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摘 要       

 

近年來，對於已被數位視訊廣播的高傳真電視廣播服務和藍光光碟所採用的

H.264/AVC High Profile 視訊標準，其需求是很必要的。而動作補償單元的計算量通常占

了整個視訊解碼系統的大多數，這是由於它需要對參考畫面的記憶體有相當大量的資料

傳輸。特別在目前最先進的 H.264/ AVC Main/High Profile 視訊標準支援了雙向參考畫

面，因而使得所需的記憶體頻寬大量增加。我們提出的記憶體頻寬縮減策略除了可有效

地減少所需的記憶體頻寬高達 80 %之外，同時維持和整個視訊解碼系統相同的解碼順

序。和傳統的架構相較之下，針對 H.264 提出的可重新架構的內插器，可省下 20 % 的

邏輯閘數量。我們的動作補償單元同時支援了 H.264 Baseline Profile @ 4.0 Level 和 

H.264 Main/High Profile @ 4.0 Level，對即時解碼能力而言可達到 1080 HD @ 100.0 

MHz，而總邏輯閘數量為 68 K。 
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ABSTRACT 

 

In recent years, H.264/AVC High Profile video standard, which has been adopted by the 

Digital Video Broadcasting (DVB) HDTV broadcast service and the Blu-ray Disc storage 

format, is necessary in demand. The computation time of motion compensation unit is usually 

accounted for most of the video decoding system because of the enormous data transfer with 

reference frame memories. Particularly in the most advanced H.264/AVC Main/High Profile 

video standard supports bi-prediction reference frame, which makes the memory bandwidth 

required for a significant increase. Our proposed reduction strategies of memory bandwidth 

cannot only effectively reduce the required memory bandwidth up to 80% but also 

maintaining the same decoding order as that of entire video decoding system. The proposed 

restructured interpolator can save 20% of the number of logic gates compared to traditional 

design. Our motion compensator also support H.264 Baseline Profile @ 4.0 Level and 

Main/High Profile @ 4.0 Level, in terms of real-time decoding up to 1080 HD @ 100 MHz, 

while the total number of 68k NAND2 CMOS logic gate count.
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Chapter 1  

Introduction 

 

1.1 Motivation 

 

In recent years, the newest video coding standard published jointly as Part 10 of 

MPEG-4 and ITU-T Recommendation H.264 [1] provides fine video compression 

performance. The new H.264/AVC standard provides a technical solution for a wider range of 

applications, including video-on-demand (VOD), mobile networks, high definition TV, 

broadcast over cable, satellite, cable modem, DSL or terrestrial, interactive or serial storage 

like BD, conversational services over ISDN, Ethernet, LAN, wireless, or mobile network, 

multimedia messaging services over DSL, ISDN, etc. 

Besides, in Nov. 2004, Digital video broadcasting handheld, DVB-H [5], has mandated 

support of Main Profile for H.264/AVC SDTV receivers, with an option for the use of High 

Profile. The support of High Profile is mandated for H.264/AVC HDTV decoder. Moreover, 

high definition TV requires huge data transmission particular in frame memory, a memory 

controller that efficiently communicates with frame memory is the most significant over the 

entire video decoding system. Within the video decoding system, motion compensation 

always dominates the total amount of data transmission especially when SDRAM or 

DDR-SDRAM is adopted as external frame memories. Motion compensation should also 

provide efficient memory bandwidth reduction to reduce memory bandwidth. 
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1.2 Thesis Organization 

 

This thesis is organized as follows. The algorithm description and analysis is discussed in 

Chapter 2. In Chapter 3, the motion compensation engine for H.264/AVC video decoder is 

presented firstly. Then, the motion compensation engine for H.264 high profile is illustrated. 

In Chapter 4, we propose the bandwidth reduction strategies to reduce the required bandwidth 

particularly in H.264/AVC integral and fractional motion compensation. We also presents 

frame memory organization, and memory bandwidth analysis. Implementation result is given 

in Chapter 5. Finally, conclusion and future work is shown in Chapter 6. 
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Chapter 2  

Algorithm Description and Analysis 
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Fig 2.1 General structure of H.264 encoder 
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Fig 2.2 General structure of H.264 decoder 

 

Fig 2.1 and Fig 2.2 shows the general structure of H.264/AVC video encoder and 

decoder respectively [6]. The H.264/AVC design covers a Video Coding Layer (VCL) and 
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Network Abstraction Layer (NAL). We only discuss on VCL that efficient represents the 

video content. The concept of H.264/AVC submits the so-called block-based hybrid video 

coding. It consists of hybrid of temporal and spatial prediction and is simultaneous with 

transform coding. 

 

This chapter is structured as follows. The software profiling is illustrated in section 2.1. 

Then, the algorithm of H.264/AVC motion compensation would be described in section 2.2. 

Finally, the H.264/AVC high profile is presented in section 2.3 

 

2.1 Profiling 

 

 

Fig 2.3 H.264/AVC video decoder software profile on ARM processor (JM 8.2) 
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Fig 2.3[8] shows the H.264/AVC profile on ARM processor. The reference software is 

JM 8.2 [7]. We can find motion compensation related modules, including motion 

compensation, reconstruction, and reference frame copy, occupy 51 % proportion of the entire 

video decoder. Parallel processing, bandwidth reduction, or pipeline processing on ASIC 

design can significantly reduce this dominated part.  

 

2.2 Inter Prediction Algorithm for H.264/AVC Standard 

 

H.264/AVC standard supports variable block size (VBS) in inter prediction [1] [2]. The 

smallest block size could reach least 4x4 for luma and 2x2 for chroma. Fig 2.4 [1] illustrates 

all types of partitions. 
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Fig 2.4 Macroblock partitions and sub-macroblock partitions 

 

H.264/AVC standard also supports high motion resolution that reaches quarter motion 

accuracy for luma sample and one-eighth for chroma sample. Luma half sample interpolation 

with a 6-tap (1, -5, 20, 20, -5, 1) symmetrical FIR filter and quarter sample interpolation with 

bilinear filter are illustrated in Fig 2.5 (a)-(c). The prediction value of chroma component is 

generated using bilinear interpolator illustrated in Fig 2.5(d), and the displacement can 
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achieve one-eighth accuracy. From mathematical equations, they are both 2-D interpolation. 

However, based on hardware implementation, these equations can be divided into two 1-D to 

reduce hardware cost, in other words, horizontal filter first and then vertical one, or vice 

versa. 
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Fig 2.5 (a) Luma half sample with 6-tap FIR, (b) luma quarter sample with bilinear 

filter, (c) chroma sample with bilinear filter. Upper-case letters indicate the full samples 

and lower-case letters indicates the interpolated fractional samples 

 

 Motion vector difference (MVD) and motion vector prediction (MVP) generate the 

motion vector which Eq. 2.1 express the equation. 

 

MVPyMVDyMVy

MVPxMVDxMVx




 Eq. 2.1 
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MVD is decoded from bit-stream and MVP is predicted according to neighboring motion 

vectors. MVP algorithm, contains directional prediction for 16 x 8 or 8 x 16 block size and 

median prediction for other block sizes. The detail of MVP decision is shown in Fig 2.6 [8]. 

Eq. 2.2 expresses the equation of median prediction. Besides, some boundary conditions or 

exceptions have to be handled carefully. For instance, when MVC is not available, its value is 

replaced by MVD. We do not go into detail of those trivial boundary conditions in here. 

 

),,( MVCMVBMVAmedianMVP   Eq. 2.2 
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Fig 2.6 (a) Directional prediction for 8 x 16 block size, (b) directional prediction for 

16 x 8 block size, (c) median prediction 

 

In addition to the motion-compensated block size described in Fig 2.4, a P macroblock 

can also be coded to P_SKIP mode. For this coding mode, neither residual signal nor motion 

information is transmitted. In other words, motion vectors are only decided according to MVP. 

The reconstructed reference pixels are obtained similar to macroblock type P_16x16. 

Macroblock coded in P_SKIP are often located in large area with no change or slow motion. 

In addition to the above techniques, H.264/AVC also supports multiple reference frame, 

weighted prediction and direct mode for B slice, which we will present in section 2.3. These 

tools can also improve coding efficiency efficiently. 
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2.3 Inter Prediction for H.264/AVC High profile Standards 

 

Considering motion compensation, the tools supported by H.264/AVC Main/High Profile 

are B slices, Weighted Prediction and Interlace video. 

In an inter-coded macroblock of B slice, each macroblock partition may be predicted 

from one or two reference pictures, forward and backward the current picture in temporal 

order. This tool provides better coding efficiency with more possibilities to select the 

best-match prediction references for the macroblock partitions in B slice. Fig 2.7 shows the 3 

reference directions: (a) Forward and backward reference pictures, the so-called bi-directional 

reference, (b) backward reference, and (c) forward references [6]. B slices use two lists of 

coded reference pictures, LIST_0 and LIST_1. These two lists can include backward and/or 

forward coded pictures respectively. 

 

B

(c) two forward

(b) two backward

(a) forward and backward

 

Fig 2.7 Bi-prediction examples 
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In B slice, there are four prediction modes: (a) direct mode, (b) LIST_0 mode, (c) 

LIST_1 mode, and (d) bi-predictive mode. For a macroblock, each partition can choose 

different prediction modes. When the 8 x 8 partition size is used, the chosen mode for each 

8x8 partition is applied to all sub-partition within that partition. Fig 2.8 shows two examples 

of prediction mode combinations. In Bi-predictive mode, two motion-compensated reference 

regions are obtained from LIST_0 and LIST_1 picture respectively. The motion vectors from 

LIST_0 and/or LIST_1 in a bi-predictive macroblock or block are predicted form neighboring 

motion vectors with the same temporal direction. For instance, a motion vector from the 

current macroblock pointing to a forward picture is predicted from other neighboring vectors 

that also point to forward pictures. 

 

Bi

pred
Bi-pred

L1

L1

Direct L0

 

Fig 2.8 Examples of prediction modes in B slice macroblocks 

 

Similar to the skipped P macroblock coded in P_SKIP mode, a B macroblock can also be 

coded in direct mode. In direct mode, no motion vector is transferred for a B slice macroblock 

or macroblock partition encoded. Instead, the decoder predicts the motion vectors of LSIT_0 

and LIST_1 with neighboring vectors and carries out bi-predictive motion compensation 

block. There are spatial and temporal mode can be used to calculate the LIST_0 and LIST_1 

motion vectors for direct mode macroblocks or partitions. 

Spatial direct mode is similar to P_SKIP mode. Furthermore, it supports bi-prediction 

and 4x4 block size accuracy. The double motion vectors are decided according to MVP. 
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However, some conditions or exceptions have to be handled carefully. For example, in case of 

the co-located MB or the partition in the picture that contains the co-located macroblock has a 

motion vector that is less than +/- 1/2 luma samples in magnitude (and in some other 

conditions), one or both of the predicted vectors are set to zero. We do not go into detail of 

those trivial conditions here. 

Temporal direct mode differs from P_SKIP mode. The same with the spatial direct mode, 

the block size is also 4 x 4 block size accuracy, the motion vectors mvL0, mvL1 are derived 

as scaled versions of the motion vector mvCol of the co-locate sub-macroblock partition. The 

scaled method is based on the picture-order-count (POC) distance between the current and 

LIST_1/LIST_0 picture. Fig 2.9 shows the illustration of temporal direct-mode motion vector 

inference. When the object is constant velocity motion, it is suitable-coded in temporal direct 

mode. When the object is the average form backward and forward, it is suitable-coded in 

spatial direct mode. When the object is still, it is suitable-coded in skip mode. Encoder can 

use skip/direct mode to save one/two motion vector differences (mvd) in every skip/direct 

mode partition for further enhance compression efficiency. 
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Fig 2.9 Example for temporal direct-mode motion vector 
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Another tool supported in Main/High Profile is Weighted Prediction (WP), which is a 

method of scaling the samples to increase the video quality in H.264/AVC video decoding. An 

application of weighted prediction is to control the relative weighted of interpolated regions to 

the motion compensated prediction process. For example, WP may be effective in coding of 

„fade‟ transitions (where one scene fades into another). There are three modes in Weighted 

Prediction. When Default mode is in use, two motion compensated reference regions are 

obtained from LIST_0 and LIST_1 picture respectively and each sample of the prediction 

block is calculated as an average of the LIST_0 and LIST_1 prediction samples. Eq. 2.3 

expresses the equation 

 

( 0 1 1) 1p r e d P a r t p r e d P a r tL p r e d P a r tg L      Eq. 2.3 

 

When explicit or implicit mode is in use, Eq. 2.4 is used to calculate the sample of the 

prediction block. The difference between explicit and implicit mode is the weighting factors 

are calculated based on the picture-order-count distance between LIST_0 and LIST_1 

reference pictures in implicit mode. It is similar to temporal direct mode in motion vector 

prediction. When explicit mode is in use, the encoder determines weighting factors. In other 

words, implicit mode objection is to save weighted prediction parameter in bit-stream for 

further enhance compression efficiency. 

 

lo g

0 1 0 1
(( 0 * 1 * 2 ) (lo g 1)) (( 1) 1))

W D
p red P a r t p re d P a r tL w p red P a r tL w W D o o          Eq. 2.4 

 

As for interlace video tool, video signal may be sampled as a sequence of complete 

frames or interlaced fields. An interlaced video sequence contains a series of fields. A field 

consists of either the odd-numbered or the even-numbered lines within a complete video 
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frame. Fig 2.10 illustrates the fields in video sequence. Half of the data in a complete video 

frame is represented as a field and is sampled at each temporal interval. The advantage of 

interlaced video coding is that it is possible to send twice as many fields per second as the 

number of frames in an equal progressive sequence with the same data rate, giving the 

appearance of smoother motion. For instance, a NTSC video sequence consists of 60 fields 

per second and, when played back, motion can appears smoother than in an equivalent 

progressive video sequence containing 30 frames per second. 

 

top 

field

top 

field

bottom 

field

bottom 

field  

Fig 2.10 Interlaced video sequence 

 

Frame coding is more efficient than field coding for progressive video and static pictures 

in interlaced video. Oppositely, field coding is more efficient for moving pictures in interlaced 

video. However, sometimes not complete frames are fast moving. Hence, H.264/AVC 

Main/High profile provides another tool in interlaced video, macroblock-adaptive frame/field 

(MBAFF), to provide macroblock level interlacing. Similar to MBAFF, the picture level 

interlacing sometimes is called PicAFF. As an extension of PicAFF, MBAFF is used to 

improve coding efficiency of picture with both static and moving regions [21]. In MBAFF 

mode, the current slice is processed in units of 16 luma samples wide and 32 luma samples 

high, each of which is coded as a “macroblock pair” as shown in Fig 2.11. The encoder can 
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choose to encode each MB pair as (a) frame macroblock pair (b) field macroblock pair and 

may select the optimum coding mode for each region of the picture. 

 

32

16 16

16

16

MB pair

 16

16

16

32

16

MB pair

 

(a)frame MB mode (b)field MB mode 

Fig 2.11Macroblock-Adaptive Frame-Field Coding 

 

2.4 Bandwidth Requirement for Inter Prediction 

 

Up to now, we can find interpolation issue becomes more and more important in 

state-of-the-art video coding. The interpolation window becomes double for the same block; 

In other words, it requires double cycles to interpolate each macroblock. For instance, it 

requires two 9 x 9 interpolation windows to interpolate a luma 4 x 4 block and four 3 x 3 

interpolation windows to interpolate two chroma 2 x 2 blocks in B macroblock. 

In worst case, interpolator needs 398MB/s in P frame, 796MB/s in B frame when 

supporting 1920 x 1088 30fps. In other words, motion compensation needs huge memory 

bandwidth requirement. Huge data also means large power consumption for bus activity and 

data operation. 

To reduce bandwidth requirement from frame memory, strategies of memory bandwidth 

reduction for motion compensation will be proposed in Chapter 4. 
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2.5 Summary 

 

From the H.264/AVC profiling on ARM processor, an efficient hardware accelerator or 

ASIC design for motion compensation is important. The inter prediction for H.264/AVC 

Baseline, Main/High profiles, and the bandwidth requirement are also illustrated in this 

Chapter. 
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Chapter 3  

Motion Compensation Design for 

H.264/AVC Main/High Profile video 

decoder 

 
The state-of-the-art video coding standard H.264/AVC provides better compression ratio 

that significantly outperforms all previous video compression standards. However, 

H.264/AVC supports Main/High profile and provides many tools compare with Baseline 

Profile for further enhance compression ratio. Therefore, a development of combining 

multi-video coding profiles is essential to support modern multimedia systems. Therefore, it 

is the challenge of designing efficient video decoder for multi-profile video application 

without significantly increase complexity.  

This chapter will discuss that designing of motion compensation, which dominates the 

amount of data transfer on the H.264/AVC video decoder. The rest part is structured as 

follows. Section 3.1 illustrates motion compensation engine for H.264/AVC decoder. The 

combined motion compensation engine for H.264/AVC Baseline/Main/High profile and the 

analysis is discussed in section 3.2. Finally, summary is given in section 3.3. 
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3.1 Motion Compensation Engine for H.264/AVC decoder 

 

 

Fig 3.1 Motion compensation engine for H.264 video decoder 

 

Fig 3.1 illustrates the whole motion compensation engine for H.264/AVC video decoder. 

Firstly, Motion vector generator generates motion vector according to motion data. Then, the 

address generator uses motion vector with reduction strategies of memory bandwidth to 

generate address of reference region. Moreover, transfer reference address to system memory 

controller (also named well-known arbiter). The tasking of memory access controller is 

scheduling consecutive access command and sending to frame memories. The burst read data 

is kept in read data buffer and then filtered through interpolator. Finally, the interpolated 

reference data pass through Weighted Predictor to produce motion compensation result. The 
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result will be added to the residual data and then pass through de-blocking filter. In our 

proposed decoder, ping-pong structured external frame memory [9], double memories stored 

reference and current frame reciprocally, is adopted.  

The following subsection will discuss the detail of other modules except reduction 

strategies of memory bandwidth. The detailed discussion of reduction strategies of memory 

bandwidth are shown in Chapter 4. Subsection 3.2 illustrates motion vector generator (MVG) 

Supports Main/High Profile including motion vector predictor and the related storages. 

Subsection 3.3 combines luma and chroma interpolator design. Subsection .3.4 shows 

Weighted Predictor design. Finally, summary is presented in section 3.5 

 

3.2 MVG support Main/High profile 
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Fig 3.2 Motion vectors information storage for motion vector predictor for QCIF 

frame format. 
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There are two tools in MVG for supported Main/High profile. The first one is B slice 

type, which has double motion vectors. The second one is MBAFF mode. In MBAFF mode, 

the handle of macroblock is Macroblock pair. The same with P slice, the required total storage 

for motion vector generator, Fig 3.2 shows an example. Total amount of 4 x 11 x 2 both 

components of the motion vector have to be stored for QCIF frame format. Fig 3.3 (a) shows 

the detail of required neighboring motion vectors. To decode T0-T15 in current top MB, it 

needs neighboring motion vectors in left (TL0-TL3, MVL0-MVL3), above (TU0-TU3, 

MVU0-MVU3), above-right (TRU, MVRU), and above-left (TLU-MVLU) position. The 4 x 

8 size of MV buffers is required because the maximum number of motion vector per MB pair 

is thirty-two. If we reuse the same 4 x 4 size of MV buffers and add a number of buffers (T10, 

T11, T14, and T15), the MV buffers can be further reduced. Fig 3.3 (b) shows the reduced 

version. 
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Fig 3.3 (a) Neighboring motion vectors needed when decoding all motion vectors in 

current MBAFF macroblock, (b) reduced and combined with non-MBAFF version 

 

Fig 3.4 shows the detailed architecture of motion vector generator. This architecture 

combine non-MBAFF and MBAFF mode. When operation in non-MBAFF TX (with X being 

5, 7, 13, 15, and so on) storages can be closed for saving power. The same with P slice, Table 

3.1 lists all MVA, MVB, MVC, and MVD for different block size_position index. The 

difference is MBAFF mode not only size_position index but also current MB pair is 

Frame/Field coding, current MB is Top/Bottom MB, and relative MB pair is Frame/Filed 

coding. Therefore, LUT in MBAFF mode is eight times complexity than non-MBAFF mode. 

For cost and area efficiency consideration, we combine MBAFF and non-MBAFF LUT. 

Fortunately, we can find the condition of MVA, MVB, MVC, and MVD is the same with 

non-MBAFF mode when condition of MBAFF mode is fixed in current MB pair is Field, 

current MB is Bottom MB, and relative MB pair is Field. As mentioned above, we can use the 
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same LUT to deal with non-MBAFF and MBAFF mode. 
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Fig 3.4 Motion vector generator architecture for QCIF-format support MBAFF 

 

Table 3.1 Median prediction table in MBAFF frames 
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As for B slice, we can use hardware sharing to process twice mvp for B slice type 

because motion vector prediction of LIST_1 can be hidden below data-read cycles of LIST_0 

from frame memory. However, it is not only process twice but also need consider many extra 

conditions. For example, Fig 2.8 shows one partition predicted by L0 direction, and 

neighboring partition predicted by L1 direction. When predicting direction is different, the 

neighboring MV cannot be used to predict current MV. Here, we do not discuss them for 

clarity.  

In addition to considered predicting direction, B slice has new direct mode. There are two 

direct modes in B slice, one is spatial direct mode (SDM) and the other one is temporal direct 

mode (TDM). The challenge of direct mode in B slice is to find where the co-located 
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macroblock is and where the co-located partition is. Because current picture and co-located 

picture can be field, frame, and MBAFF coding types. Therefore, both of the co-located 

macroblock and co-located partition determine formula is about eight kinds and these 

determine formula will involve multiplier, divider, and remainder, which are high complexity 

component. However, if we use macroblock coordinate (x and y) which originally transferred 

from system to motion compensation unit to find co-located macroblock/partition. We can 

significantly reduce complexity. Table 3.2 shows the mapping table of co-located macroblock 

after coordinated method reduction. The Y means y-axis. Table 3.3 shows the mapping table 

of co-located partition. Fig 3.5 shows the entire motion compensation architecture.  

 

Table 3.2 Co-located macroblock table 

Curr Col Original equation New equation

FLD FRM 2 * PicWidthInMbs * ( CurrMbAddr / PicWidthInMbs ) + ( CurrMbAddr
% PicWidthInMbs ) + PicWidthInMbs * ( yCol / 8 )

Y<<1
+blk_Num[3]

FLD AFRM
-FRM

2 * CurrMbAddr + ( yCol / 8 ) Y<<1
+blk_Num[3]

AFRM
-FLD

2 * CurrMbAddr + bottom_field_flag Y<<1
+bottom_field_flag

FRM FLD PicWidthInMbs * ( CurrMbAddr / ( 2 * PicWidthInMbs ) ) + 
( CurrMbAddr % PicWidthInMbs ) 

Y>>1

AFRM FLD CurrMbAddr / 2 Y>>1

AFRM
-FRM

AFRM
-FLD

2 * ( CurrMbAddr / 2 ) + ( ( topAbsDiffPOC < bottomAbsDiffPOC ) ? 
0 : 1 )

Y[0]=0

AFRM
-FLD

AFRM
-FRM

2 * ( CurrMbAddr / 2 ) + ( yCol / 8 ) Y[0]=0
+blk_num[3]

Other CurrMbAddr Don’t change
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Table 3.3 Co-located partition table 

 

 

L0 Line MV FIFO

Col/L0 intra flag

direct predictor

L1 Line intra flag

L1 Line MV FIFO

Addr Gen.

4x4 MV buffers

motion vector 

predictor

MUX

mvA, mvB, mvC, mvD

Co-located

mvp

Neighboring 

MVs
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Fig 3.5 Motion vector generator architecture 

 

3.3 Interpolator Design 

3.3.1 Luma Interpolator Design 

 

F
I
R

F IR

F IR

F IR

 

Fig 3.6 Separate 1-D interpolator design (no parallel) 

 

In this subsection, several different interpolator designs will be presented. Reviewing the 

fractional pixel interpolation for H.264/AVC in Fig 2.5, 6-tap FIR with (1, -5, 20, 20, -5, 1) 

coefficient and bilinear filter are needed for half and quarter pixel interpolation. For cost and 

area efficiency consideration, Li‟s and Shen‟s interpolator filter unit and two-stage recursive 

algorithm is proposed in [10] and [11]. These designs are area efficiency and suitable for P 

slice. However, as for B slice, throughput is a very important issue and long execution cycles 
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in these designs cause the real-time of video decoding cannot be meted.  

Oppositely, consider throughput and standard-compatible design, Chien‟s [4] proposed 

separate 1-D design that separates horizontal and vertical interpolation and processes in 

parallel based on 4 x 4 block size. This design owns better throughput, although it may need 

more storages. Fig 3.6 shows separate 1-D interpolator design without processing in parallel. 

 

Table 3.3 Comparison of execution cycles for different architectures 
 

Architecture Ideal execution cycles 

Shen’s and Li’s desing 13 

Separate 1-D (no parallel) 36 

Separate 1-D (2 parallel) 18 

Separate 1-D (4 parallel) 9 

 

Assuming that all 9 x 9 interpolated data for each 4 x 4 block are ready and they can be 

accessed randomly, Table 3.3 lists the execution cycles for different architecture. For Shen‟s 

and Li‟s design, the result outputs depend on fractional pixel positions. For a, b, c, d, h, and n 

position 4 clock cycles are needed to finish one 4x4 block. For e, g, p, and r, it takes 8 cycles 

to finish one 4 x 4 block interpolator. For f, j, q, i, and k, the cycles to finish one 4x4 block are 

13 cycles which detailed operation is described in Li‟s [10] and Shen‟s [4]. As for separate 

1-D design, the first data outputs at the 6
th

 clock cycle and the following 3 data generates after 

3 clock cycles. Therefore, the separate 1-D design without parallel needs 36 ((6 + 3) x 4) 

cycles to complete interpolation of one 4 x 4 block. Similarly, separate 1-D design with 2 and 

4 parallel requires 18 ((6 + 3) x 2) and 9 (6 + 3) cycles respectively. Finally, 4-parallel 

separate 1-D architecture is our selection due to smaller required execution cycles that can be 

hidden below data-read cycles from frame memory. 
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Fig 3.7 Only one half pixel is needed 

 

Fig 3.8 shows original 4-parallel separate 1-D luma interpolator. For cost consideration, 

multiplier in FIR can be simplified to adders and shifters. We will discuss FIR design later. 

Because the original 4-parallel separate 1-D interpolator produces b and s half pixels at the 

same time for produce any position fractional pixel. However, either b or s half pixels is 

needed when produce interpolated pixel. If we check MV, we can know which half is needed 

after all. Therefore, we can modify 4-parallel separate 1-D interpolator to reduce the path 

storages and one FIR. The similar design can be seen in [12][13] and [14], but these designs 

require four multiplexers and we require only one multiplexer. Fig 3.9 shows the enhance 

4-parallel separate 1-D interpolator. 
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Fig 3.8 Original 4-parallel separate 1-D luma interpolator 
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Fig 3.9 Enhance 4-parallel separate 1-D luma interpolator 
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3.3.2 Chroma Interpolator Design 
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Fig 3.10 Interpolation window for each 2 x 2 chroma block 

 

]**)8[(*]**)8[(*)8(*

***)8(*)8(**)8(*)8(

DyFracByFracxFracCyFracAyFracxFracDyFrac

xFracCyFracxFracByFracxFracAyFracxFraci




 Eq. 3.1 

 

Because of 4:2:0 chroma format and quarter precision of luma inter prediction, chroma 

inter prediction displacement can achieve one-eighth motion accuracy. Chroma inter 

prediction must process based on 2 x 2 block size when luma inter prediction process based 

on 4 x 4 block size. Chroma interpolation requires 3 x 3 interpolated data for each 2 x 2 block 

as shown in Fig 3.10. For chroma 2 x 2 block including A, B, C and D, the corresponding 

fractional sample is e, f, g and h whose precision is one-eighth. Compared with direct 

mapping design with 8 multipliers which equation is listed in Fig 2.5 (c), we rewrite the 

equation listed in Eq. 3.1 and the number of multiplier number can be reduced to 4. 

 

(8 ) * [(8 ) * * ] * [(8 ) * * ]

(8 ) * *

(8 - ) * *  

i x F ra c y F ra c A y F ra c C x F ra c y F ra c B y F ra c D

F ra c M F ra c N

M N F ra c O F ra c P

      

  

  

 
Eq. 3.2 

 

We can also rewrite the equation listed in Eq. 3.2. The Frac, O, and P are any 

corresponding value in Eq. 3.2. We can find as luma interpolator, chroma interpolator can 
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separate into horizontal and vertical filter. The corresponding separate 1-D design is 

illustrated in Fig 3.11 (a) and the vertical / horizontal filter is illustrated in Fig 3.11 (b). 

2-parallel separate 1-D chroma interpolator are required to generate interpolated value in 

2-pixel parallel, and it takes 3 cycles to filter 2 x 2 pixels if all required interpolated data are 

ready and they can be accessed randomly. Based on 2-parallel separate 1-D chroma 

interpolator design illustrated in Fig 3.12, only one cycle latency is required. 
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Fig 3.11 (a) Chroma interpolator, (b) vertical/horizontal filter 

 

AB

DE

GH

C

I

F e

h

f

g

yFrac

xFrac

round

F
IR

FIR

yFrac

xFrac

round

F
IR

FIR

 



 33 

Fig 3.12 2-parallel chroma interpolator 

 

3.3.3 Combine Luma and Chroma FIR Design 

 

<< 2

<< 2

Luma
Output

Luma Output = A - 5B + 20C + 20D - 5E +F

A F B E C D

round

(a) (b)  

Fig 3.13 (a) Luma FIR design in Chen’s [3], (b) bilinear filter 

 

Especially note that luma and chroma interpolation for H.264/AVC are different. That is, 

no matter what on algorithm level or hardware level, the computation sources cannot be 

shared. Therefore, the combination of luma and chroma parts is the space of improvement. As 

luma and chroma interpolator filter described in above, the adder and shifter can be shared 

when the architecture of chroma horizontal/vertical filter in Fig 3.11 (b) restructure to adder 

and shifter. Besides, we can further reduce critical path by merge rounding stage. The 

combined interpolator design is shown in Fig 3.14 and the cost penalty is MUX x 2 and 

bitwise AND x 6 when compared with the FIR design proposed in Chen‟s [3] and shown in 

Fig 3.13. Fig 3.15 illustrates the decoding path of luma FIR filter and chroma 
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horizontal/vertical filter. Because chroma interpolation for H.264/AVC is 2 x 2 block size 

basis, only eight luma FIR filters are required to replace with combined luma/chroma 

interpolators. Fig 3.16 indicates the entire interpolator architecture for H.264/AVC. 
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Fig 3.14 Combined luma/chroma interpolator design for H.264 
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Fig 3.15 (a) Path of luma FIR interpolator, (b) path of chroma 1/8 bilinear 
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Fig 3.16 Entire interpolator architecture 
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3.3.4 Cost Analysis 

 

Table 3.2 Comparison of requisite modules 

 

 Wang‟s 

[15] 

ISCAS‟05 

Chen‟s [16] 

ICASSP‟06 

Li‟s [10] 

ISCAS‟07 

Tsai‟s[14] 

MWSCAS‟05 

Shen‟s 

[11] 

ICME‟09 

Proposed 

FIR 13  12  4  12  4 12 

Bilinear 2  12  4  4  4 0 

Technology 

(um) 

0.18  0.18  0.18  0.18
  0.18 0.09 

Gate count 20,686 15,000 13,027 21,506 11,823 13,201 

Working 

Frequency 

(MHz) 

100  150  100  125  100 100 

Latency 

(Cycles/MB) 

luma+chroma  

560  320  304  144+NA 288+NA 144+48 

 

Because of multipliers of 6-tap filter are simplified to adders and shifters in all references. 

Therefore, in literature [10] and [11] use hardware sharing 6-tap FIRs to compute twice to 

reduce area cost in interpolator design. However, throughput is a very important issue and 

long execution cycles in interpolator design lead to not enough throughput in B slice. Our 

restructured interpolator combines luma and chroma filter and through determine MV to 

reduce a filter and one-path storages in traditional design. Table 3.2 lists the comparisons 

between our restructured interpolator design and other design. It shows our interpolator can 

almost achieve as gate count of [10] and [11] and owns enough throughputs although it 

requires paying some control overhead to support multi-mode operations.  
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3.4 Weighted Prediction 
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Eq. 3.4 
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      

 
Eq. 3.5 

 

Weighted prediction is the final stage of motion compensation behind the interpolator. 

Weighted prediction is a tool of scaling motion compensated samples to increase the video 

quality in H.264/AVC video decoding. In this subsection, weighted predictor architecture is 

proposed to collocate with interpolator and eliminate the latency overhead. Chen‟s [16] 

proposed weighted prediction architecture has low complexity. However, it has long critical 

path and large memory requirement (1.5kb). The design of Azevedo‟s [12] weighted predictor 

is simply implemented by direct mapping design and require an embedded memory to store 

rounding coefficient. Compared with direct mapping design which equation is listed in Eq. 

3.3, we can use the same predictor twice to generate predicted value, first is LIST_0 

prediction and second is LIST_1 prediction as shown in Eq. 3.4. The component of rounding 

and offset can be advanced and combined in the same stage. Therefore, the predictor can be 

further modified to reduce the critical path as shown in Eq. 3.5. Moreover from Eq. 3.5, the 

W0 means weight factor and the value depend on weight flag from bit-stream. When weight 

flag is equal to 1, the value of weight factor shall be in the range of -128 to 127, inclusive. 
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When weight flag is equal to 0, weight factor shall be in the range of 2
0
 to 2

7
, inclusive [1]. 

From the above discussion, if we determine the highest weight factor two bit we can use an 

eight bits multiplier and shifter instead of a nine bits multiplier. The predictor is shown in Fig 

3.17. 
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Fig 3.17 Weighted predictor design 

 

Moreover, when B slice is involved, we use hardware sharing to operate twice. In 

addition, a 4 x 4 storages array is required to store intermediate results. Fig 3.18 illustrates the 

complete weighted predictor design. The same as temporal direct mode in motion vector 

generator, weighted predictor has implicit mode which weighting factors are calculated based 

on the relative temporal positions of LIST_0 and LIST_1 reference picture. Weighting factor 

in the implicit mode is derived from temporal direct mode data-path in order to reduce 

hardware cost. Furthermore, divider occupies the main area cost and computation time in the 

temporal direct mode design. We can use loop-up table (LUT) to replace divider because the 
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dividend is a constant value. Table 3.2 lists the comparison for implementation results. For 

[12], it was not presented in comparison because lack of related detail information. 
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Fig 3.18 Entire weight predictor architecture 

 

  ICASSP‟06[16]  proposed  

Multiplier (bits)  9  8  

Technology .18um  .90um  

Gate count 12,960  6,412  

Working frequency 87MHz  100MHz  
 

Table 3.2 Comparison of execution cycles for different architectures 
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3.5 Summary 

 

In this chapter, a motion compensation engine for H.264/AVC Main/High Profile 

decoder is presented. As for sharing design issue for multi-profile, our MVG use the same 

module and storages to deal with P slice and B slice which include MBAFF and non MBAFF. 

Our restructured interpolator presents the area efficiently compared with traditional design 

and it is suitable for high throughput application such as coded in B slice video decoder. 

Besides, the weighted predictor through hardware sharing with temporal direct mode and 

critical path shorten to achieve area efficiency. When weighted predictor collocates with 

interpolator, it only requires one cycle latency overhead. 
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Chapter 4  

Memory Bandwidth Reduction 

 

4x4 output pixels

9x9 reference pixels

interpolatio
n

 

Fig 4.1 4 x 4 block window and the corresponding 9 x 9 interpolation window 

 

Considering luma interpolation, the half position samples interpolated by applying 6-tap 

FIR filter and quarter position samples performed by applying using bilinear filter. It means 

interpolator needs six reference pixels to produce one interpolated pixel. Fig 4.1 shows to 

interpolate each fractional sample value for each 4 x 4 block size; it needs 9 x 9 interpolation 

window. Chroma interpolation, of which concept is similar to luma, interpolates each 

fractional sample value for each 2 x 2 block size, it needs 3 x 3 interpolation windows. When 

frame size is large and frame rate is high, interpolation causes heavy loading of memory 

bandwidth. Moreover, motion compensation involves Main/High Profile; it supports B slices 

in which reference frame from one direction increase to two directions. From the above 

discussion, Main/High Profile doubles the memory bandwidth requirement. In worst case, 
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interpolator needs memory bandwidth requirement, 398MB/s in P slices and 796MB/s in B 

slices, when support 1080 HD @ 30 fps. The heavy loading of memory bandwidth also means 

huge power consumption for bus activity and data operation. 

The rest of this chapter is organized as follows. Firstly, section 4.1 discusses our 

reduction strategies of memory bandwidth. In addition, an analysis of bandwidth reduction 

limit is presented in section 4.2. Finally, summary is given in section 4.3. 
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4.1 Reduction strategies of memory bandwidth 

 

Memory bandwidth always dominates the performance of entire video decoder. Several 

methods have been proposed to reduce the required memory bandwidth and they can be 

mainly classified to two directions, first one is frame recompression and another one is 

redundancy reduction of pixels transmission. With regard to the frame recompression, Fig 4.2 

illustrates the concept. Frame data will be compressed before writing to frame memory, and 

reference frame data will be decompressed before reading into video decoder. However, frame 

recompression method must consider many issues which like necessary random access 

capability demanded from motion compensation, low complexity property due to area cost 

and power saving, and minimize required additional execution cycles to compress/decompress 

data such that meet the real time throughput requirement of video decoder. Here we do not go 

into detail because our system have two dedicated modules, embedded compressor, between 

motion compensation and frame memory and embedded decompressor between frame 

memory and de-blocking module respectively. 

 

Video
Decoder

Frame
Memory

recompress

decompress

Global bus

 

Fig 4.2 Embedded compress/decompress method 
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As for second solution, transmission reduction of redundant pixels, which can be 

classified into two solutions that first one is data fetch time reducing and the other one is data 

(pixel) reusing. The following subsection will discuss the detail of reduction strategies of 

memory bandwidth. Subsection 4.2.1 illustrates first strategy of data fetch times reducing. 

Subsection 4.2.2 gives second strategy of data fetch times reducing. Subsection 4.2.3 

illustrates first strategy of data reusing. Finally, subsection 4.2.4 presents second strategy of 

data reusing. 

 

4.1.1 Exact Fetch Necessary Pixels 
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Fig 4.3 Fractional sample positions for quarter sample luma interpolation 

 

Fig 4.3 illustrates the luma samples „a‟ to „s‟ at fractional sample positions. In traditional 

method, when interpolate fractional pixel, it always fetch 9x9 interpolation windows. 

However, there are not all pixels required in all fractional sample position. For example, the 

sample at half sample position labeled b is derived by the nearest integer position samples in 

the horizontal direction. Similarly, the sample at half sample position labeled h is derived by 

the nearest integer position samples in the vertical direction. Fig 4.4 illustrates interpolation of 

the samples at a, b, and c positions only need 9 x 4 interpolation windows. Fig 4.5 illustrates 
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interpolation of the samples at d, h, and n positions only need 4 x 9 interpolation windows. 

We can depend on motion vector value to exact fetch necessary pixels instead of fetch 9 x 9 

interpolation window. Similar to luma interpolation, chroma interpolation can determine 

motion vector to decide interpolation window as well. Table 4.1 shows the summary of luma 

interpolation windows. Table 4.2 shows the summary of chroma interpolation windows. The 

strategy is also used in other design [14], [10], and [11]. As for bandwidth reduction result, we 

will show it later. 
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interpolatio
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Fig 4.4 Fractional sample only need horizontal samples 

. 

interpolatio
n

4x9 reference pixels

4x4 output pixels

 

Fig 4.5 Fractional sample only need vertical samples 
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Table 4.1 Summary of luma interpolation windows 
 

Pixel position Interpolation Window Size  

G (Integer) 4x4  

a, b, c (Horizontal) 4x9  

d, h, n (Vertical) 9x4  

e, g, p, r  9x4+4x5  

others 9x9  

 

Table 4.2 Summary of chroma interpolation windows 
 

Pixel position Interpolation Window Size  

Integer 2x2  

Horizontal 3x2  

Vertical 2x3  

Others 3x3 

 

4.1.2 Pre-fetch Mechanism 

 

The second strategy of reduced fetching times is Pre-fetch Mechanism. Frame memories 

are such the largest memory storage over the entire video decoder that it are located on 

off-chip. Because bus interface has fixed width, every fetching may fetch unneeded pixels 

when fetch interpolation windows. If we save these unneeded pixels, it may be used in the 

future. Hence, we can further reduce fetching times. Fig 4.6 illustrates the interpolation 

window mismatch with bus interface and pre-fetch mechanism. The strategy is also used in 

other design [11] 
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Fig 4.6 Pre-fetch mechanism 
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4.1.3 Intra MB Pixel Reusing 
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Fig 4.7 4x4 block window and the corresponding 9x9 interpolation window and 

overlapped region for neighboring interpolation window 

 

Similar to reduced fetching times, pixel reusing can separate into intra MB overlap pixels 

reusing and inter MB overlap pixels reusing. The concept of overlap pixels reusing is if two 

motion vectors of horizontal neighboring 4 x 4 blocks are the same, 5 x 9 overlap region 

between two interpolation windows can be reused. Similarly, if two motion vectors of vertical 

neighboring 4 x 4 blocks are the same, 9 x 5 overlap region between two interpolation 

windows can be reused. Fig 4.7 illustrates four motion vectors of neighboring 4 x 4 blocks are 

the same and the corresponding 9 x 9 interpolation windows. We can see there are two 

vertical 5 x 9 overlap region indicated by “A” and two horizontal 9 x 5 overlap region 

indicated by “B” can be reused. 

The first strategy of overlap pixels reusing is Intra MB Overlap Pixels reusing. Fig 4.8 
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illustrates the Intra MB overlap pixels reusing. There are some methods have been proposed 

in [14-16]. In Tsai‟s [14]，Tsai proposed VIDZ to achieve horizontal and vertical data reusing. 

Besides, based on the VIDZ flow, all vertically overlapped interpolation windows can be 

reused without additional storages. However, the violation of the inherent double-z-scan order, 

VIDZ cannot fit into a 4 x 4-block level pipeline. Moreover, in system view, VIDZ induces 

extra synchronization buffers because of different scanning order with other modules (for 

example, residual decoder) which must follow scanning order in standard [1]. 

 

Intra MB 
interpolation 
window overlap 
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Fig 4.8 Intra MB overlap pixels reusing 

 

4.1.4 Inter MB Pixel Reusing 

 

The second strategy of overlap pixel reusing is Inter MB Overlap Pixels reusing. Up to 

now, literatures of neighboring-based pixels reusing almost focus on reusing pixels which 

inside the same MB. However, there are overlap region between interpolated windows which 

located on neighboring MB can be reused. Fig 4.9 illustrates overlapped region for 
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neighboring interpolation windows on horizontal neighboring MB. Only stores horizontal MB 

overlap regions is our selection. This is because if we want to reuse vertical MB overlap 

regions, there are MB regions of entire frame width needed to be store and only provide 

limited space of improve efficiency. Subsection 4.3 will show the analysis. 
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Fig 4.9 Inter MB overlap pixels reusing 

 

The required content buffers are 5 x 9 pixels and 9 x 5 pixels for horizontal and vertical 

overlapped region for neighboring interpolation windows respectively. In order to minimize 

the content buffer size, the lifetime analysis of reference data shows that only three horizontal 

and three vertical blocks is required to be saved in the worst case.Table 4.3 shows the lifetime 

analysis. Horizontal axis shows 4 x 4 partition ordering, vertical axis shows the used storages, 

and filed is which partition horizontal or vertical overlap region of partition is stored. For 

example, in partition 1, horizontal overlap region of partition 1 will be stored in H0 and 

vertical overlap region of partition 1 will be stored in V0. Content buffers can be implemented 

in local registers or SRAM. However, SRAM needs several cycles to finish content-swap 

operation, so we use local registers in order to minimize latency on carrying out content-swap. 

 

Table 4.3 Storage requirement and lifetime analysis 
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4 x 4 

Storage 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 … 

H0  1 1 3 3 5          15     … 

H1        7          1 1 3 … 

H2          9 9 11 11 13       … 

V0 0 1 2     7     12 13   0 1 2  … 

V1    3     8 9          3 … 

V2     4 5 6     11         … 

                                                             Time 

 

4.2 Limit of Reduced Memory Bandwidth 

Our memory bandwidth reduction can be classified into data fetch time reducing and 

pixel reusing. In ideal condition, there exists reduction limit of memory bandwidth in terms of 

reduced fetch times. In ideal condition, all pixels locate on integer position. Table 4.4 shows 

all pixel position and their reduction percent. The reduction percent is original 9 x 9 

interpolation window compare with exact interpolation window that only fetch required pixel. 

In Table 4.4, even though all pixels locate on integer position, G, we can see the limit of 

memory bandwidth reduction is 80%. However, all pixels located in integer position is 

impossible in real sequence 

 

Table 4.4 Summary of luma interpolation windows and reduction percent 

 

Pixel position Interpolation Window Size Reduction percent 

G  4x4  80.25%  

a, b, c  4x9  55.56%  

d, h, n  9x4  55.56%  

e, g, p, r  9x4+4x5  30.86%  

f, i, j, k, q  9x9  0%  

 

In another aspect, in terms of pixel reusing, Fig 4.10 illustrates all partitions can use all 

overlap region include previous upper MB overlap region and previous left MB overlap 
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region. Table 4.5 shows summary of reduction percent in different overlap region. We can see 

even though all partition have horizontal and vertical overlap regions can reuse in ideal 

condition, the limit of bandwidth reduction is 80%. However, if we want to reuse previous 

upper MB overlap region, each MB needs to be saved and only after process all following 

MB of frame width then can be reused and discarded because of characteristic of raster 

scanning. In other words, if we want to achieve upper MB overlap pixels reusing which is 

required to store MB overlap region of the entire row of frame. The storage depend on frame 

width and often very large. For example, it needs 21.6KB in 1080 HD. The storage is too 

large and only enhances 6% of memory bandwidth reduction. Hence, our selection is Intra 

MB with left MB. In ideal condition, we can achieve up to 74% bandwidth saving which is 

close to idea limit without huge overhead. 

 

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Previous upper MB 
overlap region

current MB

Previous lefter MB 
overlap region  

Fig 4.10 All overlap region include between previous upper MB and left MB 

Table 4.5 Summary of reduction percent in different overlap region 
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Overlap region Reduction percent 

(all) Intra MB  65.97%  

Intra MB + left MB  74.07%  

Intra MB + left MB + upper MB  80.25%  

 

In terms of data fetch times reducing and data reusing, it will not both happen all in ideal 

condition at the same time. This is because of integer pixel need not other pixels to interpolate 

result. In other words, it only bypasses reference pixels, so there are no overlap pixels to be 

reused. Fig 4.11 illustrates two motion vectors of neighboring 4 x 4 blocks are the same, there 

is no overlap region between two interpolating windows for data reusing. 
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Fig 4.11 No overlap region can be reused 
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4.3 Summary 

 

In this chapter, memory bandwidth, there are two directions adopted to reduce 

requirement of memory bandwidth. In these two directions, there are four strategies to achieve 

efficiently reducing memory bandwidth. Finally, the analysis of .reduced memory limit is 

discussed. The simulation result will show in chapter 5 and present our strategies is effective 

because of the close to limit of reduced memory bandwidth. 
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Chapter 5  

Experiment Result 

 

5.1 System Specification 

 

Table 5.1 Video decoder specification in our design 
 

H.264/AVC decoder 

I, P, B slice 

Variable block size: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4 

Single reference frame (each direction) 

Search range: [-128, +127.75] 

Fractional motion resolution: quarter for luma, 1/8 for chroma 

Frame/Field coding 

Scalable High Profile (future) 

Decoding capability: H.264/AVC: 1080 HD, 30fps 

                 SVC:      720 HD – 1080 HD, 30fps (future) 

Working Frequency: 

 H.264/AVC: 100 MHz 

 SVC:      150 MHz (future) 

External Memory and Bus 

 

 

 

Table 5.1 lists the specification of our H.264 video decoder. Fig 5.1 shows the whole 

H.264/AVC video decoder. We can see there exists embedded compressor and embedded 

decompressor to further reduce memory bandwidth requirement. Fig 5.2 shows the simulation 

result that applies our reduction strategies of memory bandwidth [17]. Memory bandwidth 

can be saved 71~80% and is very close to the limit of our analysis result shown in subsection 
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4.3. Fig 5.3 shows the comparison with related work [14]. If we pay attention to the extreme 

conditions, we can see that the reduction of memory bandwidth is very close to the limit in 

Akiyo sequence. In addition, the difference of memory bandwidth reduction in Stefan 

sequence is the largest. After we further analyze Akiyo and Stefan sequence, Fig 5.4 shows 

the ratio of pixels position in Akiyo and Stefan sequence. The reviewing of fractional sample 

position for luma interpolation is showed in Fig 4.3. In Akiyo sequence, the ideal condition 

(integral pixels) occupy up to 90%, so the memory bandwidth reduction is very close to the 

limit of memory bandwidth. In Stefan sequence, the pixels position is closely uniform 

distribution. In other words, ideal condition is less. That is, when the ratio of fractional 

position increases, comparing with other works will shows we can significantly enhance 

bandwidth reduction (Up to 11%).  
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Fig 5.1 Motion compensation engine for H.264 video decoder 
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Fig 5.2 Simulation results of bandwidth reduction strategies 

 

 

Fig 5.3 Compare related works 
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Fig 5.4 Ratio of pixels position in Akiyo and Stefan sequence 

 

Even though the above discussion depend on different sequence characteristic, however, 

Fig 5.5 and Fig 5.6 [8] show the luma and chroma integer/fractional motion vector proportion 

for different foreman-QCIF bit-rate. In high bit rate coding (128 kbps), fractional motion 

vector occupies about 80 %. However, in low bit rate (32 kbps), fractional part only occupies 

40 %. Higher bit-rate, higher fractional MV proportion, has better quality with more 

execution time to read pixels data from frame memory than integer motion vector. This gap 

may become more obvious especially when SDRAM is used as frame memory. In other words, 

our proposal is more suitable in high bit-rate than previous works for higher reduction of 

memory bandwidth. 
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Fig 5.5  Luma integer/fractional motion vector proportion for H.264/AVC 
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Fig 5.6 Chroma integer/fractional motion vector proportion for H.264/AVC 
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5.2 Comparison with Related Works 

Table 5.2 lists the comparison with related works about motion compensation. We only 

focus on memory bandwidth reduction and interpolator design comparison. This is because 

memory bandwidth always is bottleneck of motion compensation and interpolator is key 

module in motion compensation. For another reason, each related works support different 

specification. We can see our memory bandwidth optimization is better than previous works 

although our storage is not least. However, our storage size is after trade-off and can get better 

performance. In terms of interpolator, [10] and [11] use hardware sharing to operate twice to 

achieve area efficiency. Even though these hardware sharing is suitable for Baseline Profile, 

but the poor throughput is not meet real-time decode in Main/High Profile. Moreover, our 

interpolator gate count is very close to these previous work [10] [11] and provide enough 

throughput performance in Main/High Profile. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2 H.264decoder comparison with related work 
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 ISCAS 

‟05[15]  

ICASSP 

‟06[16]  

 ISCAS 

‟07[10]  

MWSCAS 

‟05[14]  

ICME 

’09[11]  
Proposed  

Data 

paths  

6-tap  13 12 4 12 4 12 

Bilinear  2 12 4 4 4 0 

Technology (um)  0.18 0.18 0.18 0.18 0 .18 UMC .09 

Gate 

count  

Interpolator  20,686 15,000 13,027 21,506 11,823 13,201 

total  43k 61k 32k 47k N/A 68k 

Storage(Bytes)  54 81 2000 228 432 396 

Bandwidth 

Optimization  

30% 48% 60~80% 60~79% 70% 71~80% 

Working 

Frequency 

(MHz)  

100 150 100 125 100 100 

(max:176) 

Profile  BL BL BL BL BL HP 

Latency 

(Cycles/MB) 

luma+chroma  

560 320 304 144+NA 288+NA 144+48 
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Chapter 6  

Conclusion and Future Work 

 

6.1 Conclusion 

 
Motion compensation engine consists of three parts: motion vector generator, 

interpolator, and weighted predictor. Firstly, motion vector generator needs to support many 

tools in Main/High Profile. The challenge of motion vector generator is high complexity. We 

use hardware sharing to deal with double motion vectors, use coordinate mapping method to 

process direct modes, and merge MBAFF mode LUT and non-MBAFF mode LUT effectively 

to reduce the complexity. The design of interpolator, 4-parallel separate 1-D architecture gives 

the most space on high throughput compared with other proposed architectures. Hence, our 

interpolator is suitable for B slice and our restructured design can significantly reduce area 

cost. Lastly, weighted predictor located on last stage of motion compensation engine, we use 

LUT to deal with complicated implicit mode and collocate with interpolator in order to 

execute operation only occupies one cycle. 

The design target of memory bandwidth reduction is to reduce external memory access 

and improve throughput of motion compensation engine. The proposed reduction strategies of 

memory bandwidth for motion compensation need 319 pixel storages is after trade-off and 

own better performance than other works. After applying these strategies, the memory 

bandwidth requirement can save the required bandwidth about 71~80 %. Moreover, achieve 

efficient memory access scheduling. 
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6.2 Future Work 

 

The proposed motion compensator for H.264/AVC standard only supports up to 

Main/High Profile. If we want to support H.264/SVC/MVC, there are many issues should be 

taken into account. For example, hierarchical B pictures [18] [19]. In addition, a successor to 

H.264/AVC, High Efficiency Video Coding (HEVC) [20], is a proposed video compression 

standard, currently under development. If we want to support HEVC, the subjects such as 

extended macroblock size (EMS), decoder-side motion vector derivation (DMVD), 2-D 

non-separable adaptive interpolation filter (AIF), separable AIF, Direction AIF, 

Competition-based scheme for motion vector selection and coding, and so on tools should be 

taken into account for a next generation motion compensator. 

In terms of memory bandwidth, our proposed mechanism can effectively reduce 

bandwidth requirement. However, there only focus on one single module in system view. 

Hence, there are still many important issues should be considered in order to provide 

bandwidth reduction in the viewpoint of overall system. For example, when embedded 

compressor/decompressor is disabled, a smarter SDRAM controller should be designed 

include scheduled memory accesses. 
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