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中文摘要 

 

 隨著第三代行動電話系統的誕生，伴隨的高傳輸速率可提供使用者不同

的服務。在無線資源「有限」的情況下，要如何分配頻寬給不同使用者是有

趣的，也是允入控制的範疇。在論文中我們假設所關心的是如何讓網路的成

本消耗達到最小，該如何做最好的判斷？ 

我們使用馬可夫鏈來模擬頻道的使用狀態，在馬可夫決策過程中尋找最

佳策略，也就是根據當時頻寬使用情況和使用者的行為來對新進者做允入判

斷。在單一服務下的最佳策略稱為「護衛頻道決策」，我們將修改此策略到多

服務的系統下。最終將利用此策略進行一步的「策略改進」，此改進的策略便

會是很接近最佳化的策略。 
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ABSTRACT 
 

With the third-generation mobile phone system coming, it provides 
multiple-service by higher transmission rate. Since wireless resources are 
limited, how to allocate the bandwidth is interesting. That is, call admission 
control is considerable. If we want to minimize the system cost, what can 
we do? 

 In this thesis, we model channels by Markov chains and find the 
optimal policy based on Markov decision process. In single service network, 
the Guard Channel policy is the optimal policy. We will modify it for 
multiple-service networks, then use this policy to do one-step policy 
improvement. The next policy is near to the optimal policy. 
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Chapter 1 
Introduction 
 
 In recent years, there have been tremendous developments and 
interests in the field of cellular communication. Unlike the old second 
generation cellular communication systems which only target at voice 
service provisioning, nowadays the third generation mobile phone systems 
are capable of providing multiple services, such as conversational real-time 
audio and video communications. It is believed that an efficient radio 
resource management scheme to handle such multiplicity is the key to 
success of the third generation mobile phone system.  
 

One of the key issues in radio resource management is the call 
admission control due to that the wireless resources are much rarer than 
the wired ones. Therefore, a good admission control scheme for the 
cellular system with multiple services is to allocate the bandwidth according 
to the type of the call while the revenue generated by the wireless system 
can be maximized. With certain reasonable assumptions, the guard 
channel admission control scheme, which reserves certain amount of 
bandwidth only for handover calls, is proved to be optimal and practical for 
the cellular system with the single service. However, as shown in [3,4], the 
admission control of the multiple services, even in the wired system, is 
difficult and the optimal solution is computation prohibitive. Therefore, 
obtaining a near-optimal strategy is what we can expect in attacking the 
issue of admission control for the cellular system with multiple-service 
provisioning. 
 
 To this end, we propose the call admission control scheme called 
Least Cost Control in Multi-Service wireless networks (LCCM). It is based 
on the cost function, derived from the context of Markov decision theory [1]. 
In the general speaking, our proposal is combining the Guard Channel 
admission control and the Least Cost Routing in Multi-Service Networks 
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(LCRM) [3,4] for the multi-service wired networks. Basically, LCRM first 
models the routing into a Markov decision process (MDP) and uses 
one-step policy-improvement on a suggested base policy. The novelty of 
LCRM is in reducing the computation effort to deduce the Howard relative 
cost function which is mandatory in the policy improvement routing [pp. 37, 
1]. 
 

In applying LCRM to wireless network, we first note that the call type in 
the cellular system with single service should be distinguished into “new” 
and “handoff” calls. Therefore, a naïve way to apply LCRM to the cellular 
system with $k$ services is to treat the system with distinct $2k$ services 
(for each original service, we have a new service and handoff service) and 
then use the base policy suggested in LCRM. Instead, our proposal 
chooses the guard channel admission control as the base policy and then 
proposes a simple way to calculate the Howard relative cost function. We 
then verify that our proposal is dominant over the naïve way in the sense of 
not only the revenue generated but also the computational effort. In 
addition, in all the conducted experiments with different parameter settings, 
our proposal has produced greater revenue. 
 
 The rest of thesis is organized as follows: In chapter 2, we introduce 
Morkov decision theory and concepts. Based on the definition of Morkov 
chain, we consider the concept of cost (reward). The relative cost values 
appear at the first time in this chapter. In order to find the minimal (maximal) 
expected cost (reward) in system, we have to find the corresponding policy 
in some approaches. Then the concept of the Guard Channel policy is 
shown last in chapter 2. 
 
 Next, we compute all the relative cost values by using 0π  and 0π ′  to 
be an initial policy in detail, and consider four types of traffic in chapter 3. 
Recall the result from [4], the system of linear equations associated with 
the four-dimensional Markov chain can be decomposed with into several 
systems of linear equations, each one associated with the one-dimensional 
Markov chain.  
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 In chapter 4, we do some numerical results and make comparison 
between two distinct policies. The conclusion is drawn in chapter 5. 
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Chapter 2 
MDP-Based Call Admission 
Control in Multiple-Service 
Network 
 

In this chapter, we introduce how to find the optimal policy under 
Markov Decision Process (MDP). Making a correct decision depends on 
cost (or reward). We then use the policy-iteration method to solve the 
problem of optimization step by step. 

 

2.1 Multi-rate loss channel model 
 
In the case of single-service networks, Krishnan and Ott [7], and 

Lazarev and Starobinets [8] have proposed state dependent routing 
schemes with roots in Markov decision theory. We use the separable 
routing concept defined by Krishnan and Ott [7] which is appropriately 
modified for the case of multiple-service networks. We also study the 
problem of routing a call over one link where we follow Zachary’s 
procedure [5] to determine the cost of routing. 

 
We shall use the term Fundamental Capacity Unit (FCU) defined in [3] 

as the largest amount of bandwidth, say ξ  Kbps, such that the bit rates of 
calls of type k (k=1,...,K) are all integral multiples of ξ . 

 
Let us take as one example 2 Mbps indoor 3G user, and the total 

capacity is 50 Mbps. Then, we find that FCU is 2 Mbps. In addition, the total 
capacity is 50 FCUs. In our model, we assume total capacity is a fixed 
integer C. 
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Traffic is divided into K classes of service, each class corresponding 
to a different type of traffic. For each service k (k=1,...,K) we make the 
following assumptions: 
 

 The process of each type call is Poisson with a mean arrival rate       
kλ . 

 The call holding times are independent and exponentially  
distributed with the mean kµ/1 . 

 Each call has a bit rate or capacity requirement of  FCUs where  
a  is an integer. 

ka

k

 

Our channel is ith a finite number of 
states. The channel space is denoted by Ν . The channel state vector 

 

 
Figure 2.1. Transition diagram 

 
described by a Markov chain w

L,,1 21 nn −  L,, 21 nn L,,1 21 nn +  

L,1, 21 −nn

L,1, 21 +nn

1λ  1λ 1λ 1λ  

11 )1( µ−n  11µn 11 )1( µ+n 11 )2( µ+n  

2λ

2λ
2)12( µ+

22µn
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KR  is defined as 
 

)(t =n

tn ∈)(

))()()(( 1 t,...nt,...,ntn Kk                     (2.1) 
 
where )(tkn  is the number of calls in progress

 
 

capacity constraint implies that 

tC ∀≤       ,                         (2.2) 
 

where the vector 
 

),...,( 1 Kaa

 of traffic type k at time t.  

the state transition rate diagram of a cell is shown in Figure. 2.1. Also, the

 
t T≤ )(0 an

=a                             (2.3) 
 

represents the bandwidth requirement
 

 means to 
an end. This end is the analysis of decisions in sequential processes that 
are M

 

s for all classes of service. 

2.2 Alternatives (action) and costs 
 
The Markov process with costs (or rewards) has been the

arkovian in nature [1]. We at first introduce alternatives (actions) and 
costs (or reward) of sequential decision process and define them in this 
section. 

L,, 21 nn  

1λ  1λ

11µn  11 )1( µ+n

L,, 21 nn

1λ 11 ,ωλ  

11µn 11 )1( µ+n  

Figure 2.2. Transition diagram with alternative 1 and 2 
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In our channel model, we have two alternatives when a new arri
comes: 

 

val 

alternative 1 : accept   
 

 
 then define that a cost k

alternative 2 : reject 

We ω  is incurred when system rejects the 
arrival. By these definitions, there are different behaviors with 
corresponding alternatives. In our case, we make a difference in Figure 2.2 
that netw cts it with 
cost 

ork admits a call of type 1 and incurs nothing but reje

1ω . These analyses will help us to find the solution of the sequential 
decision process, In addition, the alternative thus selected is called the 
“decision” for that state. The set of decisions for all states is called a 
“polic  nt policies, where K and N represent the 
num  . 

 

nd the policy-improvement routine. 
 

 
 

y.” There are KN2  differe
ber of all types and states

2.3 The policy-iteration method 
 

An optimal policy is defined as a policy that minimizes the gain, or 
average return per transition in our work. It is conceivable that we could 
find the gain for each of these policies in order to find the policy with the 
least gain. The policy-iteration method that will be described will find the 
optimal policy in a small number of iterations. It is composed two parts, the 
value-determination operation a

2.3.1 The value-determination operation

We are interested in infinite-horizon systems and know that the 
appropriate objective is the average cost (AC) optimization. Let us denote 
by )(tVπ  the lost revenue in the network during the time interval [0,t] under 
the policy Π∈π  where Π  is the set of all policies. Using the result from 
[1], 
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[ ] )(      )1()()|( 0 ∞→++== tovtgtVE nnn πππ              (2.4) 

 
where [ ]⋅E  denotes expected value and where Nn∈  is the channel state 
at time .0=t  In Markov decision theory, )(nπv  is the well-known relative 
value or cost of starting in state nn =0 . In (2.4), πg  represents the 
expected cost per unit time under the policy π  on the original 
continuous-time scale. Since the system is ergodic, we may call πg  the 
gain of the process. The o jective is to minimize the equilibrium expected 
cost

b
 per unit time, that is, πg . 

Before to find the relative cost values )(nπv , w

k Re ∈ 1=kje  if jk = , 0

 
e define the vector 

K  by =kje  otherwise.  in the case of the
nel is

 Then,  
departure of type k when the state of the chan  n , the immediately 
subsequent state Nn ∈)(kd  is found as 
 

kkd enn −=)(                             (2.5) 
 

A call admission decision needs to be made at call attempt epochs: either 
accept or reject. Denoting n  a alternative taken on the arrival of a call of 

pe k by )(nkty π  where Nn∈  is the current channel state. In the case of 

 
call rejection 

nn =)(kπ                              (2.6) 
 
If the call is accepted, ate of the channel will be found as 
 

kk enn

the subsequent st

+=)(π                          (2.7)

N . Th quat
f we assume that it has started immediately after the first 

vent that has occurred af

 
 

Now we start to introduce how to find the relative cost values )(nπv  
for all n∈ e same e ion also governs the asymptotic behavior of 
the process i
e ter 0=t . This is because of the ergodic nature 
of the system, where the initial state has no effect on the asymptotic 
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behavior of the process far enough in the future. The first event is either a 
call termination or a call arrival of any type. The expected time τ  for the 
first event after 0=t  

 
is given as  

∑
=

K

+==
k

kkkn
1

)(       ,1 λµγγτ                     (  

 
where we used the memoryless property of the system. Writing the 
equation (2.4) for a starting ti 0

2.8)

me =t  and a first event time τ=t  (the 
latter one is conditional on the type of the first event), we obtain after some 
arrangements 
 

+ gv )(n

∑
=

∈∀

=
K

k
kkkkkkk vdvn

1
  ))]},(())(,([))(({ Nnnnnn πωπδλµτ ++

τ

ππ

     (2.9) 

 
here )(⋅k

ππ

w δ  is the Kronecker symbol as follows 

⎩

if   n

)(nπv
system has one more variable than the number of equations so that )(⋅πv s 
an be mined up to an additive constant. To solve the system (2.9), 

0)(

 

⎨
⎧ =

=
otherwise

k
kk     ,0

)(   ,1
))(,(

n
nn

π
πδ                    (2.10) 

 
In the system of linear equation (2.9), the unknown variable are 
 for all Nn∈ , and the gain of the process πg . Obviously, the 

c  deter
we follow the standard procedure in [1] by setting =0πv  where KR0∈  

 zero vector. 
 

∑
=

+=
k

kkkk vg
1

())(,([ 00 ωπδλ ππ

 

state. 

is Thus, we get the system 

K

))](0π              (2.11) 

Note that the expression for πg  is obtained from the equation for the zero 
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Lemma 1 
 For any policy π , the relative value function )(⋅πv  can be expressed 
as 

K

}{\    ,)()(
1

)( 0Nnnn ∈∀= ∑
=k

k
kvv ωππ             (  

 

where ),,1( )()( Kkv k K=⋅π  is the solution of the system (2.9) in t

2.12)

he case 

1=kω  and 0=jω  for kj ≠ . 
 Given in [3]. 

c
 
Recalling from [1], if we had an optimal policy u

ould f rnative (action) in the state Nn

Proof:
 

2.3.2 The poli y-improvement rout  ine

p to time 0=t , we 
∈  at time τ=t  by c ind the best alte

minimizing 
 

∑
K

dv (τ
=

++ kkkkk vn ))]}(())(,([))({ nnnn πωπδλµ ππ         (2.13) 

 
k

kk
1

))(( nkkk dvn πµ  is the contribution of multiplier τ  and the first term 
independ- ent of )(nkπ . Thus, when we are making our decision at τ=t , 
we can minimize 
 

=k
kkkk

1
π       (2

concept to solve the minimal problem, denoting as 
 

k

∑ +
K

v ))](())(,([ nnn πωπδλ             .14) 

 
According to the definition of Kronecker symbol, we have an equivalent 

( ) Kkvv kk ,,1    ),)(min L( =++ enn πππ
ω     15)          (2.
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Let us denote by )(nk∆  the cost of accepting a call of type k in the state 
N∈ . We have 

 
)()()( nenn kkkk vv

n

−+=∆                    (

n
⎩
⎨
⎧ <∆+

=    
                  ),(

)(          ),(
)(

otherwisereject
if accept kkk

k

ω
π

We h y somewhat heuristic means, described a method for 
nding a policy that is er our original policy. We use the 

proof in [1] that the new policy will have a highe

he upper box, the 
alue-dete  correspond- ing 

to a given policy 

2.16) 
 
Then we rewrite the way to find the optimal policy as 
 

nen
Nn∈∀        (2.17) 

n

 
ave now, b

fi  an improvement ov
r gain than the old policy.  

 
We show the iteration cycle in Figure 2.3. T

v rmination operation, yields the πg  and )(nπv
π . The lower box yields the policy π ′  that decrease the 

gain for a given set of )(nπv . In other words, the value- 
operation yields values as a function of policy, where the policy 
improvement routine yields the policy as a function of the values. 

 
mall number of iterations. 

 

 cycle to 
find our optimal policy, but it is a time-consuming work for implement 
beca

determination 

 
The iteration cycle will terminate on the policy that has least gain 

attainable within the realm of the problem; it will usually find this policy in a
s

2.3.3 The one step policy improvement  
 
Our task is to find a dynamic call admission control which minimizes 

the long-run average cost of lost calls. We can use the iteration

use of complexity [5]. We therefore use one step policy improvement  
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Figure 2.3. The iteration cycle 

 

Call arrival of type 
k with a value kω

Compute a cost k∆  for 
accepting this call 

kk ω<∆ Block Call Accept Call 
Yes No 

Value-Determination Operation 
Use a given policy π  to solve 

∑
=

=

∈∀++

+
K

gv )(n

k
kkkkkkk vdvn

1

  ))]},(())(,([))(({ Nnnnnn πωπδλµτ

τ

ππ

for all relative values )(nπv  and πg  by setting )(0πv  to zero. 

ππ

 

Policy-Improvement Routine 
For all Nn∈ , make the decision as follow 

   
                  ),(

)(          ),(
)(

⎩
⎨
⎧ <∆+

=′
otherwisereject
if accept kkk

k n
nen

n
ω

π  

using the relative values )(nπ  and the derived )v (nk∆  of the 
previous policy. Then )n(kπ ′ becomes the new decision in 
state n . 

 

 

Figure 2.4. LCCM flow diagram
12



 

and find the sub-optimal policy to solve our problem. We define the base 

0policy π  which is used to determinate the relative cost and to find the 
next policy 1π . We propose ethod, called Least Cost 
Control in Multi-Service Networks (LCCM), shown in Figure 2.4.  
 
Lemma 2 
With two policies denoted by 

d this control m

0π  and 0π ′ , such that 

00 ππ ′≤ gg  

we have 

11 ππ ′≤ g  g

where 1π  and 1π ′  are the next policy based on 0π  and 0π ′  respectively. 
Proof:  

Recall from [1] that i  the time interval 
],0[ t  we could find the best alternative in ],[

f we had an optimal policy during
τ+tt  by minimizing  

 

∑ =+
K

kkkk tV ))](|())(,([ nnnn 0 πωπδλ π     Nn∈
=k 1

∀    (2.18) 

 
here we find (2.18) is different from (2.14) by 0=t . Use (2.4) to modify 
(2.18), we have the best alternative by minimizing 

 

∑
=

K

k
kkkk

1
)))](())(,([ nnn πωπδλ π     Nn∈++ vtg(

0π
∀     (2.19) 

where is large enough. Since 
00 ππ ′t  ≤ gg , we obtain from [6] and have 

=
′′′

k
kkkk

K

v
k 1

00 ((
00

0

nππππ

 

00 ππ vtg +
0π

  The RHS 

∑

∑
=

++′

≤++

K
k

kkkk

tg

vtg
k 1

00

)))]())(,([min

)))]((())(,([min
00

0

nn

nnn

ωπδλ

πωπδλ πππ
   Nn∈∀   (2.20) 

′

)(n  approximates to tg  when t is large.where 
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(Right Hand Side) and LHS (Left Hand Side) of (2.20) are denoted by 

))(|( nntV 11 0 kπτπ 11 0 k=+  and ))(|( nntV πτπ ′=+′ spectively. As the same 

polic
 

=
′′

=

′+′+′
K

k
kkkk

k
k

vtg

v

1
11

1
1

)))]((())(,([

(

11

1

nnn πωπδλ

π

ππ

π

   

 re

ies, we rewrite equation (2.20) as 

∑ ≤+
K

kkk tg1 )))](())(,([
1

nnn ωπδλ π +′
Rt ∈′,N∈∀

∑
n   (2.21) 

 
It is equivalent as 

)(     ())(

(|( 11

→′′+′≤+′

 

))((  

  )(  ))|())(

11

1

1111

1

∞

∞→′′=′≤=′

′

′ orttV

kk

k nnn 0

tvtgvtg

tV k

nn

n0

ππ

ππ

ππππ

π          (2.22) 

11 ππ ′

π

then we have ≤ gg  by approximation.  

2.4 

important result from Lemma 1 that an initial policy is 
onsiderable. We show that the notion of guard channels was introduced in 

ause of 
simplic

 
We compute performance of the admission policies based on the 

 

 

The Guard Channel Policy in Single- 

Service Network 
 
We have an 

c
the mid-80s [9,10]. It is a good choice to be our initial policy bec

ity and optimization. 

following assum  
 

ptions: 

 The arrival process of new and handoff calls is Poisson with nλ  
and hλ . Let hn λλλ +=  and αλλ =h . 
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 The channel holding time for both type of calls is exponentially
distributed with mean 

 
µ1  and let µλρ = . 

 The busy-line effect is negl
calls from a MS is much grea

igible, i.e., the interval between two 
ter than the mean call holding time. 

 

annels and TC

Define the state of a cell at time t  by the total number of occupied 
channels. Thus, the cell channel occupancy can be modeled by a 
continuous time Markov chain with C  states. The state transition rate 
diagram of a cell with C  ch −  guard channels is shown in 
Figure 2.5.  

 single-service network, the guard channel policy is the optimal 
admi on
new and handoff call blocking probabilities as 

 

 
Lemma 3 

In
ssi  control policy that minimizes a linear objective function of the 

)min( hhhnnn BBF ωλωλ ⋅⋅+⋅⋅=              (2.23) 
 

for a e giv n C, and given constants nω  and hω  with hn ωω <<0 . 
iven in [2]. Proof: G

 
 2.5. State transition diagram (Guard Channel Scheme) 

 

ch other. 
 
 

 

λ  λλ αλ αλ  

µ  µ2  µT µ)1( +T µ)1( −C  µC  

1 T T+1 C-1 C0 

Figure

In next chapter, we compute the relative cost used two kinds of 
policies in detail and make comparison with ea
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Chapter 3 
Evaluation for the Relative 
Cost in Detail 
  

In this chapter, we use two kinds of policies to compute the relative 
cost values πv  for all Nn)(n ∈ . 
 

3.1 The Dedicated Bandwidth Policy ( 0π ) 
 

Now we assume that each call type has a portion of link bandwidth kC  
edicated to it such that 

 
d
 

∑
=

K

3.1) 

divided into K pieces. Let us now define 

=
k

kCC
1

                          (

 
In other words, the bandwidth is 
the policy 0π . 
 
Definition 1 

The policy 0π  is defin  ted by he requirement that when the state of the 
hannel is Nn∈  an incoming call of type ),,1(  Kkk L=  is accepted if 

kkkk aanC ≥

c
and only if 
 

−                       (3.2) 

of calls of type k, currently in progress: otherwise, 
e call is rejected and the state of the link left unchanged. 

 
 

emark 1 

 
where kn  is the number 
th

R
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 Although the states of the link which are recurrent under 0π  are 
precisely those in which kkk Can ≤ , ),,1( Kk L= , the policy 0π  is 
evertheless defined for all Nnn ∈ , and so can be used as a starting point 

improvement routine. 
 

s, not only for those which are recurrent under the policy 0

for the policy 

 From Remark 1 it is clear that we have to compute relative cost values 
for all state π . 

e underline that the next policy, 1W π , is derived from the relative cost 
values of all states. Based on this, 

width used by 
is service is greater than the corresponding dedicated bandwidth; in other 
ords: kkk Can > . 

we introduce the following definition: 
 
Definition 2 
 We say that service k  “borrows” capacity if the band
th
w
 
 Strictly speaking, borrowing capacity under 0π  can happen only if at 
the initial state some servic h than its allo ted 
portion. After some finite transient period, all services will be using only 
bandwidth allocated to them. On the

e uses more bandwidt ca

 contrary, the next policy allows calls of 
ne service to take a portion of bandwidth allocated to another service if 

all 
nd handoff call, hence our traffic is divided into four classes of service 

 class corresponding to a different type of traffic. Type 1 and 

 make the following assumptions: 

o
the cost for that is less than a given call reward. 
 
 We assume that there are two ty s of service, narrowband (NB) and 
wideband (WB). Each type of service has also two type of arrival, new c

pe

a
)4( =K , each

type 2 represent the new call and handoff call of NB respectively. In the 
same way, type 3 and type 4 represent the new call and handoff call of WB 
respectively. We
 

 Call arrive according to a stationary Poisson rocess with mean rate 
k

 p
λ . 

 Call holding times are independent and have a negative exponential 
distribution with mean kµ1 , and with the property of memoryless we 
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have 
 

⎩
⎨ == 4334

2112

µµµ
 

 

⎧ == ,µµµ

 Each blocked call incurs immediate cost denoted by kω . 
 
Definition 3 
 )(kn  is the vector n  with the component k  set to zero. 

  does not borrow resources from j  at 0

 
Lemma 4 

kIf =t , then taking either 

on  r )(kn  as an initial system state at 0=t , we will obtain the same 

)(tn . driving process j

roof: It is obvious from the definition of 0P π .  
 
Lemma 5 
 If k  does not borrow resources from j  at 0=t , then 
 

      (3.3) 

roof: Given in [3]. 

)()( )()()(
00

kjj vv nn ππ =                  

P
 
 e four-service case )4(In th  =K  under the policy 0π , the channel 
tate space Ν  is divided into four region, namely IN , IIN , IIIN , and VIN , 

 as follows: 

 ]
}

444333222111II

432221

∪≤∩≤∩≤∩
≤∩∩≤∩≤

CanCanCanan
CanCanCanan  

s
are defined
 

[ :{
 :{I

VIIIIIII

>=
=
=

C
C

nN
nN

NNNN III

443311 ≤
N
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]}[
 

][

444333222111

444333222111

CanCanCanCan
an

CanCanCanCan

>∩≤∩≤∩≤
∪
∪

][ 44333222111 CCanCanCan ≤∩∩≤∩≤ 4>
≤∩≤∩>∩≤

 

[ :{ 111III  ]4443 ∪33222 ≤∩≤∩>∩>= anCanCannN

 ][
 ]

[

4

444333222111

4443332221

444333222111

a
C

CanCanCanCan
CanCanCanC

anCanCan

∩>
∪≤∩>∩>∩≤
∪>∩≤∩≤∩≤

CanC  
 ]CanC ∪≤∩>

[ 11an

 ]}[
 [

44333222111

443332111

nCanCanCan
CanCananCan

>∩>∩≤∩≤
∪>∩≤∩≤ ]

4

22

C

∩≤∩≤

    

∪≤∩>∩>∩ ]4443332221 CanCanCan  
][ 444333222111 CanCanCanCan ∪>

>= [:{ 11VI CannN

]}[
][

444333222111

444333222111

CanCanCanCan
CanCanCanCan

>∩>∩>∩≤
∪>∩>∩≤∩>

∩≤∩>∩>

These region are help
tract
not use any approxim
 

  
city in IN . In 

ensional 

 

 
egionⅠ 

 

 
ful to reduces the four-dimensional problem to more 

able one-dimensional problem. It is important to emphasize that we did 
ations. 

3.1.1 Cost function in region Ⅰ 

From (3.4), it follows that there is no borrowing of capa
the following figure, we depict the state transitions in the one-dim
Markov chain. 

kλ  

Figure. 3.1 State transitions in r
 

kλ

kkN µ)1( −  

1−kN  kN 1+kN

kkk aCN =

kk kkN µ)1( +

(3.4)

N µ
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 Note that in Figure. 3.1 we also consider the states outside the 
dedicated region, in which, according to 0π , there are no call arrivals. 
Since there is no borrowing of capacity, we are interested in finding the 

difference )(kv )()1( )(
00 k
k

k nvn ππ −+  denoted by )( knθ . We also define 

⎣ ⎦ka , and ⎣ ⎦kak CM =kk CN =kkk µλρ = , . Then we can find the 
solution of )( knθ  as 
 

]1−,1[         ,
),(
),(

)( ∈= kk
kk

kk
k Nn

nE
NE

n
ρ
ρ

θ             (3.5a) 

kk Nn >
kk

kk
k nE

NEn =          ,
),(
),()(

ρ
ρθ                   (3.5b) 

0 kkkπ          (3.5c) ).,()(k NEg ρλ=              

 
The proof is given in [4] and the Erlang-B formula is 
 

∑
=i

i i
0

!
,(

ρ
ρ

ow, the cost of accepting is simply 
 

= N

N N!) ρ .                       (3.6) 

 

NE

N

kkk n ωθ )(=∆ .                      (
 

 

∑
=

=
0

)( )()(
0

k

i
k

k inv θπ .                     (3.8) 

In conclusion, the cost of routing a type-k call with the current state in 

IN  is obtained by (3.5a) and (3.7), and can be computed in rea
applications as well (3.5b) 
 

3.7) 

and the relative cost value function is found as 

−1n

 
 

l-time 
ther regions. will be used in o
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3.1.2 Cost function in region Ⅱ 
 
Next, we consider the subsp

sources from another service. Let us first find the cost of accepting a type 
ows resource from type 1. 

iven 

 
ace IIN  where there is a service borrows 

re
1 call. In this case, we assume that type 2 borr

⎣ ⎦222 aCN = , G ⎣ ⎦333 aCN =  and ⎣ ⎦444 aCN = , let the current 
channel state is 21 ,(n II43 ),, N∈= nn nn  where 122 += Nn , 330 Nn ≤≤  

and 440 Nn ≤≤ . Then, the task is to find the relative cost ),,,( 4321
)1(

0
nnnnvπ  

where 11 =ω , 02 =ω , 03 =ω , and 04 =ω . The state transition diagram in 
 second region is shown in Figure. 3.2. 

 
the

 The idea is not to solve the whole system of linear equations, but the 
y shown in (3.8) that,    

 

system relevant for region Ⅱ . It is alread

1λ

1,1  2 +N1 −n

11µn 11 )1( µ+n

1,1 2 +Nn 1,1 21 ++ Nn  

1λ

21 , Nn

2, 21 +Nn

2)2( 2 µ+N

22 )1( µ+N

 

Figure. 3.2 State transitions in region Ⅱ 
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regardless of )0( 222 Nnn ≤≤ , 
 

I4321

1

0=i
4321

)1( ),,,(      ,)(),,,(
0

N∈∀= ∑
−

nnnninnnnv
kn

θπ .        (3.9) 

 
where )(⋅θ  is given by (3.5a). Therefore, all relative values 

),,,( 4321
)1(

0
nnNnvπ  on the boundary between IN  and IIN  ,0( 11 Nn ≤≤  

)0,0 4433 NnNn ≤≤≤≤  are known. In order to find the relative cost  
ble states,  the reso  borrowed  

from type-j by )(njkb  FCUs for all Nn

values for all possi we denote urce of type-k

∈ . We will compute all )(njkb  for     

all Nn∈  later. Next, we form the system of linear  equations for the 
states on the line above region Ⅰ, defined by ⎣ ⎦11211 ))(( abCM n−= , 

⎣ ⎦14433221 )( aanananCN −−−= 12, 2 += Nn , 330 Nn ≤≤  and 440 Nn ≤≤ . 
This system can be pu
 

,IIIIII fvA

t in the following matrix form: 

=                          (3.10) 
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(3.11)321
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The coefficients in IIA  and IIf  are given as 
 

],[                                        ,

]1,1[                                ,

]1,0[                                ,

                              ,1

11
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µµ
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λµµ
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    (3.12) 

 
We can find the solution of (3.10) by 
 

, II
-1
IIII fAv =                       

 
)4

 (3.13) 

Thus, given the channel state ,,1,( 321 nnNn + , the cost of accepting a 
pe-1 call is simply 

 

    (3.14) 

 
 can also find 

the cost in channel s

ty

14321
)1(

4321
)1(

1 )],,1,(),,1,1([
00

ωππ nnNnvnnNnv +−++=∆

where the relative cost values are computed by (3.13). We
tate ),1,,( 4321 nNnn +  and ,,,( 4321 Nnnn )1+  in the 

same approach. 
 
 ate 

states with the same number of type-2 calls. First, we compute the relative 
values for 122 += Nn . Then, in the next iteration, we find the relative 
alues 222 += Nn , and so on. The process is stopped when the relative 

This way gives us an idea of how to find the relative value for any st
in the second region. We divide the subspace IIN  into lines representing 

v
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values for all states in IIN  are determined. This iterative procedure is 
ore efficient with respect to computation time and memory space than 

any other method which solves the system
pace N . 

 Ⅲ 

We continuously consider the subspace IIIN  that the second service 
nd the third borrow form the first service for example. In other wards, 

 

Figure. 3.3 State transitions in region Ⅲ 
 
case, we neglect the influence of type-4 by Lemma 4. Given 

m
 of linear equations for the whole 

s
 

3.1.3 Cost function in region
 

a
there are two kinds of service exceeding their dedicated bandwidth. In this 

⎣ ⎦222 aCN = , 

⎣ ⎦333 aCN =  and ⎣ ⎦444 aCN = , let the current channel state is 

1λ

1
1,1

3

21

+
+−

N
Nn ,

11µn 11 )1( µ+n

1
,1,

3

21

+
+

N
Nn

1
1,1

3

21

+
++

N
Nn

 

1λ

13 +N
,, 21 Nn

2, 21

22 )1( µ+N  

13 +
+

N

22 )2(

Nn

µ+N

23 +
1, 21 +

N
Nn

3N
21 ,1, Nn +

33 )2( µ+N

33 )1( µ+N

 24



 

n = III4321 ),,,( N∈nnnn  where 122 += Nn , 133 += Nn  and 440 Nn ≤≤ . 

Next, We want to find the relative cost values ),,, 4321 nnn  where 

11 =

()1(
0

nvπ

ω  , 02 =ω , 03 =ω , and 04 =ω . The state transition diagram in the 
third region is shown in Figure. 3.3. Given  ⎣ ⎦11312 /))()( abb nn −11 (CM −= , 

⎣ ⎦1a4433221 )( anananCN −−−= , 122 += Nn , 13 3 += Nn  and 440 Nn ≤≤ , 
we have 
 

IIIA ,IIIIII fv =                       (3.15) 
 
where 
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he coefficients in IIIA  and IIIf  are given as 
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We can find the solution of (3.15) by 
 

, III
-1
IIIIII fAv =                        (3

 
Thus, given the channel state ),1,1,( 4321 nNNn

,[      ,
),1,,(),,1,(

,0[                                                     ,
),,1,(

,[                                                                   ,

1,1[                                                           ,

,0[                                                           ,

   ,1a =

.18) 

++ , the cost of accep
pe-1 call is simply 

14321
)1(

4321
)1(

1 )],1,1,(),1,1,1([
00

ωππ nNNnvnNNnv ++−+++=∆    (3.19) 

 
where the relative cost values are computed by (3.18). We can also find 
the cost in channel state )1,,1,( 4321

ting a 
ty
 

++ NnNn  and )1,1,,( 4321 ++ NNnn  in 
the same approach. So does 2∆ , 3∆ , and 4∆  in region Ⅲ. 
 

3.1.4 Cost function in region Ⅳ 
 
Finally, we compute the relative cost values when there are three 

types of service exceeding their dedicated bandwidth respectively. Given 
⎣ ⎦222 aCN = , ⎣ ⎦333 aCN =  and ⎣ ⎦444 aCN = , we are going to find the 
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Figure. 3.4 State transitions in region Ⅳ
), 43 nn  where 122 += Nn , 133 += Nn  and 144 += Nn

tion diagram in the fourth region is shown in Figure. 3.4. 

.  

⎦1443322 ) aananan −− , 122 += Nn , 133 +=Nn  and 144 +=Nn , 

,IVVIIV fvA =                       (3.20) 
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The coefficients in A  and IVf  are given as 
 

2

1

⎢
⎢
⎢
⎢=

−−−

00 L

⎢
⎡

⎢
⎢
⎢

=0

)1(

⎥⎦⎢

IV

1443221432
)1(

44

334

144332211432
)1(

44

1432
)1(

33432
)1(

22

1
4433221

1

1
14433221

1
1221

1

 /(],,,(

),1,,(),,1,([

  ),,,(        

],0[                                ),1,,(),,1,([

                                                                    ,

]1,1[                                      

]1,0[        

],0[                                                          ,1

00

00

00

0

Minnnnnniv

nnnivnnnnivn

nivn

Minnnivnnnnivnf

Mi
nnni

i
b

Mi
nnni

i
b

Mi
nnni

c

Nia

i

i

i

i

i

i

=+++

+−+−=

−∈+−+−=

=
+++

−=

−∈
++++

−=

−∈
++++

−=

∈=

λµµµλµ

µµ

λµ

µµ

µµµµ
µ

λµµµµ
µ

λµµµµ
λ

π

ππ

ππ

ππ

v

 

                                                  

                                                  ,

1

4433

1

                    ,

1
)1( /(])1,

0

nnnignn +++++−− µµµµλ 

13
)1(               ),)1         gn +−− π

432
)1(

32
)1(

22f

 (3.22) 
 
We can find the solution of (3.20) by 
 

, IV
-1
IVIV fA=                        (3.23) 
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Here is the end for calculations of all relative cost values for all 
Using the Lemma in [3], the channel cost of accepting a type-

∑
=

−+=∆
4

1

)()( )]()([
00

j
j

j
j

j
k vv ωππ nen       

Nn∈ . 
k call is given 

as 
 

 

3.1.5 Service bandwidth allocation 

 
 We assume that each call class has a portion of channel bandwidth, 
enoted by kC , which is dedicated to it such that  

kkkk aanC ≥

         (3.24) 

d
 

−                        (3.25) 

aN

 
Also, we recall that the objective is to minimize the equilibrium excepted 
cost per unit time that is given as 
 

∑
=

=
4

1

)(
00

k
k

kgg ωππ                       (3.26) 

 

where )(
0

kgπ  is obtained by (3.5c). 

From (3.25) and (3.26), it is obvious that the appropriate choice of 
kN ’s is the solution of the following optimization problem: 

 

∑
=

4

1,,,
),(min

4321 k
kkkkNNNN

NE ωρλ                  (3.27) 

 
subject to  
 

CaNaNaN ≤44 .               (3.28) +++ 332211

 
Knowing the kN ’s, we are able to find the dedicated bandwidth for each 
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type of service as kkk aNC = . 
 Since ),( ρNE  is a convex and monotonically decreasing function 
with respect to channel capacity N  when ρ  is constant, the solution lies 
t the line CaNaNaNaNa =+++ 44332211 . Thus, the minimum of (3.27) can 

 

The Guard Channel Policy ( 0

be found by the exhaustive search method. 

3.2 π ′ ) 

In order to find the better policy in next step, we use the Guard 

re simple and efficient 
alculation by reducing the dimension of Markov chain. Fortunately, we can 

follow the same flow in section 3.1 to 
N∈ . 

type of service can be distinguished into 
ew” and “handoff” call. We denote the type-1 call and the type-2 call as 

the new call and the handof
Similarly, the type-3 call and the type-4 call are denoted as the new call and 

e handoff call of the wideband service respectively.  

e define the dedicat th 12C  and 34C  as 
 

 
 
Channel policy as the initial policy since its gain is smaller than the divided 
one. Also, the Guard Channel policy provide mo
c

find the relative cost values for all 
n
 
 In wireless network, each call 
“n

f call of the narrow band service respectively. 

th
  
 W ed bandwid

3412 CCC +=                        (3.29) 
 
where C  is the tota

34T  the threshold reserved a subset of these channels (say 1212

3434 T− ) for handoff call, type-2 and type-4 call. Also, the capacity 
 of each call denoted by ka , we define as follow 

 

l bandwidth. Continuously, let us denoted by 12T  and 
TC −  and 

C
requirement
 

 

 

                         (3.30) 

⎪⎩

⎪
⎪

=

=
=

4

112

,

a

a
aa⎧

⎪
⎨ = 334

2

aa
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Then the policy 0π ′  is defined as follows: 
 
Definition 4 

The policy 0π ′  is defined by the requirement that when the state of the 
channel is Nn∈  an incoming call of type )4,,1(  L=kk  is accepted if 
nd only if 

⎪ =≥+− 2         ,)(
1221

kaannC

a
 

⎧ =<+ 1                          , kTnn

⎪
⎪
⎩

⎪
⎨

=≥+−
=<+

4        ,)(
3                         ,

34344334

3443

12122112

kaannC
kTnn

              (3.31) 

 
where kn  is the number of calls of type )4,,1(  L=kk , currently in 
progress: otherwise, the call is rejected and the state of the link left 

nchanged. u
 
Here we have the following lemma: 
 
Lemma 6 
 For the Guard Channel policy 0π ′ , the relative value function  

0π ′

⎪
⎨
⎧ + ′′′ ),,,(

)34()4()3(

43214321
)2(

4321
)1(

000
nnnnvnnnnv πππ     (3.32) 

03 =

), 4321 nn  can be expressed as ,,( nnv

 

++= ),()12( nnnnv),,,(

⎪⎩ ++=+ ′′′ ),(),,,(),,,( 432143214321 000
nnnnvnnnnvnnnnv πππ

),( 4321
)12(

0
nnnnv ++′π  is the solution of the system (2.9) in the case 

 

where 

ω  and 04 =ω , and )4
12(
0

nv ′π  is the solution of the system 

(2.9) in the case 01 =

,( 321
) nnn ++

02 =ω . ω  and 
Proof: It is obvious from the definition of 0π ′  and Lemma 1. 

 31



 

In the four-service case )4( =K  under the policy 0π ′ , the channel 
tate space Ν  is divided into three region, namely IN , IIN , and IIIN , are 

lows: 
 

}:{
} :{

III

344433II

344433122211I

Canan
Canan

CananCanan

>+=
>+=

≤+∩≤+=

nN
nN
nN

        (3.33) 

 

3.2.1 Cost function in region Ⅰ 
 

From (3.33), it follows that there is no borrowing of capacity (within 
C

43210′π

s
defined as fol

IIIIII= NNN IIN

 }:{ 122211

 
12C  or 4 ) in IN . Here we take an examp utation of the 

relative cost value ),()12( nnnnv ++ . Given 

3 le for comp

⎣ ⎦/aCN 121212 =  and ⎣ ⎦/aCM =  1212

e state transition diagram for type-1 and type-2 calls in the first region is 

 

 
Denoted by 

th
shown in Figure. 3.5. 
 

Figure. 3.5 State transitions in regionⅠfor type-1 and type-2 calls 

 ⎣ ⎦343443 / aCnn ≤+ , next we form the system of linear 
equatio gion Ⅰ as: 
 

ns for the state in re

,III fvA ′=′′                          (3.34) 

 
where 

 

21 λλ +  2λ 2λ

1212µT  1212 )1( µ+T  1212 )1( µ−N 1212µN

12T 12T  112 −N 12N

21 λλ +  

112 +N  

1212 )1( µ+N  
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The coefficients in A I ′  are given as 
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We can find the solution of (3.34) by 

,)( I
-1

II fAv ′′=′                            (3.3

3.2.2 Cost function in region Ⅱ 
In this section, we consider the subspace IIN  where the second 

service (type-3 and type-4) borrows resources from the first service. Given 
⎣ ⎦12344312 /)( aannCM

7) 

 

 
8) 

 

 
 

+−=  , ⎣ ⎦343434 / aCN = 12210 Mnn ≤+≤ , and 
13443 +=+ Nn , the system also can put in the following matrix form: 

,IIIIII fvA

n
 

′=′′                          (3.39) 
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The coefficients in IIA′  and IIf ′  are given as 
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where the value )1,( 43
)12(

0
−+′ nnivπ  is gotten by (3.38). Hence we can find 

the solution of (3.39) by 

,)( II
-1

IIII fAv ′′=′                         (

According the same way in section 3.2, we comput
values for 13443 +=+ Nnn  at first. Then, in the nex
relative values for 23443

t iteration, we find the 
+=+ Nnn , and so on. The process is stopped 

when the relative values for all states in IIN  
subspace IIIN , where the first service (type-1 and type-2) borrows
resources from the second one (type-3 and type-4), the analy
same as in IIN , except that what has been said for the first service i
applicable for the second one, and vice versa. Therefore

are determined. In the 
 

sis is the 
s now 

details. 
, we skip the 

 35



 

At the end of this section, all the relative cost values for all Nn∈
cepting a type-k call is given 

s 
 

3.43) 

 
 

 
have been computed. The channel cost of ac
a

)]()([)]()([ )34()34()12()12(
0000

nennen ππππ ′′′′ −++−+=∆′ vvvv kkk       (

Based on policy 0π  (or 0π ′ ), we can find the relative cost values for 
N∈  and the channel cost of accepting one type of call by (3.23) (or

(3.43)). We will use these results in next chapter and make a comp

3.2.3 Service bandwidth allocation 

Also, we recall that the objective is to minimize the equilibr
excepted cost per unit time that is given as 

)34()12(

all n  
arison. 

 

 
 ium 

 

000 πππ ′′′ += ggg                       (3.44) 

where )12(g  and )34(g  is obtained by (3.38). Use the result in section 3.2, 

e solution lies at the line CaNaN

 

0π ′ 0π ′

th =+ 34341212 . Thus, the minimum of (3.44) 
can be found by the exhaustive search method. 
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Chapter 4 
Numerical Results 
  

In this chapter, we consider an example with two traffic services whic
iffer in the bandwidth requirement and mean call holding time. Within 

h 
d
each type of service, there are new call and handoff call which have 
diffe costs incurred by rejection respectively. We assume that the 
channel has capacity of 48

rent 
=C  FCU’s. For the first service, usually a 

arrowband one, the relevant parameters are set as follows: 

2.1   ,6 22 =

n

  ,1   ,15   1,   ,1 1112211221 ========= ωλµµµaaa ωλ  (4.1) 

Since the second service is a wideband one )( 1234 aa > , we may 
assume that its mean call holding time is no less than the mean call holding 
time of the first service 1234 µµ < . In the example, we use the following 
arameters: 

   ,3 334433443

p

8   ,1   ,7   ,3 443 =   0.5, ========= ωλωλµµµaaa

In order to find the dedicated bandwidth for each class of service with 

 (4.2) 

 
the policy 0π , we obt

617 41

ain from section 3.1.5 as 

32    ,18   ,7   , ==== CC                (4.3) 

 From section 3.2.3, it is obtained that the ded

CC

icated bandwidth with the 
olicy 0π ′  as 

27   ,21 3412 == CC                      (4.4) 

A channel offered load 

p

 ρ , defined as 
 

C

a
k

kk∑
==

4

1
ρ

ρ                      (4.5) 

 0.9375 what considered as a heavy traffic regime. Here, 
 
is kkk µλρ = . 
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Figure. 4.1 Channel cost ,0,,( 431 ==⋅⋅∆ nn

1  

Figure. 4.2 Channel cost ,,0,( 421 =⋅=⋅∆ nn
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Figure. 4.3 Channel cost )0,0,,( 432 ==⋅⋅∆ nn  
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Figure. 4.4 Channel cost )0,,,0( 412 =⋅⋅=∆ nn  
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Figure. 4.5 Channel cost )0,,0,( 423 =⋅=⋅∆ nn  
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Figure. 4.7 Channel cost ),0,0,( 324 ⋅==⋅∆ nn  
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We underline the next policy, 1π , is derived from the relative cost 
values of all channel states. Recall from Chapter 2, borrowing capa
under 0

city 
π  can happen only if at the initial state some service uses more 

bandwidth than its allocated portion. After some finite transient period, all 
services will be using only bandwidth allocated to them. On the contrary
the next policy allows calls of one service to take a portion of bandwid
allocated to another service if the cost for that is less than a given call cost

 
Figure. 4.1 through Figure. 4.8, we show some cost functions. For an 

example, Figure. 4.1 represents the channel cost ,0,,( 431 ==⋅⋅

, 
th 
. 

 
)0∆ nn

where the number of type-3 call or type-4 call is a constant, zero. It is 
obvious that the cost of accepting a type-1 call is above the cost parameter

1

 

 
ω  in some states. In other words, blocking a type-1 call in these st
gets less cost in the future. We can make the same explanation in other 
figures. 

ates 

 
 By the way, we get a conclusion after observing these figures that the 
rejection never happened in type-3 and type-4 call. It is reasonable 
because the cost parameter 3ω  and 4ω  are higher than 1ω  and 2ω . 
The cost function is increasing, so that higher cost must have less blocking 
rate. 



 

43 nn +  21 nn +  

Figure. 4.9 Channel cost ,( 3211 nnn +∆′

Figure. 4.10 Channel cost ,( 3212 nnn +∆′

21 nn +  
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Figure. 4.11 Channel cost ),( 43213 nnnn ++∆′  
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Figure. 4.12 Channel cost ),( 43214 nnnn ++∆′
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type 1 type 2 type 3 type 4 
Required BW (FCUs) 1 3 

Arrival rate 15 6 3 1 
Departure rate 1 0.5 

 

Cost 1 1 1.2 7 8 πg  

aπ  6.32731 6.43105 18.8692 19.115 6.9038641 

1π  5.80189 5.82261 18.3983 17.5974 6.5609464 Block Rate (%) 

1π ′  11.1566 5.0444 14.7979 14.4252 6.2982618 
Cost 2 1 6 12 50   

aπ  6.32731 6.43105 18.8692 19.115 19.6146865 

1π  58.8106 1.83558 9.15144 4.64417 15.0990022 Block Rate (%) 

1π ′  42.5497 0.203425 20.5107 1.79007 14.7345751 
Cost 3 1 10 6 50   

aπ  6.32731 6.43105 18.8692 19.115 17.7616825 

1π  18.7593 2.72926 23.2382 8.30603 12.7873421 Block Rate (%) 

1π ′  18.0485 0.069113 47.3404 0.781861 11.6609453 
Cost 4 1 4 6 50   

aπ  6.32731 6.43105 18.8692 19.115 15.4465045 

1π  22.2966 3.50294 16.1029 11.3956 12.7815176 Block Rate (%) 

1π ′  14.1668 0.142196 47.7179 1.13414 11.3154390 

Table. 4.1 performances of three kinds of policy 
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 Figure. 4.9 through Figure. 4.12, we show each channel cost 
function computed by the tial
us define the next policy

evaluation of the relative cost value of 1π  is most complex. 
 

 
 
 
 

 

a
ggg πππ <<′ 11

                      (4.6) 

 
e computational burden of policy aπ  is least and the but th

 
2 and ty ved cy 
Especially, we obt

pe 
ain that the 

deri
blocking rates of handof

m 
f call (type 

4)  fro poli 1π ′  are lower e
derived from policy 1

 than thos
π . It can be observed by the Guard 

Channel policy. 
 Consequently os res, the m t import

1

ant ult is that the average cost 
per unit time of policy π ′  is lower than others. So we have 

 

 Either policy 1π  or policy 1π ′ , the blocking rates of all type call 
are rearranged by the relative cost values. According to policy

1π , the b  is  in t calocking rate  decreasing  higher-cos ll. 
 

 Accordin ag to policy π , the

 blo

 bl

ckin

ock

g rates of type-3 and type-4 call. 

ing e- 2

equivalen  the

 rates of typ 1 and ty
th are 

pe-
call are the same because their required bandwid

t. So does

 

Guard Channel policy as 

1

an ini  policy. Let 
, π ′ , is derived from the relative cost values

f ba

 of 
all channel states. In the same way
service to take a p o nd ted to another service if the 
cost for that is less than a given call cost. 
 

In addition,

,
widt

 the next policy allows calls of one 
h alorti n o loca

  we also define another policy, aπ , by accepting a call if 
ne.there is enough bandwidth mor uire er g

into Table. 4.1, we summarize as follow: 
 

e than req d o  Aft investigatin  



 

Chapter 5 
Conclusion 

 
 In our thesis, several aspects of the problem are formulated. The 
ew call admission control scheme LCCM is proposed for 

 the number of traffic classes.
The corresponding Markov decision process is suboptimal since we 

perfo  
initial policy
 
 Usin
and 
 

n
multiple-service wireless networks. It is based on the notion of the cost 
function, derived from the context of Markov decision theory. The 
proposed algorithm does not depend on
 

rm only a single iteration  the policy iteration process. That is, our 
 is most important. 

g the Guard Channel policy to be initial policy from chapter 3 

 of

chapter 4, we have some profits as follow: 

 s. The average cost of the next policy is better than other
 The decrease in dimension of Markov chain helps to 

computation easily. 

ture work, we fo
 

 In fu rm the problem which minimizes the expected 
cost
guarante t a   
all with higher cost k

 per unit time under some constrains. For example, network provider 
es that block rate can be under a threshold. It is shown tha

c ω  get lower block rate in our thesis. Here we get 
some idea from Markov decision process that the parameter kω  is 
useful to solve the optimal problem under constrains. 
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