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Chapter 1 

Introduction. 
 

1.1 Introduction 

    With the rapid inflation of internet and the growing popularity of electronic 

commerce, secure electronic transactions are becoming a major concern. It has 

become important to develop new way to guarantee their security. Two techniques are 

available: the Secret Key Cryptosystem such as DES (Data Encryption Standard), and 

the Public Key Cryptosystem such as RSA (Rivest, Shamir, and Adleman)[3].  

RSA cryptosystem was invented in 1977; it is the best known and  most widely 

used public-key cryptosystem today. The basic operation of RSA is modular 

exponentiation operations on extremely long bit streams, which take an immense 

amount of computation processing. During the recent years, Montgomery’s modular 

multiplication was the most efficient method for faster implementations to the RSA. 

The quotient is dependent on the least significant digit of operands, no comparison 

used in the computing procedure, however which is the critical operation in traditional 

sequential division. Although this method requires pre-processing and post-processing 

to get the final correct result, but the number of modular multiplication operations are 

dependent on the number of bit in the exponent.  

Several algorithms and hardware implementations of the Montgomery 

multiplication for a limited precision of the operands were proposed. In order to get 

improved performance, high-radix algorithms have also been proposed. However, 

these high-radix algorithms usually are more complex and consume significant 

amounts of chip area, and it is not so evident whether the complex circuits derived 

from them provide the desired speed increase. For this reason, low-radix designs are 
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usually more attractive for hardware implementation. 

In this thesis, we proposed a method based on Scalable Montgomery’s algorithm 

to calculate modular multiplication, which allows us to investigate different areas of 

the design space, and thus, analyze the design tradeoffs for the best performance in a 

limited chip area. We then propose a modified word-based algorithm,and show the 

parallel evaluation of its steps in detail. By this analysis, we then show architecture 

for the modular multiplier and present the design of the  module. Using TSMC 0.25μ

m process technology and Synopsys Design Analyzer, we simulate our new design 

and compared the performance with the original design.  

We will describe the RSA algorithm in Chapter 2. Chapter 3 is the Scalable 

Montgomery Multiplication algorithm and our new hardware architecture. Chapter 4 

shows the simulation result. Chapter 5 is the conclusion and future work. 

 

1.2 Background 

 

1.2.1Cryptography 

 

Cryptography is the art of secret writing. The basic service provided by 

cryptography is the ability to send information between participants in a way that 

prevents others from reading it. Besides, cryptography can also provide other service 

such as: 

l Integrity checking---reassuring the recipient of a message that the message has 

not been altered since it was generated by a legitimate source. 

l Authentication---verifying someone’s (or something’s) identity.  
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l Nonrepudiation: It should be impossible for the sender of message to deny that 

he send it. 

A message in its original form is known as plaintext and the mangled 

information is known as ciphertext. The process for producing ciphertext from 

plaintext is known as encryption. The reverse of encryption is called decryption. 

 

 
 

Some encryption algorithms use a key, denoted by k so that the ciphertext 

message depends on both the original plaintext message and the key value, denoted 

Ek(P) = C. Essentially, E is a set of encryption algorithms, and the key k selects one 

specific algorithm. Sometimes the encryption and decryption keys are the same, so 

that Dk(Ek(P)) = P. This style of encryption is called symmetric encryption because D 

and E are mirror- image processes. These algorithm, require the sender and receiver to 

agree on a key before they pass messages back and forth. This key must be kept secret. 

The security of a symmetric algorithm resets in the key; divulging the key means that 

anybody could encrypt and decrypt messages in this cryptosystem. At other times 

encryption and decryption keys come in pairs. Then a decryption key, kD , inverts the 

encryption of key kE , so that ( ( ))
D Ek kD E P P=  . Encryption algorithms of this form 

are called asymmetric, because converting C back to P is not just reversing the steps 

of E. A cryptosystem uses a symmetric key algorithm is called a secret key 

cryptosystem and used an asymmetric key algorithm is called a public key 

cryptosystem . 

Figure 1.1 Cryptosystem process 
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1.2.2 Secret Key Cryptosystem  

 

    Secret key cryptography involves the use of a single key. Given a message(called 

plaintext) and the key, encryption produces unintelligible data(called ciphertext), 

which is about the same length as the plaintext was. Decryption is the reverse of 

encryption, and uses the same key as encryption. The most well known example of a 

secret key cryptosystem is DES (Data Encryption Standard).[2] A secret key 

cryptosystem is shown as Fig. 1.2. 

 

 

 

A secret key cryptosystem have several disadvantages described as below: 

(1) How to get the encryption and decryption keys between the sender and receiver? 

This problem is called the key distribution problem. If the sender and receiver 

who have never meet before, then this problem become more seriously. 

Furthermore, a secure channel is hard to achieve in a real world. 

(2) If there are n subscribers in a network, then everyone have to hold n-1 keys to 

communicate with others, in other words, then there will be n(n-1)/2 key pairs in a 

Figure 1.2 Block diagram of secret-key cryptosystem 
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network. If n=1000, then there are 499500 key pairs in a network. It is a big 

problem to manage such many keys. 

(3) Digital signature can not be achieved by using the secret key cryptosystem since 

the sender and receiver both have the same key for encryption and decryption. 

Thus the sender may repudiate afterwards to the information that has sent before 

because you cannot tell who is responsible for a signature generated with a shared 

key. 

 

  

1.2.3 Public Key Cryptosystem 

 

In traditional cryp tography, the sender and receiver of a message know and use 

the same secret key; the sender uses the secret key to encrypt the message, and the 

receiver uses the same secret key to decrypt the message. The main challenge is 

getting the sender and receiver to agree on the secret key without anyone else finding 

out. If they are in separate physical locations, they must trust a courier, a phone 

system, or some other transmission medium to prevent the disclosure of the secret key. 

Anyone who overhears or intercepts the key in transit can later read, modify, and 

forge all messages encrypted or authenticated using that key. The generation, 

transmission and storage of keys are called key management; all cryptosystems must 

deal with key management issues. Because all keys in a secret key cryptosystem must 

remain secret, secret-key cryptography often has difficulty providing secure key 

management, especially in open systems with a large number of users. 

In order to solve the key management problem, Whitfield Diffie and Martin 

Hellman introduced the concept of public-key cryptography in 1976. Public-key 

cryptosystems have two primary uses, encryption and digital signatures. In their 
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system, each person gets a pair of keys, one called the public key and the other called 

the private key. The public key is published, while the private key is kept secret. The 

need for the sender and receiver to share secret information is eliminated; all 

communications involve only public keys, and no private key is ever transmitted or 

shared. In this system, it is no longer necessary to trust the security of some means of 

communications. The only requirement is that public keys be associated with their 

users in a trusted (authenticated) manner (for instance, in a trusted directory). Anyone 

can send a confidential message by just using public information, but the message can 

only be decrypted with a private key, which is in the sole possession of the intended 

recipient. Furthermore, public-key cryptography can be used not only for privacy 

(encryption), but also for authentication (digital signatures) and other various 

techniques.  

In a public-key cryptosystem, the private key is always linked mathematically to 

the public key. Therefore, it is always possible to attack a public-key system by 

deriving the private key from the public key. Typically, the defense against this is to 

make the problem of deriving the private key from the public key as difficult as 

possible. For instance, some public-key cryptosystems are designed such that deriving 

the private key from the public key requires the attacker to factor a large prime 

number. In this case, it is computationally infeasible to perform the derivation. This is 

the idea behind the RSA public-key cryptosystem. A secure communication using a 

public-key cryptosystem is shownin Fig. 1.3. 
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Figure 1.3 Block diagram of public-key cryptosystem 
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Chapter 2 

The RSA Cryptosystem 

 

2.1 The RSA Algorithm 

 

2.1.1 Number Theory 

 

Before describing RSA cryptosystem, something about number theory should be 

introduced as background knowledge. 

1. Modular arithmetic 

Given integers a, b, and n. a is congruent to b modulo n means a b k n− = ×  for 

some integer k. The integer b is called a residue of a modulo n, and it is written by  

moda b n≡  

Conversely, a is called a residue of b modulo n.  

 

2. Multiplicative inverse 

Given integers a and n in the range [0, n-1], and gcd (a, n) = 1. There exists an integer 

x such that mod 1ax n = , i.e., 

1modax n≡  

The integers a and x are multiplicative inverses. 

 

3. Euler totient function 

The Euler totient function ( )nφ  is the number of positive integers less than n that are 

relatively prime to n. For n p q= ×  and p, q primes, 
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( ) ( ) ( ) ( 1)( 1)n p q p qφ φ φ= × = − −  

 

4. Euler theorem 

For integers a and n with gcd (a, n) = 1, 

( ) 1(mod )na nφ ≡  

 

2.1.2 The RSA Scheme 

 

The RSA algorithm was invented by Rivest, Shamir, and Adleman [3]. Let p and 

q be two distinct large random primes. The modulus n is the product of these two 

primes: n = pq. 

Euler's totient function of n is given by 

( ) ( 1)( 1)n p qφ = − −  . 

Now, select a number 1 ( )e nφ< <  such that 

                  gcd( , ( )) 1e nφ =  , 

and compute d with 

1 mod ( )d e nφ−=  

using the extended Euclidean algorithm. Here, e is the public exponent and d is the 

private exponent. Usually one selects a small public exponent, e.g., e = 216 + 1. The  

modulus n and the public exponent e are published. The value of d and the prime 

numbers p and q are kept secret. Encryption is performed by computing 

(mod )eC M n=  , 

where M is the plaintext such that 0 M n≤ < . The number C is the ciphertext from 

which the plaintext M can be computed using 

(mod )dM C n=  
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The correctness of the RSA algorithm follows from Euler's theorem: Let n and a be 

positive, relatively prime integers. Then 

( ) 1(mod )na nφ =  . 

Since we have 1mod ( )ed nφ= , and 1 ( )ed k nφ= +  for some integer K, we can write 

1 ( )

( )

( ) mod

      mod

     mod

      = ( ) mod
      = 1mod

d e d

ed

k n

n k

C M n

M n

M n

M M n
M n

φ

φ

+

=

=

=

⋅
⋅

 

As an example, we construct a simple RSA cryptosystem as follows: Pick p = 7 

and q = 17, and compute 

7 17 119,
( ) ( 1)( 1) 96.

n p q
n p qφ
= ⋅ = ⋅ =

= − − =
 

The public exponent e is selected such that 1 ( )e nφ< <  and 

gcd( , ( )) gcd( ,96) 1e n eφ = =  . 

For example, e = 5 would satisfy this constraint. The private exponent d is computed 

by 
1

1

(mod )

  5 (mod96)
  77

d e n−

−

=

=
=

 

which is computed using the extended Euclidean algorithm, or any other algorithm for 

computing the modular inverse. Thus, the user publishes the public exponent and the  

modulus: (e, n) = (5, 119), and keeps the following private: d = 77, p = 7, q = 17.          

A typical encryption/decryption process is executed as follows: 

Plaintext:   M = 19 

Encryption: (mod )eC M n=  

C = 2476099 (mod 119) 

C = 66 
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Ciphertext:  C = 66 

Decryption: (mod )dM C n=  

M = 1.27… 14010×  (mod 119) 

M = 19 

 

 

2.2 Digital Signature 

 

The RSA algorithm provides a procedure for signing a digital document, and 

verifying whether the signature is indeed authentic. The signing of a digital document 

is somewhat different from signing a paper document, where the same signature is 

being produced for all paper documents. A digital signature cannot be a constant; it is 

a function of the digital document for which it was produced. After the signature 

(which is just another piece of digital data) of a digital document is obtained, it is 

attached to the document for anyone wishing the verify the authenticity of the 

document and the signature. Here we will brie fly illustrate the process of signing 

using the RSA cryptosystem. Suppose Alice, who has public key (ea , na) and private 

key (da , na), wants to sign a message, and Bob would like to obtain a proof that this 

message is indeed signed by Alice. 

First, Alice executes the following steps: 
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1. Alice takes the message M and computes (mod )ad
aS M n= . 

2. Alice makes her message M and the signature S available to any party wishing to 

verify the signature. 

Bob executes the following steps in order to verify Alice's signature S on the 

document M: 

1. Bob obtains M and S, and obtains Alice's public key (ea , na). 

2. Bob computes ' (mod )ae
aM S n= . 

3. If 'M M=  then the signature is verified. Otherwise, either the original message M 

or the signature S is modified. Thus, the signature is not valid. 

We note that the protocol examples given here for illustration purposes only, they 

are simple 'textbook' protocols; in practice, the protocols are somewhat more 

complicated. For example, secret key cryptographic techniques may also be used for 

sending private messages. Also, signing is applied to messages of arbitrary length. 

The signature is often computed by first computing a hash value of the long message 

and then signing this hash value.  

 

2.3 The security of RSA 

     

Three possible approaches to attacking the RSA algorithm are as follows: 

l Brute force: This involves trying all possible private keys. 

l Mathematical attacks: There are several approaches, all equivalent in effect to 

factoring the product of two primes. 

l Timing attacks: These depend on the running time of the decryption algorithm. 

There defense against the brute-force approach is the same for RSA as for other 

cryptosystems— namely, use a large key space. Thus, the larger the number of bits in e 
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and d, the better. However, because the calculations involved, both in key generation 

and in encryption/decryption, are complex, the larger the size of the key, the slower 

the system will run. In this section, we provide an overview of mathematical and 

timing attacks. 

    We can identify three approaches to attacking TSA mathematically: 

l Factor n into its two prime factors. This enables calculation of 

( ) ( 1)( 1)n p qφ = − − , which enables determination of 1 mod ( )d e nφ−= . 

l Determine ( )nφ  directly, without first determining p and q. again, this enables 

determination of 1 mod ( )d e nφ−= . 

l Determine d directly, without first determining ( )nφ . 

Most discussions of the cryptanalysis of RSA have focused on the task of 

factoring n into its two prime factors. With presently known algorithms, determining d 

given e and n, appears to be at least as time-consuming as the factoring problem. 

Hence, we can use factoring performance as a benchmark against which to evaluate 

the security of RSA.  

For a large n with large prime factors, factoring s a hard problem, but not as hard 

as it used to be. Table 2.1 shows the results to date that return the RSA ciphertext to 

plaintext. The level of effort is measured in MIPS-years: a million- instruction-per- 

second processor running for one year, which is about 133 10×  instructions executed. 

A 200-MHz Pentium is about a 50-MIPS machine. 

The threat to larger key sizes is two fold: the continuing increase in computing 

power, and the continuing refinement of factoring algorithm. We have seen that the 

move to a different algorithm resulted in a tremendous speedup. We can expect further 

refinements in the GNFS, and the use of an even better algorithm is  also a possility. 

In fact, a related algorithm, the special number field sieve (SNFS), can factor numbers 

with a specialized form considerably faster than the generalized number field sieve. 
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Thus, we need to be careful in choosing a key size for RSA. For the near future, a key 

size in the range of 1024 to 2048 bits seems reasonable. 

In addition to specifying the size of n, a number of other constraints have been 

suggested by researchers. To avoid values of n that may be factored more easily, the 

algorithm’s inventors suggest the following constraints on p and q: 

1. p and q should differ in length by only a few digits. Thus, both p and q should be 

on the order of 1075 to 10100. 

2. Both (p – 1) and (q – 1) should contain a large prime factor. 

3. gcd(p – 1, q – 1) should be small. 

In addition, it has been demonstrated that if e < n and 1 /4d n< , then d can be easily 

determined. 

 

Number of 

Decimal Digits 

Approximate 

Number of Bits 

 

Data Achieved 

 

MIPS-Years 

 

Algorithm 

100 332 April 1991 7 Quadratic sieve 

110 365 April 1992 75 Quadratic sieve 

120 398 June 1993 830 Quadratic sieve 

129 428 April 1994 5000 Quadratic sieve 

130 431 April 1996 500 Generalized number 

field sieve 

Table 2.1 Progress in factorization 
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Chapter 3 

Scalable Montgomery Multiplication 

Architecture 
 

3.1 Modular Exponentiation Operation 

 

Once an RSA cryptosystem is setup, the modulus and the private and public 

exponents are determined and the public components have been published, the 

senders as well as the recipients perform a single operation for signing, verification, 

encryption, and decryption. The RSA algorithm in this respect is one of the simplest 

cryptosystems. The operation required is the computation of (mod )dM C n= , which is 

the modular exponentiation. In the following sections we will discuss how to solve 

modular exponentiation problem and what is the most popular hardware structures for 

performing the modular multiplication and exponentiations. 

 

3.1.1 Modular Exponentiation Algorithm 

 

    There are two algorithms to convert the modular exponentiation of 

(mod )EC M N=  into a square of modular multiplications. (Note that from this chapter, 

we change the notation e to E and n to N.) Each is determined by the order in which it 

process exponent e, from low bits to high bits in algorithm LSB-First, and conversely in 

MSB-First. [4] We consider the binary representation of the exponent  

1 2 2 1 0( ... )k kE e e e e e− −=  with 1 1ke − = , where E is a k-bit integer. 
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    Both of the two algorithms above need to do a lot of modular multiplication 

operations. Therefore, how to improve the speed of modular multiplication is a critical 

issue in RSA implementation. 

 Algorithm MSB-First ( M, E, N)  

 Int R = 1; 

 for i = k-1 downto 0 

     R = R × R mod N; 

     if ei = 1 then 

         R = R × M mod N; 

 return R; 

 end 

 Algorithm LSB-First ( M, E, N) 

 int R = 1, P = M; 

 For i = 0 to k-1 

 if ei = 1 then 

      R = R × P mod N; 

 P = P × P mod N; 

 Return R; 

 end 
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3.1.2 Montgomery Modular Multiplication Algorithm 

 

    The Montgomery multiplication algorithm [5] is an efficient method for modular 

multiplication with an arbitrary modulus, particularly suitable for implementation on 

general-purpose computers (signal processors or microprocessors). The character of 

the Montgomery Algorithm is that it performs modular reduction during the 

multiplication process, and replaces division by M operation with division by a power 

of 2. No division operation is needed at any point in the process. This operation is 

easily accomplished on a computer since the numbers are typically represented in 

binary form.  

Let X, Y, and M be the multiplicand and multiplier and the modulus respectively 

and let n be the number of digits in their binary representation. So we can denote X, Y, 

and M as follows: 
1 1 1

0 0 0

2 ,     2 ,     2
n n n

i i i
i i i

i i i

X x Y y M m
− − −

= = =

= × = × = ×∑ ∑ ∑  

    The pre-condition of the Montgomery algorithm are as follows: 

l The modulus M needs to be relatively prime to the radix, i.e. there exists no 

common divisor for M and the radix; 

l The multiplicand(Y) and the multiplier(X) need to be smaller than M. 

    As we use the binary representation of the operands, then the modulus M needs 

to be odd to satisfy the first precondition. The Montgomery algorithm uses the least 

significant digit of the accumulating modular partial product to determine the 

multiple of M to subtract. The usual multiplication order is reversed by choosing 

multiplier digits from least to most significant and shifting down. If S is the current 

modular partial product, then q is chosen so that S + qM is a multiple of the radix r, 

and this is right shifted by r positions, i.e. divided by r for use in the next  iteration. So, 
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after n iterations, the result obtained is mod ( , )nS X Y r M MM X Y−= × × = .The 

Montgomery Multiplication Algorithm is shown below: 

 

 

3.1.3 Appling Montgomery Multiplication Algorithm to 

Modular Exponentiation Operation 

 

    We can employ the Montgomery Multiplication Algorithm to do modular 

exponentiation operation. To achieve this goal, the Montgomery’s technique requires 

some pre-processing and post-processing steps, which are needed to convert the 

numbers to and from the residue based representation. However, the cost of these 

steps is negligible when many consecutive modular multiplications are to be executed, 

as in the case of RSA. This is the reason why the Montgomery’s method is considered 

the most efficient algorithm for implementing RSA operations. The applied 

Montgomery algorithm is shown as following: 

Montgomery Algorithm (X, Y, M) 

Step 1:  S :﹦0 

Step 2:   for i = 0 to n – 1 

Step 2a:     S:﹦S + Xi．Y  

Step 2b:     if S is odd, S :﹦S + M 

Step 2c:     S :﹦S / 2 

Step 3:  If S≥N, S = S - M 

Step 4:  Return S 



 

 19 

 

Form this algorithm, we can get: modEX T N= . We also show an illustration of 

the algorithm above as follows: 

 

 

 

 

 

ModExp Algorithm (T, E, N)  

Step 1. R = MM(1, r2n) = 1 × rn mod N; 

Step 2. P = MM(T, r2n) = T × rn mod N; 

Step 3. For i = 0 to k-1; 
Step 4.   if ei = 1 then 

Step 5.      R = R × P mod N; 

Step 6.   P = P × P mod N; 

Step 7. X = MM(R, 1) 
Step 8. Return X; 

MM 

r 2n 
1  nR r mod N= ×

MM 

 nP T r mod N= ×

MM 

 E nR T r mod N= ×
1 

 EX T mod N=

1 

T 

Integer Field 

Residue Field 

Modular Exponentiation 

Operation Using MM() 

Figure 3.1 Montgomery Modular Exponentiation Algorithm 
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3.2 Scalable Architecture for Montgomery Multiplication 

 

    There are many algorithms and hardware implementations of the Montgomery 

multiplication for a limited precision of the operands were proposed [7, 8]. In order to 

get improved performance, high-radix algorithms have also been proposed [9, 10]. . 

However, these high-radix algorithms usually are more complex and consume 

significant amounts of chip area, and it is not so evident whether the complex circuits 

derived from them provide the desired speed increase. A theoretical investigation of 

the design tradeoffs for high-radix modular multipliers is given in [11]. Low-radix 

designs are usually more attractive for hardware implementation [12]. 

 

3.2.1 Scalability 

We consider an arithmetic unit as scalable if: 

 

the unit can be reused or replicated in order to generate long-precision results 

independently of the data path precision for which the unit was originally designed. 

 

For example, a multiplier designed for 768 bits cannot be immediately used in a 

system which needs 1,024 bits. The functions performed by such designs are not 

consistent with the design which required in the larger precision system, and the 

multiplier must be redesigned. In order to make the hardware scalable, the usual 

solution is to use software and standard digit multipliers. In the following, Koc[13] 

propose a hardware algorithm and design approach for the Montgomery 

multiplication that are attractive in terms of performance and scalability.  

 



 

 21 

3.2.2 A Word-Based Radix-2 Montgomery Multiplication 

Algorithm 

    In 2001, Koc proposed a word-based radix-2 Montgomery Multiplication 

Algorithm [13]. Given two operands Y (multiplicand) and X (multiplier) and the  

modulus M, the algorithm presented in this section executes a series of operations to 

generate modnX Y r M−× × , scanning Y and M word-by-word and scanning X  

bit-by-bit. This characteristic can derive a hardware implementation that is very 

regular and based on simple operations. This algorithm is shown as follows: 
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    The MWR2MM algorithm computes a partial sum S for each bit of X, scanning 

the words of Y and M. Once the precision is exhausted, another bit of X is taken, and 

the scan is repeated. Thus, the algorithm imposes no constraints to the precision of 

operands. The arithmetic operations are performed in precision w bits, and they are 

independent of the precision of operands. The carry variable C must be in the set {0, 1, 

2}. This condition is imposed by the addition of the three vectors S, M, and xiY.  

    In this algorithm, the n-bits operands are split into w-bits words. For now, 

suppose that e words are used. Word and bit vectors are represented as: 

( 1) (1) (0)(0, ,..., , )eM M M M−= , ( 1) (1) (0)(0, ,..., , )eY Y Y Y−= , ( 1) (1) (0)(0, ,..., , )eS S S S−= , 

and ( 1) (1) (0)(0, ,..., , )eX X X X−= , where the words are marked with superscripts and 

the bits are marked with subscripts. M, Y, and S are extended to e + 1 words by a most 

significant zero word. Inserting an extra most-significant word with value 0 allows the 

computation of S (e-1) once the loop is completed. The concatenation of two vectors A 

and B is represented as (A, B). A particular range of bits in a vector A from position i 

to position j, j > i, is represented as Aj… i. The bit position i of the kth word of an 

operand A is represented as ( )k
iA . 

 

3.3 Mapping the MWR2MM Algorithm to Hardware 

 

3.3.1 Parallel Computation of the MWR2MM 

 

    The dependency between operations within the j loop restricts their parallel 

execution due to the dependency on the carry bits. However, instructions in different i 

loops may be executed in parallel.  The dependency graph for the algorithm is shown 
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in Fig.  3.2. An atomic task is represented by a circle and it is labeled according to the 

type of action it performs. Tasks A and B executes basically the following steps: 

1. Add one word from each one of the vectors S, xiY, and M (the addition of M 

depends on a test), and 

2. One bit right shift of an S word. For this operation, the generation of the shifted 

S(j-1)is possible only after computing the least significant bit of S(j).  

 

Figure 3.2 The dependency graph for the MWR2MM algorithm 

 

Task A differs from task B because, additionally to these two steps, it also needs 

to test the even condition for the result of the addition (0) (0)
ix Y S+ , and store this test 

result for the other tasks dealing with the next words of the same operands (same 
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column in the graph). The dependency graph has e + 1 task per column. Each column 

may be computed by a separate processing element (PE) and the data generated by 

one PE may be passed to another PE in a pipelined fashion. Each task is computed in 

one clock cycle. The partial data pass through the computation process is in 

Carry-Save form. A number (S) is represented by two bit vectors: carry vector (SC) 

and partial-sum vector (SS) such that the form of S is obtained computing SC + SS.  

After e + 1 clock cycles, the PE finishes its portion of work, and becomes available 

for further computation. In case there is no available PE and there is work to do, the 

pipeline must stall and wait for the working PEs to finish their jobs. Since the PE at 

the end of the pipeline has no way of communicating its result to another PE, we need 

to provide extra buffers for them. In the worst case, which happens when there is only 

one PE, there must be 2e extra buffers of w length to hold these partial sum. An 

example of the computation for 7-bits operands is shown in Figure 3.3 for the word 

size w = 1 provided that there are sufficient number of PEs preventing the pipeline to 

stall. Note that there is a delay of 2 clock cycles between the stage for xi and the stage 

for xi+1. The total execution time for the computation takes 20 clock cycles in this 

example. 

 

Figure 3.3 An example of pipeline computation for 7-bits operands, where w = 1. 

     

 



 

 25 

If there are at least ( 1) / 2e +    PEs in the pipeline organization, the pipeline 

stalls do not take place. For the example in Figure 4.3, less than 8 / 2 4=    PEs 

cause the pipeline to stall. Figure 3.4 shows what happens if there are only three PEs 

available for the same example. 

 

 

Figure 3.4 An example of pipeline computation for 7-bit operands, where w = 1. 

 

3.3.2 Scalable Architecture for Montgomery Multiplication  

 

A pipelined organization for the system is shown in Fig. 4.4. Each processing 

element in the pipeline relays the  received words to the next downstream unit. All 

paths are w-bits wide, except for the xi inputs (only 1 bit). If more precision is 

required, it is only necessary to feed more words. The final and  intermediate results 

are stored in the queue. Gray boxes indicate registers. 
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Figure 3.5 Pipelined organization for the multiplier. 

 

 

 

Figure 3.6 The block diagram of the processing element (PE) 
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Figure 3.7 PE's data path for w = 3 bits. 

 

The block diagram of the PE is shown in Figure 3.6, and the PE’s data path is 

shown in Figure 3.7. The data path receives words M(j), Y(j), and S(j) from the previous 

stage in the pipeline and computes the new value of S(j - 1). Delaying inputs M and Y, 

the module provides as outputs the words M(j - 1), Y(j - 1), and S(j - 1). In fact, since the 

signals provided by the PE pass by an interstage register, these signals will reach the  

next PE one clock cycle later. That means, when one PE is working on word j, the 

next PE is working on word j - 2. 

The PE’s data path needs to make the information on the least significant bit (t) 

of the computation ( ) ( )0 0
iS xY+ available to the local control. This bit is used to 

generate the control signal c (controls addition of M). The local control is responsible 

for generating and keeping c during a pipeline cycle, and also relay some control 

signals to downstream PEs. The basic operations executed in the data path are: (1) 

generation of the product xiY(j), (2) generation of the product cM(j), and (3) addition of 

three words (S(j), xiY(j), and cM(j)) and a carry digit in the set {0, 1, 2}. The shaded box 
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represents a register. The data path has an alignment section to generate the output  

words. When computing bits of word j (step j), the circuit generates w - 1 bits of S(j) 

and the new most significant bit of S(j-1). Bits of S(j-1) computed at step j - 1 must be 

delayed and concatenated with the most significant bit generated at step j. 

The total computation time T in clock cycles (assuming that each task consumes 

one clock cycle) when p stages are used in the pipeline to compute the MM with n 

bits of precision is 

1              if ( 1)
( 1) ( 1)  otherwise.                          (1)

Lkp e e Lp
T

k e L p
+ − + ≤

=  + + −
 

    The first case shown in the equation represents the situation when the first PE in 

the pipeline cannot start its computation with another bit of X because the least 

significant word of S didn’t show up at the pipeline output yet. The second case 

models the condition when the number of words in the operands is large enough to 

keep all the PEs working all the time. As the word size increases, there is a reduction 

in the total execution time up to a lower bound that can be obtained from the equation 

above. The best parameters in terms of number of PEs and word size for a given 

operand precision and chip area depends on the clock cycle time of the final 

implementation and the total number of clock ticks.  

There are only two important values of operand precision are presented. Observe 

that, when the operand precision is small, the number of PEs may be small and, when 

the precision is high, the number of PEs should be as high as possible. Thus, the final 

decision on the actual configuration depends on the precision for which the hardware 

will be used the most and the available area. In order to make the design efficient for a 

large range of operand precision, the optimal solution for the highest expected 

precision is the best choice. Figure 3.8 and figure 3.9 show different configurations. 

The areas of those configurations are approximately when (w, p) = (8, 40), (16, 20), 
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and (32, 10). It is easy to see that going from p = 40 to p = 30 will not affect the 

computation time for n = 256, but will impact the time to compute the multiplication 

for n = 1024. Thus, the concept of optimal design in this case is relative to the 

precision of the operands and the available area. 

 

 

 

 

 

Figure 3.8 The cycle time of different configurations which n = 256 
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Figure 3.9 The cycle time of different configurations which n = 1024 

 

3.3.3 The Final Word Adder and Subtraction 

 

    The proposed Montgomery multiplier generates results in the redundant 

Carry-Save form; hence we need to perform an extra addition operation at the end of 

the calculation to obtain the nonredundant form of the result. A full-precision adder 

would increase the critical path delay and the area, and would  also be hard to scale. A 

word adder of the type given in Figure 3.10 would be suitable for our  implementation 

since the multiplier generates only one word at each clock cycle in the last stage of 

pipeline, thus we need to perform one word addition at a time. 
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Figure 3.10 The Word Adder for Final Addition. 

 

    The adder propagates the carry bit to the next word additions. Thus, the carry 

from a word addition operation is delayed using a latch and fed back into the Cin 

input of the adder for the next word addition at the next clock cycle. It needs to add 

subtraction functionality to the word adder because the result might be larger than the 

modulus, and hence one final subtraction operation is necessary. The final subtraction 

operation takes place only if the result is larger than the modulus. 

    Figure 3.11 illustrates what happens in last stage of the pipeline. A pair of 

redundant words (SC(j) , SS(j) ) are generated each cycle for e clock cycles. The word 

adder can be used to add these pairs in order to obtain the result words FS(j)(Final 

Sum). Note that only one extra cycle is needed to convert the result from the 

Carry-Save form to the nonredundant form. 
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Figure 3.11 Converting the result to final form in the last stage of the pipeline. 

 

3.4 An Improved Scalable Montgomery Multiplication 

Architecture. 

    We proposed an improved scalable Montgomery Multiplication Algorithm, and 

the new architecture can achieve higher clock rate. The main idea is that we substitute 

the multiplexer for the full adder in the PE’s data path. In addition to that idea, we 

combined the idea from Colin. D. Water [14]. The advantages of the Water’s idea are: 

(1) We can make the pipeline form of the architecture being continuous without being 

interrupted by the comparison and subtraction operation. 

(2) Since we change the original architecture in order to achieve higher clock rate, 

additional data must be generated faster. By using the Water’s idea, we can solve 

this problem. We will discuss this problem in next section. 
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The improved MWR2MM algorithm is shown as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Note that the improved MWR2MM algorithm is a little different from the 

original MWR2MM. The difference between the two algorithms is shown in table 3.1. 
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 Original Improved 

1. M is m bits, and computes m 

iterations. 

1. M is m bits, and computes  

n = m + 2 iterations. 

2. The multiplicand Y and 

multiplier X are smaller then the 

modulus M. ( X < M, Y < M) 

2. The multiplicand Y and 

multiplier X are smaller then 

2M. ( X < 2M, Y < 2M) 
Difference 

3. Need the final subtraction step 

to make the result to the correct 

range. 

3. There is no need for final 

subtraction if the exponentiation 

is set up in the right way. [14] 

Table 3.1 The difference between the two MWR2MM algorithm. 

 

    In this architecture, we first substitute the 4 to 2 multiplexer for the full adder in 

the PE’s data path. This can reduce the data arrive time when the data pass through 

the PEs. Beside, the area of the multiplexer is slightly small than the full adder. 

Therefore, we can achieve better performance without increase the area. Table 3.2 

shows the area and data arrive time between multiplexer and full adder. 

 

 

  Area(gate count) data arrive time(ns) 

Mux 10.58 0.21 

Full Adder 14.1 1.01 

Table 3.2 The area and data arrive time between Mux and Full Adder. 

 

    Although we can achieve higher speed by the way above, but it still has some 

problem: how to make the data mb(mb=M+Y) arrive in time without delay the all 

process of the data path? We find a solution to solve it. We changed the pre-condition 
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so that we can use the idea of Water in order to reduce the final comparison and 

subtraction. By this method, we can execute the multiplication of the exponential 

computation continuously. We also solve the mb problem. It is known that in modular 

exponentiation algorithm, the exponential computation is composed of many 

continuous modular multiplications. The result of the current multiplication is the 

input of next multiplication. Thus, we insert an extra word adder between two 

continuous multiplication of exponentiation to compute the result of (mb = M + Y) 

before next multiplication. It only needs an extra cycle time which is not obvious. The 

new PE’s data path of 3 bits word is shown in Figure 3.12, and the diagram between 

two multiplications of exponential computation is shown in Figure 3.13. 

 

 

 

Figure 3.12 An example of improved architecture’s data path. 
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Figure 3.13 The diagram between two multiplications of exponential computation. 
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Chapter 4 

Simulation Result 
 

Our goal is to design a high performance Montgomery Scalable Montgomery 

Modular Multiplication chip, and compare the performance with the original 

architecture.  

When the circuit architecture is completed, the realization of such a highly 

integrated chip requires a consequent top-down design flow to ensure the first time 

functionality and an acceptable total design time. Figure 4.1 shows the typical 

top-down design flow chart. 

At the beginning in our design, we should define the specification to fit related 

protocol and standard. According to the defined specification, we start to design the  

chip architecture, then we use the hardware description language called Verilog to 

describe our circuit and simulate. From the simulation results, we can check the  

architecture fit our specification or not. If it doesn’t fit the specification, then we 

should restart to design a new architecture. After we complete the correct behavior 

model circuit, the behavior- level circuit can be mapped to the gate-level 

representation by using the logic synthesis tool(Synopsys). Then the gate-level 

simulation must be done. If the simulation result is not correct or do not meet the 

requirements, rather in the behavior- level design or the gate- level design, the design 

must be redone or revised. After that, we can see the performance of our design. 
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4.1 Design Evaluation 

 

In this section, we discuss the area/time tradeoffs that arise for different values of 

operand precision (n), word size (w), and number of stages in the pipeline (p). The 

proposed architecture is highly flexible and allows the investigation of several design 

tradeoffs in word size (w) and number of PEs (p). Note that in order to simplify the 

problem, we assume the number of PEs (p) is more enough to execute the pipeline 
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data path without extra buffer. There are many kinds of combinations of word size (w) 

and number of PEs (p) can implement the same operand precision (n). For example, if 

we want to implement a 256 bits RSA system, we may choose (w, p) = (8, 17) or (w, p) 

= (16, 9) or (w, p) = (32, 5). However, we do not suggest the word size larger than 16 

bits. Because we execute the high clock rate computation, the larger word of final 

adder may be the bottleneck of clock rate in entire system, and the area of the adder 

may be very large. Table 4.1 shows the adder’ s clock rate and area in TSMC 0.25μm 

process technology. Note that the increase in word size is the only parameter that 

effects the clock period since the architecture is very modular. Increasing the number 

of stages (p) shouldn’t impact the clock period after placement and routing if 

neighboring modules in the pipeline are kept close to each other.  

 

 Clock Rate(in MHz) Area( gate count) 

 8 bits Adder 625 779.95 

16 bits Adder 555 1731.53 

32 bits Adder 500 3657.60 

Table 4.1 The clock rate and gate count of different adders. 

 

 

4.2 Experimental Result 

 

    The performance evaluation presented in this section is based on area and time 

estimates obtained with TSMC 0.25μm process technology and Synopsys Design 

Analyzer to synthesize our RTL code.  
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4.2.1 A Single Processing Element 

 

    The main architecture of our improved algorithm was discussed in chapter 3. 

Table 4.2 shows a single 8 bits and 16 bits PE’s area of Koc’s architecture and our 

architecture.  

 

 Koc’s Design 

( 8 bits) 

Koc’s Design 

( 16 bits) 

Our Design 

( 8 bits) 

Our Design 

( 16 bits) 

Area (Gate Count) 912.7 1882.55 784.14 1542.35 

Table 4.2 A single 8 bits and 16 bits PE’s area of Koc’s architecture and our architecture 

 

    Figure 4.2 shows the symbol view of the single 8-bits PE. The M, Y, MB, S, and 

Cin are inputs of the processing element, and the c1 and c2 represent the two control 

signal  and i ix q . 

 

 

Figure 4.2 The symbol view of 8 bits PE. 
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4.2.2 Synthesis result 

 

    In this section, we will show the speed (MHz) and the area of the original and 

improved architecture. Table 4.3 and 4.4 shows the area and speed original and 

improved design with different number of PEs. The results also show the increasing 

of processing elements will not affect the clock rate. Therefore, we can assume that 

our architecture can achieve the same clock rate within any number of PE. Table 4.5 

and 4.6 shows the speed and area of the original and improved design with different 

precision of PEs. The results show that the increasing the precision of PEs will 

increase the clock period time. We then show our implementation and compared the 

result with the Koc’s scalable architecture. Note that the area used by registers for the 

input operand and modulus was not included in the area calculations. 

   According to the simulation results, in 8 bits precision, our improved design is 

47% faster than the original design with the area is slightly small then original design; 

in 16 bits precision, our improved design is 38% faster than the original design with 

the area is slightly small then original design. 

 

Original design ( 8 bits) Speed (MHz) Area (Gate count) 

2 Processing Elements 400 3130.92  

4 Processing Elements 400 5385.51  

8 Processing Elements 400 10007.65  

Table 4.3 The speed and area of the original design with different PEs  

 

Improved design ( 8 bits) Speed (MHz) Area (Gate count) 

2 Processing Elements 588.23 2946.63  

4 Processing Elements 588.23 5161.84  

8 Processing Elements 588.23 9285.92  

Table 4.4 The speed and area of the improved design with different PEs  
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Original design (8 PEs) Speed (MHz) Area (Gate count) 

8 bits 400 10007.65  

16 bits 312.5 20309.29  

Table 4.5 The speed and area of the original design with different precision of PEs  

 

Improved design (8 PEs) Speed (MHz) Area (Gate count) 

8 bits 588.23 9285.92  

16 bits 434.78 18675.31  

Table 4.6 The speed and area of the improved design with different precision of PEs  

 

    Figure 4.3 shows the symbol view of the design above. The design includes the 

intermediate registers and the final adder. 

 

Figure 4.3 The symbol view of the final design. 
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4.3 Comparison with Other Approaches 

 

The comparison with other hardware implementations of the Montgomery 

multiplication algorithm is not straightforward since there is no other hardware design 

that presents the same scalability features. Systolic implementations of the 

Montgomery multiplier such as the one in [8] are done for full precision of the 

operands. A systolic multiplier for n = 512 bits consumes about 50K gates and 

performs the operation in approximately 2n = 1024 clock cycles. Our design with a 

configuration of w = 8 and p = 40 uses an area of 46K and computes the 

multiplication in 1,103 clock cycles. The design is 8 percent slower using only 

slightly more than half the area. Besides, the systolic design couldn’t directly compute 

with more than 512 bits, while our design could. 
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Chapter 5 

Conclusion 

     
    In this thesis, we have proposed an improved architecture of the Scalable 

Montgomery Multiplication algorithm. We used some methods to enhance the speed 

(MHz) of the architecture. The new architecture has a 47% speed more than the 

original architecture, and its area is slightly less than the original architecture. Using 

TSMC 0.25μm CMOS process technology and specified the design with (w, p) = (8, 

4), the speed is 588.23 MHz and gate count s of a single element is 197k. Because 

increasing the number of PE does not affect the clock rate, our architecture can 

achieve the same clock rate within any number of PE. The total time to compute the 

Montgomery multiplication for a given precision of the operands depends on the  

kernel configuration. The upper limit on the operands’ precision is imposed only by 

the memory available to store the operands and internal results. In the future, the 

encryption and decryption system plays an important role in the content protection. 

We believe that higher speed and scalability must be helpful to content protection 

technology, and we will continuously dedicate to those goals. 
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