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ABSTRACT

With the third-generation mobile phone system coming, it provides
multiple-service by higher transmission rate. -Since wireless resources are
limited, how to allocate the bandwidth'is interesting. That is, call admission
control is considerable. If we wantto minimize the system cost, what can
we do?

In this thesis, we model channels by Markov chains and find the
optimal policy based on Markov decision process. In single service network,
the Guard Channel policy is the optimal policy. We will modify it for
multiple-service networks, then use this policy to do one-step policy
improvement. The next policy is near to the optimal policy.
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Chapter 1
Introduction

In recent years, there have been tremendous developments and
interests in the field of cellular communication. Unlike the old second
generation cellular communication systems which only target at voice
service provisioning, nowadays the third generation mobile phone systems
are capable of providing multiple services, such as conversational real-time
audio and video communications. It is believed that an efficient radio
resource management scheme to handle such multiplicity is the key to
success of the third generation mobile phone system.

One of the key issuessin radio resource management is the call
admission control due to that;the wireless resources are much rarer than
the wired ones. Therefore; a good-admission control scheme for the
cellular system with multiple services isto allocate the bandwidth according
to the type of the call whilé the revenue generated by the wireless system
can be maximized. With certain-reasonable assumptions, the guard
channel admission control scheme, which reserves certain amount of
bandwidth only for handover calls, is proved to be optimal and practical for
the cellular system with the single service. However, as shown in [3,4], the
admission control of the multiple services, even in the wired system, is
difficult and the optimal solution is computation prohibitive. Therefore,
obtaining a near-optimal strategy is what we can expect in attacking the
issue of admission control for the cellular system with multiple-service
provisioning.

To this end, we propose the call admission control scheme called
Least Cost Control in Multi-Service wireless networks (LCCM). It is based
on the cost function, derived from the context of Markov decision theory [1].
In the general speaking, our proposal is combining the Guard Channel
admission control and the Least Cost Routing in Multi-Service Networks



(LCRM) [3,4] for the multi-service wired networks. Basically, LCRM first
models the routing into a Markov decision process (MDP) and uses
one-step policy-improvement on a suggested base policy. The novelty of
LCRM is in reducing the computation effort to deduce the Howard relative
cost function which is mandatory in the policy improvement routing [pp. 37,
1].

In applying LCRM to wireless network, we first note that the call type in
the cellular system with single service should be distinguished into “new”
and “handoff” calls. Therefore, a naive way to apply LCRM to the cellular
system with $k$ services is to treat the system with distinct $2k$ services
(for each original service, we have a new service and handoff service) and
then use the base policy suggested in LCRM. Instead, our proposal
chooses the guard channel admission control as the base policy and then
proposes a simple way to calculate the ' Howard relative cost function. We
then verify that our proposal is dominant.over the naive way in the sense of
not only the revenue generated but also -the computational effort. In
addition, in all the conducted experiments with different parameter settings,
our proposal has produced.greater revenue:

The rest of thesis is organized as follows: In chapter 2, we introduce
Morkov decision theory and concepts. Based on the definition of Morkov
chain, we consider the concept of cost (reward). The relative cost values
appear at the first time in this chapter. In order to find the minimal (maximal)
expected cost (reward) in system, we have to find the corresponding policy
in some approaches. Then the concept of the Guard Channel policy is
shown last in chapter 2.

Next, we compute all the relative cost values by using 7z, and =z, to
be an initial policy in detail, and consider four types of traffic in chapter 3.
Recall the result from [4], the system of linear equations associated with
the four-dimensional Markov chain can be decomposed with into several
systems of linear equations, each one associated with the one-dimensional
Markov chain.



In chapter 4, we do some numerical results and make comparison
between two distinct policies. The conclusion is drawn in chapter 5.



Chapter 2

MDP-Based Call Admission
Control in Multiple-Service
Network

In this chapter, we introduce how to find the optimal policy under
Markov Decision Process (MDP). Making a correct decision depends on
cost (or reward). We then use the policy-iteration method to solve the
problem of optimization step by step.

2.1 Multi-rate loess channel model

In the case of single-service networks, Krishnan and Ott [7], and
Lazarev and Starobinets”.[8] have proposed state dependent routing
schemes with roots in Markov. decision theory. We use the separable
routing concept defined by Krishnan and Ott [7] which is appropriately
modified for the case of multiple-service networks. We also study the
problem of routing a call over one link where we follow Zachary’s
procedure [5] to determine the cost of routing.

We shall use the term Fundamental Capacity Unit (FCU) defined in [3]
as the largest amount of bandwidth, say & Kbps, such that the bit rates of
calls of type k (k=1,...,K) are all integral multiples of &.

Let us take as one example 2 Mbps indoor 3G user, and the total
capacity is 50 Mbps. Then, we find that FCU is 2 Mbps. In addition, the total
capacity is 50 FCUs. In our model, we assume total capacity is a fixed
integer C.



Traffic is divided into K classes of service, each class corresponding
to a different type of traffic. For each service k (k=1,...,K) we make the
following assumptions:

@ The process of each type call is Poisson with a mean arrival rate
Ay -

@ The call holding times are independent and exponentially
distributed with the meanl/ 4, .

@ Each call has a bit rate or capacity requirement of a, FCUs where
a, Is an integer.

Figure 2.1. Transition diagram

Our channel is described by a Markov chain with a finite humber of
states. The channel space is denoted by N. The channel state vector



n(t) e R" is defined as
n(t) = (0, (©),.n (0),.-0 (1)) (2.1)
where n, (t) is the number of calls in progress of traffic type k at time t.

the state transition rate diagram of a cell is shown in Figure. 2.1. Also, the
capacity constraint implies that

O<n(t)a' <C, WVt (2.2)
where the vector
a=(a,,..ay) (2.3)

represents the bandwidth requirements for all classes of service.

2.2 Alternatives (action) and costs

The Markov process with costs (or rewards) has been the means to
an end. This end is the analysis of decisions in sequential processes that
are Markovian in nature [1]. We at first introduce alternatives (actions) and
costs (or reward) of sequential decision process and define them in this
section.

A

Figure 2.2. Transition diagram with alternative 1 and 2



In our channel model, we have two alternatives when a new arrival
comes:

@ alternative 1 : accept
@ alternative 2 : reject

We then define that a cost o, is incurred when system rejects the
arrival. By these definitions, there are different behaviors with
corresponding alternatives. In our case, we make a difference in Figure 2.2
that network admits a call of type 1 and incurs nothing but rejects it with
cost @,. These analyses will help us to find the solution of the sequential
decision process, In addition, the alternative thus selected is called the
“decision” for that state. The set of decisions for all states is called a
“policy.” There are 2" different policies, where K and N represent the
number of all types and states.

2.3 The policy-iteration method

An optimal policy is defined as a policy that minimizes the gain, or
average return per transition in our work. It is conceivable that we could
find the gain for each of these policies in order to find the policy with the
least gain. The policy-iteration method that will be described will find the
optimal policy in a small number of iterations. It is composed two parts, the
value-determination operation and the policy-improvement routine.

2.3.1 The value-determination operation

We are interested in infinite-horizon systems and know that the
appropriate objective is the average cost (AC) optimization. Let us denote
by V_(t) the lost revenue in the network during the time interval [0,t] under
the policy 7 eIl where IT is the set of all policies. Using the result from

[1],



EV, (tIn, =n)]=g,t+v, () +0(1) (t > =) (2.4)

where E[] denotes expected value and where ne N is the channel state
at time t=0. In Markov decision theory, v_(n) is the well-known relative
value or cost of starting in state n,=n. In (2.4), g, represents the
expected cost per unit time under the policy = on the original
continuous-time scale. Since the system is ergodic, we may call g, the

gain of the process. The objective is to minimize the equilibrium expected
cost per unit time, thatis, g, .

Before to find the relative cost values v_(n), we define the vector
e, cR" by e, =1if k=j, e; =0 otherwise. Then, in the case of the
departure of type k when the state of the channel is n, the immediately
subsequent state d, (n) € N 4is'found as

d,(n)=n-e, (2.5)

A call admission decision needs'to be made at call attempt epochs: either

accept or reject. Denoting an alternative taken on the arrival of a call of
type k by z,(n) where neN is the current channel state. In the case of

call rejection
7, (m)=n (2.6)
If the call is accepted, the subsequent state of the channel will be found as
zr,(n)=n+e, (2.7)

Now we start to introduce how to find the relative cost values v_(n)
for all ne N. The same equation also governs the asymptotic behavior of
the process if we assume that it has started immediately after the first
event that has occurred after t=0. This is because of the ergodic nature
of the system, where the initial state has no effect on the asymptotic



behavior of the process far enough in the future. The first event is either a
call termination or a call arrival of any type. The expected time z for the
first event after t=0 is given as

r=1/y, ?/ZZ(nkﬂk"'/lk) (2.8)

where we used the memoryless property of the system. Writing the
equation (2.4) for a starting time t=0 and a first event time t=r (the
latter one is conditional on the type of the first event), we obtain after some
arrangements

v.(n)+g,7=
K (2.9)
Tz{nk mV, (dy () + 4 [6(mm(n)) o, +V, (7, ()]}, vneN
k=1
where ¢, (1) is the Kronecker symbol-as follows
1, if n=7, (n)
o, (n, 2 2.10
(.7 () {O, otherwise (2.10)

In the system of linear equation (2.9), the unknown variable are
v_(n) for all neN, and the gain of the process g, . Obviously, the
system has one more variable than the number of equations so that v_()s
can be determined up to an additive constant. To solve the system (2.9),
we follow the standard procedure in [1] by setting v_(0) =0 where 0<R"
is zero vector. Thus, we get the system

9, = Z/Lk [6(0, 7, (0) oo, +V. (7, (0))] (2.11)

Note that the expression for g, is obtained from the equation for the zero
state.



Lemmal
For any policy r, the relative value function v_(-) can be expressed

as
V_(n) = iv,ﬁk) (n)ow,, VneN\{0} (2.12)

k=1

where v () (k =1,...,K) is the solution of the system (2.9) in the case

o, =1 and w; =0 for j=k.
Proof: Given in [3].

2.3.2 The policy-improvement routine

Recalling from [1], if we had_an optimal policy up to time t=0, we
could find the best alternative (action) in'the state ne N attime t=7 by
minimizing

Ti{nk eV, (dy () = [o(mz, (n)) o, +v (7, ()]} (2.13)

the contribution of multiplier z and the first term n, v, _(d, (n)) is
independ- ent of 7, (n). Thus, when we are making our decision at t=r,
we can minimize

i Alom, 7 (m))o, +V, (7, (m))] (2.14)

According to the definition of Kronecker symbol, we have an equivalent
concept to solve the minimal problem, denoting as

nj[in(v”(n)+cok,v”(n+ek)) k=1--,K (2.15)

10



Let us denote by A, (n) the cost of accepting a call of type k in the state
n € N. We have

A (n) =V, (n+e,) -V, (n) (2.16)

Then we rewrite the way to find the optimal policy as

n +e, (accept), if A, (n)<am,

7, (n) = { ¥neN (2.17)

n(reject), otherwise

We have now, by somewhat heuristic means, described a method for
finding a policy that is an improvement over our original policy. We use the
proof in [1] that the new policy will have a higher gain than the old policy.

We show the iteration jcyecle in ‘[Figure 2.3. The upper box, the
value-determination operation, yields-the g and v_(n) correspond- ing
to a given policy z. Thedower 'box yields the policy =z’ that decrease the
gain for a given set of v (n).~In other words, the value- determination
operation vyields values as‘ajfunction of policy, where the policy
improvement routine yields the policy as a function of the values.

The iteration cycle will terminate on the policy that has least gain
attainable within the realm of the problem; it will usually find this policy in a
small number of iterations.

2.3.3 The one step policy improvement

Our task is to find a dynamic call admission control which minimizes
the long-run average cost of lost calls. We can use the iteration cycle to
find our optimal policy, but it is a time-consuming work for implement
because of complexity [5]. We therefore use one step policy improvement

11



\ 4

Value-Determination Operation

Use a given policy 7 to solve
v,(m)+9,7=

Ti{nk:ukvﬂ (dy () + A4 [6(n, 7, (n))oo, +V, (7, (n))]}, VneN

for all relative values v_(n) and g_ by setting v_(0) to zero.

Policy-Improvement Routine
For all n e N, make the decision as follow

. n +e, (accept), if A, (n)<am,

k(n = . .

{n(reject), otherwise
using the relative values v_(n) and the derived A, (n) of the
previous policy. Then z,(n) becomes the new decision in
state n.

Figure 2.3: The‘iteration cycle

Call arrival of type
k with a value o,

A
Compute a cost A, for

accepting this call

Yes No
Accept Call Block Call

Figure 2.4. LCCM flow diagram
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and find the sub-optimal policy to solve our problem. We define the base
policy =z, which is used to determinate the relative cost and to find the
next policy z,. We proposed this control method, called Least Cost
Control in Multi-Service Networks (LCCM), shown in Figure 2.4.

Lemma 2
With two policies denoted by 7z, and 7, such that

9, <9,
we have
g;z'1 S g;z':[

where 7z, and z; are the next policy based on 7z, and 7z, respectively.

Proof:
Recall from [1] that if we_had-an‘optimal policy during the time interval
[0,t] we could find the best alternativesin [t,t + z] by minimizing

iﬂk [6(n,zy (n))w £V (t|n, = 7, (n))] vneN (2.18)

here we find (2.18) is different from (2.14) by t=0. Use (2.4) to modify
(2.18), we have the best alternative by minimizing

K
Y Alsm z m)o, +(g,t+v, (7m)]  VneN  (2.19)
k=1

where t is large enough. Since g, <g, , we obtain from [6] and have

min > 4,[5(n, 75, (1)), + (9t +V,, (2 ()] <

ok k=1

min > A4, [,y (1) +(9.,t+V., (7l ()]

ok k=1

VneN (2.20)

where g, t+v, (n) approximates to g,t when t is large. The RHS

13



(Right Hand Side) and LHS (Left Hand Side) of (2.20) are denoted by

V, (t+7|n, =7z, (n)) and V_(t+7z|n, =7, (n)) respectively. As the same
policies, we rewrite equation (2.20) as

Zﬂ“k [6(n, 7 (M), + (g;zlt’ Vo (7 ()))] <
“ VneNt eR (2.21)

K

A [6(n, 7 (n)) @, + (9t + v, (777, (n)))]

k=1

It is equivalent as

V,,(t'In, =7, @) V., (t'|m, = 7}, (0)) (' —>0) or

' ’ ' ’ (222)
gt +v, (7 (m)) < g bty (7@ (n)) (t'—> )

then we have g, <g, by approximation. O

2.4 The Guard Channel Policy in Single-

Service Network

We have an important result from Lemma 1 that an initial policy is
considerable. We show that the notion of guard channels was introduced in
the mid-80s [9,10]. It is a good choice to be our initial policy because of
simplicity and optimization.

We compute performance of the admission policies based on the
following assumptions:

@ The arrival process of new and handoff calls is Poisson with A1
and A,.Let A=4,+4, and 4, =al.

14



@ The channel holding time for both type of calls is exponentially
distributed with mean 1/u andlet p=24/u.

@ The busy-line effect is negligible, i.e., the interval between two
calls from a MS is much greater than the mean call holding time.

Define the state of a cell at time t by the total number of occupied
channels. Thus, the cell channel occupancy can be modeled by a
continuous time Markov chain with C states. The state transition rate
diagram of a cell with C channels and C-T guard channels is shown in
Figure 2.5.

Lemma 3

In single-service network, the guard channel policy is the optimal
admission control policy that minimizes a linear objective function of the
new and handoff call blockingprobabilities as

F =min(4, B @, + A~ B, -@,) (2.23)

for a given C, and given constants o, and. @, with 0< o, < ®,.
Proof: Given in [2].

SjoRtolacealc

Tu  (T+Du C-Du Cu

Figure 2.5. State transition diagram (Guard Channel Scheme)

In next chapter, we compute the relative cost used two kinds of
policies in detail and make comparison with each other.

15



Chapter 3
Evaluation for the Relative
Cost In Detall

In this chapter, we use two kinds of policies to compute the relative
cost values v_(n) forall neN.

3.1 The Dedicated Bandwidth Policy ()

Now we assume that each call type has a portion of link bandwidth C,
dedicated to it such that

C =ick (3.1)

k=1

In other words, the bandwidth'is divided into K pieces. Let us now define
the policy =, .

Definition 1
The policy z, is defined by the requirement that when the state of the

channel is neN an incoming call of type k (k=1,---,K) is accepted if
and only if

C,—na >a, (3.2)

where n, is the number of calls of type k, currently in progress: otherwise,
the call is rejected and the state of the link left unchanged.

Remark 1

16



Although the states of the link which are recurrent under 7z, are
precisely those in which na, <C,, (k=1---,K), the policy =, is
nevertheless defined for all n € N, and so can be used as a starting point
for the policy improvement routine.

From Remark 1 it is clear that we have to compute relative cost values
for all states, not only for those which are recurrent under the policy z,.
We underline that the next policy, =,, is derived from the relative cost
values of all states. Based on this, we introduce the following definition:

Definition 2
We say that service k “borrows” capacity if the bandwidth used by

this service is greater than the corresponding dedicated bandwidth; in other
words: n.a, >C,.

Strictly speaking, borrowingcapacity under 7, can happen only if at
the initial state some service uses-more bandwidth than its allocated
portion. After some finite-transient period, all services will be using only
bandwidth allocated to them. On‘the contrary, the next policy allows calls of
one service to take a portion ‘of bandwidth allocated to another service if
the cost for that is less than a given call reward.

We assume that there are two types of service, narrowband (NB) and
wideband (WB). Each type of service has also two type of arrival, new call
and handoff call, hence our traffic is divided into four classes of service
(K =4), each class corresponding to a different type of traffic. Type 1 and
type 2 represent the new call and handoff call of NB respectively. In the
same way, type 3 and type 4 represent the new call and handoff call of WB
respectively. We make the following assumptions:

@ Call arrive according to a stationary Poisson process with mean rate
Ay -

@ Call holding times are independent and have a negative exponential
distribution with mean 1/, , and with the property of memoryless we

17



have

{ﬂlz =H = Hy,
Hay = Hs = Hy

@ Each blocked call incurs immediate cost denoted by «, .

Definition 3
n" is the vector n with the component k set to zero.

Lemma 4
If k does not borrow resources from j at t=0, then taking either

n or n% as an initial system state at t=0, we will obtain the same
driving process n(t).
Proof: It is obvious from the definition-of .00

Lemma5
If k does not borrow resourcesfrom j at t=0, then

v () =v’ (") (3.3)
Proof: Given in [3].
In the four-service case (K =4) under the policy z,, the channel

state space N is divided into four region, namely N,, N,, N,,,and N,,,
are defined as follows:

N=N| ﬂN” ﬂNm ﬂNVI

N,={n:na <C, nn,a, <C,nna, <C,nn,a, <C,}
N, ={n:[na >C, nn,a, <C,nna, <C,nn,a, <C,Ju

18



[na, <C,nn,a, >C,nna, <C,nn,a, <C,Ju
[na, <C,nn,a,<C,nna,>C,nn,a, <C,Ju
[na, <C, nn,a,<C,nna,<C,nn,a, >C,]}
N, ={n:[na, >C, nn,a, >C,nna, <C,nn,a, <C,Ju
[na, <C,nn,a,<C,nna,>C,nn,a, <C,Ju
[na, <C,nn,a,<C,nna,<C,nn,a, >C,Ju
[na, <C,nn,a,>C,nna, >C,nn,a, <C,Ju (3.4)
[na, <C, nn,a, >C, nna, <C,nn,a, >C,Ju
[na, <C, nn,a,<C, nna, >C,nn,a, >C,]}
Ny, ={n:[na >C, nn,a,>C,nna, >C,nn,a, <C,Ju
[n,a, >C, nn,a, >C, nn,a, <C,nn,a, >C,Ju
[na, >C, nn,a, <C,nna, >C,nn,a, >C,Ju
[na, <C, nn,a, >C,nna, >C,nn,a, >C,J}

These region are helpful to reduces the four-dimensional problem to more
tractable one-dimensional.problem. It is important to emphasize that we did
not use any approximations:

3.1.1 Cost function‘in region I

From (3.4), it follows that there is no borrowing of capacity in N,. In
the following figure, we depict the state transitions in the one-dimensional
Markov chain.

«=Ci /3y
(N, —1) s N\ 4 (N +1) 4

Figure. 3.1 State transitions in region I
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Note that in Figure. 3.1 we also consider the states outside the
dedicated region, in which, according to z,, there are no call arrivals.

Since there is no borrowing of capacity, we are interested in finding the
difference v’(n +1)-v¥’(n,) denoted by 6(n) . We also define

po=A/m . N, =[C./a ], and M, =[C/a,|. Then we can find the
solution of 4(n,) as

_E(NG o) e _
o(n,) _—E(nk,pk) : n, €[N, 1] (3.53)
_EN.p)
o(n,) = W n, >N, (3.5b)
97(;:) = AE(N, po)- (3.5¢)

The proof is given in [4] and the Erlang-B formula is

E(N'py= PN/ (3.6)
Pl

[z

T
o

Now, the cost of accepting is simply
A, =0(n)o, . (3.7)

and the relative cost value function is found as

n -1

v (n,) = Zﬁ(i) - (3.8)

In conclusion, the cost of routing a type-k call with the current state in
N, is obtained by (3.5a) and (3.7), and can be computed in real-time
applications as well (3.5b) will be used in other regions.

20



3.1.2 Cost function in region II

Next, we consider the subspace N, where there is a service borrows
resources from another service. Let us first find the cost of accepting a type

1 call. In this case, we assume that type 2 borrows resource from type 1.
Given N,=[C,/a,|, N,=|C,/a,] and N, =|C,/a,|, let the current
channel state is n=(n,n,,n,n,)eN, where n,=N,+1, 0<n; <N,

and 0<n, <N,.Then, the task is to find the relative cost v¥’(n,,n,,n;,n,)
where o, =1, w, =0, w,=0,and o, =0. The state transition diagram in

the second region is shown in Figure. 3.2.

The idea is not to solve the whole system of linear equations, but the
system relevant for regiomy™ M . It s already shown in (3.8) that,

l

Figure. 3.2 State transitions in region 1I
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regardless of n, (0<n, <N,),

n,-1

V;(zlo)(nl'nz’ns’n4)zze(i), v(n;,n,,Nng,n,) €N, (3.9)
i=0

where @() is given by (3.5a). Therefore, all relative values
v (n,N,,n;,n,) on the boundary between N, and N, (0<n, <N,

0<n;<N,,0<n,<N,) are known. In order to find the relative cost
values for all possible states, we denote the resource of type-k borrowed

from type-j by b, (n) FCUs for all ne N. We will compute all b, (n) for

all neN later. Next, we form the system of linear equations for the
states on the line above region 1, defined by M, =|(C, -b,(n))/a, |,
N, =|(C-n,a, -n,a, —n,a,)/a& ], n, =Ny +1,0<n, <N, and 0<n, <N,.

This system can be put in.the following matrix form:

Ay =ty (3.10)
where
[a, ¢, O 0 0 0 0 |
b, a ¢ 0 0 0 0
b, a, ¢, 0 0 0 0 0 0
W |0 0 00 8y, Cy. O o 0 0
"“lo 0 0 o0 by, a, O o o o0]"
0 0 0 by ay. 0o 0
0 0 0 - 0 0 0 - by, a,, O
00 0 ~ 0 0 0 - 0 b, a,
Fv(0,n,,n5,n,) | o ]
v (1, n,n,,n,) f
_ el
Y V;(zt)(Mllnmns’m) ! fM1
_V,(,?(Nl’nz: Ny, N,) | | fy, | (3.11)
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The coefficientsin A, and f, are given as

a, =1, i €[0,N,]
. S i <[0,M, 1]
Ly + Nty + 4,
b =—— , i c[LM, 1]
Ly + N, 11, + 4y
b, :—.L, ie[M;,N;]
1 + N4,
n,u,v®(i,n, -1,n,,n,)—g®
fi _ 2 /ro.( 2 3 4) 9 ’ ie[O,Ml—l]
lpy + N, 11, + 4y (3.12)
nu,v® (@i,n, -L,n;,n,)-g%¥ + 4 '
f = 2H> 710( 2 3:Ny) 9, 1’ i <[M,,N,]
14 + N4,
We can find the solution of(3.10) by
Vi =ALf,, (3.13)

Thus, given the channel state’ (n;N, +1n,,n,), the cost of accepting a
type-1 call is simply

A =[O (n +LN, +Ln;,n)-vP (n,,N, +1n,,n,)]e,  (3.14)

where the relative cost values are computed by (3.13). We can also find
the cost in channel state (n,n,,N,+1n,) and (n,n,,n;,N, +1) in the

same approach.

This way gives us an idea of how to find the relative value for any state
in the second region. We divide the subspace N, into lines representing
states with the same number of type-2 calls. First, we compute the relative
values for n, =N, +1. Then, in the next iteration, we find the relative
values n, =N, +2, and so on. The process is stopped when the relative
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values for all states in N, are determined. This iterative procedure is
more efficient with respect to computation time and memory space than
any other method which solves the system of linear equations for the whole
space N.

3.1.3 Cost function in region I

We continuously consider the subspace N,, that the second service
and the third borrow form the first service for example. In other wards,
there are two kinds of service exceeding their dedicated bandwidth. In this

Figure. 3.3 State transitions in region I

case, we neglect the influence of type-4 by Lemma 4. Given N, = LCZ/aZJ,
N, =[C,/a,| and N,=|C,/a,|, let the current channel state is
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n=(n,n,,n;,n,)eN, where n,=N,+1, n,=N,+1 and 0<n,<N,.

Next, We want to find the relative cost values v¥(n,,n,,n,,n,) where

o =1 ,0,=0, w;=0, and o, =0. The state transition diagram in the
third region is shown in Figure. 3.3. Given M, =|(C, —b,,(n)—b_(n))/a, |,
N, =[(C-n,a,-na,-n,a,)/a |, n,=N,+1, n,=N,+1 and 0<n,<N,,
we have

Ayvi =1y, (3.15)
where
(a, ¢, 0 O 0 0 0 0 ]
b, a ¢ 0 0 0 0
b, a, ¢, 0 0 0 0 0 0
A 0 0 0 O A gy, O 0 0 0
"T1o 0 0 0 Bl Bl o o0 o/
0 0 0 O B Dl A, 0 0 0
o 0 0o 0 - 0 0 0 - by, ay, O
o 0o 0 0 -~ 0 0 o - 0 by, ay,
VP n,,ngn,) | o ]
v (Ln,,n,,n,) fy
_ o
Vin V7([10)(M1,n2’n3,n4) 1 fM1
_Vfi,)(vanwns,m)_ _le_
(3.16)

The coefficientsin A,, and f,, are given as
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a, =1, i €[0,N,]

¢ = —- % | i €[0,M, 1]
1y + Ny fty + Nyt + 4

b, = —- e , ie[LM, 1]
Iy +Nyty + Nyt + 4

b, = ———4 i e[M,,N,]

4 + Nty + N3ty

f = nzﬂzvz(zlo)(iinz -1, n31n4)_gf(zlo) i E[O M _1]
I Iy + Ny pty +Nyptg + 4, ’ S

f _nzyzvg)(i,nz—1,n3,n4)+n3y3vf,t)(i,n2,n3—1,n4)—gf[?+11 L IMLN]
I 44y + N,y + Ny g ’ .

(3.17)
We can find the solution of (3:15) by
Vi = Ailll £ (3.18)

Thus, given the channel state “(n,, N, +1,N.+1n,), the cost of accepting a
type-1 call is simply

A =[O (n +LN, +L Ny +1,n,) -vO(n,N, +LN; +1n,)]e,  (3.19)

where the relative cost values are computed by (3.18). We can also find
the cost in channel state (n,,N, +1n,,N, +1) and (n;,n,,N;,+1N, +1) in
the same approach. So does A,, A,,and A, inregion II.

3.1.4 Cost function in region IV

Finally, we compute the relative cost values when there are three
types of service exceeding their dedicated bandwidth respectively. Given
N, =|C,/a,|, N,=|C,/a,] and N, =|C,/a, |, we are going to find the
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Figure. 3.4 State transitions in region IV

cost v¥(n;,n,,n,,n,) where n,=N,+1, n,=N,+1 and n, =N, +1.
The state transition diagram in the fourth region is shown in Figure. 3.4.
Given M,=[(C-na,-na,-na,)/a |, n,=N,+1, n,=N,+1 and n,=N,+1,

we have

Ayvy =1y, (3.20)
where
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a, ¢, 0 0o 0 o0
b, a ¢ 0 0 0
b, a 0 0 0
A=l
0O 0 O erl Ay, 1 Cuvs
o o o0 - 0 by, ay
[ v®(0,n,.ny,n,) f,
V7([](;) @ n,, N, n,) f,
Viv = v =
_vz(rlo)(Ml’nZ’n37n4) fM1

The coefficientsin A, and f, are given as

=1
| 144 + 01ty + Nty +0, lly + 24
b, = s

I + 0,0ty + Mgty +0, 11, £ ’
b, = s

£+ Ny, +0opt;

fi= [nzﬂzvz(;t) (i,n, —Lng,n,)+ nsﬂsv;(zlo) (i,n,,n;=1n,)+

(3.21)

i <[O,N,]

i c[O,M, 1]
i LM, 1]

i=M,

i <[0,M, 1]

n4,U4V;(rt) (i,n,,ny,n, —1) _g;(rt) + A1y + 1ot + Nty + N1, + 4,),

f; :[nZII’lZV;([j(;) (i,n, -1, n,, n,) +n3,L13V,([10) @, n,,n, -1, n,)+

n4/14V7([t) (i,n,,ng,n, =) _97([10) + A1/t + Nyt + N1, + 4y),

We can find the solution of (3.20) by

Viv = AI%/ fiv
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Here is the end for calculations of all relative cost values for all neN.
Using the Lemma in [3], the channel cost of accepting a type-k call is given
as

4 . .
A, :Z[vfri) (n+ej)—vfr(‘)) (n)]o; (3.24)
=1

3.1.5 Service bandwidth allocation

We assume that each call class has a portion of channel bandwidth,
denoted by C,, which is dedicated to it such that

C,—na >a, (3.25)

Also, we recall that the objective is t0 minimize the equilibrium excepted
cost per unit time that is given as

4
Os, = 0 00 (3.26)
k=1

where g is obtained by (3.5c).

From (3.25) and (3.26), it is obvious that the appropriate choice of
N, ’s is the solution of the following optimization problem:

4
min > AE(N,, p)o, (3.27)

Ny N, N3 N &=

subject to
N,a, + N,a, + N;a; + N,a, <C. (3.28)

Knowing the N,’s, we are able to find the dedicated bandwidth for each
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type of serviceas C, =N,a,.

Since E(N,p) is a convex and monotonically decreasing function
with respect to channel capacity N when p is constant, the solution lies
atthe line N,a, + N,a, + N,a, + N,a, =C . Thus, the minimum of (3.27) can
be found by the exhaustive search method.

3.2 The Guard Channel Policy (7;)

In order to find the better policy in next step, we use the Guard
Channel policy as the initial policy since its gain is smaller than the divided
one. Also, the Guard Channel policy provide more simple and efficient
calculation by reducing the dimension of Markov chain. Fortunately, we can
follow the same flow in section 3.1 to find the relative cost values for all
neN.

In wireless network, each call type of service can be distinguished into
“new” and “handoff” call. We denote the type-1 call and the type-2 call as
the new call and the handoff call of the narrow band service respectively.
Similarly, the type-3 call and the type=4 call are denoted as the new call and
the handoff call of the wideband service respectively.

We define the dedicated bandwidth C,, and C,, as
C=C,+C,, (3.29)

where C is the total bandwidth. Continuously, let us denoted by T,, and
T,, the threshold reserved a subset of these channels (say C, -T,, and
C,, —T,, ) for handoff call, type-2 and type-4 call. Also, the capacity
requirement of each call denoted by a, , we define as follow

alZ - a'1

_a,, (3.30)
a34 - a'3

=a,
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Then the policy 7z, is defined as follows:

Definition 4

The policy z, is defined by the requirement that when the state of the
channel is ne N an incoming call of type k (k=1,---,4) is accepted if
and only if

n,+n, <T,,

k
Cp—(n,+ny)a, >ay,, k = (3.31)
n, +n, <T,, k '
k

Cs4 - (ns + n4)a34 2 a34’

where n, is the number of calls of type k (k=1,---,4), currently in

progress: otherwise, the call is rejected and the state of the link left
unchanged.

Here we have the following lemma:

Lemma 6
For the Guard Channel policy z;, the relative value function

vV, (N;,n,,n5,n,) can be expressed as

{vffg(nl,nz,ng,n4)+v;§>(nl,n2,n3,n4>=vf,f>(nl+n2,n3+n4) 332)

©) () _ B3
Vay (n,ny,ng,n,) +Va (n,ny,ny,n,) = Vo (N, +n,,n; +n,)
where vi?(n, +n,,n, +n,) is the solution of the system (2.9) in the case

w,=0 and w, =0, and vi?(n, +n,,n,+n,) is the solution of the system

(2.9)inthecase w, =0 and w, =0.
Proof: It is obvious from the definition of z; and Lemma 1.
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In the four-service case (K =4) under the policy z;, the channel
state space N is divided into three region, namely N,, N,,and N,,, are
defined as follows:

N=N, ﬂNll ﬂNm

N,={n:na, +n,a, <C, nn,a, +n,a, <C,}
N,={n:na,+n,a, >C,}
N, ={n:na +n,a, >Cp,}

(3.33)

3.2.1 Cost function in region I

From (3.33), it follows that there is no borrowing of capacity (within
C, or C;) in N,. Here we take an example for computation of the

relative cost value V&2 (n, +n,n, +n,). Given N,=[C,/a,] and M,,=[C/a,,|

the state transition diagram ‘for type-1-and type-2 calls in the first region is
shown in Figure. 3.5.

(Ny, =D, Nypus,
Figure. 3.5 State transitions in region I for type-1 and type-2 calls

Denoted by n, +n, <|C,,/a,, |, next we form the system of linear
equations for the state in region 1 as:

AV, =1, (3.34)
where
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a, Cc, O 0 0
b, a ¢ 0 0
0 0 0 ar,1 Cr,a
0 0 0 b, a
Al=|0 0 0 0 o0
0 0 O 0 0
0 0 O 0 0
0 0 O 0 0
0 0 O 0 0
0 0 O 0 0
ve2(0,n, +n,)
v n, +n,)
V;(rl('f) (le -1 n; + n4)
vi= V;(rl[,Z) (T, ng +1y)

V;(zl()Z) (M, 05 +n,)

L VET]L;Z)(le’n:i +n,) )

a =1
oo A
I i, + A4+ 4,
cl =-— A :
I i, + 4,
b = 141 ’
I g, + A + 2,
b = o
I i, + 4, ,
b/ =-1,

o

o

O O O O o o d

Y}

f/
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Am,, 1
by,
0
0

0

o
o
o
o

Cmy,1
aM12
0
0

0

O O O O O O o o
O O O O O O o

ay,, |

(3.35)

i [0,N,,]

1€[0,T, -1]

[ E|.T12'M12 -1]

(3.36)
1e[LT, -1]
ie [lel M,

e [MlZ’ le]

— 1]



(12)

Ao, - g

fr=2t Zm ie[T,,M, —1]
i, + 4, e (3.37)
rao,+ Lo, — g
fi,z 1*¥1 -2 2 gzro , iE[Mlz,le]
1,

We can find the solution of (3.34) by

vi = (AD], (3.38)

3.2.2 Cost function in region II

In this section, we consider the subspace N, where the second
service (type-3 and type-4) borrows resources from the first service. Given
M12=LC_(n3+n4)aS4/a12J ' N34=|_C34/a34j Ognl—l_nZSMlZ ’ and
n, +n, = N,, +1, the system also can put:in the following matrix form:

AL, =E (3.39)
where
fa, ¢, O 0 010 0 0
b, a ¢ 0 0 0 0 0
|00 0 A, e, 0 0 0
"o 0 0 - b, a, c 0 0
o o o0 - 0 0 0 0 0
0 0 0 -« 0 0 0 - &, Cu
0 0 0o - 0 0 0 My, aM12
ve20,n,+n,) | fo
vE2 (L n, +n,) fy
v = Ve (T, -1Lng +n,) fi=|f .
vi? (T n; +0,) f,
L szl(;Z)(Mlzins +n,) | f, (3.40)
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The coefficients in A}, and f, are given as

a; =1, ie[0,M,]
o ath i €[0,T,, —1]
i, + A4, + 4,
Ci':_-/i—zi ie[T, M, -1]
Iy, + 4,
, 141, ;
bl = 1e[1,T, -1
Y, A+ A T, ~1]
bi’:_-IA’ [T, My,]
Iy, + 4,
i Ve (i,ng +n, -1)-g&?
f'= Halm, ( U 'l , ie[0,T, —1]
i, + A4, + 4,
i (12) (3 (12)
v (hbng +n, =)+ A0, =g )
fi'= s (. — Ly =4 2 ie[T, My, -1]
Ly €4,
fr iﬂlvz(zlf)(i’na+n4"1)+11w1+12w2—g;(rlf) i = M
P i, o 1= Ve (3.41)

where the value vi?(i,n, +n, —1)"is'gotten by (3.38). Hence we can find

the solution of (3.39) by
vi = (A, (3.42)

According the same way in section 3.2, we compute the relative
values for n,+n, =N, +1 at first. Then, in the next iteration, we find the
relative values for n,+n, =N,, +2, and so on. The process is stopped
when the relative values for all states in N, are determined. In the
subspace N,,, where the first service (type-1 and type-2) borrows
resources from the second one (type-3 and type-4), the analysis is the
same as in N, except that what has been said for the first service is now
applicable for the second one, and vice versa. Therefore, we skip the
details.
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At the end of this section, all the relative cost values for all ne N
have been computed. The channel cost of accepting a type-k call is given
as

Ay =[ve? (m+e) -ve? ] +[vE (n+e ) —vi? (m)] (3.43)

Based on policy 7, (or 7z,), we can find the relative cost values for
all ne N and the channel cost of accepting one type of call by (3.23) (or
(3.43)). We will use these results in next chapter and make a comparison.

3.2.3 Service bandwidth allocation

Also, we recall that the objectiver.is to minimize the equilibrium
excepted cost per unit time that is given:as

(12)

gzz(’) 5 g;ré T g;(z:z4) (344)

where g'? and g{¥ is obtained by (3.38). Use the result in section 3.2,

the solution lies at the line N ,a,, + N;,a,, =C. Thus, the minimum of (3.44)
can be found by the exhaustive search method.
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Chapter 4
Numerical Results

In this chapter, we consider an example with two traffic services which
differ in the bandwidth requirement and mean call holding time. Within
each type of service, there are new call and handoff call which have
different costs incurred by rejection respectively. We assume that the
channel has capacity of C =48 FCU’s. For the first service, usually a
narrowband one, the relevant parameters are set as follows:

a =a,=a,=1 w=u=mu,=1, 4 =15 o, =1 1,=6 w,=12 (4.1)

Since the second service is a wideband one (a,, >a,,), we may

assume that its mean call holding timeis'no less than the mean call holding
time of the first service a,, <up. Inthe example, we use the following

parameters:
8y =8, =8y =3, M=M=ty =054 =3 0,=7, 4,=1 o,=8 (4.2)

In order to find the dedicated bandwidth for each class of service with
the policy z,, we obtain from section 3.1.5 as

c,=17, C,=7, C,=18 C,=6 (4.3)

From section 3.2.3, it is obtained that the dedicated bandwidth with the
policy =z, as

C, =21, C, =27 (4.4)

A channel offered load p, defined as

4
Zakpk
_ =

P="0C (4.5)

is 0.9375 what considered as a heavy traffic regime. Here, p, =1, /4, .
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Figure. 4.2 Channel cost A,(-,n, =0,,n, =0)
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Figure. 4.6 Channel cost A,(n, =0,n, =0,
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Figure. 4.7 Channel cost- A;(-,h, =0,n, =0,

Figure. 4.8 Channel cost A,(n, =0,n, =0,
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We underline the next policy, =,, is derived from the relative cost
values of all channel states. Recall from Chapter 2, borrowing capacity
under 7z, can happen only if at the initial state some service uses more
bandwidth than its allocated portion. After some finite transient period, all
services will be using only bandwidth allocated to them. On the contrary,
the next policy allows calls of one service to take a portion of bandwidth
allocated to another service if the cost for that is less than a given call cost.

Figure. 4.1 through Figure. 4.8, we show some cost functions. For an
example, Figure. 4.1 represents the channel cost A,(,,n;=0,n, =0)
where the number of type-3 call or type-4 call is a constant, zero. It is
obvious that the cost of accepting a type-1 call is above the cost parameter
@, in some states. In other words, blocking a type-1 call in these states
gets less cost in the future. We can make the same explanation in other
figures.

By the way, we get a-canclusion after-observing these figures that the

rejection never happened in type-3 and, type-4 call. It is reasonable
because the cost parameter '@, and @, .are higher than o, and o,.

The cost function is increasing, 'so:that higher cost must have less blocking
rate.
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Figure. 4.9:Channel cost. A
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Figure. 4.10 Channel cost A
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514

type 1 type 2 type 3 type 4
Required BW (FCUs)
Arrival rate 15 6 3 1
Departure rate
Cost 1 1 1.2 7 8 9,

T, 6.32731 6.43105 18.8692 19.115 6.9038641
Block Rate (%) 7 5.80189 5.82261 18.3983 17.5974 6.5609464
7T 11.1566 5.0444 14.7979 14.4252 6.2982618

Cost 2 1 6 12 50
T, 6.32731 6.43105 18.8692 19.115 19.6146865
Block Rate (%) V2 58.8106 1.83558 9.15144 4.64417 15.0990022
7 42.5497 0.203425 20.5107 1.79007 14.7345751

Cost 3 1 10 6 50
T, 6.32731 6.43105 18.8692 19.115 17.7616825
Block Rate (%) 7 18.7593 2.72926 23.2382 8.30603 12.7873421
7T 18.0485 0.069113 47.3404 0.781861 11.6609453

Cost 4 1 4 6 50
T, 6.32731 6.43105 18.8692 19.115 15.4465045
Block Rate (%) VA 22.2966 3.50294 16.1029 11.3956 12.7815176
7 14.1668 0.142196 47.7179 1.13414 11.3154390

Table. 4.1 performances of three kinds of policy




Figure. 4.9 through Figure. 4.12, we show each channel cost
function computed by the Guard Channel policy as an initial policy. Let
us define the next policy, z;, is derived from the relative cost values of
all channel states. In the same way, the next policy allows calls of one
service to take a portion of bandwidth allocated to another service if the
cost for that is less than a given call cost.

In addition, we also define another policy, z,, by accepting a call if
there is enough bandwidth more than required one. After investigating
into Table. 4.1, we summarize as follow:

@ According to policy 7z,, the blocking rates of type-1 and type-2
call are the same because their required bandwidth are
equivalent. So does the blocking rates of type-3 and type-4 call.

@ Either policy 7, or.poelicy 7], the blocking rates of all type call
are rearranged hy the relative .cost values. According to policy
7, , the blocking-rate is decreasing in higher-cost call.

@ Especially, we obtain that the blocking rates of handoff call (type
2 and type 4) derived from policy 7, are lower than those
derived from policy ‘7z« It can be observed by the Guard
Channel policy.

@ Consequently, the most important result is that the average cost
per unit time of policy 7z, is lower than others. So we have

gﬁl' < g;z'1 < g;ra (46)

but the computational burden of policy 7, is least and the
evaluation of the relative cost value of =z, is most complex.
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Chapter 5
Conclusion

In our thesis, several aspects of the problem are formulated. The
new call admission control scheme LCCM is proposed for
multiple-service wireless networks. It is based on the notion of the cost
function, derived from the context of Markov decision theory. The
proposed algorithm does not depend on the number of traffic classes.

The corresponding Markov decision process is suboptimal since we
perform only a single iteration of the policy iteration process. That is, our
initial policy is most important.

Using the Guard Channel policy ta+be initial policy from chapter 3
and chapter 4, we have some profits.as follow:

@ The average cost of the next policy is better than others.
@ The decrease in  dimension . of Markov chain helps to
computation easily.

In future work, we form the problem which minimizes the expected
cost per unit time under some constrains. For example, network provider
guarantees that block rate can be under a threshold. It is shown that a
call with higher cost @, get lower block rate in our thesis. Here we get

some idea from Markov decision process that the parameter o, is
useful to solve the optimal problem under constrains.
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