
國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

整合動態功率管理之平行資料路徑設計

The Design of a Parallel Data Path with Dynamic

Power Management

研究生：王志軒

指導教授：闕河鳴 博士

中華民國九十三年七月

整合動態功率管理之平行資料路徑設計

The Design of a Parallel Data Path with Dynamic Power

Management

研 究 生：王志軒 Student：Jyh-Shiuan Wang

指導教授：闕河鳴 博士 Advisor：Dr.Herming Chiueh

國 立 交 通 大 學
電 信 工 程 學 系 碩 士 班

碩 士 論 文

A Thesis

Submitted to Department of Communication Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Communication Engineering

July 2004

Hsinchu, Taiwan

中華民國九十三年七月

 i

��������	
��
�����

����� � � � � � � � � � � � �����	
 � � ��
 � � �

�������

� 	
 � �
 � �

������������

� � 	 � � � �VLIW��� � � � � � � � ! " # $ % &�' () * + , -) . / �

() , + �0 1 2 3 4	 � 5�� � 6� VLIW�� � 7 1 8 9 � : ; < = > ?

@ A B C D (Platform-Based SoC Design) E 1 2 F G 5 H I (Reconfigurable

Architecture)J K L 5M N O P Q R �� �DSP�5! " S T UV W 6X Y Z [VLIW�

� � \] � ^ < = > ? @ A B C D 5J _ ` �� � 6a b c : DSP d e 5f 1

g ` �� � K h i j k l d e C D 5m n o pq j � r 5 VLIW �� � s s t

; u v	 � w o E vd e Z [x 5y z 6j { : y z | } ~ � 2 5� x � � 6v

	 � w o � } ~ ; � � � t � 5# x � � �vd e Z [x � Z � c : ! " # $ %

&� F j } ~ � � # x 5� � �; { � � � � J 6� � � � v	 � w o E vd e

Z [x K } ~ 5# x � � 6� � � � � � � E � ¡ ¢ { £ � ¤ � # x � � ¥

¦60 § ¨ ; � © ª « ¬ � ­ ® 3 4	 � 5 VLIW �� � 5< ¯ ° ± ² ³ p´

µ ¶ · 6� � | ¸ [¹ º 5 EDA » e 63 ¼ ½ � ¾ 1 [¿ À ¹ � � � � E �

¡ ¢ 5C D Á Â 6Ã � � J K º 5C D E Ä Å 7 � Z [UMC 0.18 um CMOS Æ

Â Ç O ¿ È ~ 6j X É � � K Ê Ë 56; Ì Í # x Î Ï ¡ Ð 5Ñ Y J 3 ¹ 6 �́

 ii

µ < ¯ ° ± ² ³ 5# x � � º Ò Ó 5Ô Õ 6Ö × $ E # x � � ¶ Ø | Ù � 1 `

Ú6j ­ º µ Û G 5° ± ² ³ ¶ VLIW �� � � Ü Ý ¨ Þ [; � ^ < = > ? @

A B C D E 1 2 F G 5H I ��

 iii

The Design of a Parallel Data Path with Dynamic Power

Management

Student: Jyhshiuan Wang Advisor: Herming Chiueh

Institute of Communication Engineering

National Chiao Tung University

Hsinchu, Taiwan 30050

Abstract

Very long instruction word (VLIW) processor is a multi-issue processor with

many functional units. In recent research [1-3], many VLIW processors can provide

the functions of baseband digital signal processing (DSP) calculations such as discrete

cosine transform (DCT), finite impulse response (FIR) filter, and motion estimation.

These general purpose DSP calculations are very common in platform-based design

and reconfigurable architecture for wireless communications and multi-media

applications. So if a VLIW processor is applied as the microprocessor in

platform-based design or reconfigurable architecture, some general purpose DSP

blocks can be replaced by VLIW processor and the design complexity of hardware in

platform-based design and reconfigurable architecture can be reduced. However,

power dissipation in VLIW processor can be a serious problem due to the low code

density and hardware utilization. In this thesis we applied dynamic power

management techniques in the 16-bits parallel data path which is similar to a data path

 iv

in a three-issue VLIW processor to reduce the overhead of power dissipation. Two

dynamic power managements: clock gating and voltage separation are chosen since

they are suitable for the parallel data path. Clock gating can reduce the power

dissipation caused by low code density in pipeline registers and voltage separation can

reduce power wastage in functional units that is caused by low hardware utilization.

Furthermore, we also explored an appropriate design flow for these two power

managements with current electronic design automation (EDA) tool. All the design

and verification are completed with UMC 0.18 um process. Power analysis is

accomplished with five test benches. The power dissipation of the parallel data path is

successfully reduced and the power and performance of the data path become scalable

as we expected. A VLIW processor with such a data path is provided as a good option

for microprocessor in platform-based design and reconfigurable architecture.

����

����

����

����

����

����

����

����

����

����

 v

� �� �� �� � ����

����������������Ã � � � 1 ß à ¸ È ~ 6á â ã ä å � 5	
 � �
 � � æ ç 6{ £ è ¿ é

¬ � � ê ë 5ì � E 	 í 6î ï ; ��5ð Â J ñ ò ó ô � 6õ ö 7 $ ÷ _ 5

ø
 6Z � $ à ¸ ù ú K ñ ò 5û � �ü · 6õ ö < ý þ ���� � � � � ¡ Ð

$ � 6Ü 	 � � ù ò
 ��� í � 5� o � �
 �� � � � ä � ��

����Ö � � ã ä å � 5� � E � � 6� ² � ¿ � � � ð � � � 6Ì Í � ã ä å

� 5É � � � � �� Ò �! " # �$ % & �' () �* + , �- � . 6* ()

� � � É / � 0 1 60 ; ��K { 2 Ë Ø é 3 � 54 5 6 7 3 �µ · | ã ä å �

� $ 8 9 6: �É �; < = 6E ; ? @ A B C D À Ä > 5�? �@ � 6º � A P

5B C � ª D 6	 � ; E ç �F J 6$ Ü ð 5 G H 6| 	 � 5���I J K

L l ��

����Ì Í M � � ä å N � 6å å ��

����

����

����

����

����

����

����

����

����

����

����

����

����

 vi

Content:
Chapter 1 Introduction...1
Chapter 2 Background and Related Research.......................................7

2.1 Architecture of the Parallel Data Path..7
2.2 Dynamic Power Management..12

2.2.1 Clock Gating ...12
2.2.2 Voltage Separation ..14

Chapter 3 System Level Design ...19
3.1 Parallel Data Path with Dynamic Power Management..................................19
3.2 Instruction Set Design..21
3.3 Clock Gating Implementation..22
3.4 Voltage Separation Implementation ...24

Chapter 4 Design Flow and Simulation Result28
4.1 CAD Flow..28
4.2 Test Configuration..38
4.3 Simulation Result...39

4.3.1 Clock Gating Simulation...39
4.3.2 Test Bench Simulation ..46

Chapter 5 Power Analysis ..51
5.1 Benchmark Definition..51

5.1.1 Matrix Addition...51
5.1.2 Idle Process ...53
5.1.4 Matrix Calculation with Functional Unit MAC..................................54
5.1.5 Matrix Calculation with Functional Unit ALU...................................55

5.2 Simulation Result...57
5.2.1 Matrix Addition...57
5.2.2 Idle Process ...59
5.2.3 Matrix Calculation with All Functional Units61
5.2.4 Matrix Calculation with Functional Unit MAC..................................64
5.2.5 Matrix Calculation with Functional Unit ALU...................................66
5.2.6 Comparison ...69

5.3 Summary..72

Chapter 6 Conclusion ...74
Bibliography:..76
Appendix A Instruction set summary ...79
Appendix B Instruction format ...80

 vii

List of Figures:
Figure 1.1. An example of a platform-based design ..2
Figure 1.2.a. An example of reconfigurable architecture...3
Figure 1.3. A reconfigurable architecture with VLIW processor.4
Figure 2.1.1. Block diagram of the parallel data path..9
Figure 2.1.2. Normal pipeline operation..10
Figure 2.1.3. Pipeline operation when data dependence occurs11
Figure 2.1.4. A not-taken branch instruction operation ...12
Figure 2.2.1 Illustration of clock gating...13
Figure 2.2.2. Timing-critical voltage islands [19]..15
Figure 3.1.1. The parallel data path with power management unit..............................20
Figure 3.2.1. Normal instruction format ..21
Figure 3.2.2. Instruction with power control bits...21
Figure 3.3.1. Clock gating implementation ...22
Figure 3.3.2. Clock gating on the pipeline registers of ALU.......................................23
Figure 3.3.3. Clock gating operation timing diagram..23
Figure 3.4.1. Voltage Separations ..25
Figure 3.4.2. Implementation of voltage separation on ALU25
Figure 3.4.3. Implementation of voltage separation with high vt transistors26
Figure 4.1.1. Cell-base design flow ...29
Figure 4.1.2. Basic auto place and route flow..30
Figure 4.1.3. Design flow of this implementation ...31
Figure 4.1.4. A clock gating example ..32
Figure 4.1.5. Timing diagram of Figure 4.1.4..33
Figure 4.1.6. Design flow for this implementation of auto P&R.................................34
Figure 4.1.7. Layout of the parallel data path with dynamic power management.......36
Figure 4.3.1. Simulation of instruction fetch ...40
Figure 4.3.2. The simulation of pipeline operation with power management units45
Figure 4.3.3. Matrix A and matrix B..46
Figure 4.3.4 The operation flow of this chip..47
Figure 4.3.5 The operation of WRITE mode ...48
Figure 4.3.6 Insertion of matrix A ...48
Figure 4.3.7 Insertion of matrix B ...49
Figure 4.3.8. EXECUTION mode ...49
Figure 4.3.9. Matrix A after execution...50
Figure 4.3.10. TEST mode...50
Figure 5.2.1. Total power dissipation of matrix addition...58

 viii

Figure 5.2.2. The power dissipation of the three functional units58
Figure 5.2.3. Total power dissipation of idle process ..60
Figure 5.2.4. Total power dissipation of the three functional units61
Figure 5.2.5 Total power dissipation of matrix calculation with all functional units ..63
Figure 5.2.6 Total power dissipation of the three functional units63
Figure 5.2.7. Total power dissipation of matrix calculation with MAC65
Figure 5.2.8. Total power dissipation of the three functional units66
Figure 5.2.9. Total power dissipation of matrix calculation with ALU68
Figure 5.2.10. Total power dissipation of the three functional units68
Figure 5.2.11. The power dissipation of matrix calculation ..70

 ix

List of Tables:

Table 2.1.1. The instructions corresponding to the three functional units8
Table 2.1.2. Description of pipeline stage..9
Table 4.1.1. EDA tools used in this implementation..35
Table 4.1.2. Circuit summaries ..35
Table 4.1.3. The definitions of the IO pads..37
Table 4.3.1. Definitions of the signals in Figure 4.3.1...41
Table 4.3.2 Definitions of the signals in Figure 4.3.2..42
Table 4.3.3. The assemble language of the program A=A+B......................................46
Table 5.1.1 The assemble language of Matrix Addition ..52
Table 5.1.2. The assemble language of matrix calculation with all functional units ...53
Table 5.1.3 The assemble language of matrix calculation with MAC.........................54
Table 5.1.4. The assemble language of calculation with ALU55
Table 5.2.1. Power distribution of matrix addition (without power management) :....57
Table 5.2.2. Power distribution of matrix addition (with clock gating) :....................57
Table 5.2.3. The power analysis result of matrix addition...59
Table 5.2.4. Power distribution of idle process (without power management) :59
Table 5.2.5. Power distribution of idle process (with clock gating) :59
Table 5.2.6. The power analysis result of idle process ..61
Table 5.2.7. Power distribution of matrix calculation (without P.M.) :62
Table 5.2.8. Power distribution of matrix calculation (with clock gating) :62
Table 5.2.9. The power analysis of matrix calculation with all functional units64
Table 5.2.10 Power distribution of matrix calculation with MAC (without P.M.) :64
Table 5.2.11 Power distribution of matrix calculation with MAC (with C.G.) :..........64
Table 5.2.12. The power analysis of calculation with MAC..66
Table 5.2.13. Power distribution of matrix calculation with ALU (without P.M.)67
Table 5.2.14. Power distribution of matrix calculation with ALU (with C.G)67
Table 5.2.15. The power analysis of matrix calculation with ALU68

 1

Chapter 1 Introduction
Platform-based design is a design approach of reuse methods for embedded

system in SoC[4][5][6]. Generally, a platform-based design contains common

architecture and the supporting technologies (Intellectual Property libraries and

develop tools) [5]. The common architectures typically include a microprocessor,

memory and the communication bus. The Intellectual Property (IP) of the IP libraries

are all designed with the same microprocessor and bus protocol. The initial

configuration formed by the common architectures can be extended with functional

units (F.U.) for different application. The functional units, are embedded DSP blocks

such as discrete cosine transform (DCT), fast fourier transform (FFT), finite impulse

response filter (FIR) filter, motion estimation…etc, can be available from the IP

libraries of the platform or designed by the application developer. For example, the

common architectures with DCT and motion estimation can be used for video

application, or with FFT and FIR filter can be used for wireless communication. An

example of a platform-based design is shown in Figure 1.1. The microprocessor,

memory and bus are the common architecture in this platform. The other devices

include the functional units for application-specific extension, and other important

hardware components such as I/O controller and bus bridge. The major character of

platform-based design is to reduce the design time. Since all the devices are based on

the same bus protocol and microprocessor, and they can be quickly integrated.

A platform-based design is accomplished by software and hardware co-design.

Designer will partition the functionality of applications into the software and

hardware and choose appropriate microprocessor and other hardware blocks. The

software implementation ran in the microprocessor and other coprocessor, and the

hardware part will be executed on the customized signal processing functional units.

 2

In recent research [5], the microprocessor has become the most important elements in

a platform-based design such as ARM [7] and Philips Nexperia [8].

Figure 1.1. An example of a platform-based design

Some general purpose DSP blocks such as DCT, motion estimation, motion

prediction, FIR filter, and viterbi decoder…etc, are common blocks for many

applications. If a platform-based design includes those general DSP blocks, the

platform-based design can be used to implement a reconfigurable architecture. Figure

1.2 gives an example. In Figure1.2.a, the platform is operating an application for 3G

wireless communication where a viterbi decoder is required. If the platform will

operate another application for MPEG decode where a DCT is required, user only has

to reconfigure the data path of the hardware blocks and implement other software on

the microprocessor as shown in Figure1.2.b. One advantage of reconfigurable

architecture is that the used hardware and data path are reconfigurable. This advantage

provides a great flexibility for wide different application. Furthermore, if a

reconfigurable architecture includes power management unit, system can scale the

power and performance of the reconfigurable architecture. When the required

performance is high, more functional units on a reconfigurable architecture will be

active and consume larger power. While the power consumption of the reconfigurable

 3

architecture has to be reduced, system can reduce active hardware and turn them off

with power management unit. So the power and performance of a reconfigurable

architecture can be scalable if there is power management unit on the architecture.

Figure 1.2.a. An example of reconfigurable architecture

Figure 1.2.b. An example of reconfigurable architecture

Very long instruction word (VLIW) processors is a kind of multi-issue processor

and is suitable of high-performance real-time DSP application [9]. In recent research

[1][2][3][9], many VLIW processors can provide the functions of those general DSP

blocks. So a VLIW processor can be used to replace the microprocessor and some

general DSP blocks in a reconfigurable architecture and this is shown in Figure 1.3. If

the VLIW processor is well-defined, such a design shown in Figure 1.3 can simplify

 4

the design of reconfigurable architecture since the complexity of the interconnection

in the hardware blocks is reduced.

Figure 1.3. A reconfigurable architecture with VLIW processor.

However, some disadvantages such as low code density and low hardware

utilization exist in general VLIW processors [1][9]. Very long instruction word is the

characteristic of VLIW processor and pipeline registers will be longer. Low code

density means that the power wasted in pipeline registers and low hardware utilization

also means large power wastage in unused functional units. The problem in power

wastage will especially be serious when executing idle process. When the general

DSP functional units are not replaced by VLIW processor, the unused one can be

turned off by power management unit on the reconfigurable architecture, and the

power and performance of reconfigurable architecture can be scalable. However,

while these general DSP blocks are replaced by VLIW processor, the reconfigurable

architecture will lose the scalability of power and performance due to the power issue

in VLIW processor. To overcome such a problem it is necessary to apply power

management on VLIW processor. If power management method can be applied in

VLIW processor and overcome those power issue, VLIW processor is able to provide

 5

a good option for microprocessor in reconfigurable architecture.

In recent years, some power management methods for SoC design are proposed,

such as Variable Threshold Voltage CMOS (VTCMOS) [10][11], Multi-Threshold

CMOS technology (MTCMOS) [12][13][14][15], Clock Gating [16][17], Dynamic

Voltage Scaling (DVS) [18][19][20], Voltage Islands [21][22], Adaptive Supply

Voltage and Body Bias (ASB) [23][24][25]. From the ideas of these power

management methods, the clock gating and voltage separation are suitable to be

applied in VLIW processor. Clock gating is a useful method to reduce dynamic power

dissipation by reducing unnecessary clock switching. Low code density will cause a

lot of power wastage in VLIW processor due to large unnecessary clock switching on

pipeline registers. So clock gating can be used to reduce the overhead of low code

density. Furthermore, low hardware utilization rate in VLIW processor means that

many functional units are idle during program operation. Those idle functional units

will cause large static power consumption in advance process. If the power supply of

the functional units in VLIW processor can be separated and managed individually,

the system can turn off the power supply of the unused functional units and reduce the

overhead in static power consumption due to the low hardware utilization.

In this thesis we designed a 16-bits parallel data path which contain three

common functional units in VLIW processor, they are ALU, Load/Store and MAC

[2][3][9]. Then the data path is used to simulate the data flow in a three-issue VLIW

processor and apply clock gating and voltage separation on this data path. Clock

gating will disable the unnecessary clock switching on the pipeline registers and

voltage separation will turn off the power supply of idle functional units. So even the

code density and hardware utilization are low, there will not be a great overhead in

power dissipation. Furthermore, the performance and power of this data path will

become scalable after applying these two power management mechanisms. The power

 6

dissipation will be according to the required performance. If the performance

requirement is high, all the functional units in this data path will all be used and the

power dissipation will be high. If the required performance is normal, only some of

the functional units are used and the unnecessary power dissipation on idle elements

will be reduced by the dynamic power management mechanisms. So the power and

performance of the parallel data path will depend on the system requirement. This

characteristic of power and performance scalable will be suitable for a data path of a

powerful VLIW processor in a reconfigurable architecture.

This thesis focused on the power management design and implementation in the

parallel data path which is for test vehicle. The remaining of this thesis is organized as

the following.

In Chapter 2 the background and related research are presented. The architecture

of the parallel data path for test vehicle is presented. The clock gating and voltage

separation for dynamic power management are briefly explained.

In Chapter 3 the detail design of all the system is presented. The implementation

of power management and the impact on the instruction set architecture design of the

parallel data path are presented.

In Chapter 4 a detail electronic design automation (EDA) design flow of

implementation will be presented.

In Chapter 5 the power simulation of the parallel data path with clock gating and

voltage separation is presented.

In Chapter 6 a conclusion is addressed.

 7

Chapter 2 Background and Related Research
 In this chapter, the architecture of the parallel data path is presented which is the

test vehicle for the dynamic power management. In addition, the applied dynamic

power management methods will be explained. The functional units, the instruction

sets design and the pipeline operation of the parallel data path are shown in Section

2.1. The detail of the applied dynamic power management, clock gating and voltage

separation, are presented in Section 2.2.

2.1 Architecture of the Parallel Data Path

 The very long instruction word (VLIW) processor is one type of multi-issue

processors. This is a method to decrease the cycle per instruction (CPI) by issuing a

fixed number of instructions per cycle. In VLIW processor, the instruction parallelism

(ILP) exploiting and data hazards detection are accomplished by compiler. So the

instruction issue and the instruction scheduling are all static and the hardware cost is

much less than the other type of multi-issue processors such as superscalar. In the

recent years, VLIW processor is broadly applied in the market. Such as Trimedia

TM32 [26] and Transmeta Crusoe [27] are all VLIW type processor. And Philips

Nexperia, one of the leading platform for multimedia, is based on MIPS with a VLIW

processor. The major advantage of VLIW processor is the low cost of hardware. But

on the other hand the complexity of compiler is high, this is the trade-off in VLIW

processor.

In this research, the test vehicle for dynamic power management is a 16-bits

parallel data path with three functional units. Like a VLIW processor, this data path

issues three instructions per clock cycle and the ILP is explored by compiler. When

the data path is ready to operate, who will compile program and write the instructions

into the instruction memory. Then the data path will fetch the instruction form

 8

instruction memory every clock cycle with a program counter. All the instructions are

executed in five stage pipeline which are instruction fetch (IF), instruction decode

(ID), execution (EX), memory access (MEM), and write back (WB) respectively. The

three functional units are Arithmetic logic unit (ALU), load/store (L/S) unit, and

multiply-accumulator (MAC) unit. ALU can execute some simple arithmetic and

control instructions. The load/store unit consists of an adder which is used to calculate

data address in memory. It can also execute add and subtract operation. MAC unit

contains a multiplier and an adder. It can be used to execute accumulator and

multiplier operation. The block diagram of the data path is shown in Figure 2.1.1. The

instructions corresponding to the three functional units are summarized in Table 2.1.1.

The pipeline stages in Figure 2.2.1 are listed in Table 2.1.2. In the following

paragraph we will introduce normal pipeline operation and analyzing two special

cases that impact the compiler and pipeline operation in this data path.

Table 2.1.1. The instructions corresponding to the three functional units

Functional Unit Instructions

ALU ADD, SUB, AND, OR, XOR, SLL, SRL, SRA, SLT,

JR, JUMP, JAL, BEQ, HALT

LOAD / STORE ADDI, SUBI, LOAD, STORE

MAC MAC, MUL

 9

Figure 2.1.1. Block diagram of the parallel data path

Table 2.1.2. Description of pipeline stage

Pipeline register – IF The first stage in pipeline that is used to save the

instruction fetched from memory.

Decoder That decode the OP code of instruction in Pipeline

register – IF, and decide the register file accessing.

Control unit1 That controls the access to register file of every

instruction.

Register file A 16 x 32 register which save data during program

execution.

Pipeline register – EX That save the instruction after decode and the

necessary data from register file.

Pipeline register – MEM That saves the result of execution for memory

access.

Memory This is a 16 x 256 one port SRAM.

Control unit2 That controls the access to register file of every

instruction

 10

Pipeline register – WB That save the data after execution and the data from

memory for writing back to Register file

An instruction will be saved in Pipeline register – IF at first cycle when it is

fetched from instruction memory. Decoder will decode the op code of the instruction

and read out the necessary data from register file at second cycle. Then the functional

units will deal with the data with the result of decoding at third cycle. At the next

cycle, this data path will access memory if a load/store or control instruction is

fetched. At the final cycle the data path will write back the data generated in third and

forth cycle to register file. Every instruction is executed in five clock cycles and the

timing diagram is shown in Figure 2.1.2.

Clock cycle

Instruction 1 2 3 4 5 6

Instruction i IF ID EX MEN WB

Instruction i+1 IF ID EX MEN WB

Instruction i+2 IF ID EX MEN

Instruction i+3 IF ID EX

Figure 2.1.2. Normal pipeline operation

� � Figure 2.1.2 show the timing diagram of the data path when there is no data

dependence. If there are data dependences between two continue instructions, these

two instructions can’t be fetched continually or the latter one will read the wrong data.

Data dependence will be detected when compiling program, and the compiler will

schedule the instruction to avoid this situation. But if the data dependence still exist

after scheduling. The compiler will insert stall instructions. An example is shown

bellow:

 11

Instruction i : ADDI R1, R2, R3

Instruction i+1 : ADDI R4, R1, R5

Instruction i produces a result that will be used by Instruction i+1. If Instruction i+1 is

decoded before Instruction i write back the result, then a data hazard will happen. For

avoiding this situation two stall instructions should be inserted between these two

instructions by compiler. The instruction execution timing diagram is depicted in

Figure 2.1.3.

Clock cycle

Instruction 1 2 3 4 5 6

Instruction i IF ID EX MEN WB

Stall Instruction Stall Stall Stall Stall Stall

Stall Instruction Stall Stall Stall Stall

Instruction i+1 IF ID EX

Figure 2.1.3. Pipeline operation when data dependence occurs

Beside data dependence, there is still one case that compiler will insert stall

instruction when compiling program. That is the situation when a control instruction

like branch is generated. A control instruction may change the program counter while

a control instruction is fetched and this will be known in ID stage. So before a control

instruction is decoded the next instruction shouldn’t be fetched. Figure 2.1.4 show the

timing diagram of this case, the compiler will also insert a stall instruction after

branch instruction.

 12

Clock cycle

Instruction 1 2 3 4 5 6

Branch IF ID EX MEN WB

Stall Instruction Stall Stall Stall Stall Stall

Instruction i+1 IF ID EX MEN

Instruction i+2 IF ID EX

Figure 2.1.4. A not-taken branch instruction operation

2.2 Dynamic Power Management

 The concept of dynamic power management in proposed design is to provide a

scalable performance according to a real-time system requirement. In such design,

some dynamic power management mechanisms such as multi-threshold CMOS

(MTCMOS) technology [10], clock gating [14], voltage islands [19] [20], are

proposed in recent years. We use two power management methods, clock gating and

voltage separation, which are suitable for parallel data path in VLIW processor. Clock

gating is an efficient solution to reduce the power dissipation caused by clock and

voltage separation is a sub-step of voltage islands. In the following section, we will

briefly explain those two power management.

2.2.1 Clock Gating
In the modern high performance VLSI design, the power dissipation due to clock

tree is always the domination of dynamic power. This is because the clock tree

represents a very large load due to that the clock signal switches all the time. As the

incensement in operation frequency, the power consumed by clock can grow ever

larger. But in fact, a portion of this power consumption is wasted, and this is caused

 13

by unnecessary switching activity. For example, if the input data and output data of a

flip-flop are identical, the switching of clock just wastes power. Actually, not all the

clocked elements in a chip change its data all the clock cycle. And even when the data

in a storage element remains unchanged, the switching of clock consumes significant

power.

 In a digital design, if the clock signal can be controlled, then the power wastage

caused by unnecessary switching can be saved. A popular and effective way to do this

is clock gating which is one method of dynamic power management and can eliminate

unnecessary switching by gating clock signal with qualifying signals. For example, if

the gated clock is through an AND gate which is shown in Figure 2.2.1. Only when

something useful is computed in a given clock cycle, the qualifying signal will be set

to high or it remains low. Then the clock to a clocked element is controlled, and the

unnecessary clock switching can be avoided.

Figure 2.2.1 Illustration of clock gating

 14

2.2.2 Voltage Separation
Voltage islands is addressed by IBM in 2002 [19]. It is a dynamic power

management method and is used to optimize the power supply of individual

functional units in SoC design. Voltage separation is a sub-step of voltage islands and

can be accomplished with current EDA tools. In this thesis, we will apply voltage

separation on the three functional units so that the power supply of these functional

units can be managed individually. In this section, we will briefly explain voltage

islands and voltage separation.

In early years, large functional units were not integrated on a single chip, so that

different functional units could be supplied by different voltage level and the power

supply could be optimized. However, with the era of SoC designs come, more and

more functional units can be integrated on a single chip. As a result, if a chip is still

supplied by fix level voltage. The chip will lose the optimization and the flexibility of

the power supply in hybrid solution.

The voltage islands technique is to supply multi-level voltage in a single chip.

Commonly a complex SoC design consists of a number of functional units, but not all

of which always active at any given time. For achieving the optimization in power

supply, functional units in a SoC design will be separated into different islands

according to its power characteristics and every island has its own power control unit.

By this unit system can turn of the power supply if the corresponding island is idle,

and turn on again when it’s time to active. An example of voltage islands is shown in

Figure 2.2.2 [19]. In this chip, the most performance-critical functional units need

voltage supply of 1.2v to meet the require performance, and the rest elements in this

chip including memory could meet the timing requirement by 1.0 voltage supply.

 15

Figure 2.2.2. Timing-critical voltage islands [19].

Without new technology, the entire chip is supplied by 1.2v voltage due to the

requirement of the high performance element. But that waste power, especially when

the functional units only active in few percentage of all the operation time. This

picture shows a solution of the problem described above. The high performance

elements are separated into a voltage island and are supplied by individual voltage

1.2v. The rest of the design could be only supplied by voltage 1.0v. Due to the vdd2

term in the active power equation, the power of the design can be greatly reduced.

Furthermore, voltage islands technique can also scale the power supply of each island.

For an example, if an island only active for 2% of the operation time, then the power

management unit of voltage islands can turn off the power supply at the rest 98% of

the operation time. Then the power consumption can be optimized.

Voltage islands is a useful technology to reduce to power consumption of a SoC

design. But there are some difficulty existing in implementation. In the following

paragraph these issues will be introduced.

 16

A traditional method of implementation for SoC design includes the following

steps:

� Architecture design

� Functional implementation (RTL)

� Synthesis and timing consideration

� Timing verification and simulation

� Floor planning and physical design

� Final timing verification and tape out

When implementing a voltage islands design, there will be some additional

consideration that will affect each step in the design flow. The following will briefly

describe the requirement consideration.

� Functional partition: The designer should partition the functional components

of the design into different islands according to its power characteristic, and each

individual voltage island should be written into individual RTL module. This step

should consider the performance requirement and the period of active and

inactive of each functional component. For example, if component A and

component B require the same voltage supply level, active in the same period

and the duration of the inactive period exceed the minimum time for power

on-to-off and off-to-on of switching. Then these two components could be

classified into the same islands.

� Synthesis and timing consideration: Once the RTL has been completed, the

designer can begin to synthesis the design. When synthesis and optimize the

design, the effect caused by signal traveling different voltage level should be take

into consideration. In the other words, the major problem is the delay calculation

of the signal level shifting. Take the design shown in Figure 2.2.2 for example.

The signal path from 1.0v level to 1.2 level or from 1.2v level to 1.0v level

 17

should include a signal level shifter, and the designer should make sure that the

delay caused by the level shifter won’t affect the correction of operation.

Furthermore, each island has its working voltage range, so that the timing

calculation of each island should be different, and the voltage difference also

represent difference in the calculation of clock skew. The problem described

above almost caused by different islands and its different voltage level, and these

effect should be taken into account when synthesis.

� Physical planning and implementation: In order to enable independent power

supply, each island should be placed isolated from others, and designer should

arrange the power supply of the power management and the power control of

each island carefully. These two components shouldn’t be influenced by the

power switching of each island.

� Logic simulation: When simulating the logic functionality of a voltage islands

design, the output of the power-off islands should be observed as unknown. The

observed state is important for verifying the functionality of the power

management and the power control in the power on-to-off and off-to-on

switching.

The voltage islands technology provide an opportunity to reduce significant

power consumption and achieve the power optimization for SoC’s. But when

implementing voltage islands there are some issue should be taken into consideration,

and these considerations will affect the design flow. Some of each are even not

supported by EDA tool, and should be accomplished by manufacturing test now. This

is still a big challenge for voltage islands implementation.

In this thesis, we implement the functional partition and voltage separation which

are sub-steps of voltage islands and can be accomplished with current EDA tool. In

the parallel data path, the three functional units are separated into three different areas

 18

in the same chip and their voltage supplies are individual connected. Thus, if any

functional unit is idle, the power management units can detect the situation and turn

off the power supply. The voltage separation operates in the two levels of on and off

with the same voltage level supply, so the design can be accomplished without signal

level shifting consideration. The detailed design will be presented in next chapter.

 19

Chapter 3 System Level Design
In this Chapter, we will present the power management units for clock gating and

voltage separation in this data path in Section 3.1. Actually, these power management

units are portion of the pipeline registers and are designed by being based on

instruction. So the instruction set architecture design is different from the traditional

one and this will be presented in Section 3.2. Finally, the detail design of clock gating

and voltage separation in this parallel data path will be presented in Section 3.3 and

3.4.

3.1 Parallel Data Path with Dynamic Power Management

The power consumption in a chip can be separated into two parts, the dynamic

power and the static power. In this data path, the power consumption of clock tree is

the domination of the dynamic power, and the power dissipated by the clock of the

pipeline registers occupy about 50 percent among the power consumption caused by

clock tree. Due to the low code density, the power wastage in the pipeline register can

be large. In order to save the dynamic power dissipation of this part, we apply clock

gating technique to control the clock for each pipeline registers. Furthermore, there

are three major functional units in this parallel data path. When this data path is

operating, not all functional units will be active or even some of which will keep in

idle during operation due to the disadvantage of low hardware utilization. Then there

will be power wasting if we keep supplying power to the idle functional unit.

However, the implementation of clock gating in the pipeline register at ID stage will

save the dynamic power consumption here. But leakage power remains, and can be

significant in high performance technologies. Because of the characteristic of low

hardware utilization in parallel data path and for better power optimization we

implement voltage separation on the three functional units.

 20

Figure 3.1.1 shows the block diagram of the parallel data path combined with

power management unit for clock gating and voltage separation. The power

management includes power management registers and gate control logic. The first

two power management registers consist of 6 bits. The others only contain 3 bits.

Every power management register uses 3 bits for clock gating. If a stall instruction is

fetched, this mechanism will disable the clock with the control logic gate. And the

extra 3 bits in the first two power management registers are used to control the power

supply of the three functional units. If any functional unit is standing by, we can make

use of the power management register to detect the situation and turn off the power

supply for them. Thus we can save the static power of the functional units when those

units are idle. The static power of the three functional units occupies about 20 percent

of all the static power for the data path.

Figure 3.1.1. The parallel data path with power management unit

 21

3.2 Instruction Set Design

This data path is a 3-address machine. The instruction format corresponding to a

traditional 3-address machines includes only four fields: one that specify the operation,

two that specify the source data address in register file, one that specify the address

where to put the result. This format is shown in Figure 3.2.1. But the instruction

format of this data path is a little different form the traditional, because we take the

power consumption into consideration. One field that specifies the power control of

clock gating and power supply for the functional units is contained in the instruction

format of this data path beside the four fields mentioned above. This format is shown

in Figure 3.2.2.

OP Code Source and Destination Address

Figure 3.2.1. Normal instruction format

OP Code Power Control Source and Destination Address

Figure 3.2.2. Instruction with power control bits

 The field of power control contains two bits, of which one control the clock

gating and the other control the power supply of the functional units. These two bits

will be decided by compiler. If the Instruction i+1 is not a stall instruction, the bit of

the power control for clock controlling in Instruction i will be set to 1, otherwise it

will be set to 0. The decision for other bit will depend on the distribution of stall

instructions after a program is fully compiled. If the number of the continuing stall

instructions is large enough and the corresponding functional units will stand by long

time enough, then compiler will set the bit for functional unit power supply control of

these continuing stall instructions to 0. Otherwise if the functional unit doesn’t stand

by for long enough time, the bit will be set to 1. We have to emphasize that the power

 22

control of each instruction are all decided by compiler, and the hardware only operate

power management mechanism according to the data in power control field.

When instruction is executed, the part of power control will be saved in power

management registers as mentioned in Section 3.1 and the power management of the

data path will be according to the data in this part.

3.3 Clock Gating Implementation

In this parallel data path, the pipeline registers of the three functional units

occupy fifty percent among the clocked elements. When a stall instruction is fetched,

the clock switching on pipeline register only causes power wastage. Even turn off the

clock in this period the executing result won’t be influenced, but the power wastage

can be saved. So we implement the clock gating to all the pipeline registers as shown

in Figure 3.3.1. Figure 3.3.2 shows an example in functional unit ALU of this

implementation.

Figure 3.3.1. Clock gating implementation

 23

Figure 3.3.2. Clock gating on the pipeline registers of ALU

 In Figure 3.3.2, the pipeline register-IF and pipeline register-EX is the first two

stage in pipeline. The pipeline register IF is used to save the instruction fetched from

the instruction memory and the pipeline register EX will save the result after

instructions are decoded. The power management register will supply the qualifying

signal and control the clock to the next pipeline register. The operation timing

diagram of Figure 3.3.2 is shown in Figure 3.3.3.

Figure 3.3.3. Clock gating operation timing diagram

 24

 As shown in Figure 3.3.3, all the pipeline registers are all trigged by negative

edge of clock and all the power management registers are positive trigged. When the

instruction fetched is not a stall, the power management register will be set to low.

Then the clock signal can pass through the OR gate and the pipeline register EX will

read the value at the next negative trigger. If the instruction fetched is a stall

instruction, the power management register will be set to high and the signal to trigger

pipeline register EX will remain in high state. Then the stall instruction will not be

pipelined and the data in pipeline register EX will be kept until the next useful

instruction is fetched.

3.4 Voltage Separation Implementation

The voltage separation in the three functional units is shown in Figure 3.4.1. In

this chip, the three individual functional units are supplied by different voltage source

and the power supply is controlled by the power management unit mentioned in

Section 3.1. Figure 3.4.2 shows an example of functional unit ALU. The data path is

an architecture with five pipeline stages. Before data arrives at functional unit, there

are two pipeline stages and we will make use of these two stages to define the control

of power supply. As shown in Figure 3.4.2, the pipeline register is used to save the

data during instruction execution. The 2 flip-flop of power management register-IF

and power management register-EX will arrange the state that will control the power

supply. Only the state “00” the power supply of ALU will be turned off.

 25

Figure 3.4.1. Voltage Separations

Figure 3.4.2. Implementation of voltage separation on ALU

 26

Figure 3.4.3. Implementation of voltage separation with high vt transistors

A complete voltage separation design is shown in Figure 3.4.3. Two transistors

with high Vt valve and larger size will be applied to control the power supply of the

functional units in the parallel data path. This design should be completed with the

process which supports multi Vt transistor. However, the present process provided by

CIC [28] does not support this technology and to implement the power supply

controller in present process is very difficult in the present environment. Due to the

factor above, we implement the power management inside the chip and the power

controller is external connected.

When implementing voltage separation, the overheads of circuit charging and

discharging are critical factors. One of these overheads is the charging and

discharging timing. If the required timing is too long to charge the functional units to

stable before data arrives, the operation won’t be correct. In recent research [15], the

stable required timing to charge such a design as shown in Figure 3.4.3 is within 4ns.

 27

This settling time is reasonable for one or two cycles in a low-power system. The

other overhead is the power dissipation caused by circuit charging and discharging. If

the power dissipation for charging and discharging is too large, the overhead here

could be possibly larger than the static power we save. Due to these two overheads,

the control of power supply is very important. We have to reemphasize that although

the control signal for power supply is decided by the data in the power management

registers, but the data is also a part of instruction and is generated by compiler not by

hardware. So the compiler will keep a great flexibility in state arrangement which is

used to control the power supply of functional units. But such a compiler should take

the impact of charging and discharging into consideration. In the future we will

estimate the necessary time to charge and discharge functional units and the power

dissipation per charging and discharging by the experiments with this chip. After

finishing the experiments, the compiler will be designed according to the results.

 28

 Chapter 4 Design Flow and Simulation Result
The parallel data path with clock gating and voltage separation is completed with

cell-base design method. However, there should be some extra steps beside the

traditional design flow when implementing the circuit with voltage separation and

clock gating. In section 4.1 we will show the design flow of this chip implementation

and explain why there are some differences from the traditional one. In section 4.2 we

will introduce how to test this chip. Finally, the functionality simulation of this chip is

shown in section 4.3.

4.1 CAD Flow

Figure 4.1.1 shows the cell-base design flow, it contains the following steps:

1. Architecture design: This is the first step to design an integrated circuit (IC).

The designer should decide the architecture which includes the detail data path

and spec.

2. RTL: After the architecture is decided, the designers can begin to write the

hardware descript language (HDL) and verify it’s functionality.

3. Synthesis: If the verification of functionality is correct, the designers can

synthesis their design and constrain the timing, delay, and area to their design to

meet the required performance. After this step is completed, the simulation with

gate delay can be performed.

4. Physical design: After the result of gate-level simulation is correct, the physical

design can be started. This step includes 2 sub-steps. The first is automatic

placement & routing (P&R) which can be completed with EDA tool and create

the layout of the design. In general automatic placing and routing (P&R) EDA

tool, the basic design flow is formed by the flowing step: specify global net

connection, floor planning setup, timing setup, placement and optimization,

 29

synthesis clock tree, connect global nets, routing and optimization, and stream

out. This flow is shown in Figure 4.1.2. The second is post-layout simulation

which contain the gate delay and wire delay consideration.

5. Physical verification: If the result of the simulation is correct, the designer can

begin physical verification which includes design rule check (DRC), layout

parameter extraction (LPE), and power analysis. These are also the least three

steps.

��������� 	
���	 ����
�
�
���� ���

�����

�
�������� ������� ����� ��	 � ���

�! ���	 ��
"��� �

#���	
�$ �
���
"�%��� ����� ��	 � ���

����	 �'&�� �"�"
"('������	

) ����	 $ � �� �����	*��� ����� �+	 � �,�

�
���� ���-� ���
�����
"��.

�/)10

) �,23
��/������� ���� �

4 ��&�
�����	

564/�

�! ���	 ��
"��� �

) �� !��� ���"���
�� � 7 � �"��	 � ���

) �� !��� �"���%
�
���� ���

Figure 4.1.1. Cell-base design flow

 30

Figure 4.1.2. Basic auto place and route flow

 The traditional design flow descript above can handle a lot part of digital design.

But when implement the circuit with voltage separation and clock gating there should

be some extra steps. Figure 4.1.3 shows the design flow of the parallel data path with

voltage separation and clock gating implementation. The remaining of this section

will present the differences.

 31

8:9<;�=?> @ A�;�@ B%9CA:D%A!E+> F1G

HJILK

M'A�=ON,P?> Q%93E+> RSB?T N,@ > Q%G

UOV G*@ =*A1EC>�E

W N,@ A�XYT A�P?A�T6E+> RSB*T N�@ > Q1G

8LB*@ Q[Z?T N�;�A�\[9<Q%B%@ A

]^QOEC@�X�T N V Q%B%@_E+> RSB?T N,@ > Q%G

I:A!E+> F%GS9<B*T AL;�=?A�;�`

Ka]�b

]^Q%c:A�93N,GON�T V E+>�E

d3N,Z?ALQ%B%@

e-dfK

UOV G*@ =*A1EC>�E

]�= V E+> ;�N�T^D%A!E+> F%GgN�G?D[P?A�9<> hC> ;�N,@ > Q%G

i�B*G?;�@ > Q%G?N�T/ZON,9<@ > @ > Q%GSjON�E+A�DSQ%GZ?Q1ckA�9

l T Q*;�`gF*N�@ > G*Fm;�Q%G/EC@ 9CN�> G*@

i�B*G?;�@ > Q%G?N�T/B%G?> @�E'N,GOD[Z*Q%c:A�9RgN,GON�F*A�RmA�G*@�B*G*> @�E3F%9<Q%B*Z*> G*F

i�B%G?;�@ > Q%GON�T/B*G*> @�EfZ?T N�;�A�RmA�G*@

]^Q%c:A�9fT > G?A:N,9<9CN�G*F*A�RmA�G*@

]^Q%c:A�9fRgN,GON�F*A�RmA�G*@�B%G?> @�EZ?T N�;�A�RmA�G*@

l T Q%;�`Sj*B*hYhCA�9aZ?T N�;�A:;�Q%GOEC@ 9+N�> G*@

Figure 4.1.3. Design flow of this implementation

� Functional partition based on power: When implement voltage separation

design, the designer should partition the architecture into different parts based on

the power characteristic of each partition before writing the HDL. The partition

 32

consideration includes the active period of each parts and their required

performance. In this data path, we implement the voltage separation on the three

functional units. So that the data path is partitioned into five parts, the functional

unit ALU, the functional unit LS, the functional unit MAC, the memory, and the

rest elements. Each part is written into individual module with verilog code, and

this will help when separating each part in physical design stage.

� Set clock gating constraint when synthesis: The delay of the control signal

must be constrained if a design contains gated clock. Figure 4.1.4 gives an

example. There are two flip-flops in this example. FF1 is negative edge trigged,

and FF2 is positive edge trigged. The output of FF1 will pass through a

combinational logic network and form the control signal of the gated clock to

FF2. Figure 4.1.5 shows the timing diagram of this example. In the ideal case,

there won’t be any problem. But if the delay of the combinational logic network

is too long, then the gated clock will not operate correctly. Thus the delay of the

control signal must be constrained when synthesis

Figure 4.1.4. A clock gating example

 33

Figure 4.1.5. Timing diagram of Figure 4.1.4

� Power line arrangement when P&R: This is a sub-step of floor planning setup.

Designer should arrange the power line distribution in his chip. The step will

decide the power pad placement and affect the placement of the functional units.

� Functional units and power management units grouping when P&R: The

standard cells corresponding to different functional unit should be grouped

individually, so that the EDA tool can separate functional units and place them as

the designer wish. We also group the standard cells of the power management

units for clock gating. Because these cell should be placed in the center of the

data path for better synthesis of clock tree.

� Functional units placing when P&R: Designer should specify the area to place

the functional units. Each functional unit should be placed closely to its power

supply for reducing the length of power nets, so that this step will be influenced

by the power line arrangement.

� Power management units placing when P&R: The power management units

should not be placed in the area of the three functional units, and it’s better to be

placed in the center of the data path for better clock tree synthesis.

 34

� Clock buffer place constraint when P&R: When EDA tool synthesizes clock

tree, designer should note that the clock buffer can’t be placed in the three areas

of the functional units. Because the clock tree shouldn’t be affected by the power

switching of the three functional units. So that when clock tree is synthesized,

the area of the clock buffer placement must be constrained.

The last five differences are about the automatic P&R, and are shown in Figure

4.1.6.

U Z*A�;�> h V F*T Q1jON�T/G?A�@^;�Q%G*G*A�;�@ > Q%G

U A�@ B*Zmh<T Q*Q%9aZ?T N,G*G*> G?F

U A�@ B%Zm@ > Rm> G?F

]^T N�;�A�RmA�G*@6N,GOD[Q%Z*@ > Rm> n�N,@ > Q%G

UOV G%@ =?A!E+>�E3;�T Q*;�`m@ 9<A�A

l Q%G%G?A�;�@^F%T Q%jON�T/G?A�@�E

e�Q1B*@ > G?FmN�G?DSQ%Z%@ > Rm> n�N�@ > Q%G

U @ 9CA�N�RoQ%B*@

i�B*G?;�@ > Q%G?N�T/B%G?> @�E'N,GODkZ?Q%c:A�9RgN,GON�F*A�RmA�G*@�B%G?> @�E3F%9<Q%B*Z*> G?F

i^B%G?;�@ > Q%GON�T/B*G*> @�E�Z?T N�;�A�RSA�G%@

]^Q%c:A�9�T > G?A:N,9<9CN,G?F*A�RmA�G*@

]^Q%c:A�9�RgN,GON�F*A�RmA�G*@�B%G?> @�EZ?T N�;�A�RmA�G%@

l T Q*;�`mj*B%h<h<A�9aZ?T N�;�AL;�Q1G/EC@ 9CN�> G%@

Figure 4.1.6. Design flow for this implementation of auto P&R

 The EDA tools used in this implementation are summarized in Table 4.1.1. The

whole design is synthesized by Synopsys Design analyzer, and the layout is generated

by using Synopsys Apollo. The characteristic of the chip is summarized in Table 4.1.2,

and the layout is shown in Figure 4.1.7.

 35

Table 4.1.1. EDA tools used in this implementation

Step EDA tool Provider

RTL verilog Cadence

Behavior simulation Debussy Novas

Synthesis Design analyzer Synopsys

Gate level simulation Debussy Novas

Auto P&R Apollo Synopsys

Post-layout simulation Debussy Novas

DRC Calibre-DRC Metor Graphic

LVS Apollo Synopsys

LPE Calibre-LPE Metor Graphic

Power analysis NANOSIM Synopsys

Table 4.1.2. Circuit summaries

Technology UMC 0.18um Mixed Signal (1P5M) CMOS

Library Artisan SAGE-X Standard Cell Library

Pad Core Size 2.2 mm x 1.8mm

Core Size 1.535 mm x 1.073 mm

On-Chip Memory 1 7x64 single port SRAM
4 16x64 single port SRAM
1 16x256 single port SRAM

Gate Count 45328

Work Clock Rate 40 MHz

Input Pad 40 pins

Output Pad 22 pins

Power Pad 22 pins

Power dissipation 20 mW

 36

Figure 4.1.7. Layout of the parallel data path with dynamic power management

 There are six memories in this chip. The 7x64 and the four 16x64 signal port

SRAM are instruction memory, which will save the instructions for execution. The

16x256 signal port SRAM is the data memory, which will save the required data for

program execution. All memories in this chip are supplied by power supply 1, and the

functional unit ALU is supplied by power supply 2, the L/S is supplied by power

supply 3, the MAC is supplied by power supply 4, and the rest elements are supplied

by power supply5.

 This chip contains 84 IO pads, in which there are 40 input pads and 22 output

pads and 22 power pads. The definitions of the IO pads are summarized in Table

4.1.3.

 37

Table 4.1.3. The definitions of the IO pads

IO pad IO Function

clk Input The clock signal to this chip

reset Input The reset signal to this chip

data_in Input This is a 16-bits input, user can insert data into

the memory in this chip with these ports.

IS_sellect Input This is a 5-bits input. There are five

instruction-memory in this chip, this input port

will specify which will be written or tested.

address_mode Input This is a 8-bits input, user can specify the address

of the write or test target memory by this input

port.

I_RM Input This is a 1-bit input. “0” mean that the writing or

testing target is instruction-memory. “1” means

that the writing or testing target is data memory

or the register file.

R_M Input This is a 1-bit input. “0” mean that the write or

test target is instruction-memory. “1” means that

the write or test target is data memory or the

register file.

data_out Output This is a 16-bits input. User can get the data in

the memory or register file form this port in

TEST mode.

VI_ALU Output The output of the power management for ALU,

this signal will control the power supply to ALU.

 38

VI_LS Output The output of the power management for LS, this

signal will control the power supply to LS.

VI_MAC Output The output of the power management for MAC,

this signal will control the power supply to MAC.

TM Input Input port for scan chain test

test_en Input Input port for scan chain test

test_si Input Input port for scan chain test

test_so output Output port for scan chain test

Power 1 Power The power supply to the memory in this chip

Power 2 Power The power supply to the ALU in this chip

Power 3 Power The power supply to the LS in this chip

Power 4 Power The power supply to the MAC in this chip

Power 5 Power The power supply to the data path in this chip

Pad power Power The power supply to the IO pad

4.2 Test Configuration

 In this section we will present the test configuration. For the testability of this

chip, this data path can be operated in three different modes. They are WRITE mode,

EXECUTION mode, and TEST mode. When the chip is going to execute a program,

the chip will operate in the order of WRITE, EXECUTION, and TEST. The action of

the three modes and the test method will be listed in the following.

� WRITE mode: In this mode, the user can insert instructions into the instruction

memory and the data into the data memory for execution from the input port

data_in. With the combination of the input port IS_sellect, address_mode, I_RM,

R_M, user can decide which memory element is the writing target.

 39

� EXECUTION mode: After inserting the instruction and the required data into

the chip, the data path can begin to execute the program. In this mode, VI_ALU,

VI_LS, VI_MAC, will show the state saved in the power management units of

voltage separation. User can use logic analyzer to analyze the three outputs, and

compare if the outputs are identical to the result of compiler. When the data path

is in execution mode, user can also use power meter to measure the power

dissipation of the five power supply for this chip.

� TEST mode: After the program execution is finished, user can test the data in

the data memory and the register file in this chip. With the combination of the

input port address_mode, I_RM, and R_M, user can read out the data from the

output port data_out and use a logic analyzer to exam the output if the execution

result is correct.

4.3 Simulation Result

In this section, we will show the functionality simulation of this chip. These

simulations include the clock gating operation and a program execution of two

matrixes addition. In section 4.3.1, the clock gating operation in five stage pipeline is

shown. In section 4.3.2, a test bench of two matrix addition is executed and the three

operation mode simulation of this chip is shown. All simulations are post-layout

simulation and the operation frequency is 40Mhz.
4.3.1 Clock Gating Simulation

In this section, we will simulate the functionality of clock gating and the control

signal for voltage separation in the data path to make sure that after implementing

these two dynamic power management, the instruction execution and the pipeline

operation are correct. Firstly, the following instructions are executed.

 40

1. SUBI R5 R4 #1

2. ADDI R1 R0 #1

3. LW R28 R4 #0

4. STALL

5. LW R29 R5 #0

6. STALL

7. STALL

Cursor: 810827.028 Marker:0 Delta:-810827.028 x 10ps

815000 820000 825000 830000 835000

0 5000000 10000000 15000000

4 5

4 5 1 28

4 0 4

1

2

29

5

0

Figure 4.3.1. Simulation of instruction fetch

 Figure 4.3.1 shows the post-layout simulation result of the instruction fetch and

present the operation of clock gating in this stage. OP_LS_IF, RD_LS_IF, RS_LS_IF

and imm_LS_IF are the pipeline registers for functional unit L/S in instruction fetch

stage. They are used to save the instruction fetched from instruction memory. The

more detail definition of the signals in Figure 4.3.1 is summarized in Table 4.3.1.

 41

Table 4.3.1. Definitions of the signals in Figure 4.3.1

clk_LS The clock signal of the pipeline registers for functional unit

L/S in IF stage

OP_LS_IF The pipeline registers used to save the OP code of

instruction. Number 4 for instruction SUBI. Number 5 for

ADDI and number 2 for LW

RD_LS_IF The pipeline registers used to save the destination register

address

RS_LS_IF The pipeline registers used to save the source register

address

imm_LS_IF The integer used to calculate data address in memory

 Only when the instruction fetched is not a stall instruction, the clock signal

switches, or it remain in high state. The simulation result is identical to that shown in

Figure 3.3.2. The clock gating operate correctly, and the pipeline register only reads

the instructions that really be executed.

 The clock gating operates correctly in single pipeline stage. In the next, the

simulation of pipeline operation with clock gating and the state detection for voltage

separation will be presented in Figure 4.3.2. An example of the functional unit L/S is

shown. The data flow in all the pipeline registers will also be shown. The signals in

G1 represent the pipeline registers in IF stage. G2 represent the pipeline registers in

ID stage. G3 represent the pipeline registers in MEM stage. G4 represent the pipeline

registers in WB stage, and the detail definitions of the signals in Figure 4.3.2 is

summarized in table 4.3.2.

 42

Table 4.3.2 Definitions of the signals in Figure 4.3.2

clk_LS The gated clock signal for pipeline registers in IF

stage

RD_LS_IF The pipeline registers used to save the destination

register (RD) address

RS_LS_IF The pipeline registers used to save the source register

(RS) address

imm_LS_IF The integer used to calculate data address in memory

G1

OP_LS_IF The pipeline registers used to save OP code of the

instruction fetched

clk_LS The gated clock signal for pipeline registers in EX

stage

WB_LS_EX A part of the instruction decoded result which

controls the access to register file at WB stage

MEM_LS_EX A part of the instruction decoded result which

controls the access to MEMORY at MEM stage.

EX_LS_EX A part of the instruction decoded result which decides

the operation at EX stage.

RDdata_LS_EX The pipeline registers which save the data at

destination address. If the instruction is STORE, the

data here will be written to MEMORY.

RSdata_LS_EX The pipeline registers which save the data at source

address and is used to calculate the data address in

memory

G2

imm_LS_EX The integer used to calculate data address in memory,

 43

 and the data in this part is directly form imm_LS_IF

clk_LS The gated clock signal for pipeline registers in MEM

stage

WB_LS_MEM The data in this part is directly form WB_LS_EX

MEM_LS_MEM That control the access to memory and the data in

this part is directly from MEM_LS_EX

RDdata_LS_MEM The data in this part is directly form RDdata_LS_EX.

If the instruction is STORE, the data here will be

written to MEMORY

result_LS_MEM The result of the functional execution and the data in

this register maybe the data address in memory or the

data which will be written back to RD

G3

RD_LS_MEM The data in this part is directly from RD_LS_EX.

clk_LS The gated clock signal for pipeline registers in WB

stage

WB_LS_WB The data in this part is directly form WB_LS_MEM

and controls the access to register file

result_LS_WB The data in this part is directly from

result_LS_MEM. If the instruction is ADDI or SUBI,

the data will be written back to RD

MEMdata_LS_WB The data in this part is from memory. If the

instruction is LOAD, the data will be written back to

RD.

G4

RD_LS_WB The data in this part is directly from RD_LS_MEM

and represents the address of RD

 44

G5 voltage_separation_LS That represents the condition of the functional unit.

“1” means that the functional unit is busy now. “0”

means that the functional unit is idle and the power

supply can be turned off

 In Figure 4.3.2, following instructions are executed :

1. STALL

2. ADDI R4 R0 #15

3. STALL

4. STALL

5. STALL

6. STALL

7. STALL

8. STALL

9. SUBI R3 R1 #6

10. STALL

 Only the instruction fetched is not a stall instruction, the gated clock to each

pipeline register will switch. In this case, all the instructions between instruction

ADDI R4 R0 #15 and instruction SUBI R3 R1 #6 are all stall. In this period, the

functional unit is under idle situation. So after instruction ADDI R4 R0 #15 is

executed, the signal voltage_separation_LS is set to low. This means that the power

supply to this functional unit could be turned off. Before instruction SUBI R3 R1 #6

is fetched, the signal voltage_separation_LS is set to high. This means that the

functional unit need to be charge immediately.

 45

C
u
r
s
o
r
:

4
8
3
6
0
0

M
a
r
k
e
r
:
0

D
e
l
t
a
:
-
4
8
3
6
0
0

x

1
0
p
s

4
8
0
0
0
0

4
9
0
0
0
0

5
0
0
0
0
0

5
1
0
0
0
0

5
2
0
0
0
0

0
2
0
0
0
0
0

4
0
0
0
0
0

6
0
0
0
0
0

8
0
0
0
0
0

1
0
0
0
0
0
0

0
5

0
4

0

0
1
5

0 0
1
5

0
4

0 0
1
5

0
4

0 0 0 0

4 3 1 6

3

0 0 0

6 3

3

0 0

6
5
5
*

3

3 1
5

1
4 4

Figure 4.3.2. The simulation of pipeline operation with power management units

 46

4.3.2 Test Bench Simulation
In the following we will show a simulation of a program execution. The program

is the addition of two matrixes : A = A + B, in which A and B are 5x5 matrixes as

shown in Figure 4.3.3. The elements in matrix A and B are individually saved in data

memory from address 0 to 24 and address 25 to 49. The assemble language of this

program is shown in table 4.3.3, and the program will use the functional unit ALU and

L/S.

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

24191494
23181383
22171272
21161161
20151050

A

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

4944393429
4843383328
4742373227
4641363126
4540353025

B

Figure 4.3.3. Matrix A and matrix B

Table 4.3.3. The assemble language of the program A=A+B

 ALU LS MAC
0 ADDI R31 R0 #24

1

2

3 LW R21 R31 #0

4 LW R2 R31 #25

5 LW R3 R31 #1

6 LW R4 R31 #26

7 LW R5 R31 #2

8 LW R6 R31 #27

9 LW R7 R31 #3

10 LW R8 R31 #28

11 ADD R21 R21 R2 LW R9 R31 #4

12 ADD R3 R3 R4 LW R10 R31 #29

13 ADD R5 R5 R6

14 ADD R7 R7 R8 SW R21 R31 #0

15 ADD R9 R9 R10 SW R3 R31 #1

16 SW R5 R31 #2

 47

17 SW R7 R31 #3

18 SW R9 R31 #4

19 SUBI R31 R31 #1

20 BEQ R31 # -19

21

22 HALT

23 HALT

As mentioned in Section 4.2, the first step is to insert the instructions shown in

Table 4.3.3 into the instruction memory, and the elements of A and B into the data

memory inside the chip. The next is to execute the instruction which just inserted.

After the execution is finished, the test mode starts. The result of the program will be

read out from the output port data_out. This operation flow is shown in Figure 4.3.4.

When the signal WRITE is accessed, the chip is under the WRITE mode and the

signal data_in is the instruction and matrix elements which are inserted. When the

signal EX is accessed, the chip is under EXECUTION mode. And when the signal

TEST is high, the chip is under TEST mode.
Cursor: 2508.108 Marker:0 Delta:-2508.108 x 10ps

0 200000 400000 600000 800000

0 200000 400000 600000 800000

0 0 *

0 0 * 0 0 0

0

Figure 4.3.4 The operation flow of this chip

 When this chip is under WRITE mode, the instructions and the required data are

inserted. Figure 4.3.5 shows the operation of WRITE mode. When the signal I_RM is

 48

accessed, the instruction is inserted and the signal IS_select means which instruction

memory will save the instruction form the input port data_in. The signal

address_mode means the address of the specified instruction memory that will save

the input instruction. When the signal I_RM is low, the input data will be saved into

the data memory. In this period, the elements of A and B are inserted and the insertion

of matrix A and matrix B are shown in Figure 4.3.6 and Figure 4.3.7 respectively. The

elements of matrix A will be saved in the data memory from address 0 to address 24,

and the elements of matrix B will be saved in the data memory form address 25 to

address 49.

Cursor: 0 Marker:0 Delta:0 x 10ps

100000 200000 300000 400000

0 200000 400000 600000 800000

0 0 0 0 0 0 *

0 0 0 0 0 0 *

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

4

Figure 4.3.5 The operation of WRITE mode
Cursor: 0 Marker:0 Delta:0 x 10ps

300000 310000 320000 330000 340000 350000

0 200000 400000 600000 800000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

110 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

4

Figure 4.3.6 Insertion of matrix A

 49

Cursor: 0 Marker:0 Delta:0 x 10ps

360000 370000 380000 390000 400000 410000

0 200000 400000 600000 800000

* 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

* 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

* 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

50

49

4

50

Figure 4.3.7 Insertion of matrix B

 After WRITE mode, the EXECUTION mode begins. Figure 4.3.8 shows the

voltage_separation_ALU, voltage_separation_LS, and voltage_separation_MAC

signals in EXECUTION mode. The three signals are generated from the power

management unit for voltage separation in this chip. The program only use ALU and

LS, so the voltage_separation_ALU and voltage_separation_LS will be set to high,

and voltage_separation_MAC is set to low. This means that the power control outside

the chip should supply voltage to the functional units ALU and L/S, and the power

supply of MAC can be turned off.
Cursor: 0 Marker:0 Delta:0 x 10ps

500000 600000 700000 800000

0 200000 400000 600000 800000

Figure 4.3.8. EXECUTION mode

 50

 The last step is to test the result of program execution. Figure 4.3.9 shows matrix

A after execution, and these elements will be saved in the data memory from address

0 to address 24. User can read the elements out in TEST mode, and this operation is

shown in Figure 4.3.10. The signal address_mode means that the address of the data

in the data memory will be read out by the output port data_out. As shown in Figure

4.3.10, the execution result is correct.

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=

7363534333
7161514131
6959493929
6757473727
6555453525

A

Figure 4.3.9. Matrix A after execution

Cursor: 900175.493 Marker:0 Delta:-900175.493 x 10ps

900000 910000 920000 930000 940000 950000 960000

0 200000 400000 600000 800000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

31 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73

Figure 4.3.10. TEST mode

 51

Chapter 5 Power Analysis
 This chapter presents the power analysis of the parallel data path with dynamic

power management according to the verification flow which is mentioned in Chapter

4. There are five benchmarks simulated. The first is matrix addition. We will compare

the difference of power dissipation with and without power management. The second

is idle process. In this case, all the clock for pipeline register are disabled and all the

functional units can be turned off. This is also the best case for power management

simulation. The third, forth, and the last benchmark will all execute the same program.

In the third, all the functional units are used. In the forth, only MAC and L/S are used.

In the last, only ALU and L/S are used. In the last three benchmarks, the power

dissipation, performance, and energy consumption of the three cases are shown,

compared, and discussed. In Section 5.1, the benchmarks are defined. In Section 5.2,

the results and comparison of simulation are presented. Finally, a summary is

presented in Section 5.3. All the simulation is completed with Synopsys Nanosim and

the operation frequency is 40MHz.

5.1 Benchmark Definition

 In this Section, each benchmark will be defined and the assemble language of

each benchmark will also be shown.

5.1.1 Matrix Addition
The first benchmark is addition of two matrixes : A = A + B, in which A and B

are 10x10 matrixes. The assemble language of this program is shown in Table 5.1.1.

The stall instructions occupy about 56%. This benchmark use two functional units

that are ALU and L/S, and the execution time is 7812 ns.

 52

Table 5.1.1 The assemble language of Matrix Addition

 ALU LOAD/STORE MAC
0 ADDI R31 R0 #180

1

2

3 LW R21 R31 #0

4 LW R2 R31 #1

5 LW R3 R31 #2

6 LW R4 R31 #3

7 LW R5 R31 #4

8 LW R6 R31 #5

9 LW R7 R31 #6

10 LW R8 R31 #7

11 LW R9 R31 #8

12 LW R10 R31 #9

13 LW R11 R31 #10

14 LW R12 R31 #11

15 LW R13 R31 #12

16 ADD R21 R21 R2 LW R14 R31 #13

17 ADD R3 R1 R4 LW R15 R31 #14

18 ADD R5 R1 R6 LW R16 R31 #15

19 ADD R7 R1 R8 LW R17 R31 #16

20 ADD R9 R1 R10 LW R18 R31 #17

21 ADD R11 R1 R12 LW R19 R31 #18

22 ADD R13 R1 R14 LW R20 R31 #19

23 ADD R15 R1 R16 SW R21 R31 #0

24 ADD R17 R1 R18 SW R3 R31 #1

25 ADD R19 R1 R20 SW R5 R31 #2

26 SW R7 R31 #3

27 SW R9 R31 #4

28 SW R11 R31 #5

29 SW R13 R31 #6

30 SW R15 R31 #7

31 SW R17 R31 #8

32 SW R19 R31 #9

33 SUBI R31 R31 #20

34 BEQ R31 #1

 53

35

36 HALT

37 HALT

5.1.2 Idle Process
The case of Idle Process is to execute nothing, and the whole data path is under

stand by situation. This is the best case for power management simulation. Because

the clock of the pipeline registers can all be turned off, so as the power of the three

functional units. We will execute the case for 5000 ns, and presented the difference of

with and without power management.

5.1.3 Matrix Calculation with All Functional Units

The benchmark is matrix calculation of C = 4A + 3B, D = 4A -3 B. In which A,

B, C, D are all 5 X 5 matrixes. The assemble language of this benchmark is shown in

Table 5.1.2. All the function units are used, and this is the best instruction scheduling

of the program in this parallel data path. The execution time of this case is 2912ns and

the stall instructions occupy about 35%.

Table 5.1.2. The assemble language of matrix calculation with all functional units

 ALU LOAD/STORE MAC
0 ADDI R31 R0 #40

1 ADDI R30 R0 #4

2 ADDI R29 R0 #3

3 LW R21 R31 #0

4 LW R2 R31 #1

5 LW R3 R31 #2

6 LW R4 R31 #3 MUL R22 R21 R30

7 LW R5 R31 #4 MUL R23 R2 R29

8 LW R6 R31 #5 MUL R24 R3 R30

9 LW R7 R31 #6 MUL R25 R4 R29

10 ADD R11 R22 R23 LW R8 R31 #7 MUL R26 R5 R30

11 SUB R12 R22 R23 LW R9 R31 #8 MUL R27 R6 R29

 54

12 ADD R13 R24 R25 LW R10 R31 #9 MUL R28 R7 R30

13 SUB R14 R24 R25 SW R11 R31 #50 MUL R2 R8 R29

14 ADD R15 R26 R27 SW R12 R31 #51 MUL R3 R9 R30

15 SUB R16 R26 R27 SW R13 R31 #52 MUL R4 R10 R29

16 ADD R17 R28 R2 SW R14 R31 #53

17 SUB R18 R28 R2 SW R15 R31 #54

18 ADD R19 R3 R4 SW R16 R31 #55

19 SUB R20 R3 R4 SW R17 R31 #56

20 SW R18 R31 #57

21 SW R19 R31 #58

22 SW R20 R31 #59

23 SUBI R31 R31 #10

24 BEQ R31 #1

25

26 HALT

27 HALT

5.1.4 Matrix Calculation with Functional Unit MAC
The program is the same with that in Section 5.1.3. But only functional units L/S

and MAC are used. The assemble language of this benchmark is shown in table 5.1.3.

The execution time of this case is 3060 ns and the stall instructions occupy about

46%.

Table 5.1.3 The assemble language of matrix calculation with MAC

 ALU LOAD/STORE MAC
0 ADDI R31 R0 #40

1 ADDI R30 R0 #4

2 ADDI R29 R0 #3

3 ADDI R28 R0 # -3

4 LW R21 R31 #0

5 LW R3 R31 #1

6 LW R5 R31 #2

7 LW R7 R31 #3 MUL R21 R21 R30

8 LW R9 R31 #4 MUL R3 R3 R30

9 LW R2 R31 #5 MUL R5 R5 R30

 55

10 LW R4 R31 #6 MUL R7 R7 R30

11 LW R6 R31 #7 MUL R9 R9 R30

12 LW R8 R31 #8 MAC R21 R2 R29

13 LW R10 R31 #9 MAC R21 R2 R28

14 MAC R3 R4 R29

15 SW R21 R31 #50 MAC R3 R4 R28

16 SW R21 R31 #51 MAC R5 R6 R29

17 SW R3 R31 #52 MAC R5 R6 R28

18 SW R3 R31 #53 MAC R7 R8 R29

19 SW R5 R31 #54 MAC R7 R8 R28

20 SW R5 R31 #55 MAC R9 R10 R29

21 SW R7 R31 #56 MAC R9 R10 R28

22 SW R7 R31 #57

23 SW R9 R31 #58

24 SW R9 R31 #59

25 SUBI R31 R31 #10

26 BEQ R31 #1

27

28 HALT

29 HALT

5.1.5 Matrix Calculation with Functional Unit ALU
The program is the same with that in Section 5.1.3. But only functional units L/S

and ALU are used. The assemble language of this benchmark is shown in Table 5.1.4.

The execution time of this case is 4812ns and the stall instructions occupy about 54%.

Table 5.1.4. The assemble language of calculation with ALU

 ALU LOAD/STORE MAC

0 ADDI R31 R0 #40

1

2

3 LW R21 R31 #0

4 LW R2 R31 #1

5 LW R3 R31 #2

6 ADD R21 R21 R21 LW R4 R31 #3

7 ADD R22 R2 R2 LW R5 R31 #4

 56

8 ADD R3 R3 R3 LW R6 R31 #5

9 ADD R24 R4 R4 LW R7 R31 #6

10 ADD R5 R5 R5 LW R8 R31 #7

11 ADD R26 R6 R6 LW R9 R31 #8

12 ADD R7 R7 R7 LW R10 R31 #9

13 ADD R28 R8 R8

14 ADD R9 R9 R9

15 ADD R30 R10 R10

16 ADD R21 R21 R21

17 ADD R3 R3 R3

18 ADD R5 R5 R5

19 ADD R7 R7 R7

20 ADD R9 R9 R9

21 ADD R22 R22 R2

22 ADD R24 R24 R4

23 ADD R26 R26 R6

24 ADD R28 R28 R8

25 ADD R30 R30 R10

26 ADD R11 R21 R22

27 SUB R12 R21 R22

28 ADD R13 R3 R24

29 SUB R14 R3 R24 SW R11 R31 #50

30 ADD R15 R5 R26 SW R12 R31 #51

31 SUB R16 R5 R26 SW R13 R31 #52

32 ADD R17 R7 R28 SW R14 R31 #53

33 SUB R18 R7 R28 SW R15 R31 #54

34 ADD R19 R9 R30 SW R16 R31 #55

35 SUB R20 R9 R30 SW R17 R31 #56

36 SW R18 R31 #57

37 SW R19 R31 #58

38 SW R20 R31 #59

39 SUBI R31 R31 #10

40 BEQ R31 #1

41

42 HALT

43 HALT

 57

5.2 Simulation Result

 In this section, the simulation results are shown. In each benchmark, we will

show the difference in power dissipation of with and without power management.

Furthermore, the comparison and discussion for matrix calculation with different

functional units are also presented.

5.2.1 Matrix Addition
 The execution of matrix addition takes 7812 ns, and the power dissipation of the

data path and the three functional units are listed in Table 5.2.1 and Table 5.2.2

respectively. The numerical values in Table 5.2.1 are the simulation result which the

power management is turned off, and these in Table 5.2.2 are the simulation result

with clock gating.

Table 5.2.1. Power distribution of matrix addition (without power management) :

Part Power (mW) Percentage

Rest elements in data path 4.49517 98.2 %

ALU 0.04676 1 %

L/S 0.03334 0.7%

MAC 0.00011 < 0.001%

Total 4.57528

Table 5.2.2. Power distribution of matrix addition (with clock gating) :

Part Power (mW) Percentage

Rest elements in data path 3.53560 97.8%

ALU 0.04552 1.2 %

L/S 0.03092 0.9%

MAC 0.00011 < 0.001%

Total 3.61240

Figure 5.2.1 shows the total power dissipation comparison of with and without

power management. This program doesn’t use the functional unit MAC, and the static

power dissipation of MAC can be saved by the power management of voltage

 58

separation. But the scale of the static power of MAC is too small in comparison with

the total power, so that the difference between with and without voltage separation is

not very obviously, and the power saved by clock gating and voltage separation is

about 21 %.

p'q r6s_r_tfu p'q r6sar�v%r
w q x�v*t^p w q x�v6v w

y
v
t
w
p
r
x

z*{,|'}+~/�:�+�!�+��}+�L}����*{,�����'{�� � ����}3�Y}+�1�C� �+� � {�� �_� {��+�J���+� � ��� �_� {��+�J���C� � �����+����'{�� � ����}3��}+�1�C~<�+� � {��

��

�'�6���*�k�^���!�,�f�*�Y�Y�<�^�

Figure 5.2.1. Total power dissipation of matrix addition

 Figure 5.2.2 shows the difference in power dissipation of the sum of the three

functional units with and without power management. The result of the simulation are

listed in Table 5.2.3.

�/ 3¡ ¢�£ �� �¡C£ ¤a¥ ¡ ¦_¦ ¤a¥ ¡ §_§

¢6
§a
¥
��
£% _

¨/©!ªJ«�¬6­S®�¯*®,°1«,­k«,¯1±©1²�² ³ ©!´ ± ®,°1«Lµ<«�¶?®"¬C®�± · ©!¯ ¸f´ ©1¹,º[°%®�± · ¯%° ¸�´ ©1¹,º[°1®�± · ¯%°[®�¯1»
³ ©!´ ± ®,°!«�·�µ<´ ®�¯%»*µ

¼½

¾-¿^À�Á*ÂkÃ6Ä+Å!Å,ÄYÆfÇ*ÈYÄC¿�ÉÊ¿6ËLË�Ì6ÉaÍ?ÈYÄC¿^ÉaÇ*Î'Ì_É_ÄYÈ�Å

Figure 5.2.2. The power dissipation of the three functional units

 59

Table 5.2.3. The power analysis result of matrix addition

Program A = A + B, A and B are 10x10 matrix.

Functional units used ALU, L/S

Execution time 7812 ns

Percentage of stall
instruction

 56 %

Total power dissipation
without P.M

4.57528 mW

Total power dissipation
with P.M

3.61229 mW

Power saved 21 %

5.2.2 Idle Process
 The simulation time of idle process takes 5000 ns. The data path is standing by,

and no functional units is used. The power dissipation is listed in Table 5.2.4 and

Table 5.2.5. Table 5.2.4 shows the power dissipation without power management, and

Table 5.2.5 shows the case with clock gating. The power consumed by data path

almost occupy all the power.

Table 5.2.4. Power distribution of idle process (without power management) :

Part Power (mW) Percentage

Rest elements in data path 3.76610 99.9%

ALU 0.00001 <0.001%

L/S 0.00001 <0.001%

MAC 0.00011 <0.001%

Total 3.76623

Table 5.2.5. Power distribution of idle process (with clock gating) :

Part Power (mW) Percentage

Rest elements in data path 1.99429 99.9%

ALU 0.00001 <0.001%

L/S 0.00001 <0.001%

MAC 0.00011 <0.001%

Total 1.99442

 60

Figure 5.2.3 shows the power dissipation of idle process. It’s the same with

matrix addition that the scale of the static power dissipation of the three function units

is too small in comparison with the one of the rest elements in data path. So that the

difference between with and without voltage separation is not very obviously. Figure

5.3.4 shows the power dissipation of the three functional units. The power

management of voltage separation can save all the static power of the functional units,

and the power saved by power management of clock gating and voltage separation is

about 47% in the case of idle process. The simulation result of idle process is listed in

Table 5.2.6.

������� ������

��� � ��� ��� � ���

	

�

�

�

�

Ï'Ð6Ñ�Ò*Ó
ÔÊÕ*ÖfÕ?× Ò Ô Ò Ö_Ø Ð6Ù"Ù

ÚÛÐ^Ü ØCÕ*× Ò
Ý Ò?Þ Õ Ó Õ%ØYß Ð Ö

à ÜCÐ^á?â ×aÕ*ØYß�Öa× à ÜCÐ6á?â ×aÕ%ØYßYÖa×ãÕ*Ö_äÚÛÐ^Ü ØCÕ?× Ò
Ý Ò?Þ Õ Ó Õ*ØYß Ð Ö

�
�

Ï-Ð6Ñ�Ò*Ó ä6ß�Ý!Ý Þ Õ*Ø�ØYß Ð Ö

Figure 5.2.3. Total power dissipation of idle process

 61

����

�

����

�

�

����

���

����

å-æ6ç�è%é
êÊë%ìfë?í è ê è ì_î æ6ï"ï

ðÛæ�ñ îCë?í è
ò è*ó ë é ë*îYô æ ì

õ ñCæ6ö?÷ íaë%îYôYìaí õ ñCæ6ö?÷ íaë*îYôYìaí
ë*ìfø ðùæ^ñ îCë?í è
ò è*ó ë é ë*îYô æ ì

�
�

å-æ6çúè*é ø^ô�ò!ò ó ë*îYîYô æ ì æ6ïLï�û ì ö îYô æ ìfë ñ

Figure 5.2.4. Total power dissipation of the three functional units

Table 5.2.6. The power analysis result of idle process

Program Stand by

Functional units used Non of all

Execution time 5000 ns

Percentage of stall
instruction

 100 %

Total power dissipation
without P.M

3.76623 mW

Total power dissipation
with P.M

1.99429 mW

Power saved 47 %

5.2.3 Matrix Calculation with All Functional Units
 The execution of matrix calculation with all functional units takes 2910 ns, and

the power dissipation of the three functional units and the rest elements in data path

are listed in Table 5.2.7 and Table 5.2.8. The numerical values in Table 5.2.7 are the

simulation result which the power management is turned off, and these in Table 5.2.8

are the simulation result with clock gating.

 62

Table 5.2.7. Power distribution of matrix calculation (without P.M.) :

Part Power (mW) Percentage

Rest elements in data path 4.94905 94.8 %

ALU 0.14443 2.7 %

L/S 0.04484 0.8%

MAC 0.07850 1.5%

Total 5.21681

Table 5.2.8. Power distribution of matrix calculation (with clock gating) :

Part Power (mW) Percentage

Rest elements in data path 4.27484 94.2%

ALU 0.14218 3.1 %

L/S 0.04302 0.9%

MAC 0.07500 1.7%

Total 4.53503

Figure 5.2.5 shows the total power dissipation comparison of with and without

power management for matrix calculation with all functional units. All the functional

units are used when program execution. We assume that the idle period of ALU and

MAC are not long enough for power control to switch power supply and the power

supply of the three functional never be turned off. So that the power dissipation with

and without voltage separation are the same. The power dissipation of the three

functional units is shown in Figure 5.2.6, and the power saved by clock gating is

about 13.1 %. The simulation result of this case is summarized in Table 5.2.9.

 63

����� �
����� �
��
�
	� ��
�
	�

	

�

�

�

�

�

�

Ï'Ð6Ñ�Ò*Ó
ÔÊÕ*ÖfÕ?× Ò Ô Ò Ö_Ø Ð6Ù"Ù

ÚÛÐ^Ü ØCÕ*× Ò
Ý Ò?Þ Õ Ó Õ%ØYß Ð Ö

à ÜCÐ^á?â ×aÕ*ØYß�Öa× à ÜCÐ6á?â ×aÕ%ØYßYÖa×ãÕ*Ö_äÚÛÐ^Ü ØCÕ?× Ò
Ý Ò?Þ Õ Ó Õ*ØYß Ð Ö

�
�

Ï-Ð6Ñ�Ò*Ó ä6ß�Ý!Ý Þ Õ*Ø�ØYß Ð Ö

Figure 5.2.5 Total power dissipation of matrix calculation with all functional

units

������ ������ ����� �����

�

� �

� ��

� � �

���

�� �

� ��

� � �

üfý/þmÿ��
��������� ÿ � ÿ �
	 ý����

gý�� 	���� ÿ
� ÿ�� � � ��	�� ý �

� ��ý���� ����	 ����� � ��ý���� ����	������������
gý�� 	���� ÿ
� ÿ�� � � ��	�� ý �

�
�

��� ��!#"%$'&�(�(*),+#-�-�&.��/0�'12143'/65
-�&.� /,+8793:/:&�-4(

Figure 5.2.6 Total power dissipation of the three functional units

 64

Table 5.2.9. The power analysis of matrix calculation with all functional units

Program C = 4A +3B, D=4A-3B. A,B,C,D are 5x5 matrix

Functional units used All

Execution time 2910 ns

Percentage of stall
instruction

 35 %

Total power dissipation
without P.M

5.21681mW

Total power dissipation
with P.M

4.53503 mW

Power saved 13.1 %

5.2.4 Matrix Calculation with Functional Unit MAC
The execution of matrix calculation with MAC takes 3060 ns, and the power

dissipation of the three functional units and the rest elements in data path are listed in

Table 5.2.10 and Table 5.2.11. The numerical values in Table 5.2.10 are the simulation

result which the power management is turned off, and these in Table 5.2.11 are the

simulation result with clock gating (C.G.).

Table 5.2.10 Power distribution of matrix calculation with MAC (without P.M.) :

Part Power (mW) Percentage

Rest elements in data path 4.93033 92.4%

ALU 0.00529 0.1 %

L/S 0.04674 0.8%

MAC 0.35182 6.6%

Total 5.33419

Table 5.2.11 Power distribution of matrix calculation with MAC (with C.G.) :

Part Power (mW) Percentage

Rest elements in data path 4.07782 91.2%

ALU 0.00529 0.1 %

L/S 0.04460 0.9%

MAC 0.34409 7.7%

Total 4.47181

 65

Figure5.2.7 shows the total power dissipation comparison of with and without

power management, and Figure 5.2.8 shows the one of the three functional units. The

total power saved by clock gating and is about 16.1 %. In this case, the major

functional units used are L/S and MAC, and the static power dissipation of ALU

could be saved by voltage separation. But ALU still be needed when the branch

instruction comes. The power may be switched often and the overhead may be larger

than the static power saved, so that we assume that the power supply of ALU never be

turned of during execution. This is why the power dissipation voltage separation

shown in Figure 5.2.7 and Figure 5.2.8 are the same. Finally the simulation result is

listed in Table 5.2.12.

������
������

������ � ������ �

	

�

�

�

�

�

�

Ï'Ð6Ñ�Ò*Ó
ÔÊÕ*ÖfÕ?× Ò Ô Ò Ö_Ø Ð6Ù"Ù

ÚÛÐ^Ü ØCÕ*× Ò
Ý Ò?Þ Õ Ó Õ%ØYß Ð Ö

à ÜCÐ^á?â ×aÕ*ØYß�Öa× à ÜCÐ6á?â ×aÕ%ØYßYÖa×ãÕ*Ö_äÚÛÐ^Ü ØCÕ?× Ò
Ý Ò?Þ Õ Ó Õ*ØYß Ð Ö

�
�

Ï-Ð6Ñ�Ò*Ó ä6ß�Ý!Ý Þ Õ*Ø�ØYß Ð Ö

Figure 5.2.7. Total power dissipation of matrix calculation with MAC

 66

�	���
 �	���
 �� ��� � �� ��� �

	

�		

�		

�		

�		

		

Ï-Ð6Ñ�Ò%Ó
ÔÊÕ%ÖfÕ?× Ò Ô Ò Ö_Ø Ð6Ù"Ù

ÚÛÐ�Ü ØCÕ?× Ò
Ý Ò?Þ Õ Ó Õ*ØYß Ð Ö

à ÜCÐ6á?â ×aÕ%ØYßYÖa× à ÜCÐ6á?â ×aÕ*ØYßYÖa×
Õ*Öaä ÚùÐ^Ü ØCÕ?× Ò
ß�Ý Ü Õ%Öaä�Ý

�
�

Ï'Ð6Ñ�Ò*Ó ä^ß�Ý!Ý Þ Õ*ØYØYß Ð Ö Ð6ÙLÙ�; Ö á ØYß Ð ÖaÕ Ü9; Ö_ßYØ+Ý

Figure 5.2.8. Total power dissipation of the three functional units

Table 5.2.12. The power analysis of calculation with MAC

Program C = 4A +3B, D=4A-3B. A,B,C,D are 5x5 matrix

Functional units used MAC, L/S

Execution time 3060 ns

Percentage of stall
instruction

 46 %

Total power dissipation
without P.M

5.33419mW

Total power dissipation
with P.M

4.47181mW

Power saved 16.1 %

5.2.5 Matrix Calculation with Functional Unit ALU
The execution of matrix calculation with ALU takes 4814 ns, and the power

dissipation of he three functional units and the rest elements in data path are listed in

Table 5.2.13 and Table 5.2.14. The numerical values in Table 5.2.13 are the simulation

result which the power management is turned off, and these in Table 5.2.14 are the

simulation result with clock gating.

 67

Table 5.2.13. Power distribution of matrix calculation with ALU (without P.M.)

Part Power (mW) Percentage

Rest elements in data path 4.79300 96.3%

ALU 0.15397 3.1%

L/S 0.02734 0.5%

MAC 0.00011 <0.001%

Total 4.97536

Table 5.2.14. Power distribution of matrix calculation with ALU (with C.G)

Part Power (mW) Percentage

Rest elements in data path 3.83297 95.5%

ALU 0.15136 3.8 %

L/S 0.02572 0.6%

MAC 0.00011 <0.001%

Total 4.01114

Figure 5.2.9 shows the total power dissipation comparison of with and without

power management. This program doesn’t use the functional unit MAC, and the static

power dissipation of MAC can be saved by voltage separation. But the scale of the

static power of MAC is too small in comparison with the total power, so that the

difference between with and without voltage separation is not very obviously. The

power saved by clock gating and voltage separation is about 19.4 %.

Figure 5.2.10 shows the difference in total power dissipation of the three

functional units with and without power management. The simulation result is

summarized in Table 5.2.15.

 68

������� �������

��	

� ��	

	�

	

�

�

�

�

�

<6=�>@?�A
B�C�D�C�E ? B ? D
F =
G.G

H =
I F�C�E ?
J ?�K C A CLF M = D

N I�=�O�P E�C�F M D�E N I�=
O�P E�C�F M D�E
C�D�Q H =
I F�C�E ?
J ?LK C A C�F M = D

�
�

R�S T�U#V%W'X�Y�Y*Z,[#\�\�X]S ^

Figure 5.2.9. Total power dissipation of matrix calculation with ALU

_
`6_�a�_�b6c _
`,_�a�_#d,_ _fe e6a�_8g _�e e,a h6`

h
i h
_fh h
_ i h
c�h h
c i h

jfkml,n.o�prq�stq4u*n4prn�smvkmw w x kmy v q4u*n,z�n.{Lq]o�q.v | kms }�y k*~.�9u*q.v | stu }�y k*~.�9u*q.v | sturq.s*�
x kmy v q�u*n,z�n.{Lq.o�q]v | kms

��

���'���#���'�4���*�,�8�����.� �0� �2�4�:�6�#���.� �,�#�r�:�:���4�

Figure 5.2.10. Total power dissipation of the three functional units

Table 5.2.15. The power analysis of matrix calculation with ALU

Program C = 4A +3B, D=4A-3B. A,B,C,D are 5x5 matrix

Functional units used ALU, L/S

Execution time 4814 ns

Percentage of stall
instruction

 54 %

Total power dissipation
without P.M

4.97536mW

Total power dissipation
with P.M

4.01103mW

Power saved 19.4 %

 69

5.2.6 Comparison
 In this section, we will show the comparison of power dissipation, execution

time and energy consumption of matrix calculation with different functional units.

Figure 5.2.11 shows the power dissipation of the three cases. While the power

management is turned off, the power dissipation of the case with MAC is the largest.

This is because the major functional unit used in this case is MAC and the code

density in this functional unit column is higher. When the clock gating is turned on,

the power dissipation of the case with all functional units become the largest, the case

with MAC is the second, and the case with ALU is the smallest. This is because the

percentage of stall instruction in the case with ALU is the largest, and is the smallest

in the case with all functional units. While the clock gating is applied, the power

dissipation saved by clock gating in the case with MAC is much larger than the power

consumption in MAC. So the power dissipation of the case with MAC is smaller than

the case with all functional units. When the power management of voltage separation

is applied, only the power dissipation of the case with ALU is reduced. This is

because we assume that the static power of MAC is saved. But the scale of the power

saved by voltage separation is too small in comparison with total power, so that the

difference between with and without voltage separation is not obviously.

Figure 5.2.12 shows the required time for the three cases. The execution time of

the case with all functional units is the shortest and the case with MAC is the second.

In the case with ALU only functional units ALU and L/S are used, and require the

longest execution time.

 70

�

�

�

�

�

�

�

�,�������
����� �f� � � � ����� �

¡�¢ ��£f¤ � ����¥�� � ¡%¢ ��£f¤ ������¥�� �
��� ¦¨§ � ¢ �]�f� �
© ��ª � � ����¥ � �

«¬ ­ ¥���®�� ¢�¢ .¯ � £ ��¥ � �'� ¢ ¯ ��¥��]©
­ ¥���®�°²± ¡
­ ¥���®�±�³�´

Figure 5.2.11. The power dissipation of matrix calculation

���� � �� �

� � ��

�

����

����

� ���

� ���

	 ���

� ���

����������	
����
��

	
��

������ � � ������ � �

�
�

Figure 5.2.12. The execution time of the three cases

 71

 The energy consumption of the three cases is shown in Figure 5.2.13. The case

with all functional units consumes the least energy in any power management mode.

Although the power dissipation of this case is the largest, but the required execution

time is the shortest. The power dissipation of the case with ALU is the smallest, but

the required execution time is much longer than the other cases. So the case with ALU

cost the largest energy. The power dissipation of the case with MAC is smaller than

the case with all functional units, but the execution time is longer and the difference

between execution time is larger than that in power dissipation. So that the energy

consumed by the case with MAC is still larger than the case with all functional units.

µ
¶
· µ
· ¶
¸�µ
¸ ¶
¹�µ

ºr» ¼¾½f¿
ÀÂÁ�Ã6Á�Ä ½ À ½ Ã�Å »�Æ4Æ

Ç%È » ÉfÊ Ä'Á�Å�Å�Ë�Ã'Ä ÇÌÈ » É�Ê Ä:Á�Å�Å�Ë Ã'Ä
Á�Ã'Í�Î » È Å.ÁfÄ ½
Ï ½�Ð Á ¿ Á�Å�Ë » Ã

ÑÒ Ó Ô
Õ Ö × Ë�Å�ØÂÁ È�È Æ�Ù Ã É Å�Ë » Ã6Á È Ù Ã'Ë�Å.Ï

× Ë�Å�ØÛÚÝÜ Ç
× Ë�Å�ØÛÜ¾Þàß

Figure 5.2.13. The energy consumption of the three cases

 When executing the same program, the execution time will increase as the

number of the functional units decrease. But there will not be large difference in

power dissipation while there is no power management. Even in some case the power

dissipation become larger. However, while power management of clock gating and

voltage separation is applied in this data path, the power dissipation will decrease as

 72

the number of the functional units decrease, furthermore the power dissipation and the

performance becomes scalable.

The energy consumption of the data path will depend on both the power

dissipation and required execution time. From the simulation result shown in Figure

5.2.13, the required execution time and energy consumption will be the largest if the

functional unit MAC is not contained in the parallel data path and the program can

only be completed with ALU. Thus, if more functional units are included in the

parallel data path and the functionality of the data path can become more powerful,

than a program execution could be completed more rapidly and the total energy

consumption could also be decreased since the execution time can be largely reduced.

Furthermore, if the system have to lower the power dissipation of the data path, than

only use a portion of the functional units and turn off the idle functional units and the

related elements with dynamic power management. Although that will increase

execution time, yet the power dissipation can be reduced. This characteristic of power

and performance scalable will be suitable for a data path of a powerful VLIW

processor in a reconfigurable architecture.

5.3 Summary

 In this chapter, we have shown the power simulation results of the five

benchmarks. As shown in this chapter, the power dissipation of the parallel data path

is strongly related to the percentage of stall instruction. If the percentage of stall

instruction is 100 %, 47 % of power dissipation is saved. If the percentage of stall

instruction is 56 %, 21 % of power dissipation is saved. If the percentage of stall

instruction is 54 %, 19.4 % of power dissipation is saved. If the percentage of stall

instruction is 46 %, 16.1 % of power dissipation is saved. If the percentage of stall

 73

instruction is 35 %, 13.1 % of power dissipation is saved. Clock gating technique can

save a significant amount of power in this chip. However, power saved by voltage

separation is not very obviously. Dynamic power can be largely reduced by dynamic

power management and the static power consumption is still not a serious problem in

the present 0.18 um process. Furthermore, we execute a program of matrix calculation

with different functional units. From the simulation result, the power dissipation and

performance of the parallel data path become scalable when dynamic power

management is applied.

 74

Chapter 6 Conclusion
Platform-based design and reconfigurable architecture are useful design methods

for SoC design. The microprocessor is the most important element in these two design

methods. In recent research, VLIW processor can provide general purpose DSP

calculation such as DCT, motion estimation, FIR filter…etc. And these DSP

calculations are common blocks for communication and media applications. If VLIW

processor is applied on these two design methods, the general purpose DSP functional

units can be replace by VLIW processor, and the design complexity in hardware can

be reduced. However, the power issue in VLIW processor due to low code density and

hardware utilization can cause a great overhead. So the power management is

necessary.

In this thesis, we have successfully applied the clock gating and voltage

separation with the parallel data path which is similar to a data path in a three-issue

VLIW processor. An appropriate design flow to implement these two dynamic power

managements with current EDA tool for cell-base design is explored. A complete

power analysis is accomplished and the analysis result of the chip is identical to our

expectation. From the analysis result, three conclusions have been made. First, the

static power dissipation is not a serious problem in the current 0.18 um process.

Second, clock gating can reduce significant power dissipation which is strongly

related to the percentage of stall instruction. More stall instructions, more power

dissipation can be saved. In the best case, 47 % of power dissipation is saved. Third,

the power and performance of the parallel data path is scalable and that is identical to

that we expected.

 Furthermore, as mentioned in Chapter 3, the penalty of circuit charge and

discharge for voltage separation will be measured with this chip, and then design the

 75

compiler according to the measurement. In the further, the static power consumption

is superposed to be a serious problem in more advanced process. So the voltage

separation with MTCMOS technology will be integrated into the parallel data path in

0.13 um or 0.09 um process and the effect of the static power reduction will be

measured in future project.

 76

Bibliography:

[1] L. Hennessy and A. Patterson, Computer Architecture: A Quantitative Approach,
Third Edition, Morgan Kaufmann Publishers, 2003.

[2] Fabio Campi, Mario Toma, Andrea Lodi, Andrea Cappelli, Roberto Cangegallo,
Roberto Guerrieri, “A VLIW Processor with Reconfigurable Instruction Set for
embedded Applications,” 2003 IEEE International Solid-State Circuits
Conference.

[3] Rohini Krishnan, O.P.Gangwal, Jos.v.Eijndhoven, and Anshul Kumar, “Design
of a 2D DCT/IDCT Application Specific VLIW Processor Supporting Scaled and
Sub-sampled Blocks,” Proceeding of the 16th International Conference on VLSI
Design (VLSI’03), 2003 IEEE.

[4] K. Heutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A.
Sangiovanni-Vencentelli, “System Level Design: Orthogonalization of Conerns
and Platform-based Design,” invited paper, IEEE Transactions on
Computer-Aided Design, Vol. 19, No. 12, December 2000.

[5] A. Sangiovanni-Vincentelli, L. Edgar, H. Buttner, “Platform-based Design,”
University of California at Berkeley.

[6] M. Keating and P. Bricaud, Reuse Methodology Manual for System-on-a-Chip
Designs, Third Edition, Kluwer Academic Publishers, 2002.

[7] http://www.arm.com/

[8] http://www.semiconductors.philips.com/products/nexperia/

[9] Tay-Jyi Lin, Chin-Chi Chang, Chen-Chia Lee, and Chein-Wei Jen, “An Efficient
VLIW DSP Architecture for Baseband Processing,” Proceedings of the 21 st
International Conference on Computer Design (ICCD’03), 2003 IEEE.

[10] T. Inukai, T. Hiramoto, T. Sakurai, “Variable threshold voltage CMOS
(VTCMOS) in series connected circuits” International Symposium on, 2001,
Page(s): 201 -206.

[11] R. Fujioka, K. Katayama, R. Kobayashi, H. Ando, T. Shimada, ” A preactivating
mechanism for a vt-cmos cache using address prediction, ” . ISLPED '02.
Proceedings of the 2002 International Symposium on , 2002 Page(s): 247 -250.

[12] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada,“1-V
power supply high-speed digital circuit technology with multi-threshold-voltage
CMOS,” IEEE J. Solid-State Circuits. 847–854, Aug. 1995.

[13] S. Shigematsu et al, “A 1V High-Speed MTCMOS Circuit Scheme for
Power-Down Applications,” IEEE J. Solid-State Circuits, vol. 32, no. 6, June
1997, pp. 861-869.

 77

[14] Mohab H.Anis and Mohamed W.Allam and Mohamed I. Elmasry
“Energy-Efficient Noise-tolerant Dynamic Styles for scaled-Down CMOS and
MTCMOS Technologies,” IEEE Transactions on very large scale integration
system, VOL. 10,NO.2, April. 2002.

[15] Benton H. Calhoun, Frank A. Honore, and Anatha P. Chandarkasan, Fellow,
IEEE, “A Leakage Reduction Methodology for Distributed MTCMOS,” IEEE J.
Solid-State Circuits, vol. 39, NO. 5, May 2004.

[16] Qing Wu, Massoud Pedram, and Xunwei Wu, “Clock-Gating and Its Application
to Low Power Design of Sequential Circuits,” IEEE Transactions on Circuits and
Systems—I: Fundamental Theory and Applications, vol. 47, NO. 103, March
2000.

[17] Wu Ye and Mary Jane Irwin, “Power Analysis of Gated Pipeline Registers,”
Computer Science and Engineering Department, University of Pennsylvania
State, 1999.

[18] T.Burd, T.pering, A. Stratakos, R.Brodersen, “A Dynamic Voltage-Scaled
Microprocessor System,” 2000 IEEE Internaltional Solid-State Circuits
Conference Digest of Technical papers, Feb 2000.

[19] T.D. Burd, R.W Brodersen, ” Design issues for Dynamic Voltage Scaling, ” 2000.
ISLPED '00. Proceedings of the 2000 International Symposium on , 2000
Page(s): 9 -14.

[20] V. Gutnik, A. Chandrakasan, ”An efficient controller for variable supply-voltage
low power processing, ” 1996. Digest of Technical Papers, 1996 Symposium on ,
13-15 Jun 1996 Page(s): 158 -159.

[21] David E. Lackey, Paul S. Zuchowski, Thomas R. Bednar, Douglas W.Stout, Scott
W. Gould, John M. Cohn “Managing Power and Performance for
System-on-Chip Designs using Voltage Islands,” IBM Microelectronics Division
Essex Junction, Vermont 05452, USA.

[22] Juan-Antonio Carballo, Jeffery L. Burns, Seung-Moon Yoo, Ivan Vo, and V.
Robert Norman, “A Semi-Custom Voltage-Island Technique and Its Application
to High-Speed Serial Links,” IBM Microelectronics 3039 Cornwallis Road
Raleigh, NC 27709, USA.

[23] J. Tschanz, J. Kao, S. Narendra, R. Nair, D. Antoniadis, A. Chandrakasan, Vivek
De, ”Adaptive body bias for reducing impacts of die-to-die and within-die
parameter variations on microprocessor frequency and leakage, ” ISSCC. IEEE
International , Volume: 1 , 2002 Page(s): 422 -478.

[24] J.T. Kao, M. Miyazaki, A.R. Chandrakasan, ”A 175-MV multiply-accumulate
unit using an adaptive supply voltage and body bias architecture, ” Journal of
Solid-State Circuits, IEEE Journal of , Volume: 37 Issue: 11.

 78

[25] M. Miyazaki, J. Kao, A.P. Chandrakasan, “A 175mV multiply-accumulate unit
using an adaptive supply voltage and body bias (ASB) architecture, “ Solid-State
Circuits Conference, 2002. Digest of Technical Papers. ISSCC. 2002 IEEE
International , Volume: 2 , 2002 Page(s): 40 -391.

[26] http://www.trimedia.com/

[27] http://www.transmeta.com/

[28] Chip Implementation Center, Taiwan, http://www.cic.org.tw.

 79

Appendix A Instruction set summary
Functional Unit Instruction Example Action OP code

ADD ADD RD RS0 RS1 RD = RS0 + RS1 1000

SUB SUB RD RS0 RS1 RD = RS0 - RS1 1001

AND AND RD RS0 RS1 RD = RS0 & RS1 1010

OR OR RD RS0 RS1 RD = RS0 | RS1 1011

XOR XOR RD RS0 RS1 RD = RS0 ^ RS1 1100

SLL SLL RD RS0 3 RD = RS0 << 3 1101

SRL SRL RD RS0 3 RD = RS0 >> 3 1110

SRA SRA RD RS0 3 RD = sign extend{RS0 >> 3} 1111

JR JR RD PC = RD 0100

JUMP JUMP 50 PC = PC + 50 0110

JAL JAL RD 50 RD = PC+1, PC = PC + 50 0101

ALU

BEQ BEQ RD 50 If (RD = R0) go to PC+50 0111

ADDI ADDI RD RS IMM RD = RS + IMM 010

SUBI SUBI RD RS IMM RD = RS - IMM 011

LOAD LOAD RD RS IMM RD = MEM(RS + IMM) 100

LOAD/STORE

STORE STORE RD RS IMM MEM(RS + IMM) = RD 101

MAC MAC RD RS0 RS1 RD = RD + (RS0 X RS1) 10 MAC

MUL MUL RD RS0 RS1 RD = RS0 X RS1 11

 80

Appendix B Instruction format
ALU :

|� 21 bits �|

OP (4 bits) C.G (1bit) V.S (1bit) RD (5 bits) RS0 (5 bits) RS1 (5 bits)

LOAD/STORE:

|� 31 bits �|

OP (3 bits) C.G (1bit) V.S (1bit) RD (5 bits) RS0 (5 bits) IMM (16 bits)

MAC:

|� 19 bits �|

OP (2 bits) C.G (1bit) V.S (1bit) RD (5 bits) RS0 (5 bits) RS1 (5 bits)

OP Operation code

C.G. Clock gating control bit

V.S Voltage separation control bit

RD Destination register

RS Source register

IMM Immediate data

