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CoroI/ary 4.3: Assume (4.1), (4.8), and (4.13) are satisfied and 
suppose Kl and a, solve the nonzero set point problem with Kl E S ;. 
Then there exist n X n Q, P 2 0 such that 

K , =  -RF16,  (4.14) 

cul=R;’Bfa;rPy-R;’[Bfa;7(L7Ro-6TR;1RO:)-RO:]6 

(4.15) 

and  such that Q and P satisfy 

O=(A-B1R;’@ 

O = A T P  

Finally, setting 

y=O, 

we obtain the result of r21. 

+ P A + R o - 6 r R , 6 .  (4.17) 

Coro1Iut-y 4.4: Assume (4.1),  (4.8),  (4.13), and (4.18) are satisfied 
and suppose Kl and a, solve the nonzero set point problem with Kl E S 
Then there exists n x n P 2 0 such that 

K , =  -R;lB:P, (4.19) 

(YI= -R;’B;A,‘Ro6  (4.20) 

and  such that P satisfies 

O=ATP+PA+Rn-PCP. (4.21) 

REFERENCES 

K. Kwakernaak  and  R. Sivan, Linear Optimal Control Systems. New York: 
Wiley, 1972. 
Z. Artstein and A. Leiarowitz, “Tracking periodic signals with  the overtaking 
criterion,” IEEE Trans. Aufomat.  Contr., vol.  AC-30, pp. 1123-1126,  1985. 
W. S. Levine  and  M. Athans,  “On  the  determination of the optimal  constant 
output feedback gains  for  linear  multivariable systems,’’ IEEE Trans. Automat. 
Contr.. vol.  AC-15, pp. 4 4 4 8 ,  1970. 
1. M a n i c ,  “On  stabilization  and  optimization by output feedback,” in Proc. 
12th Asilomar Conf.  Circ.,  Sysf.  Comp., Pacific Grove, CA, Nov. 1978, pp. 
412416. 
J .  V. Medanic,  “Asymptotic  properties of dynamic  controllers  designed by 
projective  controls.” in Proc. 24th IEEE Conf. Decision Contr., Fort 
Lauderdale.  FL,  Dec. 1985. 
D. S. Bemstein,  “The optimal projection equations for  static and dynamic output 

S .  Basuthakur and C. H. Knapp, “Optimal constant controllers for stochastic 
feedback: The singular case,” IEEE Trans. Automat. Contr., to be  published. 

linear  systems,” IEEE Trans. Automat.  Confr., vol.  AC-20,  pp. 664-666, 
1975. 
W. M. Wonham, “Optimal  stationaty  control of a  linear system with  state- 
dependent  noise,” SIAM J.  Contr., vol. 5 ,  pp. 486-500,  1967. 
D. Kleinman,  “Optimal stationary control  of  linear  systems with control- 
dependent  noise,” IEEE Trans. Automat.  Contr., vol. AC-14,  pp. 673-677, 
1969. 
P.  McLane,  “Optimal  stochastic  control of linear  systems with state and control- 
dependent disturbances,” IEEE Trans. Automat.  Confr., vol. AC-16, pp. 793- 
798, 1971. 
J. Bismut, “Linearquadratic optimal stochastic  control with  random coeffi- 
cients,” SIAM J. Contr., vol. 14, pp. 419444, 1976. 
D. S. Bernstein  and  D. C. Hyland,  “The optimal projectiodmaximum  entropy 
approach  to  designing  low-order, robust controllers  for  flexible  strucmres,” in 
Proc. 24th IEEE Conf. Decision Contr., Fort Lauderdale,  FL,  Dec.  1985, pp. 
745-752. 
D. S. Bernstein and S. W. Greeley,  “Robust  controller  synthesis using the 
maximum entropy  design  equations,” IEEE Trans. Automat.  Contr., vol.  AC- 
31, pp.  362-364.  1986. 

spectives,” in Proc.  Amer.  Contr. Conf., Seattle,  WA,  June 1986,  pp. 1818- 
--,“Robust  output-feedback stabilization:  Deterministic and stochastic  per- 

1821. 
L. Arnold, Stochastic Differential Equations: Theory and Applications. 
New  York: Wiley,  1974. 
D. C. Hyland  and D. S. Bernstein,  “The  optimal projection  equations for fixed- 
order  dynamic  compensation,” IEEE Trans. Automat.  Contr., vol.  AC-29, pp. 
1034-1037.  1984. 

Analysis of Time-Varying Scaled Systems  Via  General 
Orthogonal  Polynomials 

TSU TIAN LEE AND YIH FONG  CHANG 

Abstruct-General  orthogonal polynomials are introduced to analyze 
and  approximate the solution of a  class of scaled  systems. Using the 
operational  matrix of integration,  together  with  the Operational  matrix of 
linear  transformation,  the  dynamical equation of a  scaled  system is 
reduced to a set of simultaneous  linear  algebraic equations. The 
coefficient vectors of the  general orthogonal polynomials can  be  deter- 
mined  recursively  by  the  derived algorithm. An illustrative  example is 
given to demonstrate the validity  and  applicability of the orthogonal 
polynomial  approximations. 

I. INTRODUCTION 

An investigation of the dynamics of an overhead current collection 
mechanism for  an  electric locomotive by Ockendon and Taylor [I21 
revealed that under certain conditions, the dynamics of the systems is 
characterized by a differential equation containing terms with a scaled 
argument of the form 

d ( t ) = A X ( A t ) + B X ( t )  

X ( 0 )  =xo 
where X(Xt)  and X ( t )  are n-vectors and A and B are n X n matrices and 
the constant 0 < X < 1. This type of differential equation also plays an 
important role in several chemical processes [3],  [13]. This equation was 
first studied by Fox et al. [ 1 11 with the intmduction of a finite  difference 
method for 0 < h < 1. Recently, the solution of such a scaled system has 
been obtained by several different orthogonal functions, such as block- 
pulse functions [14], [2], [3], Walsh functions [l], delayed unit step 
functions [4], Laguerre polynomials [5], Chebyshev polynomials [6], [7], 
and Legender polynomials [ 151. The common approach of these methods 
is the use  of the operational matrix of integration together with the 
operational matrix of scaling to reduce the differential equation to a set of 
linear algebraic equations, which is  more suitable for computer program- 
ming. 

In this note we will employ the operational matrix of integration and 
product operational matrix of the general orthogonal polynomials, 
together with the operational matrix of linear  transformation, which will 
be derived later, to obtain the solution of the scaled system. The 
operational matrix of linear transformation is derived based on the 
following properties, namely, the  pure  recurrence relation 

~l+~(~)=(Uiz+bi)~i(z)-~;~,-~(~) (1) 

with 

&i(z)=1; ~ 1 ( z ) = w + b o  

and the differential recurrence relation 

~ i ( z ) = A ; i ; , , ( z ) + B , ~ ; ( Z ) + C ; ~ ; - I ( Z )  (2) 

where recurrence coefficients a,, bi, ci and differential recurrence 
coefficients A;, Bi, and Ci, are specified by the particular orthogonal 
polynomials under consideration and some are listed in  [9]. The aim of 
this paper is twofold: 1)  to derive an operational matrix of linear 
transformation for  general orthogonal polynomials so that the scaled 
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matrices derived by Hwang [4] ,  Hwang  and Shih [ 5 ] ,  Chou  and Horng 
[7], and Shih and Kung  [15] can be obtained by the derived operational 
matrix as its special case; and 2) to present a general solution of scaled 
systems, whether it  is time-varying or time-invariant, via orthogonal 
polynomials. This solution can certainly be reduced to different polynomi- 
als approximation solutions of the specific problem, including Che- 
byshev, Jacobi,  Legender,  ultraspherical, and  any other orthogonal 
polynomials that possess recurrence relations (1) and (2). 

II. GENERAL ORTHOGONAL POLYNOMIALS ON FINITE INTERVALS 

The orthogonal polynomials &(z) with respect to the weight  function 
w(z)  over the interval a 5 z 5 b are defined as of degree precisely i in z 
and satisfy the condition [9] 

and the recurrence relation (1). The  general shifted orthogonal polynomi- 
als may be obtained by letting z = p t  + q which transform domain [a ,   b]  
into domain [ a ' ,   b ' ] ,  where b' > a ' ,  a' and b' are both finite, p = (a 
- b)/(a'  - b ' )  and q = (a'b - ab')/(a'  - b' ) .  

Thus, the shifted general orthogonal polynomial becomes 

d;=,(t)=[al*r+b,*]+,*(r)-c:~:-,*(t) (4) 

wheri b,?+ = sip*, b: = b; + aiq, c: = ci, for i = 0,  1 ,  * * a ,  with 
4g(t) = 1; 4:( t )  = agt + b; .  The new polynomials +:( t )  with the 
recurrence relation (4) are orthogonal with respect to weight function 
w*(t) = w(pt  + q) over the interval [ a ' ,   b ' ] .  It has been  shown that if 
C ( T )  is an n X r matrix time function, C(t )  can  be  expanded by general 
orthogonal polynomials as [8] 

where Ci is an n X r coefficient matrix 

is called the general orthogonal polynomial matrix, C', an n X mr 
matrix, is called the  general orthogonal coefficients matrix, Ir, a r X r 
identity matrix, IXI denotes a Kronecker product, and ~ ( t )  is  an r X 1 time 
function, 

u(t) = v#*(r) 

then 

C(t)u(t)=[CoUC,U ... C,-,U]L+*(t) (5) 

whereL = [i,,o.&,l - * - : Z , , , . . 1 & , , - 1 , 1  . - *  lm-l,m-l]Tiscalled 
the operational matrix of product, li,j are  the expansion coefficients 
vectorsoftheproductof4,?(I)andb;(f),fori,j = 0, 1 ,  *.*,m - 1. 

Furthermore,  it has also been  shown  that [SI  

w h e r e D i f o r i =  1 ,2 ; . . ,m  - lcanbecalculatedfrom 

I&= - A , ~ ~ + l ( 0 ) - B i + ~ ( O ) - C , 9 ~ l ( O ) .  (8) 

m. OPERATTONAL MATRIX OF LINEAR TRANSFORMATION 

Define 

that still satisfies the  recurrence relation 

for any ts even outside the interval [a I ,  b '1 
Substituting (9) into (lo), we have 

"+I " - 1  

d , - l , i+ :Ct )=c  dn. l Ian(ar-P)+b~19)( t ) -~  cndn-l,,6:(r). (11) 
,=o i = O  , = O  

Since the first term of the right-hand side of (1  l), after simple 
manipulations, can be expanded as 

Substituting (12) into (1 1) and equating the like coefficients of the general 
orthogonalplynomials{4F(t)},i= 0, 1;*.,n + 1,wecanobtainthe 
recurrence relation of the form 

for i  = 0 ,  1 ,  ' - 0 ;  n = 0, 1 ,  . - - ,  with do,o = 1 ;  dl,o = bo(l - a )  - 
a&; dl,I  = a; d,,,; = 0 (i > n or i < 0). 

Thus, we derive a matrix termed as the operational matrix of linear 
transformation T to relate general orthogonal polynomials to their 
transformed forms as 

and T is of the form 

For m terms approximation, P is of the  form 
When a = h > 0 and 0 = 0, then Tbecomes the scaled matrix S, i.e., 

p=- 1 
P 

- 
B,-q A0 0 0 * * *  

C,+D, BI A1 0 ... 
4 C2 B2  A2 ......................................... 

Dm-2 0 0 0 0 . .  

Dm-l 0 0 0 - 

The scaled matrices proposed by  Hwang [6], Hwang  and Shih [5 ] ,  
Chou and Horng 171, and Shih and Kung [ 151, are the special cases of the 
present operational matrix. This operational matrix, together with the 
operational matrix of integration and product operation matrix, plays an 
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important  role  in  reducing the scaled  systems to a  set  of  algebraic 
equations. 

IV. ANALYSIS OF SCALED  SYSTEMS 

Consider the time-varying  scaled  system 

i ( t )  = A  ( t ) x ( h t )  +B(t )x ( t )  + c( t )u(t )  (17) 

with x(0) is  given where x ( t )  is an n X I state vector, u(t )  is a r X I input 
vector,  and A ( t ) ,  B(t) ,  and C ( t )  are time-varying  matrices  of  appropriate 
dimensions. 

Integrating (17) from t' = 0 to t' = t ,  we obtain 

-1  

x ( t ) -x (O)=  1 A( t ' )x (hr ' )  dt '+ I r  B ( f ' ) x ( f ' )  d t '+  I f  C(r')u(t')  dr' .  
- 0  0 .  

(18) 

Expanding x( t ) ,  u(t) ,  A ( t ) ,  B(t) ,  and C(t )  by general  orthogonal 
polynomials,  we have 

x ( f ) = [ x ,  x, ... x,- I]$*(t)  =X$*@) (19) 

u(t)=[uo UI ... u,-,]$*(t).= u$*(t) (20) 

A(t )=[Ao A I  . . .  A,-1lA(t) (21) 

B ( ~ ) = [ B o  BI ... Bm-~l$n(t) (22) 

c(t)=IG CI ... C m - ~ l $ A t ) *  (23) 

Applying (16), x ( X t )  can  be  expanded as 

x(Xt)=XS$*(t). (24) 

Notice  that  initial  condition x(0) can be expanded into 

x(0) = [x(O) 0 . . .O]+*(t)  =X0$*(t). (25) 

Substituting (19)-(25) into (18) and using (5) and (6) ,  we obtain 

X$*(t)-X&*(t)=[AoXS AIKS Am-&S]LP$*(t)+[B&  BIX 

... Bm-lX]LP$*(t)+[CoU CIU ... C,-JJ]LP$*(t). (26) 

Equating the coefficient  matrices  of  general  orthogonal  polynomials 
vector  yields 

X-Xo=[AoXS  AlXS ... Am_lXS]LP+[Br,X BIX ... Bm_lX]LP 

+[CoU ClLJ ... Cm_lU]LP. (27) 

LettingL = [LiLT ... L:_,]', whereL; = [li,& ... li,m-l]T, fo r i  
= 0, 1, ..., rn - 1, then (27) becomes 

m -  I m -  I m - I  

X-Xo=  A,XSL,P+ B,XLiP+  C,ULiP. (28)  
,=O ,=O i = O  

Letting Wi = [ w , , w ; ~  ... wi,,- ,]  = C;UL;P, X = [xgI e * -  x,,-l], X,, 
= [x(O)0 . . . 01 and defining2 = [x,'.; . . . xi-,]', 4 = [xT(0)0' 
... 07' and G, = [w;wi7; .. . w ~ - ~ ] ' ,  then (28) can be solved  by 

P={I,,- [A,  E (SLiP)'+B; E4 (L,P)']}-'[&+  t t i] .  (29) 
" - 1  m- I 

,=O ,=O 

Note  that if A ( t ) ,  B(r) are constant matrices, and C(t )  = 0, which is 
the case considered by Hwang [5], the result  of  Hwang can be obtained by 
substituting C(t )  = 0 into (29). If B(t )  = 0, and A ( t )  and C ( t )  are 
constant  matrices,  which is the case considered  by  Chen [2] and  Chou  and 
Horng [7], the  approximate  solutions  can be obtained  by  substituting B( t )  
= 0 into (29) which  then  will  yield the results of Chou and Horng [7] and 
Chen [2]. If A ( t ) ,  B(t), and C ( t )  are all  constant matrices, which is the 

TABLE I 
THE APPROXIMATION SOLUTION OF ~ ( t )  FOR DIFFERENT ORTHOGONAL 

POLYNOMIAL EXPANSIONS 

6'dt) Q ' N  d.41) d*&) O',IC) e'&) 
.91157 .08W5 42407 -.KO75 ,03077 -.W 

,81817 ,08018 -.01299 -Ow88 . W 1  -."oo 

,78681 ,31026 4 7 S O Q  -.WE99 .WmI -.@X04 

.8034i ,15863 -.03805 -.wS17 .00154 - . w w Z  

,79108 31447 -.OQ974 -.01115 ,00557 -.woo8 

,58074 33883 ,18821 ,092M .08M)5 w879 

.78l80 - 10228 -.E565 .X0435 -W217 .w230 

All Jarobi 1-c polynomids  areshilled to domaio [ I ,  1:. 
i.e., z = -2t + 1 

TABLE I1 
COMPARISON OF THE DIFFERENT POLYNOMIALS APPROXIMATION FOR 

xu) 
t Jacob, Lltra Chebyshev Chebyshev Lcgendrc L a g u m  Hermice Runge 

Im=6I h = 8 I  1st [m-6) Znd[m=6) ( m d )  [ m d )  ( m 4 )  Kutta 

0 0  
0.2 I ::: 1 m 9  

,97752 
.go225 
,77032 

]Ow39 I.owO6 l . W 2  I.wO14 1.22448 ,86885 I.WM0 
,97752 m 7 5 1  ,37752 97752 1 . ~ 3 5 4  .ea338 37751 

.7iO32 ,77026 ,77028 77028 .R4398 .78523 .77@3l 
90228 ,80224 .Bo226 .M?5 ,81085 ,81433 .90226 

0.8 ,59203 59209 ,59214 ,59210 59211 50061 ,64591 .59209 
1.0 39484 383E .39380 39378 39388 37884 ,17338 ,38356 

case considered  by Shih and  Kung [ 151, the approximate  solutions  of Shih 
and  Kung can  be obtained  by  substituting  A ( t )  = A ,  B ( t )  = B,  and C ( t )  
= C into (29). 

V. ILLUSTRATIVE EXAMPLE 

Example I :  Consider the scaled  system 

i ( t )  = - tx(0.8t) - t *x( t )  

x(0) = 1 

The expansion  coefficients  of x( t )  for rn = 6 and tf = 1 for different 
orthogonal  polynomials are given  in Table I. Some classical  orthogonal 
polynomials  approximation of x ( t )  for rn = 6 and tf = 1, together  with 
the solution  obtained  by the Runge-Kutta  method is shown  in  Table II. It 
is clear  that,  in  general, the agreement is very  satisfactory. In particular, 
the  Jacobi type polynomials  approximation converges faster  than the 
others. Noted the poor  quality of results  obtained  via either the Laguerre 
or Hermite polynomial. This is due to the fact  that the zeros of the 
Laguerre polynomial and the Hermite polynomial are widely  spread over 
the interval of [O, a] and [ -  a, 001, respectively. Hence, in general, 
these two polynomials require more t e r n  than the Jacobi type polynomi- 
als in order to yield  similar  results as that  of  Jacobi  type  polynomials 
within  a  small  interval.  In this example, rn = 6 is  not large enough for 
these two polynomials. 

VI. CONCLUSIONS 

The operational  matrix  of  linear  transformation for general  orthogonal 
polynomials is first introduced, and a  systematic  method is presented to 
analyze  a  class  of  time-varying  scaled  systems. The operational  matrix of 
linear  transformation,  together  with the operational  matrix  of  integration, 
are applied to reduce the differential  equation  to  a set of linear  algebraic 
equations  which is very  convenient  for  digital  computation.  Illustrative 
example shows that  only  a  small  number of terms are required to obtain 
accurate  approximations. Moreover, in general, the Jacobi type ortho- 
gonal  polynomials solution converges  faster  than the Hermite polynomials 
solution and the Laguerre polynomials solution. 
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The  Operational  Matrices of Integration  and 
Differentiation for the Fourier  Sine-Cosine 

and  Exponential  Series 

P. N. PARASKEVOPOULOS 

Abstract-For  the  Fourier  sine-cosine  series  basis  vector p(t) and  the 
Fourier  exponential  series basis vector $(t), a  linear  nonsingular  transfor- 
mation Tis determined  such  that $(t) = T&). This result is then  used to 
show that  the  operational  matrices  of  integration P and Q for p(t) and 
I,&), respectively,  are  related  by  the  expression TP = QT. Analogous 
results are  derived for the  corresponding  operational  matrices of 
differentiation D and R. General expressions are  derived for T, P ,  Q,  D ,  
and R. 

I. INTRODUCTION 

Recently,  orthogonal series have been  used for studying  various 
problems  in  system  analysis and synthesis. The key  idea  involved is based 
on the integral expression 

16 d u )  du=Pv( t ) ,  where a ( t ) = I ~ d t ) ~  ~ ~ ( t ) ,  . . . I  ~,-~(t)l (1) 

is the  orthogonal  basis vector and Pis an r X r constant  matrix  called the 
operational  matrix of integration. The matrix P has  already  been 
determined for many types of orthogonal series, such as Walsh [ 11, block- 
pulse [2], Laguerre [3],  [4],  Chebyshev [SI, Legendre  [6], [A, Hermite 
[8],  Jacobi  [9],  Bessel [ 101, Fourier sine-cosine series [ 1 11, and the Haar 
functions  [12].  Most of the problems  that have been  studied  may be 
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summarized as follows.  State-space  analysis  [13]-[18],  optimal  control 
1191-[22], identification 1231-[27], sensitivity  analysis [28]-[30], ob- 
server design  [31]-[33],  model  simplification  [34]-[36],  solution of 
integral  and  variational  problems  [37]-[42], etc. 

In this note the Fourier sine-cosine  series are revisited  and  they are 
studied in conjunction  with the Fourier exponential  series.  Let p(t) and 
$(t) denote the orthogonal  basis  vectors  for  the  sine-cosine series and the 
exponential series, respectively. Also let P and Q denote  the  respective 
operational  matrices  of  integration. Then, it will  be shown that  a 
nonsingular  transformation  matrix T exists  such  that 

TP=QT. (3) 

Since  det T # 0, it  follows  that (2) and  (3) are very  useful  since one may 
go  from  one set of orthogonal  functions  to another. In particular, (3) is 
used to derive 0 knowing P. Similar  results are derived for the 
operational  matrices of differentiation. 

II. THE OPERATIONAL  MATRICES OF INTEGRATION 

Consider the Fourier sine-cosine series basis vector ~ ( t )  having the 
form 

where 

Also consider the Fourier exponential series basis  vector $(t)  having the 
form 

where 

where j = f i  

that p(f) and $(t) are related as follows: 
Making  use of the relation efi = cos 8 + j sin 8 one may  readily  show 

where Tis an 2r + 1 square nonsingular  transformation rnamx having the 
form 

where Z, is the r X r unit matrix. Furthermore, 

v(r)= T-’Jl(t) 

where 
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