will increase, and implementation difficulty will increase. However, when using 

higher radix algorithms (e.g. radix8), the number of complex multiplications 
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decreases [17]. In this case, the common direct mapping method of radix-r butterfly 

element operation is more complicated and has larger area. So, the implementation of 

the butterfly element structure is of great interest to decrease the hardware complexity 

for higher radix algorithm. The duty of a designer is how to arrange and design the 

data flow of the butterfly element structures to achieve small area and high 

performance. Here, we introduce radix-8 FFT algorithm. 

Each radix-8 butterfly stage reads eight data inputs and produces eight data 

outputs. Radix-8 algorithm [8] is expressed in Equation (3.10) through (3.17). 
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The above eight equations can be depicted with the butterfly structure in Figure 

3.6. This structure fully utilizes the twiddle factor with its properties of symmetry and 
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N
N N

N
N N

periodicity. It requires two constant multipliers , seven non-trivial 

complex multipliers and three trivial factors –j. The two constant multipliers with 

 can be replaced by 12 additions by using shift adders [9]. The 

computation of a 8-point DFT accomplished by the radix-8 algorithm is depicted in 

Figure 3.7. 
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Figure 3.6 Butterfly structure of radix-8 algorithm 
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Figure 3.7 Signal flow graph of a 8-point radix-8 DIF FFT 

 

3.3 Split Radix Algorithms  
 

References [7] and [10] present the fundamental idea of the split radix algorithm. 

The split radix algorithm specifies that an N-point DFT can be implemented by 

decomposing different parts of the input sequence using different algorithms. Split 

radix algorithms such as the radix-2/4 split algorithm, and the radix-2/8 split 

algorithm have yet to be presented. Although they require less complex multipliers, 

they are not often used in IC design due to their irregular structure. 

 

3.3.1 Split Radix-2/4 Algorithm  

 

This algorithm [10] utilizes a radix-2 algorithm to calculate the even-indexed 

output sequences and a radix-4 algorithm to calculate the odd-indexed output 



-

-

+

+

-

x[n]

x[n+N/4]

x[n+2N/4]

x[n+3N/4]
-j

X[4u+3]

X[4u+1]

n
NW

3n
NW

 

  

-20- 

sequences. This idea can be represented by the mathematical expression in Equation 

(3.18) through (3.20).  

For the even-indexed term, 
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For the odd-indexed term, 
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 Equation (3.19) and (3.20) can be represented by the following butterfly 

element structure including twiddle factor coefficients. Figure 3.9 is the computation 

of a 16-point split radix-2/4 algorithm. 
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Figure 3.8 Butterfly structure of split radix-2/4 algorithm 
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Figure 3.9 Computation of a 16-point split radix-2/4 algorithm 

 

3.3.2 Split Radix-2/8 Algorithm  

 

The split radix-2/8 algorithm [7] [9] utilizes a radix-8 algorithm to calculate the 

odd-indexed output instead of a radix-4 algorithm. The even-indexed output is 

calculated the same way as in the radix-2/4 algorithm. That is, the radix-2/8 algorithm 



( /8) 1
/8

0
5

/8

[8 5] {[( [ ] [ ( / 2)]) ( [ / 4] [ 3 / 4])]

[( [ /8] [ 5 /8]) ( [ 3 /8] [ 7 /8])]}

N
N

N
n

n nu
N N

X u x n x n N j x n N x n N W

x n N x n N j x n N x n N W W

−

=

+ = − + − + − + −

× + − + − + − +

∑  (3.24) 

  

-22- 

is based on the decomposition of the length-N DFT sequence into one length-N/2 DFT 

and four the length-N/8 DFTs.  

For the even-indexed term with one length-N/2 DFTs, 
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For the odd-indexed term with four length-N/8 DFTs,  
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To make the idea of the radix-2/8 algorithm easier to understand, the simplified 

butterfly structure is illustrated in Figure 3.10. A 16-point split radix-2/8 algorithm is 

shown in Figure 3.11. 

-j

X[8u+1]

X[8u+7]

X[8u+3]

X[8u+5]

x[n]

x[n+4N/8]

x[n+7N/8]

x[n+6N/8]

x[n+5N/8]

x[n+3N/8]

x[n+2N/8]

x[n+N/8]

-j

8/N
NW

8/3N
NW 7 n

NW

3n
NW

5 n
NW

n
NW

+

+

++

+

+

+

+

-

-

-

-

-

-

-

-

 
Figure 3.10 Butterfly structure of radix-2/8 algorithm 
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Figure 3.11 A 16-point split radix-2/8 algorithm 

 

 

 

 



  

3.4 Mixed Radix Algorithm 
 

The radices of the butterfly structure in different FFT computation stages need 

not be equal. Such an algorithm is called a mixed radix algorithm [11]. When the FFT 

size is not a power of radix-r, we can only use a mixed radix algorithm to design an 

FFT. For example, a 1024-point sequence is not a power of 8. Thus, we can combine 

three stages with a radix-8 algorithm and one stage with a radix-2 algorithm to operate 

the transform over a 1024-point data sequence. 
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