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之盲式通道估計 

 

學生：吳泰云             指導教授：謝世福 

國立交通大學電信工程學系碩士班 

 

摘要 

 
  時空正交分頻多工調變不僅可以達到高傳輸效率而且可以利用分集增益

(diversity gain)，所以目前倍受矚目。在本篇論文中，我們採用了 Giannakis 

所提出的時空正交分頻多工調變之盲式通道估計，並且為此估計子推導出均方誤

差。不僅如此，我們更介紹了 decision direct (DD) 和 phase direct (PD) 兩

個方法來使之前所提的通道估計更加趨於理想。 DD 是利用解得的決策信號來更

新通道的估測，而 PD 是在我們得到通道的振幅響應之後，解得其相角響應，原

來是只應用在一般的正交分頻多工上， 因為其通道的振幅響應很容易得到，但

是在時空正交分頻多工調變上，因為接收到的信號是由兩個傳送天線傳來的，通

道的振幅響應很難由其中解出。所以我們提出了一和差平方的演算法來的到通道

的振幅響應進而就可以用 PD 來使通道的估計更趨於理想。並且在電腦模擬中驗

證了我們的方法真的使通道的估計更完美。 
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Abstract 
Space time (ST) orthogonal frequency division multiplexing (OFDM) has been 

well documented as an attractive means of achieving high data rate transmissions  with 

diversity gains. In this thesis, we adopt a blind channel estimation algorithm proposed 

by Giannakis for ST OFDM, and derive the theoretical mean square error of the 

estimator. Moreover, we introduce phase direct (PD) and decision direct (DD) 

methods to further improve the performance of the estimator. DD and PD originally 

work on conventional OFDM, and PD is not suited for ST OFDM. Then we derive a 

new algorithm named sum-difference square method to make PD work on ST OFDM. 

DD is to update our estimated channel from the previous hard decision data, while PD 

is to solve the phase ambiguities after we’ve got the channel power response. Since 

the received data in ST OFDM is composed of two different transmitted data, the 

channel amplitude response is not easy to get. Hence, the aforementioned algorithm is 

about how to solve this problem. Furthermore, in computer simulations, we can see 

our algorithm really better the performance. 
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Chapter 1 

Introduction  

 

In orthogonal frequency division multiplexing (OFDM) [1,2,3], the entire channel 

is divided into many narrow parallel subchannels, thereby increasing the symbol 

duration and reducing or eliminating the intersymbol interference (ISI) caused by the 

multipath environments. On the other hand, since the dispersive property of wireless 

channels causes frequency selective fading, there is higher error probability for those 

subchannels in deep fades. Hence, techniques such as error correction code and 

diversity have to be used to compensate for the frequency selectivity. In this thesis, 

we investigate transmitter diversity using space-time coding for OFDM systems. 

Space-time codes (STC) [4,5,6,7] realize the diversity gains by introducing 

temporal and spatial correlation into the signals transmitted from different antennas 

without increasing the total transmitted power or transmission bandwidth. There is in 

fact a diversity gain that results from multiple paths between base station and user 

terminal, and a coding gain that results from how symbols are correlated across 

transmit antennas. 
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Transmitter diversity is an effective technique for combating fading in mobile 

wireless communications, especially when receiver diversity is expensive or 

impractical. Many researchers [8,9,10] have studied transmitter diversity for wireless 

systems. In this thesis, we focus on two transmit-antennas and one receive-antenna 

and use the well known Alamouti’s block STC [11]. 

However, for most STC transceivers, multichannel estimation algorithms are 

needed. Training symbols are transmitted periodically in [12] for the receiver to 

acquire the multi- input multi-output (MIMO) frequency-flat channels (see also [13] 

for training-based estimation of frequency-selective channels in ST-OFDM). 

However, training sequences consume bandwidth and, thereby, incur spectral 

efficiency (and thus capacity) loss. For this reason, blind channel estimation methods 

receive growing attention, especially for estimating the MIMO channels 

corresponding to multiple transmit and receive antennas.  

Only a few works, however, have been reported so far on blind MIMO and 

multi- input single-output (MISO) channel estimation that exploits the unique features 

of ST codes. Relying on nonredundant and nonconstant modulus precoding, blind 

channel estimation and equalization for OFDM-based multi-antenna systems has been 

proposed in [14] using cyclostationary statistics. Subspace-based blind method is 

proposed in [15] for estimating the channel responses of a multiuser and multiantenna 

OFDM uplink system.  For ST-OFDM, a deterministic  blind channel estimator was 

derived in [16] when the channel transfer functions are coprime (no common zeros) 

and the transmitted signals have constant-modulus (CM). 

In this thesis, we deal with a linearly precoded ST-OFDM system with two transmit 

antennas and show a blind channel identification algorithm [17] for 

frequency-selective FIR channels through the subspace method. Moreover, as shown 
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in [17] with properly designed redundant precoders, the subspace-based method can 

estimate multiple channels simultaneously up to one scalar ambiguity. 

  Furthermore, based on the first-order perturbation theory [19], we also derive the  

theoretical mean square error of the estimator which shows the relationship with the 

simulation result. 

To further improve the channel estimation, we can exploit the finite alphabet 

property to better the subspace-based channel estimates by applying the “Decision 

direct (DD)” and “Phase direct (PD)” methods. DD, as implied in the name, needs 

first to get the hard decision data and then use it to update our estimated channel, 

while PD is to solve the phase ambiguities after we’ve got the channel power response.  

DD originally works in conventional OFDM [21], which only requires simple scalar 

division. Based on the space time data matrix, we extend it to ST-OFDM, which 

corresponds to a matrix inverse and multiplication because the received data is 

composed of two different transmitted data.  

 The main idea of PD is to solve the phase ambiguities after we get the channel 

power response. For conventional OFDM system, it is very easy to get the channel 

power response. But in space-time OFDM, it is quite a different case, since the 

received data is composed of two different transmitted data; it’s not easy to separate 

them. So, the main problem we face now is how to get the channel power response, 

which is hard to get in general. Hence, we only focus on BPSK system and exploit the 

transmitted data’s time and temporal correlation to develop a new algorithm named 

sum-difference square method to solve this problem. 

Moreover, in time varying channel, we also need to choose a best window size to 

get the channel power response and apply it to PD. As we all know, when the window 

is longer, we can suppress the noise, but then we can’t follow the variation of the 
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channel. This is the trade off. However, the choice of the window size is dependent on 

how fast the channel changes. Precoder design is another issue behind the algorithm 

as will be discussed in chapter 4. 

The rest of this paper is organized as follows. After presenting the system model in 

Chapter 2, we show our blind channel estimation algorithm in Chapter 3 and further 

improved methods in Chapter 4. Chapter 5 presents simulation results, and Chapter 6 

gathers our conclusions.  
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Chapter 2 

Space Time OFDM System Model 

 

Fig. 2.1 depicts the space-time OFDM system considered in this thesis with two 

transmit antennas (there can be more antennas, but in this thesis we focus on two 

antennas) and one receive-antenna. Prior to transmission, the information bearing 

symbols ( )s n  are first grouped into super blocks of size 2 1K × , where we indicate 

the first K symbols as (1) ( )s n  and last K symbols as (2) ( )s n .  

(1)

(2)

( )
( )

( )
s n

s n
s n

 
=  

 
                                               (2.1) 

Two different linear block precoders denoted by the tall M K×  matrices 1?  and 

2?  (one for (1) ( )s n  and the other for (2) ( )s n ) are used to introduce redundancy 

( M K> ). The corresponding 2 1M ×  precoded block is  

(1)(1)
1

(2)(2)
2

(1)

(2)

( )( )
( )

( )( )

( )
       ( )

( )

s ns n
s n

s ns n

s n
s n

s n

  
= =   

   
  

= =  
   

1

2

?
?

? 0
T

0 ?

%% %
                                (2.2) 

where 
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 

=  
 

1

2

? 0
T

0 ?
                                                (2.3) 

 

1 2,? ?
( )s n%( )s n

1( )s n

2( )s n

1Tx

2Tx
Rx

    ST
Encoder

MW cpT

/P S

/P S

/S P cpR     ST
Decoder

Decision

cpT

1( )u n

2( )u n 2( )u n%

1( )u n%

Γ( )y n ( )y n ( )z n

1h

2h

( )w n

MW

H
MW *( )⋅

( )y n%

 

           Fig. 2.1 Block precoded ST-OFDM transceiver model 

 

( )s n%  is then fed to the space-time encoder. The encoder takes input two consecutive 

precoded blocks (1) ( )s n%  and (2) ( )s n% to output the following 2 2M ×  code matrix: 

[ ] * *

(1) (2)(1) (1)
1 2

1 2 (2) (2) (2) (1)
1 2

( ) ( )( ) ( )
( ) ( )

( ) ( ) ( ) ( )

s n s ns n s n
s n s n

s n s n s n s n

  
= =   

−    

% %
% %

             (2.4) 

where 

     
(1) (1)

1 2
1 2(2) (2)

1 2

( ) ( )
( )      and     ( )

( ) ( )
s n s n

s n s n
s n s n

   
= =   

   
                        (2.5) 

Eq. (2.3) shows that the blocks ( )s n%  is transmitted twice in two consecutive time 

intervals through two different channels. 

Here we define a M M×  IDFT matrix as  
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1 ( 1)

2 2( 1)

( 1) ( 1)( 1)

1 1 ... 1

1 ...
1

1 ...
M

1 ...

M
M M

M
M M M

M M M
M M

w w
w w

w w

− − −

− − −

− − − − −

 
 
 
 =
 
 
  

W
M M

                          (2.6) 

with 
2 /j M

Mw e π= .  

Then the OFDM symbol (1) ( )is n  and (2) ( )is n of dimension M are then modulated 

by the IDFT matrix MW  to produce  

(1)

(2)

( )
( )

( )
M i

i
M i

s n
u n

s n

 
=  

 

W

W
                                           (2.7) 

In order to eliminate inter-block- interference (IBI) caused by the channel, the “time 

domain” vector ( )iu n  is then enlarged by a cyclic prefix (CP) of length L, resulting 

in a size  M+L vector, where CP insertion replicates the last L elements of the IDFT 

output vector in the front since we assume that the channel order is equal or less than 

L, as will be discussed latter. As shown in Fig. 2.1, the CP insertion can be described 

by [  ]T T T
cp cp M=T I I , where cpI  is formed by the last L rows of the M M×  identity 

matrix cpI , and its output  

(1)

(2)

( )
( )

( )
cp M i

i
cp M i

s n
u n

s n
 

=  
  

T W
T W

%                                          (2.8) 

is finally sent sequentially through transmit antenna i.  

We assume in what follows that the channels between the two transmit antennas 

and the receive antenna are frequency selective and that their baseband equivalent 

effect in discrete time is captured by an FIR linear time- invariant filter with impulse 

response vector 

     [ (0), , ( )]    1,2i i ih h h L i= =…                                     (2.9) 
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where L is an upper bound for the channel orders of 1h  and 2h , i.e., 1 2max( , )L L L≥  

if 1L  is the channel order for 1h  and 2L  for 2h .  

Accordingly, the FIR channel can be described by the ( )M L+ × ( )M L+  Toeplitz 

matrix iH  with (k,l)th entry ( )ih k l− . 

(0)
(1) (0)

(2) (1) (0)

( ) (0)
( ) (0)

i

i i

i i i
i

i i

i i

h
h h

h h h

h L h
h L h

 
 
 
 

=  
 
 
 
  

H O
L

L

           (2.10) 

At the receiver end, the CP is simply removed. The operation of discarding the first 

L received symbols can be described by the matrix [ ] cp M L M×=R 0 I . Let        

i cp i cpH = R H T%                                             (2.11) 

denote the equivalent channel matrix after eliminating the IBI. The 2 1J ×  IBI-free 

block ( )y n  in Fig. 2.1 is given by: 

(1)

1 1 2 2(2)

(1) (1)
1 1 2 2

(2) (2)
1 1 2 2

(1)
1 1

(2)
1 1

( )
( ) ( ) ( ) ( )

( )

( ) ( )
      ( )

( ) ( )

( )
      

( )

cp cp cp

cp cp M cp cp M
cp

cp cp M cp cp M

M

M

y n
y n u n u n w n

y n

s n s n
w n

s n s n

s n
s n

 
= = + + 

  
   

= + +   
      
 

= 


R H R H R

R H T W R H T W
R

R H T W R H T W

H W
H W

% %

%
%

(1)
2 2

(2)
2 2

( )
( )

( )
M

cp
M

s n
w n

s n

 
+ +  

  

H W
R

H W

%
%

    (2.12) 

where w(n) is the additive white Gaussian noise vector. Given ( )y n , the retrieval of 

the information blocks ( )s n  at the receiver proceeds in three steps as follows. First, 

the DFT matrix H
MW  is performed on ( )y n  to obtain ( )y n , 



 9 

(1) (1)

(2)(2)

(1)

(1)

(1) (1)
1 1 2 2

(2) (2)
1 1 2 2

( ) ( )
( )

( )( )

( )0
       

0 ( )

0( ) ( )
       

0( ) ( )

H
M

H
M

H
M

H
M

HH H
MM M M M

HH H
MM M M M

y n y n
y n

y ny n

y n

y n

s n s n
s n s n

   
= =   

     
  

=   
    

     
= + +     

    

W

W

W
W

WW H W W H W
WW H W W H W

% %
% % ( )cpw nR

(2.13) 

By defining 
*

(1)

(2)

( )
( )

( )

y n
y n

y n

 
 =
  

% , then ( )y n%  is processed by the space-time decoder to 

produce the block ( )z n  with diversity gains. Finally, the equalizer Γ  is employed 

to recover ( )s n . Then we can plot a frequency domain version of Fig. 2.1 in Fig.2.2. 

    ST

Decoder
Γ

( )z n Decision( )y n%

( )nη( )s n ( )s n%
1 2,? ?

1( )s n

2 ( )s n

 

Fig. 2.2 Frequency domain version of ST-OFDM transceiver 

 

 

Here, we want to start with the following fact [18]: 

Fact 1:  The matrix iH%  can be diagonalized by pre- and post-multiplication with 

H
MW  and MW , i.e.,  

          ( ),H
M i M iH=W H W D%                                    (2.14) 
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where ( )iHD  stands for the diagnal matrix with the vector iH on its diagonal, and 

0

( ) ( )
L

l
i i

l

H h lρ ρ−

=

= ∑  is the frequency response of channel h(l) at point ρ  which is 

different from the Toeplitz matrix iH  in Eq.(2.10). Moreover, we can write  

0 2 ( 1)/[ ( ),..., ( )]j j M M T
i i i iH h H e H e π −= =V               (2.15) 

with V  denoting submatrix consisting of the first L+1 column of H
MW .         ?  

 

Exploiting Facts 1 and substitute Eq.(2.4), the vector ( )y n  in Eq.(2.13) can be 

written as:  

    

(1) (1)
1 1 2 2

(2) (2)
1 1 2 2

(1) (1)
1 1 2 2

(2) (2)
1 1 2 2

(1)
1

0( ) ( )
( ) ( )

0( ) ( )

( ) ( ) ( ) ( )
       ( )

( ) ( ) ( ) ( )

( )
       

HH H
MM M M M

cpHH H
MM M M M

s n s n
y n w n

s n s n

H s n H s n
v n

H s n H s n

H s

     
= + +     

    
   

= + +   
   

=

WW H W W H W
R

WW H W W H W

D D
D D

D

% %
% %

%
* *

(2) (1)
2

(2)(2) (1)
1 2

( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )

n H s n v n
v nH s n H s n

 +  
+   

− +    

D

D D

%
% %

 (2.16) 

where     

(1)

(2)

0( )
( ) ( )

0( )

H
M

cpH
M

v n
v n w n

v n

  
= =   

   

W
R

W
                           (2.17) 

Then,  
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*

*

*

(1)

(2)

(1)(1) (2)
1 2

* (2) * (1) (2)
1 2

(1)(1)
1 2
* * (2) (2)
2 1

( )
( )

( )

( )( ) ( ) ( ) ( )
       

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )
       

( ) ( ) ( ) ( )

y n
y n

y n

v nH s n H s n
H s n H s n v n

v nH H s n
H H s n v n

 
 =
  

  +
= +   − +     

  
= +  −   

D D
D D

D D
D D

%

% %
% %

%
%

        = ( ) ( )

        = ( ) ( )

        = ( ) ( )

s n n

s n n

x n n

η

η

η


 
  

Θ +

+

+

D

A

                  (2.18) 

where H , ( )x n  and ( )nη  are defined, respectively, as 

*

(1)
2

* * (2)
2 1

( )( ) ( )
,  ( )

( ) ( ) ( )

v nH H
n

H H v n
η

  
= =   

    

1D D
D

D -D
                          (2.19) 

,  ( ) ( ),   x n s n= Θ =A D A                                        (2.20) 

When the channel matrices 1H  and 2H  become available at the receiver, it is 

possible to demodulate ( )y n%  with diversity gains by a simple matrix multiplication 

*
21 2

* **
2 12 1

12

12

( ) ( )

( ) ( )( ) ( )
        = ( ) ( )

( ) ( )( ) ( )

        = ( ) ( )

H

H

z n y n

H HH H
s n n

H HH H

s n n

η

ξ

=

   
Θ +   

  
 

+ 
 

1

1

2

D

D DD D
D

D -DD -D

D ? 0
0 D ?

%

          (2.21) 

where  

* *
1 2( ) ( ) ( ) ( )H H H H12 1 2D = D D + D D                               (2.22) 

( ) ( )Hn nξ η= D                                                (2.23) 

We infer that multiantenna diversity of order two has been achieved because 

      
2 2

2 2
12

1 1

| (0)| , , | ( 1) |i i
i i

diag H H M
= =

 
= − 

 
∑ ∑D …                       (2.24) 

Eq. (2.19) implies that zeros-forcing recovery of ( )s n  from ( )z n  requires that the 
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inverse of 
 
 
 

12 1

12 2

D ? 0
0 D ?

, which means the matrices ,i12D ?  [1,2]i ∈  need to be 

full column rank. We can adopt the following design condition on the  block lengths 

and the linear precoders to make sure the full rank of ,    [1,2]i i ∈12D ? . 

Condition 2.1) M K L> + . 

Condition 2.2) , [1,2]i i∈?  is designed so that any K rows of i?  are linearly 

independent.  

To select the appropriate precoders, we can construct them as Walsh code matrices. 

Then the soft decision data can be computed as: 

12 1

12 2

( ) ( ) ( )s n z n inv z n
  

= Γ ⋅ =   
  

D ? 0
0 D ?

                     (2.24) 

where  

      12 1

12 2

inv
  

Γ =   
  

D ? 0
0 D ?

                                   (2.25) 

Then we can project ( )s n  onto the finite alphabet to obtain the hard decision 

discrete values (̂ )s n . 

However, we can adopt the precoder like [  ]
pre k

T T TI I  where preI  is formed by any 

M-K rows of the K K×  identity matrix kI , as will be used in chapter 4. 

In Eq.(2.20), we assume the channel information is already known at the receiver 

end, next we want to show how the channel become available in chapter 3. 
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Chapter 3 

Blind Channel Estimation 

 

In this chapter, we rely on M K×  redundant linear precoders 1?  and 2?   

( M K>  to introduce redundancy) to show a blind channel estimation algorithm for 

Space-Time OFDM transmissions [17], and based on this channel estimation 

algorithm, we derive the theoretical mean square error of the estimator in section 3.2.   

 

 

3.1 Subspace-based multichannel estimation  

3.1.1 Noise free case  

Before addressing the noisy case, we will start from the noiseless vectors ( )x n  in 

Eq.(2.18): 

 ( )= ( )x n s nA                                                 (3.1) 

 To estimate the channels, the receiver collects N  blocks of ( )x n  and forms a 
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2M N×  matrix [ (0), , ( 1)]N x x N= −X … , thus 

    N N=X AS                                                  (3.2) 

with [ (0), , ( 1)]N s s N= −S … . At the receiver end, we also select the following [17]: 

Condition 3.1) Note here the number of blocks N is large enough ( 2K≥ ) so that 

NS  has full rank 2K. 

Condition 3.1) expresses the standard “persistence of excitation” assumption that is 

satisfied by all signal constellations for N sufficiently large. 

Condition 2.1) and Condition 2.2), together with Condition 3.1), and that ( )s n  is 

a 2 1K ×  independent vector, imply that rank( NX )=2K, and the range space 

( ) ( )H
N NRange Range=X X A , and the nullity of NX  is 2 - 2M K . Further, the 

singular value decomposition (SVD)  

H
xx

N N x n H
n

  ∑
= =   

   

V0
X AS [U  U ]

V0 0
                             (3.3) 

with 2 2
1 2=diag( , , )x kσ σ∑ …  and 2 2

1 2 kσ σ≥ ≥… , yielding the 2 (2 2 )M M K× −  

matrix nU , whose columns span the null space ( )NXN , which is caused by the 

redundant precoders.  

Because ( )NXN  is orthogonal to ( ) ( )NRange Range=X A , it follows that  

2 10     for  [1,2 2 ]H T
k ku k M K×= ∈ −A                              (3.4) 

where ku  is the null space vector stand ing for the kth column of nU .  

Let us now split the null space vector ku  into its upper and lower parts as  

k̂
k

k

u
u

u

 
=  

 
( ,                                                 (3.5) 

where k̂u  and ku(  are 1M ×  vectors. Using Eq. (3.4) and Eq.(2.17), we can factor 
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H
ku A  as 

      2 1
* *
2 1 2

( ) ( )
ˆ[  ] 0

( ) ( )
H H T
k k

H H
u u

H H
   

=   
   

1D D ? 0
D -D 0 ?

(
                         (3.6) 

Since for any 1M ×  vectors a  and b  it holds that 

*( ) ( )H Ta b b a=D D ,                                          (3.7) 

Eq. (3.5) can be rewritten as  

    
*

1
1 2 **

2

( )

ˆ( ) ( )
[  ] 0

ˆ( ) ( )

k

T H Tk k

k k

u

u u
H H

u u
=Ψ=

 −  
=   

  
G

? 0D D
0 ?D D

(
(

14243144424443
                        (3.8) 

where  

1
*
2

 
Ψ =  

 

? 0
0 ?

,   
*

*

ˆ( ) ( )
( )

ˆ( ) ( )
k k

k
k k

u u
u

u u

 −
=  

 

D D
G

D D

(
(                       (3.9) 

Plugging the Eq.(2.15) into Eq.(3.8), we have  

      
*

1 2 *

( )

ˆ( ) ( )0
[  ] 0

ˆ( ) ( )0

k

T
T H Tk k

H
k k

u

u u
h h

u u
= =

   −
Ψ =  

   
F G

D DV
D DV

%

(
(

14243 144424443
                     (3.10) 

where 

 
0

0

T

HF
 

=  
 

V
V

                                             (3.11) 

In the above, we use Eq.(3.11) in time domain instead of Eq.(3.8) in frequency 

domain since it can make ( )kG u Ψ  a smaller matrix which can reduce computation, 

and in Eq.(3.8) ( )kG u Ψ  cannot find the actual channel since it is not full rank.  

Stacking Eq.(3.10) for each null space vector ku  with [1, , 2 2 ]k M K∈ −… , we 

obtain 

      1 2 1 2 2[  ] ( ) , , ( ) 0
H

T H T
J K

h

h h F u u − Ψ Ψ = 
Q

G G
%

…14243 1444442444443                         (3.12) 
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where  

1 2 2( ) , , ( )J KF u u − = Ψ Ψ Q G G… .                              (3.13) 

1 2[  ]H T Hh h h=%                                                (3.14) 

Hence,  

2|| || 0H H Hh h h= =Q QQ% % %                                       (3.15) 

Then, we can find the estimated channel ĥ%  as the eigenvector corresponding to the 

smallest eigenvalue of HQQ : 

      1

ˆ argmin

  eigenvector corresponding to the smallest eigenvalue of  

H H

h

H

h h h
=

=

=

QQ

QQ

%
% % %

     (3.16) 

 The above algorithm is based on the null space nU , so we name this algorithm 

subspace-based channel estimation. 

 

 

3.1.2 Noisy case 

In the presence of white noise with variance 2
wσ , we replace NX  in Eq.(3.3) by 

NY , whose SVD has the following form: 

H
xx

N x n H
nn

   ∑
=    

∑   

V0
Y [U  U ]

V0

%% %                                (3.17)    

However, for large N, NY  is replaced by the sample covariance matrix:  

2

2
1

1
( ) ( )

HN
H xx

y x n H
n nn

y n y n
N =

   ∑
= =    

∑   
∑ U0

R [U  U ]
U0

%
%

% %                  (3.18) 

to simplify the computation. Note here 2N K≥  is a necessary condition.  

Whether the channel identifiability can be guaranteed is summarized in the 
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following theorem [17]: 

 

Theorem 1: Suppose Condition 2.1), Condition 2.2), and Condition 3.1) hold true; 

let D  denote any diagonal matrix with unit amplitude diagonal entries, and let 

1 2,Θ Θ be formed by any J L−  rows of 1 2,Θ Θ , respectively. If 1 2  andΘ Θ  satisfy 

1 2( )RΘ ∉ ΘD  , the solution of 3 4[ , ] 0T H Th h Q =  is unique up to a constant, and thus, 

channel identifiability within one scalar is guaranteed: 

1 3
*

2 4

0
0

h h
h h

α
α

    
=    

    

I
I

                             (3.19) 

Here we’ve assumed that 3 4( , )h h is a pair of channel satisfying Eq.(3.16).        ?  

 

We summarize the proposed subspace-based channel estimation algorithm [17] in 

the following steps. 

Step 1) Collect the received data blocks y(n), and compute yR %  in Eq. (3.18). 

Step 2) Determine the eigenvectors , 1, 2 2ku k M K= −… corresponding to the 

smallest eigenvalues of the matrix yR % . 

Step 3) Build Q in Eq.(3.13). 

Step 4) Determine the eigenvector corresponding to the smallest eigenvalue of HQQ  

as our estimate in Eq.(3.16). 

 

 

3.2 Performance Analysis of Mean Square Error  

A performance analysis is conducted on the proposed estimator to derive the 

theoretical mean square error (MSE). Here we start from Theorem 2. 
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Theorem 2: Assuming that both noise and the signals are zero mean i.i.d. random 

variables with variance 2
sσ  and 2

wσ , respectively, an approximation for the channel 

estimate’s MSE in Eq.(3.16) for high sample SNR and large sample size is  

           
2 2

2
2

|| ||ˆ(|| || ) w

s

E h h
N

σ
σ

+

− ≈
Q

                                (3.20) 

 

In the following, we want to prove Eq.(3.20) based on the first-order perturbation 

theory given in [19] in high SNR condition (small perturbation).  

Lemma 1[19] : Assuming a matrix P permits the SVD 

H
pp

p Hγ
γ

  ∑
=   

    

V0
P [U  U ]

V0 0
                               (3.21) 

and the perturbed matrix P%  can be written as  

 
H
pp

p Hγ
γγ

   ∑
= + ∆ =    

∑      

V0
P P P [U  U ]

V0

% %% % % %                       (3.22) 

where  

 n n n= + ∆U U U%                                          (3.23) 

γ  is a vector of γU , then  

          0Hγ =P ,                                              (3.24) 

the first-order approximation of the perturbation to the vector γ  due to additive 

perturbation ∆P  to γ  is    

          Hγ γ+− ∆= P PV                                          (3.25) 

where    

1 H
p p p

−= ∑P U V                                          (3.26) 
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Deducing from  lemma 1, since  is the null space of k Nu X , 0H
k Nu =X , then  

H
k N N ku u+= ∆X XV                                         (3.27) 

where    

1 H
N x x x
+ −= ∑X U V                                         (3.28) 

Moreover, from 0Hh =Q%  in Eq.(3.12.), the perturbation of the channel estimate is 

        Hh h+= − ∆Q QV                                         (3.29) 

where the perturbation QV  to Q is additive and can be formed  

1 2 2( ) , , ( )J KQ F u u − ∆ = Ψ Ψ D DV … V                         (3.30) 

since F and Ψ  are both deterministic. 

In addition, the structure of QV  gives 

 

( )
1 2 1 2 2

1 2 1 2 2

* *
1 1 2 2

1 2 *
1 1

                =[  ] ( ), , ( )

                =[  ] ( ), , ( )

ˆ ˆ( ) ( ) ( )
                =[  ] , ,

ˆ( ) ( )

HH H

T H
M K

Q

T H
M K

T H M K

h h

h h F u u

H H u u

u u u
H H

u u

−

=∆

−

−

=

  Ψ 

  Ψ 

 −
 
 

Q Q

G G

G G

D D D
D D

V V
V … V1444442444443

V … V
(

…( 2 2
*
2 2 2 2

2 2
1 2 2* * * *

2 1 2 1

1 2 2

( )
ˆ( ) ( )

( ) ( ) ( ) ( )
                = , ,

( ) ( ) ( ) ( )

                =[ , , ]

M K

M K M K

H H
M K

H H
M K

u
u u

H H H H
u u

H H H H

u u

−

− −

−

−

  −  Ψ  
   

     Ψ    
     

Ψ

1 1

D
D D

D D D D
D -D D -D

D

(
(

V … V

% %V … V

  (3.31) 

The deduction of Eq.(3.31) is based on Eq.(3.6),Eq. (3.8), and Eq.(3.10),  then 
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1

2 2

1

2 2

1

2 2

         

         

H H

H

H H
M K

H H H
N N

H H H
N N M K

H H H
N N

H H H H
N N N M K

u
h

u

u

u

u

u

−

+

+
−

+

+
−

 Ψ
 =  
 Ψ 
 −Ψ ∆
 =  
 −Ψ ∆ 
   Ψ ∆
   =    
   Ψ ∆ ∆   

B d

D
Q

D

D X X

D X X

D X X

D X X X

V
V

V

O M

1444442444443 144424443

              (3.32) 

where    

 
1

2 2

H H
N

H H
N

H
N

H H
N N M K

u

u

+

+

−

 Ψ
 =  
 Ψ 
 ∆
 =  
 ∆ ∆ 

D X
B

D X

X
d

X X

O

M

                                 (3.33) 

Substituting Eq.(3.32) into Eq.(3.29) leads to 

     =

Hh h+

+

= −Q Q

Q Bd

V V
                                          (3.34) 

Next, before computing the channel MSE, we prove the following lemma. 

Lemma 2: Assume N is a matrix where each element  is zero-mean i.i.d. random 

variable with variance 2σ . Also assume J is an m m×  deterministic matrix. Then 

2( ) ( )H
nE traceσ=N JN J I  where nI  is an n n×  identity matrix and ( )trace ⋅ gives 

the trace of the matrix.                                                 ?           

 

  Proof: Define H=F N JN . Then 
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*

1 1

*

1 1

2

1

( ) ( )

          ( )

,     
          

0,               .

m m

ij ki kl lj
l k

m m

kl ki lj
l k

m

ll
l

E E

E

i j

otherwise

σ

= =

= =

=

  
= ⋅ ⋅  

  
 

= ⋅ ⋅ 
 


== 



∑ ∑

∑ ∑

∑

F N J N

J N N

J

                          (3.35) 

Therefore,  

2 2

1

( ) ( ) .
m

H
ll n n

l

E traceσ σ
=

= =∑N JN J I J I                       (3.36) 

By using Lemma 2, it is easy to see that for the considered problem, we have 

2

2

( ) ( )

                                 ( )

H H H
N i j N i j

n

E u u trace u u

i j

σ

σ δ

∆ ∆ =

= −

X X I

I
                 (3.37) 

with ( )δ ⋅  being the Kronecker Delta function and, consequently  

          2( )H
nE σ=dd I                                           (3.38) 

Then we can write estimated channel error covariance matrix 

        
2

[ ] [ ]

                  [ ]

                  

H

H

H

H H H

H H

H
n

E h h E

E

σ

+ +

+ +

+ +

⋅ =

=

=

Q Bdd B Q

Q B dd B Q

Q BB Q

V V
                             (3.39) 

where  

H

H

H H
N N

H

H H
N N

+ +

+ +

 Ψ Ψ
 

=  
 Ψ Ψ 

D X X D

BB

D X X D

O               (3.40) 

Here we assume that d is the only random variable. 

In addition, to begin the derivation we recall that the unperturbed data NX  can be 

written as N NX = D? S  in Eq.(3.2) by setting Ψ = Θ ,which means we need to 

select *
2 2=? ? . We define the data covariance matrix xR  as    



 22 

     

H
N N

H H H
N N

xR = X X

= D? S S ? D
                                      (3.41) 

The generalized inverse of xR  is  

       
1     ( ) ( ) ( )

H

N N

H H H
N N

+ + +

+ − +

XR = X X

= ? D S S D?
                               (3.42) 

Hence, we have  

       1

1

   

( ) ( )

( )

HH H
N N

H H H H
s

H
N N

+ +

+ − +

−

Ψ Ψ

= Ψ Ψ

=

D X X D

D ? D R D? D

S S

                              (3.43) 

Therefore, Eq.(3.37) becomes 

      

1

1

( )

( )

H
N N

H

H
N N

−

−

 
 

=  
  

S S
BB

S S
O                              (3.44) 

For large N (number of data blocks), approximation  

2H
N N sNσ=S S I                                              (3.45) 

is reasonable, since we already assume that the signals are zero mean i.i.d. random 

variables. Thus  

2

1H

sNσ
≈BB I                                              (3.46) 

Then Eq.(3.36) becomes  

2

2[ ]
H

H n

s

E h h
N

σ
σ

+ +

⋅ ≈
⋅

Q QV V                                    (3.47) 

As a consequence, the MSE of the channel estimate is 
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2

2

2

2 2

2

(|| || ) [ ( )]

( )
               

|| ||
               

H

H

n

s

n

s

E h E trace h h

trace
N

N

σ
σ

σ
σ

+ +

+

= ⋅

⋅
≈

⋅
=

Q Q

Q

V V V

                              (3.48) 

The closed form MSE expression Eq.(3.48) is compact and enables us to study the 

estimator’s performance dependence on the key system parameters— such as the input 

SNR, the  number of data blocks. As expected, the MSE decreases with increasing 

input SNR and the number of received data blocks. This is later verified by computer 

simulation in Chapter 5. 
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CHAPTER 4 

Improved Subspace Methods 

 

To further improve the channel estimation, we can exploit the finite alphabet 

property to better the subspace-based channel estimates.  

In this chapter, we discuss two different methods: decision direct (DD) [21] and 

phase direct (PD) [20]. DD, as implied in the name, needs first to get the hard 

decision data and then use it to update our estimated channel, while PD is to solve the 

phase ambiguities after we’ve got the channel power response. DD originally works 

in conventional OFDM, which only requires simple scalar division. Based on the 

space time data matrix, we extend it to ST-OFDM, which corresponds to a matrix 

inverse and multiplication because the received data is composed of two different 

transmitted data.  

The main idea of PD is to solve the phase ambiguities after we get the channel 

power response. For conventional OFDM system, it is very easy to get the channel 

power response. But in space-time OFDM, it is quite a different case, since the 

received data is composed of two different transmitted data; it’s not easy to separate 



 25 

them. So, the main problem we face now is how to get the channel power response. 

However, in general case the channel power response is hard to obtain. Hence, we 

only focus on BPSK system and exploit the transmitted data’s time and temporal 

correlation to develop a new algorithm named sum-difference square method to solve 

this problem. 

Moreover, in time varying channel, we also need to choose a best window size to 

get the channel power response and apply it to PD. As we all know, when the window 

is longer, we can suppress the noise, but then we can’t follow the variance of the 

channel. This is the trade off. However, the choice of the window size is dependent on 

how fast the channel changes. Precoder design is another issue behind the algorithm 

as will be discussed in section 4.2.4. 

 

 

4.1 Decision Direct (DD) 

4.1.1 DD in ST-OFDM 

In [21], Giannakis has shown how DD works in conventional OFDM, and we want 

to extend it to space time OFDM by using the space time data matrix. 

There are four steps shown as follows: 

Step (1) Set j=0, find an initial time domain channel estimate 1,( ) 2,( )
ˆ ˆ and j jh h  using 

Eq.(3.16), calculate the frequency response 1,( ) 2,( )
ˆ ˆ and j jH H  by Eq.(2.15). 

Step (2) Since now we have 1,( ) 2,( ) and j jD D , it is possible to detect ( )s n  with 

diversity gains by a simple matrix multiplication as Eq.(2.21) by substituting 

1 2( ) and ( )H HD D . 
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*
1,( ) 2,( )
*
2,( ) 1,( )

12,( )

12,( )

( ) ( )

( ) ( )
        = ( ) ( )

( ) ( )

        = ( ) ( )

H

j j H

j j

j

j

z n y n

H H
y n n

H H

s n n

η

ξ

=

 
+ 

  
 

+ 
 

1

2

D

D D
D

D -D

D ? 0
0 D ?

%

%                  (4.1) 

      Then we can get the soft decision ( )s n  as Eq.(2.24): 

12,( ) 1

12,( ) 2

( ) ( ) ( )j

j

s n z n inv z n
  

= Γ ⋅ =      

D ? 0
0 D ?

              (4.2) 

        then we can project onto the finite alphabet to obtain the hard decision discrete 

values ( )ˆ ( )js n . 

        Eq.(4.2) shows how we collect soft decision data which corresponds to 

( ) ( )
ˆˆ ( , ) ( , ) / ( )j j ms n m y n m H ρ=                              (4.3) 

       in [20] for conventional OFDM which is only a simple one tap equalizer. 

However in ST OFDM, we need first to get ( )z n , the ST decoder output, and 

then feed it to equalizer Γ  which compensates not only channel gain but also 

the precoder effect, hence it is more complicate. 

 Where ( , )y n m  indicates the data for the mth subcarrier on the nth received 

data block, (̂ , )s n m  is the decision data corresponding to the mth subcarrier 

on the nth block, ˆ( )mH ρ is the estimated frequency channel of the mth 

subcarrier. 

Step (3) Here, we separate step 3 to two parts. Part a) is to update the estimated 

channel from the decision data, and part b) is to update the detected data from 

the updated channel.   

       (a) Here, we rewrite Eq. (2.16) again. 
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    * *

(1) (2) (1)
1 2

(2)(2) (1)
1 2

( ) ( ) ( )
( )

( )( ) ( )

s n s n v n
y n

v ns n s n

 +  
= +   

− +    

D D

D D

% %
% %

                    (4.4) 

       Let ( )vD  stand for the diagonal matrix with the vector v, and define 

(1) (1)

(2) (2)

( ) ( ( ))

( ) ( ( ))

n s n

n s n

=

=

S D

S D

% %
% %

                                     (4.5)    

Since for 1J ×  vectors  and a b  it holds that ( ) ( )a b b a=D D , Eq.(4.3) can 

be rewritten as 

          * *

(1) (2) (1)
1 2

(2)(2) (1)
1 2

( ) ( ) ( )
( )

( )( ) ( )

n H n H v n
y n

v nn H n H

 +  
= +   

− +    

S S

S S

% %
% %                  (4.6) 

        Apply the hard decision data to Eq.(4.6): 

           * *

(1) (2) (1)
( ) ( ) 1( )

(2)(2) (1)
2( )( ) ( )

ˆ ˆ( ) ( ) ( )
( )

ˆ ˆ ( )( ) ( )

j j j

jj j

n n H v n
y n

H v nn n

     
 = +   
−     

S S

S S
                (4.7) 

        where  

(1)
( ) 1 1,( )

ˆ ˆ( ) ( ( ))j jn s n=S D ?  and (2)
( ) 2 2,( )

ˆ ˆ( ) ( ( ))j jn s n=S D ?            (4.8) 

        Then we can simply get 1( )

2( )

j

j

H
H

 
 
 

 though Eq.(4.7) 

          * *

(1) (2)
( ) ( )1( )

(2) (1)
2( ) ( ) ( )

ˆ ˆ( ) ( )
( )

ˆ ˆ( ) ( )
j jj

j j j

n nH
inv y n

H n n

      =   −     

S S

S S
                    (4.9) 

      Update the time domain channel estimates  

,( ) ,( )
H

i j i jh H= V                                     (4.10) 

and their frequency response using  

,( ) ,( )
ˆ

î j i jH h= V                                      (4.11) 

Note that here Eq. (4.10) means to perform an M-point inverse DFT on 

,( )i jH  and truncate the output by keeping only the first L+1 entries (since 
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we have assumed the channel delay spread is equal or less then L); Eq. 

(4.11) amounts to performing an M-point DFT on an vector formed after 

zero-padding, we call Eqs.(4.10) and (4.11) denoising. 

Eq.(4.9) is to update the estimated channel from the decision data which 

corresponds to  

       ˆ ˆ( ) ( , ) / ( , )mH y n m s n mρ =                             (4.12) 

in [20] for conventional OFDM. 

      (b) Check if ,( ) ,( 1)
ˆ ˆ
i j i jh h −≅ , if yes, stop the iteration, if no , in each successive 

iteration, j is added by 1.  

We have updated ,( )î jH  in (a), then We can form 1,( ) 2,( ) and j jD D  from 

1,( ) 1,( 1)
ˆ= ( )j jH −D D  and 2,( ) 1,( 1)

ˆ= ( )j jH −D D .  Then, recompute the symbol 

estimates by Eqs.(4.1) and (4.2) to get the soft decision, and project again 

onto the finite alphabet to obtain hard decisions ( )ˆ ( )js n .  

Step (4) Repeat Step (3).  

See Fig.4.1 for the Signal- flow graph of DD in space-time OFDM system 
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(0) (0)
1 2
ˆ ˆ   h and h

FFT

( ) ( )
1 2

ˆ ˆ and  j jH H

( )y n%

*
1,( ) , ( )
*
2 , ( ) ,( )

( ) ( )j j

j j

z n y n
 

=  
  

2

1

D D
D -D

%

12,( ) 1

12,( ) 2

( ) ( )j

j

s n inv z n
  

=      

D ? 0
0 D ?

12,( ) jform D

Decision

* *

(1) (2)
( ) ( )
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ˆ ˆ( ) ( )
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j j

j j

n n
form
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Fig. 4.1 Signal- flow graph of DD in space-time OFDM 
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4.1.2 Comparison with conventional OFDM 

We have shown how DD works in space time OFDM system, and the main 

equations are Eq.(4.2) and Eq.(4.9), while the former is to get the soft decision data, 

and the latter is to update the channel response while we have the decision data, both 

of which are corresponding to matrix inverse and multiplication. However, for DD in 

conventional OFDM [21], these two equations just become a simple scalar division, 

which are  

ˆ(̂ , ) ( , ) / ( )
ˆ ˆ( ) ( , ) / ( , )

m

m

s n m y n m H

H y n m s n m

ρ

ρ

=

=
                                   (4.13) 

where ( , )y n m  indicates the data for mth subcarrier on the nth received data block, 

(̂ , )s n m  is the decision data corresponding to the mth subcarrier on the nth block, 

ˆ( )mH ρ is the estimated frequency channel of the mth subcarrier. See Fig.4.2 for 

Signal- flow graph of DD in conventional OFDM. 

  Eq.(4.13) is based on the well-known formula [1], 

        ( , ) ( ) ( , ) ( )m my n m H s n m nρ ρ= +                               (4.14) 

which leads to Eq.(4.13) a simple scalar division, but in space time OFDM, all the 

formulas are in matrix form which makes Eq.(4.2) and Eq.(4.9) both matrix inverse 

and multiplication. Note here that in Eq.(4.12) Γ  corresponds to a psuedo inverse 

since its size is 2 2M K× , and in Eq.(4.9) * *

(1) (2)
( ) ( )

(2) (1)
( ) ( )

ˆ ˆ( ) ( )
ˆ ˆ( ) ( )

j j

j j

n n

n n

 
 
−  

S S

S S
 is full rank of size 

2 2M M× . 
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( )ˆ ( )j
mH ρ(0)h%

1j ≥

( ) ( 1)

 
ˆ ˆ=j j
i i

whether

h h − stop
yes

no

    
1

set
j j= +

( )ˆ( , ) ( , ) / ( )j
ms n m y n m H ρ=

( , )y i m

( , )s n m

( )ˆ ( , )js n m

( ) ( )ˆ ˆ( ) ( , ) / ( , )j j
mH y n m s n mρ =

IFFT

Truncation
( )jh%

 

 
Fig. 4.2 Signal- flow graph of DD in conventional OFDM 

 

 

4.2 Phase Direct (PD) 

4.2.1 Introduction of PD  

Before addressing PD [20] to space time OFDM, we first show how it woks in 

conventional OFDM. Now, we start this part from Eq.(4.14), and focus on PSK 

constellation of size P:{ }2 /

1

Pj p P
P p

e πζ
=

= ,                                

We take the power of P to Eq. (4.14), omit noise for simplicity, and get the 

expectation  

{ ( , )} {[ ( ) ( , )] } ( ) { ( , )}P P P P
m mE y n m E H s n m H E s n mρ ρ= =            (4.15) 
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In practice, { ( , ) }PE y i m  is replaced by sample averages and thus is estimated as  

1

0

1
( , )

( )
{ ( , )}

N
P

P n
m P

y n m
NH
E s n m

ρ

−

==
∑

                                     (4.16) 

where N is the received data block number.  

Since we focus on PSK constellation of size P, we have { ( , )} 1OE s n m = . Hence, 

Eq.(4.16) becomes  

1

0

1
( ) ( , )

N
P P

m
n

H y n m
N

ρ
−

=

= ∑ .                                     (4.17) 

Hence, we’ve got the channel power response. Next, we only need to get the 

channel phase response, which means for each  [0, 1]m M∈ − (assuming total M 

subcarriers ), we have  

1/ˆ( ) [ ( )]P P
m m mH Hρ λ ρ=                                       (4.18) 

where { }(2 / ) ,     1,...,j P p
m e p Pπλ ∈ =                                    (4.19) 

is the corresponding phase ambiguity in taking the Pth root. 

For each m [0, 1]M∈ −  , we can resolve the phase ambiguity by searching over 

candidate phase values  

 
2

1/argmin ( ) [ ( )]
m

P P
m est m m mH H

λ
λ ρ λ ρ= −

)
                        (4.20) 

where ( )est mH ρ  will be discussed in the following. 

Therefore, we can improve channel estimation accuracy through what we term 

Phase Directed (PD) steps that we describe next:   

Step (1) Set j=0, find an initial estimate (0)ĥ  using any estimated method , and 

calculate the frequency response (0)Ĥ , then we can get 

(0)
ˆ( ) ( )est m mH Hρ ρ=  for m=0,1,2,… .,M-1. 
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Step (2) In each successive iteration, j is added by 1, and 

(a) Resolve phase ambiguities by replacing ( )est mH ρ  with ( 1) ( )j mH ρ−  in 

(4.20), and then form the vector 

   { }1/ 1/
0 0 1 1[ ( )] ,........., [ ( )]P P P P

temp M MH H Hλ ρ λ ρ− −=             (4.21) 

(b) Update time domain channel estimates 

( )
ˆ H

j temph H= V                                         (4.22) 

and their frequency response using  

( ) ( )
ˆˆ  j jH h= V                                           (4.23) 

Step 3) Repeat Step2 several times, or continue until ( ) ( 1)
ˆ ˆ

j jh h −≅  within some 

tolerance. 

See Fig.4.3 for the signal- flow graph of phase direct in conventional OFDM. 

The main difference between PD and DD is that DD alternates between channel 

estimation and symbol detection while PD avoids symbol estimation by decoupling 

channel estimation from symbol recovery. Therefore, PD is immune to the  

well-known error propagation phenomenon that is present in DD iterations. 
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 ( , )
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blocks y n m 1

0

1
( ) ( , )

N
P P

m
n

H y n m
N

ρ
−

=

= ∑

(0)h% ( )est mH ρ
1/ 2 argmin| ( ) [ ( )] |

                0, , 1
m

Q Q
m est m m mget H H

for m M
λ

λ ρ λ ρ= −

= −

)

…

 mλ
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0 0

       

[ ( )] ,........., [ ( )]P P P P
temp M M

phace compensated frequency response

H H Hλ ρ λ ρ
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Fig. 4.3 Signal- flow graph of phase direct in conventional OFDM 

 

 

4.2.2 PD in ST-OFDM based on sum-difference square 

algorithm 

Here, we want to apply PD to the Space-Time OFDM system. As described earlier, 

the main idea of PD is to solve the phase ambiguities in Eq.(4.20) after we get the 

channel power response Eq.(4.17). For conventional OFDM system, it is very easy to 

get the channel power response from (4.14). But here it is quite a different case, since 

the received data is composed of two different transmitted data as in Eq.(2.13); it’s 

not easy to separate them. So, here we derive an algorithm to get the channel power 

response. 

Let’s start from (2.14) and only focus on BPSK baseband system which means we 
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only use ± 1 data in baseband since for other system it’s hard to solve the channel 

power response. Then we will get  

(1) (1) (2) (1)
1 2

(2) (1)(2) (2)
1 2

( ) ( ) ( ) ( )
( ) ( )( ) ( )

y n s n s n v n
s n s ny n v n

     +
= +     − +     

D D
D D

% %
% %                       (4.24) 

For simplification, we only see the mth data part and omit noise. 

(1) (1) (2) (2)

(1) (1) (2) (2)

1 1 2 2

( ) th data of  ( ),  ( ) th data of  ( )

( ) th data of  ( ),  ( ) th data of  ( )
( )  ( , ),  ( )  ( , )                                  

mm

m m

m m

y n m y n y n m y n

s n m s n s n m s n
H m m H m mρ ρ

= =

= =
= =D D

% %          (4.25) 

Then we get   

(1) (1) (2)
1 2

(2) (2) (1)
1 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
m m m m m

m m m m m

y n H s n H s n

y n H s n H s n

ρ ρ

ρ ρ

= +

= − +
                           (4.26) 

In the following, our purpose is to get 2 2
1 2( ) and ( ) m mH Hρ ρ , the square of the 

channel frequency response. Square (4.26) and note that ( ) ( )2 2(1) (2)( ) ( ) 1m ms n s n= =  

for BPSK 

    
( )
( )

2(1) 2 2 (1) (2)
1 2 1 2

2(2) 2 2 (1) (2)
1 2 1 2

( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

m m m m m m m

m m m m m m m

y n H H H H s n s n

y n H H H H s n s n

ρ ρ ρ ρ

ρ ρ ρ ρ

= + +

= + −
          (4.27) 

Here we adopt BPSK since we can have ( ) ( )2 2(1) (2)( ) ( ) 1m ms n s n= = . However if we 

adopt any PSK constellation of size P, we have to take the power of P to Eq. (4.26) to 

make ( ) ( )(1) (2 )( ) ( ) 1
P P

m ms n s n= = . Then it becomes very hard to solve, hence we only 

focus on BPSK. 

By taking their sum and difference to Eq.(4.27), we have  

( ) ( ) ( )
( ) ( )

2 2(1) (2) 2 2
1 2

2 2(1) (2) (1) (2)
1 2

1 2

(4.28a)( ) ( ) 2 ( ) ( )                                            

( ) ( ) 4 ( ) ( ) ( ) ( )

                                   4 ( ) ( )              

 m m m m

m m m m m m

m m

y n y n H H

y n y n H H s n s n

H H

ρ ρ

ρ ρ

ρ ρ

+ = +

− =

= ± (4.28b)                                  
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From Eq. (4.28b)   

( ) ( )2 2(1) (2)

2
1

( ) ( )
( )   

4 ( )
m m

m
m

y n y n
H

H
ρ

ρ

−
=

±
                                (4.29) 

Squaring both sides of Eq.(4.29), we have 

       
( ) ( )

22 2(1) (2)

2
2 2

1

( ) ( )
( )   

16 ( )

m m

m
m

y n y n
H

H
ρ

ρ

 −  =                            (4.30) 

Substitute Eq. (4.30) to Eq. (4.28a), then 

    
( ) ( ) ( ) ( )

22 22 2 (1) (2)(1) (2)
2

1 2
1

( ) ( )( ) ( )
( )

2 16 ( )

m mm m
m

m

y n y ny n y n
H

H
ρ

ρ

 −+   = +             (4.31)  

Then, we have 

( ) ( ) ( ) ( )
22 2 2 24 (1) (2) 2 (1) (2)

1 116 ( ) 8 ( ) ( ) ( ) ( ) ( ) 0m m m m m mH y n y n H y n y nρ ρ   − + + − =      
 (4.32)  

Finally,  

2(1) (2 )
2
1

2(1) (2)

( ) ( )
( )    

4

( ) ( )
            or    

4

m m
m

m m

y n y n
H

y n y n

ρ
 − =

 + 

                                  (4.33) 

Then we can get 2
1 ( )mH ρ  from the square of the sum or difference of the received 

data, so we name this algorithm sum-difference square method. By the same way, we 

can get 2
2 ( )mH ρ  the same form as Eq. (4.33), and we assume that the two channels 

we use are different, so we can know that if 2
1 ( )mH ρ  is one of Eq. (4.33) then 

2
2 ( )mH ρ  is another one.  

 The question here is how to know which one of (4.33) is 2
1 ( )mH ρ . We only need 

to compare it with the estimated channel via subspace-based method to see which one 

has smaller Euclidean distance. 
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2
1

22(1) (2)
2 2
1

( )

( ) ( )
( ) arg min ( )

4m

m m
m est m

H

y n y n
H H

ρ
ρ ρ

 ± = −                 (4.34) 

where ( )est mH ρ  is the estimated channel via subspace-based method. See Fig.4.4 for 

the Signal- flow graph of finding 2 2
1 m 2 m( ) and ( )H Hρ ρ . 
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        Fig. 4.4  Signal- flow graph of sum-difference square algorithm to find 

2 2
1 m 2 m( ) and ( )H Hρ ρ  

 

 

4.2.3 Choice of the window size 

  We have shown above how to get 2 2
1 m 2 m( ) and ( )H Hρ ρ , but they are only 

corresponding to the two channels’ mth subcarrier, so we need to further get all other 
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subcarrirers’ frequency channel power  

2 2 2 2
0 1 1[ ( ), ( ),..., ( )]i i i i MH H H Hρ ρ ρ −=                          (4.35)    

by using the same method as discussed above. Furthermore, in static channel if we 

have received more than one data block (assume N), for every block n we need to get 

the frequency channel power 2
,( )i nH  and then average all of them to get 2

iH . 

1
2 2

,( )
0

1
 

N

i i n
n

H H
N

−

=

= ∑                                         (4.36) 

After we’ve got 2
iH , simply apply to the Eq. (4.15) by setting Q=2 and follow the 

phase direct steps as described earlier to further improve the estimated channel. See 

Fig.4.4 for the Signal- flow graph of PD on space-time OFDM in static channel. 

However, in time-varying channel we do not average all received block to get 2
iH , 

instead we need to test how long the window size should be to get the better 2
iH . As 

we all know, when the window is longer, we can suppress the noise, but then we can’t 

follow the variance of the channel. This is the trade off. However, the choice of the 

window size is dependent on how fast the channel changes. See Fig.4.6, signal- flow 

graph of phase direct on space-time OFDM in time varying channel for the window 

size is 
4
N

. 
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 Fig.4.6 Signal- flow graph of phase direct on space-time OFDM in time varying 

channel 

 

 

4.2.4 Precoder design 

The above algorithm is based on (1) (2)( ), ( ) 1m ms n s n = ± , and from Fig.2.1 we know 
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that (1) (2)( ), ( )s n s n% %  are the precoder output, and if we apply the precoder at will, then 

(1) (2)( ), ( )s n s n% %  may not equal to 1± . So there should be some constrains on the 

precoder, we simply use the precoder like [  ]
pre k

T T TI I  where preI  is formed by any 

M-K rows of the K K×  identity matrix kI  just as the form of Fig 4.7. 

1 0 0 0
0 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0
0 0 0 1

 
 
 
 
 
 
 
 
 
  

O

O

}
}

 M K rows−

 K rows
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0 0 0 1
1 0 0 0
0 1 0 0
0 0 0
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 
 
 
 
 
 
 
 
 
  

O

O

}
}

 M K rows−

 K rows

 

     Fig. 4.7 Forms of precoder 

 

 

In this chapter, we have shown how PD and DD improve the subspace based 

channel estimator. In next chapter, we want to have some computer simulation to 

verify our algorithms. 
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Chapter 5  

Computer simulations  

 

 In this chapter, we will use computer simulations to verify the algorithm discussed 

in chapter 3 and chapter 4. We first test the subspace-based estimator discussed in 

chapter 3 in section 5.1, then see how DD and PD perform in section 5.2. Next we 

want to see how these methods perform in time varying channel in section 5.3.  

  We illustrate the performance of our channel estimators through simulations. The 

figure of the performance for channel estimation is the normalized mean-squares 

channel error (NMSCE) defined in the frequency domain as: 

2 2

2 2

ˆ|| || || ||
|| || || ||
h h h

h h
− ∆

=                                             (5.1) 

 

 

5.1 Subspace-based method 

  We test our Subspace-based estimator in this section as a function of the input 

SNR in 5.1.1 and the number of received data blocks in 5.1.2. 



 43 

Note that there is a complex scalar ambiguity inherent in the blind channel 

estimator. During the simulations, the power ambiguity is handled by assuming the 

true channel vector to unit norm and similarly normalizing the estimate. Without 

further processing, the phase ambiguity cannot be resolved. In our work, this phase 

ambiguity is determined from ˆ(0)/ (0)i ih h  and used to compensate the channel 

estimate prior to the NMSCE computations. 

 

5.1.1 Estimator error V.S. SNR  

In this section, we examine the estimator error described in chapter 3 as a function 

of the input SNR by using the following setup :  

l BPSK system, 

l K=24, J=32 

l Rayleigh fading channel 

l L=4 (five-ray channels), 

l N=100  

The simulation result of estimator error is shown below and is compared with the 

results from numerical analysis in Eq.(3.46). Solid line stands for the simulation result 

and dash line is the theoretical result. It shows good agreement of NMSCE (when 

SNR>20 dB) obtained from simulation and Eq.(3.46) since Eq.(3.46) is based on the 

assumption of high SNR condition( small perturbation) [19]. 
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Fig.5.1. Channel error of simulation result and theory V.S SNR 

 

 

5.1.2 Estimator error v.s. data block length  

Following 5.1.1, here we illustrate the estimator error as a function of the number 

of received data blocks for SNR=15 dB by using the same setup as section 5.1.1. 
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Fig.5.2. Channel error of simulation result and theory V.S. received data block 

 

In Fig. 5.2, we can see that the estimator’s performance is better as the received 

data block is more since the covariance matrix is much closer to the ideal one, and we 

can see that when the number of received data blocks is 50, the NMSCE diverges 

obviously since in this situation the covariance we’ve got is not precise enough.  

We can make a conclusion from Fig.5.1 and Fig.5.2 that the estimator’s 

performance is dependent on the key system parameters— such as the input SNR, the 

length of received data blocks.  
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Fig.5.3. Channel error of different multipath length 

 

In Fig.5.3, we test the subspace-based channel estimator for different multipath 

length. As expected, as the multipath length is larger, the performance is worse. 

   

 

5.2 Performance of PD and DD  

First we want to show how DD and PD work with and without denoising.  
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Fig.5.4. Channel error of PD and DD with denoising and without denoising 

 

With denoising, the performance improves since we truncate the last M-L point.  
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Fig.5.5 PD and DD v.s subspace-based estimator 

 

  

From Fig.5.5, we can see that DD and PD with denoisng better the subspace-based 

estimator. Moreover, PD improves significantly. 

 Next we want to see DD and PD in different multipath length. In Fig.5.6, both DD 

and PD are immune to multipath length. 
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Fig.5.6. Testing DD and PD initialized with subspace method for different 

multipatj length 

 

In the above, we use BPSK system to simulate both DD and PD. Here we want to 

test DD in different data constellation, such as QPSK, 16QAM, and 64QAM. 

We can see from Fig.5.7 that both BPSK and QPSK improve the performance. 

However, 16QAM and 64QAM worsen the performance since it is easy to make 

wrong decision for them.  
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Fig.5.7. Testing DD in different data constellation  

 

 

5.3 Time-varying channel estimation 

5.3.1 Subspace-based method 

Here, we test our proposed method in time variant channel to see how they behave. 

Each tap of the time-varying FIR channels varies according to Jakes’ model, and the 

sample rate is 1 MHz.  

First, the subspace-based channel estimator is tested and shown in Fig.5.8 in time 

varying channel for different maximum Doppler frequencies, which is equal to 10Hz, 

60Hz, 100Hz, and 200Hz. We can see that as the maximum Doppler frequency is 

higher, the estimator is worse and all of them lead to error floor. 
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Fig.5.8. Testing of the subspace-based channel estimator in different Doppler 

frequencies for received blocks equaling to 100 

 

In the above, we use received blocks equaling to 100, however in the 100 blocks 

the channel is already different, hence next we want to test the situation, which data 

block equal to 50. 
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Fig.5.9. Testing of the subspace-based channel estimator in different Doppler 

frequencies for received blocks equaling to 50 

 

 

Comparing Fig.5.8 and Fig.5.9, we can see that Fig.5.9 has got better performance 

since the received data blocks is less. As we all know, the estimator is to get a channel 

from the received data which have the information of channels, which best suits all 

the channels. However, the channels are all different. Hence, more blocks leads to 

poorer performance.  

Fig.5.10 show the NMSCE for each block in the 50 received data blocks in 

fd=60Hz and SNR=15dB. As we can see, around the 25th block, we can get best 

performance since the channel can be seen as changing as a straight line in the 50 

block, the estimator is about to estimate one channel which has the smallest difference 
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to all the 50 blocks. Hence we’ve got this result.  

 

 

Fig.5.10 Channel error for each block 

 

 

5.3.2 Performance of PD and DD  

DD and PD are tested in the following. For PD we do not average all received 

block to estimate 2
i ( )kH ρ , instead we need to test how long the window size should 

be to get the better estimate, which is because as the window is longer, we can 

suppress more noise, but then we can’t follow the variation of the channel.  

We can see in Fig.5.11 that both PD and DD improve the performance moreover 

they resolve the error floor problem occurred in subspace-based estimator. Moreover, 
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in PD, we can see that “window size=1” outperforms, which is because in fd=50 Hz, 

the channel change fast, we need to trace the variation by using smaller window size. 

 

 

Fig.5.11 Test of DD and PD in fd=100Hz 

 

Performance of DD in different data constellation is shown in Fig.5.12.We can 

see that BPSK, QPSK, and 16QAM improve the performance. However, 64QAM 

worsen the performance in low SNR since it is easy to make wrong decision. 
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Fig.5.12 Test of DD for different data constellation in fd=50 
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Chapter 6 

Conclusion 

 

For STC transceivers, multichannel estimation algorithms are needed. However, 

training sequences consume bandwidth and, thereby, incur spectral efficiency (and  

thus capacity) loss. For this reason, blind channel estimation me thods receive growing 

attention. We have shown a subspace-based blind channel estimation algorithm for ST 

OFDM transmissions  and develop the theoretical mean square error of the estimator. 

To further improve the channel estimation, we can exploit the finite alphabet property 

to better the channel estimates. We discuss two different methods, DD and PD, and 

apply them to ST OFDM system. DD, as implied in the name, needs first to get the 

hard decision data and then use it to update our estimated channel, while PD is to 

solve the phase ambiguities after we’ve got the channel power response. However, in 

ST OFDM the channel power response is hard to get since the received data is 

composed of two different transmitted data. Hence, we only focus on BPSK system 

and exploit the transmitted data’s time and temporal correlation to develop a 

sum-difference square algorithm to solve this problem. Moreover, in time-varying 
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channel we can choose a best window size to get the channel power. Computer 

simulations have shown that the PD and DD method really improve the NMSCE in 

static channel and time-varying channel and further resolve the error floor problem 

occurred in time-varying channel. 

However, our PD method for Space-Time OFDM is only utilized in BPSK system, 

we shall try to apply it to other systems such as QPSK, QAM in the future.    
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