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Ahstract
Space time (ST) orthogonal frequency, . division multiplexing (OFDM) has been

well documented as an attractive mears of achieving high data rate transmissions with
diversity gains. In this thesis, we adopt ablind:channel estimation algorithm proposed
by Giannakis for ST OFDM, and derive the theoretical mean sguare error of the
estimator. Moreover, we introduce phase direct (PD) and decision direct (DD)
methods to further improve the performance of the estimator. DD and PD originally
work on conventional OFDM, and PD is not suited for ST OFDM. Then we derive a
new algorithm named sum-difference square method to make PD work on ST OFDM.
DD isto update our estimated channel from the previous hard decision data, while PD
is to solve the phase ambiguities after we' ve got the channel power response. Since
the received data in ST OFDM is composed of two different transmitted data, the
channel amplitude response is not easy to get. Hence, the aforementioned algorithm is
about how to solve this problem. Furthermore, in computer simulations, we can see

our algorithm really better the performance.
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Chapter 1

| ntroduction

In orthogonal frequency division multiplexing (OFDM) [1,2,3], the entire channel
is divided into many narrow parallel ‘subchannels; thereby increasing the symbol
duration and reducing or eliminating.the-intersymbal interference (1Sl) caused by the
multipath environments. On the other hand, since the dispersive property of wireless
channels causes frequency selective fading, there is higher error probability for those
subchannels in deep fades. Hence, techniques such as error correction code and
diversity have to be used to compensate for the frequency selectivity. In this thesis,
we investigate transmitter diversity using space-time coding for OFDM systems.

Space-time codes (STC) [4,5,6,7] redlize the diversity gains by introducing
temporal and spatia correlation into the signals transmitted from different antennas
without increasing the total transmitted power or transmission bandwidth. There is in
fact a diversity gain that results from multiple paths between base station and user
terminal, and a coding gain that results from how symbols are correlated across

transmit antennas.



Transmitter diversity is an effective technique for combating fading in mobile
wireless communications, especially when receiver diversity is expensive or
impractical. Many researchers [8,9,10] have studied transmitter diversity for wireless
systems. In this thesis, we focus on two transmit-antennas and one receive-antenna
and use the well known Alamouti’s block STC [11].

However, for most STC transceivers, multichannel estimation algorithms are
needed. Training symbols are transmitted periodically in [L2] for the receiver to
acquire the multi-input multi-output (MIMO) frequency-flat channels (see also [13]
for training-based estimation of frequency-selective channels in  ST-OFDM).
However, training sequences consume bandwidth and, thereby, incur spectral
efficiency (and thus capacity) loss. For this reason, blind channel estimation methods
receive growing attention, especialy for  estimating the MIMO channels
corresponding to multiple transmit.and receive antennas.

Only a few works however, have-been-reported so far on blind MIMO and
multi-input single-output (MISO) channel estimation that exploits the unique features
of ST codes. Relying on nonredundant and nonconstant modulus precoding, blind
channel estimation and equalization for OFDM-based multi-antenna systems has been
proposed in [L4] using cyclostationary statistics Subspace-based blind method is
proposed in [15] for estimating the channel responses of a multiuser and multiantenna
OFDM uplink system. For ST-OFDM, a deterministic blind channel estimator was
derived in [16] when the channel transfer functions are coprime (no common zeros)
and the transmitted signals have constant- modulus (CM).

In this thesis, we deal with alinearly precoded ST-OFDM system with two transmit
antennas and show a blind channe identification algorithm [17] for

frequency-selective FIR channels through the subspace method. Moreover, as shown



in [17] with properly designed redundant precoders, the subspace-based method can
estimate multiple channels ssmultaneously up to one scalar ambiguity.

Furthermore, based on the first-order perturbation theory [19], we also derive the
theoretical mean square error of the estimator which shows the relationship with the
simulation result.

To further improve the channel estimation we can exploit the finite aphabet
property to better the subspace-based channel estimates by applying the “Decision
direct (DD)” and “Phase direct (PD)” methods DD, as implied in the name, needs
first to get the hard decision data and then use it to update our estimated channel,
while PD is to solve the phase ambiguities after we' ve got the channel power response.
DD originally works in conventional OFDM [21], which only requires simple scalar
divison. Based on the space time data matrix, we extend it to ST-OFDM, which
corresponds to a matrix inverse.and multiplication because the recelved data is
composed of two different transmitted data:

The main idea of PD b to solve the phase ambiguities after we get the channel
power response. For conventional OFDM system, it is very easy to get the channel
power response. But in space-time OFDM, it is quite a different case, since the
received data is composed of two different transmitted data; it's not easy to separate
them. So, the main problem we face now is how to get the channel power response,
which is hard to get in general. Hence, we only focus on BPSK system and exploit the
transmitted data s time and tempora correlation to develop a new algorithm named
sum-difference square method to solve this problem.

Moreover, in time varying channel, we aso need to choose a best window size to
get the channel power response and apply it to PD. Aswe all know, when the window

is longer, we can suppress the noise, but then we can't follow the variation of the



channel. Thisis the trade off. However, the choice of the window size is dependent on
how fast the channel changes. Precoder design is another issue behind the algorithm
aswill be discussed in chapter 4.

The rest of this paper is organized as follows. After presenting the system model in
Chapter 2, we show our blind channel estimation algorithm in Chapter 3 and further
improved methods in Chapter 4. Chapter 5 presents simulation results, and Chapter 6

gathers our conclusions.



Chapter 2

Space Time OFDM System M odel

Fig. 2.1 depicts the space-time @FDM system. considered in this thesis with two
transmit antennas (there can be more antennas,.but in this thesis we focus on two
antennas) and one receive-antenna., Prior to transmission, the information bearing

symbols s(n) are first grouped into super blocks of size 2K~ 1, where we indicate

the first K symbolsas s®(n) and last K symbolsas s (n).
s(n) =&~ U (2.1)
as? (N)g

Two different linear block precoders denoted by thetall M~ K matrices ?, and

?, (one for s®”(n) and the other for s (n)) are used to introduce redundancy
(M >K ). Thecorresponding 2M “ 1 precoded block is

5(n) = és?(nu_é2,s¥(n)u
sS\n)=¢é. u=é& u
&SP (Mg 82,5? (g
&, 0ués®(n)u
=a’ T ()':Ts(n)
QO o) ue 2 u -

80 2,088 (N)Q

(2.2)

where
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Fig. 2.1 Block precoded:ST-OFDM transceiver model

3(n) isthen fed to the space-time encader-iThe encoder takes input two consecutive

precoded blocks 3% (n) and 3@ (n)tooutput the following 2M ~ 2 code matrix:

és¥(n) 5O (n)u e §%mn) 3@ (n)fJ

S S 24
[§(n) i(n)] e_(z)(n) (2)(n)u @- 3(2) (n) S(l) (n)g ( )
where
@ (M0 =0
§(n) _§§1(2)((n)) and 5(n)= é(z) ((n))u (2.5)

Eq. (2.3) shows that the blocks 3(n) is transmitted twice in two consecutive time

intervals through two different channels.

Here wedefinea M~ M IDFT matrix as



e 1 y

-1 -(M- U

1 A WM WM l:l

_ A -2 S2(M-1)

W, —Tﬁ_‘l W, e W u (2.6)

M é. a

é : a

2 - (M-1) -(M-1)(M-1) [

g w, e Wy, H
. — A2 /M
with W, =€ .

Then the OFDM symbol §®(n) and §“ (n) of dimension M are then modulated

by the IDFT matrix W,, to produce
RO =0

In order to eliminate inter-block- interference (I1BI) caused by the channel, the “time
domain” vector u (n) isthen enlarged by aeyclic prefix (CP) of length L, resulting
in asze M+L vector, where CP insertion replicates the last L elements of the IDFT
output vector in the front since'we assume that the channel order is equal or less than

L, aswill be discussed latter. As'shewn in Fig. 2.1, the CP insertion can be described
by T,=[lgul, where I isformed by the last L rows of the M“ M identity

matrix 1, and its output

cp !

€T, Wy,5” (U

2.8
8T, W, 5% (g =9

() =

is finally sent sequentially through transmit antennai.

We assume in what follows that the channels between the two transmit antennas
and the receive antenna are frequency selective and that their baseband equivalent
effect in discrete time is captured by an FIR linear time-invariant filter with impulse

response vector

h =[h(0),...h(L)] =12 (2.9)



where L is an upper bound for the channel ordersof h and h,,i.e, L3 max(L,,L,)
if L, isthechannel order for h and L, for h,.
Accordingly, the FIR channel can be described by the (M +L)" (M +L) Toeplitz

matrix H, with (k)thentry h(k-1).

& (0)
sh@® h©
_$h@ ho hO

hLy - hO 2
h(L) - h(O)g

u
u
u
a
a (2.10)
a
u
u
o

@D D> D> (D>

At the receiver end, the CP is simply removed. The operation of discarding the first

L received symbols can be described by the matrix R, =[O, I,,]. Let

H =R_HT (2.11)

cp’ i Tcp
denote the equivalent channel matrix after-eliminating the IBI. The 2J” 1 IBI-free
block y(n) in Fig. 2.1 is given by:

é D(nu
y( ) (2) (n)u chHll_'ll(n) +chH2_2(n) +chvv(n)
B

_§R HT Wy 52 (MU R H, T, W, 5% (nu PR (212)

- € ure u o .
RoH: W, 52 (g ReH T,WS” (Mg 7

éH WM§(1’(n)U+ €H,W, 50 (U,

~é-

R_w(n)

— u cp¥

W, 52ma &1,W,52Mma  *

where w(n) is the additive white Gaussian noise vector. Given  y(n), the retrieval of

the information blocks s(n) at the receiver proceeds in three steps as follows. First,

the DFT matrix W,; is performed on y(n) to obtainy(n),



()_ey(”(n)u éw, “’(n)u
V=S 2 mg g y® (g
evvH 0 uey‘”(n)u

(2.13)
g0 wiligy" (ng

_§WMH1WM—<1)(n)u W, H WM—<1>(n)u+eWH (N

- R_w(n)
— _ uRyg
g\Nl\:‘ H,W,, (2)(n)u g\NMH AT (2)(n)A é 0 WH P

éy®(n)u
By defining y(n) =€~ o 0, then y(n) is processed by the space-time decoder to
T & (Y -

produce the block z(n) with diversity gains. Finaly, the equalizer G is employed

to recover s(n). Then we can plot afrequency domain version of Fig. 2.1 in Fig.2.2.

fEal
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5(n) Y D, / %
yin) | st | z2(n) Decision
G —
Decoder|

Fig. 2.2 Frequency domain version of ST-OFDM transceiver

Here, we want to start with the following fact [18]:

Fact 1: The matrix H, can be diagonalized by pre- and post-multiplication with
W, ad W,,,ie,

Wy H W, =D(H,), (2.14)



where D(H,) stands for the diagnal matrix with the vector H, on its diagonal, and
L

H (r)= é h()r " is the frequency response of channel h(l) at point r which is
=0

different from the Toeplitz matrix H, in Eq.(2.10). Moreover, we can write
H, =Vh =[H, (¢°),...,H,(e®™ ™) (2.15)

with V denoting submatrix corsisting of the first L+1 columnof W, . ?

Exploiting Facts 1 and substitute Eq.(2.4), the vector y(n) in Eq.(2.13) can be

written as;
_éwW/H,W,, <1>(n)u EWI'H W, 5P(n)u éw! 0 U
YO = S, 52 (" S W5 (0 S 0wy B
€D(H, )5 (MU, D(H)S My 216
"S5 (mY DIzt L (219
e D(H,)s®(n) + D(H, )32 (1) u ev(l)(n)u
g D(H,)5® (n) +D(H,)s® (n)g e_( ()i
where

év(l)(n)l] é\NH 0ou
v(n 1R n 2.17

Then,

10



) sz(” (“>H
eD(H )8® () +D(H,)s? (n) u+gv()(n) U
& D(H; )5®(n) +D(H;)s5® (M) av® (n)g

_€éD(H,) D(H,) ues‘l’(n)u+ év®(n) u (2.18)
“®(H;) -DH)HUEC M) &V (n)g

=DQs(n) +h (n)

=As(n) +h(n)

=x(n) +h (n)

where H, x(n) and h(n) are defined, respectively, as

_ éD(H,) D(H,)u év@(n)u

D=a . o h = 2.19
&(H;) -D(H)Y h ‘?@(n)u @19

A =DQ, x(n) = As(n), (2.20)

When the channel matrices H; and  H,:'become: available at the receiver, it is

possible to demodulate  y(n) with diversity gains by a simple matrix multiplication

Z(n)=D"y(n)
:éD(HI) D(H,) l‘:léD(ljl) D(H,) u

S(Hy) -D(H,)8ED(H;) -D(H;)ARS * PN (2.21)
éDlZ?l 0
:éé. O Der)ZHS(n) +X(n)
where
D, =D(H,)D(H )+ D(H;)D(H)) (2.22)
x(n) =D"h(n) (2.23)

We infer that multiantenna diversity of order two has been achieved because

D,, =ciag G [H (O)F.... & IH(M - DF 2 (2.22)

i=1
Eqg. (2.19) implies that zeros-forcing recovery of s(n) from z(n) requires that the

1



? 0O u . : i1
a 2t (. which means the matrices D,,?,, i1 [1,2] need to be
e 0 D12?2U

o

inverse of

full column rank. We can adopt the following design condition on the block lengths
and the linear precoders to make sure the full rank of D,,?,, il [12].
Condition2.1) M >K +L.
Condition 2.2) ?,,il [1,2] is designed so that any K rows of ?, are linearly
independent.
To select the appropriate precoders, we can construct them as Wal sh code matrices.

Then the soft decision data can be computed as:

&D,?, 0 o

s(n) =Gxz(n) =invca a=z(n) (2.24)
gé 0 D.,?,0g
where
. a&D,,? 0 ud
G=invga 2 i (2.25)
éé 0 Dr?0g

Then we can project s(n) onto‘thefinite aphabet to obtain the hard decision
discrete values §(n) .
However, we can adopt the precoder like [ITM I']" wherel ,, is formed by any

M-K rowsof the K~ K identity matrix|, , aswill be used in chapter 4.

In Eq.(2.20), we assume the channel information is already known at the receiver

end, next we want to show how the channel become available in chapter 3.



Chapter 3

Blind Channd Estimation

In this chapter, we rely on -M“ K redundant linear precoders ?, and ?,

(M >K to introduce redundancy).to show a blind ¢hannel estimation agorithm for
Space-Time OFDM transmissions [17};—and- based on this channel estimation

algorithm, we derive the theoretical ‘mean sguare error of the estimator in section 3.2.

3.1 Subspace-based multichannel estimation

3.1.1 Noisefree case

Before addressing the noisy case, we will start from the noiseless vectors x(n) in
Eq.(2.18):
x(n)=As(n) 31

To estimate the channels, the receiver collects N blocks of x(n) and forms a

13



2M N matrix X =[x(0),...,x(N - 1)], thus
X, = AS, (32)
with S, =[s(0),...,S(N - 1)] . At the receiver end, we also select the following [17]:
Condition 3.1) Note here the number of blocks N is large enough (3 2K') so that
S, hasfull rank 2K.

Condition 3.1) expresses the standard “ persistence of excitation” assumption that is
satisfied by al signal constellations for N sufficiently large.

Condition 2.1) and Condition 2.2), together with Condition 3.1), and that s(n) is
a 2K"1 independent vector, imply that rank( X, )=2K, and the range space
Range(X X\ ) = Range(A), and the nullity of X, is 2M-2K . Further, the

singular value decomposition (SVD)

&, ouév'u
Xy =AS, =[U, U“]e 46 10 (3.3
e ueva.u

with & =diag(s?2...,s2) ad s23..3s2 , yidding the 2M~ (M - 2K)
matrix U, , whose columns span the null space N(X,), which is caused by the

redundant precoders.

Because N(X,) isorthogonal to Range(X, )= Range(A), it follows that
u'A=0,., for ki [1,2M - 2K] (3.4)
where u, isthe null space vector standing for the kth columnof U, .

Let us now split the null space vector u, into its upper and lower parts as

= (359)

Y,

: (D> D
EOS
oo\

where 0, and U, are M~ 1 vectors. Using Eqg. (3.4) and Eq.(2.17), we can factor

14



H
u'A as

D Xie o g
B eD(Hz) ‘D(t'l)uéo ?,50

Sinceforany M~ 1 vectors a and b it holds that
a"D(b) =b'D(a),
Eqg. (3.5) can be rewritten as

eD(G) -D(u)ue”  O0a_

[H H)'le =Tl =0
PUD@) D) &0 2ea
=G (4) =
where
& 0 éD(G) -D(,)u
=6 LG Gu)=e i U
0 7,0 aD(0,) D) §

Plugging the Eq.(2.15) into EqQ.(3.8), we have

é&vT 0 uéD(G) =D )
[be!‘]éo e = e Ao
é adP(U) - D(@,) g
= =G (1)
where
Fe &t ou
50 Vg

(3.6)

37

(3.9)

(3.9)

(3.10)

(3.12)

In the above, we use Eq.(3.11) in time domain instead of Eq.(3.8) in frequency

domain since it can make G(u,)Y asmaller matrix which can reduce computation,

andin Eq.(3.8) G(u,)Y cannot find the actua channel since it is not full rank.

Stacking Eq.(3.10) for each null space vector u, with ki [4,...,2M - 2K], we

obtain

[h" W' TFEGW)Y .....G(Uy. ) Y B= 0
B 3

(3.12)



where

Q=FEW)Y ....G, , )Y} (3.13)

h" = h'] (3.14)
Hence,

(3.15)

Ih"Q|F=h"QQ"h=0

as the eigenvector corresponding to the

|=s

Then, we can find the estimated channel
smallest eigenvalueof QQ":

h=argminfi*QQ" h
=2 (3.16)
= eigenvector corresponding to the small est eigenvalue of QQ"

The above agorithm is based on the null’space U,, so we name this algorithm

subspace-based channel estimation.

3.1.2 Noisy case

In the presence of white noise with variance s 2, we replace X, in Eq.(3.3) by

Y, » whose SVD has the following form:

- - & oueviu
Y, =[U,Ule * | uéVXHu (3.17)
0 a,peYsa
However, for large N, Y,, isreplaced by the sample covariance matrix:
18 _ _ é?2 ouélu
Ry=—a yny'(m=[0,0,]& * 46 % (3.18)
N n=1 eo anl’:leUn G

to simplify the computation. Note here N 3 2K isa necessary condition.

Whether the channel identifiability can be guaranteed is summarized in the

16



following theorem [17]:

Theorem 1: Suppose Condition 2.1), Condition 2.2), and Condition 3.1) hold true;
le¢ D denote any diagonal matrix with unit amplitude diagona entries, and let
Q,. Q,beformed by any J- L rowsof Q,,Q,, respectively. If Q, and Q, satisfy
DQ,T R(Q,) , the solution of [h] ,h]Q=0" is unique up to a constant, and thus,
channel identifiability within one scalar is guaranteed:

cho_@l 0 uehu

& U=@ - 08 (3.19)
{80 a1t

Here we' ve assumed that  (h,,h,) isapair of channel satisfying Eq.(3.16). ?

We summarize the proposed subspace-hased.channel estimation algorithm [17] in

the following steps.

Step 1) Collect the received data blocks y(n), and compute R in Eq. (3.18).

Step 2) Determine the eigenvectors u, ,k =1,...2M - 2K corresponding to the
smallest eigenvalues of the matrix R ;.

Step 3) Build Q in Eq.(3.13).

Step 4) Determine the eigenvector corresponding to the smallest eigenvalue of QQ"

asour estimate in Eq.(3.16).

3.2 Performance Analysisof Mean Square Error

A performance analysis is conducted on the proposed estimator to derive the
theoretical mean square error (M SE). Here we start from Theorem 2.

17



Theorem 2: Assuming that both noise and the signals are zero mean i.i.d. random
variables with variance s’ and s, respectively, an approximation for the channel

estimate’ s MSE in EQ.(3.16) for high sample SNR and large sample sizeis

. 211 A IR
EQIR- hip)» S I (320)
s:N

S

In the following, we want to prove EQ.(3.20) based on the first-order perturbation
theory given in [19] in high SNR condition (small perturbation).

Lemma 1[19] : Assuming amatrix P permitsthe SVD

. ouev

.
u
PV, UJE ! cde g (32)

5= P DP=(0, Ul 1 G (322
890 a.08%'0
where
U,=U,+DU, (3.23)
g isavector of U, then
g"P=0, (3.24)

the first-order approximation of the perturbation to the vector g due to additive

perturbation DP to g is

ag =- P'DP"g (3.25)
where
P=U&,V, (3.26)

18



Deducing from lemma 1, since u, isthenull spaceof X, u’X, =0, then

aly = X DXy,

where

(3.27)

(3.28)

Moreover, from h"Q =0 inEq.(3.12.), the perturbation of the channel estimate is

sh=-Q'DQ"h
where the perturbation AQ to Q isadditive and can be formed
DQ=F @(al,)Y,....D(al,, , )Y H
snceF and Y are both deterministic.
In addition, the structure of AaQ gives
(sQ"h)" =h"aQ
=0 H'IF (W ). Glaty s )HY

=0Q
=[H H;'] ég(AHL )i G(AgzM-ZK)EIY

=HS
=H, _Z]TeD(HL) D(QL) u eD(_zm ) DGy ) ld%

_I n&MH) DH)u -, eD(H,) D(H,)up
P B0 DD o) DeH)

:[Ag,l ,...,A_ZM_ZK]DY
The deduction of Eq.(3.31) is based on Eq.(3.6),Eq. (3.8), and Eq.(3.10),
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(3.30)
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then



¢ Y'D"ay
Hj, — € u
2Q D—g ~ G
SYHDH INUY ZKH
é -Y"D"XDXfuy U
é a
—é a (3.32)
& Y "D X DXy - H
6v "D X, 0 DXy 0
¢ _ . ue ' u
8 Y "D XY HEDX DX Uy - H
B d
where
éy "D" X3, u
_¢é a
B=g ¥
é YHBHX+L'I
N U (3.33)
¢ DXju U
_é a
d=e G
EDX{DX Uy o f
Substituting Eq.(3.32) into Eq.(3.29) leadsito
h=-Q"aQ"h
ah=-Q7.Q"h (3.34)

=Q'Bd
Next, before computing the channel M SE, we prove the following lemma.
Lemma 2: Assume N is a matrix where each element is zero-mean i.i.d. random
variable with variance s ?. Also assume J isan m” m deterministic matrix. Then

E(N"JN) =s *trace(J)l, where | is an n" n identity matrix and trace(} gives

the trace of the matrix. ?

Proof: Define F=N"JN. Then



EF)=E@ gé N, ><JM_><N
u

=& S8 3, €N, N, (3.35)
I=1 k=1 u
‘I m

_Ié.‘]us 0=

e
{0, otherwise

Therefore,

E(N"JIN) =s aJ

1=1

=s “trace(J)I . (3.36)

1% n

By using Lemma 2, it is easy to see that for the considered problem, we have

E(DXyu,u' DX, ) =s *trace(y u;")I
| == (3.37)
=s2d(i- j)I

with d (3 being the Kronecker Deltafunction and, consequently
E(dd™)=s? (3.38)
Then we can write estimated channel: erfor’covari ance matrix

E[sh%sh"] = EQ*Bdd"B"Q™]

=Q*BE[dd"|B"Q*" (3.39)
=s 2Q*BB" Q"
where
év "D"X' X DY u
L € a
BB =é G (3.40)
g YHDH X, X DY 4

Here we assume that d is the only random variable.

In addition, to begin the derivation we recall that the unperturbed data X, can be
written as X, =D? S, in Eq.(3.2) by setting Y =Q ,which mears we need to

sdect ?, =7?,. We define the data covariance matrix R, as
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R, = XXy

(3.41)
=D?S,S?" D"

The generalized inverseof R, is

R* = X' X"
X NN (3.42)
= (2 "D")" (S Sy) (D?)”
Hence, we have

Y "D X! XY DY
=Y"D"(? "D")"'R;(D?)'DY (3.43)
=(S\S\)

Therefore, EQ.(3.37) becomes

(3.44)

For large N (number of data blocks), approximation
S\.Sh =Ns? (3.45)
is reasonable, since we already assume that the signals are zero mean i.i.d. random

variables. Thus

BB" » Ni | (3.46)
Then Eq.(3.36) becomes
2+ +1
Elahsh"]» 329 2 (3.47)

s ZxN

S

As a consequence, the MSE of the channel estimateis



E(lah|?) = E[trace(ahsh")]
s 2xrace(Q'Q")
» 2
scN

_sHIQ'F

2
s N

(3.48)

The closed form MSE expression Eq.(3.48) is compact and enables us to study the
estimator’ s performance dependence on the key system parameters—such as the input
SNR, the number of data blocks. As expected, the MSE decreases with increasing
input SNIR and the number of received data blocks. This is later verified by computer

simulation in Chapter 5.
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CHAPTER 4

| mproved Subspace M ethods

To further improve the channelyestimationswe can exploit the finite alphabet
property to better the subspace-based channel estimates.

In this chapter, we discuss two different methods: decision direct (DD) [21] and
phase direct (PD) [20]. DD, as implied in_the name, needs first to get the hard
decision data and then use it to update our estimated channel, while PD is to solve the
phase ambiguities after we ve got the channel power response. DD originally works
in conventional OFDM, which only requires simple scalar division. Based on the
space time data matrix, we extend it to ST-OFDM, which corresponds to a matrix
inverse and multiplication because the received dita is composed of two different
transmitted data

The main idea of PD is to solve the phase ambiguities after we get the channel
power response. For conventiona OFDM system, it is very easy to get the channel
power response. But in space-time OFDM, it is quite a different case, since the

received data is composed of two different transmitted data; it's not easy to separate
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them. So, the main problem we face now is how to get the channel power response.
However, in genera case the channel power response is hard to obtain. Hence, we
only focus on BPSK system and exploit the transmitted data’s time and temporal
correlation to develop a new algorithm named sum-difference square method to solve
this problem.

Moreover, in time varying channel, we also need to choose a best window size to
get the channel power response and apply it to PD. As we all know, when the window
is longer, we can suppress the noise, but then we carit follow the variance of the
channel. Thisis the trade off. However, the choice of the window size is dependent on
how fast the channel changes. Precoder design is another issue behind the algorithm

aswill be discussed in section 4.2.4.

4.1 Decision Direct (DD)

4.1.1DDin ST-OFDM

In [21], Giannakis has shown how DD works in conventional OFDM, and we want
to extend it to space time OFDM by using the space time data matrix.

There are four steps shown as follows:
Step (1) Set j=0, find an initiad time domain channel estimate ﬂ,(j) and @,( ; using
Eq.(3.16), calculate the frequency response Blm and IjAzm by EQ.(2.15).
Step (2) Since now we have D, , andD,, it is possible to detect s(n) with
diversity gains by a smple matrix multiplication as Eq.(2.21) by substituting

D(H,) and D(H.) .
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z(n) =D"y(n)

éD(H,.,) D(H, )u -
=g ) D) Gy(e) + 5 ) 41
B ('jz,(j)) 'D(Hl,(J))g_ B

12,(j )?1

"vE B

u
aS(n) +x(n)
0 Dlz,(i)-zl] -

Then we can get the soft decison s(n) asEq.(2.24):

a&D,, \? 0O uo
s(n) =Gxz(n) :inv§é 12’8) ! Q) (4.2)
e 12,())" 20

then we can project onto the finite alphabet to obtain the hard decision discrete
values §;,(n).
Eq.(4.2) shows how we collect soft decision data which corresponds to
§,,(n,m) = y(n,m)/H () (4.3)
in [20] for conventional: ORDM :which:is only a simple one tap equalizer.
However in ST OFDM,we need first to get | z(n), the ST decoder output, and

then feed it to equalizer G which compensates not only channel gain but also

the precoder effect, hence it is more complicate.
Where y(n,m) indicates the data for the mth subcarrier on the nth received

data block, §n,m) is the decision data corresponding to the mth subcarrier

on the nth block, I:I(rm) is the estimated frequency channel of the mth
subcarrier.

Step (3) Here, we separate step 3 to two parts. Part @) is to update the estimated
channel from the decision data, and part b) is to update the detected data from
the updated channel.

(a) Here, we rewrite Eq. (2.16) again.
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) o) 1
V(n):g ,§7(n) +D,5 (n) U+ev((2))(n)u 4.
= & D,SY () +D,5Y (g &M

Let D(v) stand for the diagonal matrix with the vector v, and define
SP(n) =D(5% (n
~2( ) (_2( ) (4.5)
§9(n) = (5% (n))
Sincefor J° 1 vectors aand b it holds that D(a)b = D(b)a, Eq.(4.3) can
be rewritten as
_ S(l)(n)H +SP()H, U évd(n)i
gm=e ot gt @6
S”(n)H +S% (NH, g & (n)g
Apply the hard decision data to Eq.(4.6):

8))(”) 58(”) eHl()u+ev()(n)u 47

Vi e
YR & ) S v ()]

where
SE% (n)= D(?ﬁ,(j) (n))~and SEZJ)) (n)= D(?Zi,(j) () (4.8)
: eHy ;) U
Then we can simply get & g though E.(4.7)
=23 U
éH. U &SP (n) S@(n)uod
&V g=invece “2))( ) (‘1‘))( )g%y(n) (4.9)
e'jzu)u 8 SE,) (n) S(J) (n)HE_
Update the time domain channel estimates
hy =V H ) (4.10)
and their frequency response using
(4.12)

Hi ) _VE(J)

Note that here Eq. (4.10) mears to perform an M-point inverse DFT on

H;;, and truncate the output by keeping only the first L+1 entries (since
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we have assumed the channel delay spread is equal or less then L); Eq.
(4.11) amounts to performing an M-point DFT on an vector formed after
zero-padding, we call Egs.(4.10) and (4.11) denoising.

Eq.(4.9) is to update the estimated channel from the decision data which

corresponds to
H(r )=y m/sn m) (4.12)
in [20] for conventiona OFDM.
(b) Check if El,(j) @j(j_l), if yes, stop the iteration, if no , in each successive
iteration, | is added by 1.
We have updated Iin,(j) in (@), then We can form D, ;) and D, ;, from
Dy j)zD(IjAly(j_ y) and Dzl(j):D(ﬂAl‘(j_l)) . Then, recompute the symbol
estimates by Egs.(4.1)-and (4.2) to.get the-soft decision, and project again
onto the finite alphabet to obtain-hard-decisions §;, (n) .

Step (4) Repeat Step (3).

See Fig.4.1 for the Signal- flow graph of DD in space-time OFDM system
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2,() Diha
/ z(n) 1(J) 2 G) ~(n)
= §D2 0 1(1)0_
j=j+1 z(n)
foromD,, @D, 0 0o
, s(n) =invge i2(n)
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" s(n)
gL sop —~——{ Decision |
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ﬁt(j) and ﬁz(i)

Truncation

Fig. 4.1 Signal- flow graph of DD in space-time OFDM
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4.1.2 Comparison with conventional OFDM

We have shown how DD works in space time OFDM system, and the main
equations are Eq.(4.2) and Eq.(4.9), while the former is to get the soft decision data,
and the latter is to update the channel response while we have the decision data, both
of which are corresponding to matrix inverse and multiplication. However, for DD in
conventional OFDM [21], these two equations just become a smple scalar division,

which are

8n,m) =y(n,m)/ H(r

SE ) =y(n,m)/H(r ) (4.13)
H(r,)=y(nm)/s{n m)

where y(n,m) indicates the data for mth subcarrier on the nth received data block,

8(n,m) is the decision data corresponding to the mth subcarrier on the nth block,

H(r . )is the estimated frequericy channel, of.the-mth subcarrier. See Fig.4.2 for
Signal-flow graph of DD in conventional:OFDM.
Eq.(4.13) is based on the well-known formula [1],
y(n,m) =H(r )s(n,m)+n(r ) (4.14)
which leads to Eq.(4.13) a smple scalar division, but in space time OFDM, al the
formulas are in matrix form which makes Eq.(4.2) and Eq.(4.9) both matrix inverse

and multiplication. Note here that in Eq.(4.12) G corresponds to a psuedo inverse

e SHmu
g D0 s full rank of size

dnceitsszeis 2M " 2K, and in Eq.(4.9) € ~ oy U
&Sh (N S Mg

2M " 2M .



y(i,m)

0 Bm(rm) -
N —O0——FpT s(n,m) =y(n,m) /HO(r )
j*1
s(n, m)
= .
Cia decision

HY(r )= y(n,m)/8"(n,m)

‘Whether
ﬁ( i} :ﬁu -1)

IFF

Truncation
N0

Fig. 4.2 Signal- flow graph-of DD.in conventional OFDM

4.2 Phase Direct (PD)

4.2.1 Introduction of PD

Before addressing PD [20] to space time OFDM, we first show how it woks in
conventional OFDM. Now, we start this part from EQ.(4.14), and focus on PSK

i2p p/P}P

constellationofsizeP:{zP:e o’

We take the power of P to Eq. (4.14), omit noise for simplicity, and get the

expectation

E{y"(n,m)} = E{[H (r,)s(n,m)]"} =H"(r ,)E{s"(n,m)} (4.15)
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Inpractice, E{y(i,m)"} isreplaced by sample averages and thus is estimated as

1'%t »
—ay (hm)
H P r = n=0— 4.16
(F ) E{s"(n,m)} (419
where N is the received data block number.

Since we focus on PSK constellationof size P, we have E{s°(n,m)} =1. Hence,

Eq.(4.16) becomes

HP(r ) :%5 v (nm. 4.17)

n=0
Hence, we’'ve got the channel power response. Next, we only need to get the
channel phase response, which means for each mi [0,M - 1] (assuming total M

subcarriers ), we have
H(r ) =1 J[H(r 1" (4.18)
where | 1 {ei(z"”’”’, p:1,...,P} (4.19)

is the corresponding phase ambiguity:in.taking the Pth root.
For each mi [0,M - 1] , we can resolve the phase ambiguity by searching over

candidate phase values

| =argminfHe (r ) - 1 [H(r 1| (4.20)

where H_(r ) will be discussed in the following.

Therefore, we can improve channel estimation accuracy through what we term

Phase Directed (PD) steps that we describe next:

Step (1) Set j=0, find an initial estimate ﬁ(o) using any estimated method , and
caculate the frequency response B(O) , then we can get
Ho(r,)= ﬁ(o)(r ) form=0,1,2,....M-1.
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Step (2) In each successive iteration, j isadded by 1, and
(@ Resolve phase ambiguities by replacing H(r ) with H, ,(r ;) in
(4.20), and thenform the vector
e ={1 o[H 7 (r )1 e L HP (0 177 (4.21)

(b) Update time domain channel estimates

A

hjy =V " Hieny (4.22)
and their frequency response using
Hiy =V h (4.23)

Step 3) Repeat Sep2 several times, or continue until ﬁu) @_:u( .y Within some

tolerance.

See Fig.4.3 for the signal- flow,graph ofsphase direct in conventional OFDM.

The main difference between PD and DD ‘is that:DD alternates between channel
estimation and symbol detection while PD-avoids symbol estimation by decoupling
channel estimation from symbol recovery.” Therefore, PD is immune to the

well-known error propagation phenomenon that is present in DD iterations.



N recelved data
blocks y(n, m)
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n=0
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stop

Fig. 4.3 Signal-flow graph of phase direct in conventional OFDM

4.2.2 PD in ST-OFDM based on sum-difference square

algorithm

Here, we want to apply PD to the Space- Time OFDM system. As described earlier,
the main idea of PD is to solve the phase ambiguities in Eq.(4.20) after we get the
channel power response Eq.(4.17). For conventional OFDM system, it is very easy to
get the channel power response from (4.14). But here it is quite a different case, since
the received data is composed of two different transmitted data as in Eq.(2.13); it’s
not easy to separate them. So, here we derive an algorithm to get the channel power
response.

Let’s start from (2.14) and only focus on BPSK baseband system which means we
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only use +1 data in baseband since for other system it's hard to solve the channel

power response. Then we will get

éy(l)(n)l)_ éDé(D(n)"'Dzs(z)(n) u (f:y(l’(n)@
M &D.s2m+D.z2mY & mY (4.24)
gy~ (Ng & DS7(n)+D,57(n)g av(ng

For smplification, we only see the mth data part and omit noise.

y&(n) = mth dataof y®(n), ¥ (n) =mth dataof y (n)
s (r) =mth detacf 8%(n), §” () =mth detaof 57 (n) (4.25)
H,(r ) = D,(mm), H,(r ) = D,(m,m)

Then we get

Yo (1) = Hy(r )7 (M) +Hy(r ) ()

YO (n) =- Hy(r )82 (n) +H,(r .)s () (4.26)

In the following, our purpose is_toget M7 (r ) and H2(r ) , the square of the
channel frequency response. Square (4.26)' and note that (s.,(nl)(n))2 :(s,(nz) (n))2 =1
for BPSK

(YO =H2(r )+ H2(r )+ HIEH, ¢ ,)s2 (M2 ()

, (4.27)
(Y&(M)" = H2(r )+ HE(r ) - 2H,(r ) H, (r ,)s (n)s? (n)

Here we adopt BPSK since we can have (a‘nl)(n))2 = (sfnz) (n))2 =1. However if we
adopt any PSK constellationof size P, we have to take the power of P to Eqg. (4.26) to
make (s,ﬁ?(n))P :(sﬁf)(n))P =1. Then it becomes very hard to solve, hence we only

focus on BPSK.

By taking their sum and difference to Eq.(4.27), we have

(yom) +(y2m) =2(H2(r )+ HZ( ) (4.289)
(yom) - (y2(m) =4, (r H (1 )s2 (Ms2 (n)
=+4H (r JH,(r ) (4.28b)



From Eq. (4.28b)

(yom)- (y2 )

H,(r,) = AR ) (4.29)

Squaring both sides of EQ.(4.29), we have
H2 o )"~ (3 (n))zg 4.30
2(rm) = 6H(r ) (4.30)

Substitute Eqg. (4.30) to Eq. (4.28a), then
@ @ yfnl)(n) G
DOl OE) e .8 I @31)
2 16H2(r )

Then, we have

16H,%(r ) - 8y (M) +(y () R (r Yeg ve () - y@(n)) =0 (4.32)

Finaly,
O - D (YR
Hlz(rm):gym(n) Y ()Y
4 2 (4.33)
gyr(nl)(n)’fyrf)(n)ﬂ
4

Thenwecanget HZ(r ) from the square of the sum or difference of the received
data, so we name this algorithm sum-difference square method. By the same way, we
canget HZ(r,) the same form as Eq. (4.33), and we assume that the two channels
we use are different, so we can know that if H/(r ) is one of Eq. (4.33) then

HZ(r ) isanother one.
The question here is how to know which one of (4.33) is HZ(r ). We only need

to compare it with the estimated channel via subspace-based method to see which one

has smdller Euclideandistance.



(4.34)

2

sy (1) + v (MBI
i) =erg pin ) - OO “
2t ) 4 ‘

where H(r ) is the estimated channel via subspace-based method. See Fig.4.4 for

the Signal-flow graph of finding HZ(r ) and HZ(r ).

7(1)("‘) ®
- ym (n) N 1) 2 2
Y LB (- Y (N

N conpute} 4 ,
1 &Y (N + Y2 (g

y(2) (n) I 4

2(2) (n)

estimated channel ~ § HZ(r )
via subspace method% H2(r ) H;(E 9= agmin
(focus on the nth subcarrer)

&2 (0 £y ()
rm)'f

HZ(

getH (r YandH2(r )

Fig. 44 Signal-flow graph of sum-difference square algorithm to find

H(r ) and H7(r )

4.2.3 Choice of thewindow size

We have shown above how to get H7(r_)andHZ(r ), but they are only

corresponding to the two channels’ mth subcarrier, so we need to further get al other
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subcarrirers frequency channel power
HZ =[H2(r o), HE(r e HE (M 0] (4.35)
by using the same method as discussed above. Furthermore, in static channel if we

have received more than one data block (assume N), for every block n we need to get

the frequency channel power Hfm and then average all of them toget H?.
’\cl)-
3 H-? (4.36)

After we'vegot H?, simply apply to the Eq. (4.15) by setting Q=2 and follow the

phase direct steps as described earlier to further improve the estimated channel. See

Fig.4.4 for the Signal-flow graph of PD on space-time OFDM in static channel.

However, in time-varying channel we do.not average all received block to get H?,

instead we need to test how long the window size should be to get the better H?. As

we all know, when the window is |onger; we can suppress the noise, but then we can't
follow the variance of the channel. This is the trade off. However, the choice of the
window size is dependent on how fast the channel changes. See Fig.4.6, signal-flow

graph of phase direct on space-time OFDM in time varying channel for the window

. . N
sizeis —.
4



|
|
|
|
: y(l)(n)
| Block 1 g8t HA(r 1)
| (2
n
: al Average
| to get
|
i Hiz (ry)
|
i Block N T
| ' ( y2(n) i
| [subspace- based |
channelestimator -~~~ """ """ T~~~
t hO o T \ " "
j31
=
j=j+1
|FFT
‘Wheth
ﬁm:ﬁjrn = stop Truncation
RO

Fig.4.5 Signal-flow graph of phase direct on space-time OFDM in static channel
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Fig.4.6 Signal-flow graph of phase direct on space-time OFDM in time varying

4.2.4 Precoder design

channel

The above algorithm is based on s (n),s? (n) = +1, and from Fig.2.1 we know




that 3@ (n), 3 (n) are the precoder output, and if we apply the precoder at will, then
39(n), 3®(n) may not equal to+1l. So there should be some constrains on the
precoder, we simply use the precoder like [ITpre I']" where |,

is formed by any

e

M-K rowsof the K~ K identity matrix |, just asthe form of Fig4.7.

el 0 0 Oy @ 1 0 Oy

e -, a i 2 . a i

go . 0 Ol,J M - K rows 20 o . Oa M - K rows
@O 0 1 ! @O 0 0 1@

S0 0 S0 0 0

© 10 €@ 1 0 ol

é . K rows 2] . u K rows
0 0 - 0 0 . Oy

© 0 0 © o0 0 19

Fig. 4.7 Forms of precoder

In this chapter, we have shown how PD and*DD improve the subspace based
channel estimator. In next chapter, we want to have some computer simulation to

verify our algorithms.
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Chapter 5

Computer ssimulations

In this chapter, we will use computer simulations to verify the algorithm discussed
in chapter 3 and chapter 4. We first test the subspace-based estimator discussed in
chapter 3 in section 5.1, then see how DD "and PD-perform in section 5.2. Next we
want to see how these methods perform intime varying channel in section 5.3.

We illugtrate the performance of our channel estimators through simulations. The
figure of the performance for channel estimation is the normalized mean-sguares

channel error (NMSCE) defined in the frequency domain as:

Lh- AIF _[IDh|P
Ihi? hip

(5.1)

5.1 Subspace-based method

We test our Subspace-based estimator in this section as a function of the input

SNR in 5.1.1 and the number of recaeived data blocksin 5.1.2.
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Note that there is a complex scalar ambiguity inherent in the blind channel
estimator. During the simulations, the power ambiguity is handled by assuming the
true channel vector to unit norm and similarly normalizing the estimate. Without

further processing, the phase ambiguity cannot be resolved. In our work, this phase

ambiguity is determined from h(O)/ﬁ(O) and used to compensate the channel

estimate prior to the NMSCE computations.

5.1.1 Estimator error V.S. SNR

In this section, we examine the estimator error described in chapter 3 as a function
of theinput SNR by using the following setup:
® BPSK system,
® K=24,3=32
® Rayleigh fading channel
® | =4 (five-ray channels),
® N=100
The simulationresult of estimator error is shown below and is compared with the
results fromnumerical analysisin Eq.(3.46). Solid line stands for the simulation result
and dash line is the theoretical result. It shows good agreement of NMSCE (when
SNR>20 dB) obtained from simulation and Eq.(3.46) since EQ.(3.46) is based on the

assumption of high SNR condition( small perturbation) [19].
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Fig.5.1. Channdl error-of simulation result and theory V.S SNR

5.1.2 Estimator error v.s. data block length

Following 5.1.1, here we illustrate the estimator error as a function of the number

of received data blocks for SNR=15 dB by using the same setup as section 5.1.1.
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Fig.5.2. Channel error of amulation result and theory V.S. received data block

In Fig. 5.2, we can see that the estimator’s performance is better as the received
data block is more since the covariance matrix is much closer to the ideal one, and we
can see that when the number of received data blocks is 50, the NMSCE diverges
obvioudly since in this situation the covariance we’ ve got is not precise enough.

We can make a conclusion from Fig.5.1 and Fig.5.2 that the estimator’ s
performance is dependent on the key system parameters—such as the input SNR, the

lengthof received data blocks.
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Fig.5.3. Channel error of different multipath Iength

In Fig.5.3, we test the subspace-based channel estimator for different multipath

length. As expected, as the multipath length is larger, the performance is worse.

5.2 Performance of PD and DD

First we want to show how DD and PD work with and without denoising.
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Fig.5.4. Channel error of PD and DD with deneising and without denoising

With denoising, the performance improves since we truncate the last M- L point.
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Fig.5.5 PD-and DD v.s subspace-based estimator

From Fig.5.5, we can see that DD and PD with denoisng better the subspace-based
estimator. Moreover, PD improves significantly.
Next we want to see DD and PD in different multipath length. In Fig.5.6, both DD

and PD are immune to multipath length.
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Fig.5.6. Testing DD and-PD initiglized with subspace method for different

multipatj length

In the above, we use BPSK system to simulate both DD and PD. Here we want to
test DD in different data constellation, such as QPSK, 16QAM, and 64QAM.

We can see from Fig.5.7 that both BPSK and QPSK improve the performance.
However, 16QAM and 64QAM worsen the performance since it is easy to make

wrong decision for them.
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Fig.5.7. Testing DD in different data constel lation

5.3 Time-varying channel estimation

5.3.1 Subspace-based method

Here, we test our proposed method in time variant channel to see how they behave.
Each tap of the time-varying FIR channels varies according to Jakes model, and the
samplerateis 1 MHz.

First, the subspace-based channel estimator is tested and shown in Fig.5.8 in time
varying channd for different maximum Doppler frequencies, which is equal to 10Hz,
60Hz, 100Hz, and 200Hz We can see that as the maximum Doppler frequency is

higher, the estimator is worse and all of themlead to error floor.
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Fig.5.8. Testing of the subspace-based channel’ estimator in different Doppler

frequencies for received blocks equaling to 100

In the above, we use received blocks equaling to 100, however in the 100 blocks

the channel is already different, hence next we want to test the situation, which data

block equal to 50.
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Fig.5.9. Testing of the subspace-based channel -estimator in different Doppler

frequencies for received blocksequalingto 50

Comparing Fig.5.8 and Fig.5.9, we can see that Fig.5.9 has got better performance
since the recelved data blocks is less. Aswe all know, the estimator is to get a channel
from the received data which have the information of channels, which best suits all
the channels. However, the channels are al different. Hence, more blocks leads to
poorer performance.

Fig.5.10 show the NMSCE for each block in the 50 received data blocks in
fd=60Hz and SNR=15dB. As we can see, around the 25 block, we can get best
performance since the channel can be seen as changing as a straight line in the 50

block, the estimator is about to estimate one channe which has the smallest difference
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to al the 50 blocks. Hence we' ve got this result.
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Fig.5.10 Channel error for each block

5.3.2 Performance of PD and DD

DD and PD are tested in the following. For PD we do not average al received

block to estimate H?(r,), instead we need to test how long the window size should

be to get the better estimate, which is because as the window B longer, we can

suppress more noise, but then we cari t follow the variation of the channel.

We can see in Fig.5.11 that both PD and DD improve the performance moreover

they resolve the error floor problem occurred in subspace-based estimator. Moreover,



in PD, we can see that “window size=1" outperforms, which is because in fd=50 Hz,

the channel change fast, we need to trace the variation by using smaller window size.
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Fig.5.11 Test of DD and PD in fd=100Hz

Performance of DD in different data constellation is shown in Fig.5.12.We can
see that BPSK, QPSK, and 16QAM improve the performance. However, 64QAM

worsen the performance in low SNR since it is easy to make wrong decision.
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Fig.5.12 Test of DDfor different data constellation in fd=50



Chapter 6

Conclusion

For STC transceivers, multichannel ‘estimation agorithms are needed. However,
training sequences consume bandwidth-and, thereby, incur spectral efficiency (and
thus capacity) loss For this reason, blind channel estimation methods receive growing
attention We have shown a subspace-based blind channel estimationalgorithm for ST
OFDM transmissions and develop the theoretical mean square error of the estimator.
To further improve the channel estimation, we can exploit the finite al phabet property
to better the channel estimates. We discuss two different methods, DD and PD, and
apply them to ST OFDM system. DD, as implied in the name, needs first to get the
hard decision data and then use it to update our estimated channel, while FD is to
solve the phase ambiguities after we' ve got the channel power response. However, in
ST OFDM the channel power response is hard to get since the received data is
composed of two different transmitted data. Hence, we only focus on BPSK system
and exploit the transmitted data’s time and tempora correlation to develop a
sum-difference square algorithm to solve this problem. Moreover, in time-varying
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channel we can choose a best window size to get the channel power. Computer
simulations have shown that the PD and DD method realy improve the NMSCE in
static channel and time-varying channel and further resolve the error floor problem
occurred in time-varying channel.

However, our PD method for Space-Time OFDM is only utilized in BPSK system,

we shdll try to apply it to other systems such as QPSK, QAM in the future.
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