~N—< A

B o p]
FREE RS
EE

g% 5t H. 264/AVC 205 e I AY AR 5 s (EAT 1)

A Memory Bandwidth-Reduction Motion Compensator for

H.264/AVC Application

h#sE: 208 Ko

iy
L
(!
n

i g e



i 3t H, 264/AVC 22 "% M1z R MR B el (TAT
A Memory Bandwidth-Reduction Motion Compensator for

H.264/AVC Application

IE R LT

hEFE 1a

B

Student : Hao-Min Chen

Advisor : Chen-Yi Lee

B = 2 < 2
TWE o F BT EIR
MLm=

A Thesis
Submitted to College of Electrical and Computer Engineering
National Chiao TungUniversity
in partial Fulfiliment of the Requirements

for the Degree of

Master of Science
in
Electronics and Electro-Optical Engineering
December 2010

Hsinchu, Taiwan, Republic of China

PEARAY L4 EL D



i§ %+ 0. 264/AVC 2 % W3 B M 3 ehade 104 1)

g4 I mE R ipﬁ'fh«t\“ ZAT KR

B> 2 8 7 %8 RK® T+ e kT F &gl

Tk M BRI AR HnF B8 AR IR E R LA R Y
H.264/AVC High Profile AR5 dE » 2 % R E Ak &chie m & (T4 FH ~ant B &0 ¥ 4
T BALJRAD kS B i B U R RE R S G e A g 2 RenT R
@ o U]t p B b it H.264/ AVC Main/High Profile it i L 457 o 54 &
o0 FlA @ @R e AR SR e e S e AT AR R 0 T G ok
B er g ez AT BB i 80 Yz b o e PR AEE o 8 B AR MR AS k SLAP I eDfiR AR g
Boofri seenZE ARz T o 4% H264 BT ERTEROPFEER T ET 20% o
BEMEKE - APk (748 FH ~ L4257 H.264 Baseline Profile @ 4.0 Level 4r
H.264 Main/High Profile @ 4.0 Level » %t T pFjzs i 4 » 3 ¥ & ¥ 1080 HD @ 100.0

MHz > & %8B/ #E 5 68K



A Memory Bandwidth-Reduction Motion Compensator for

H.264/AVC Application

Student : Hao-Min Chen Advisor : Dr. Chen-Yi Lee

Degree Program of Electrical and Computer Engineering

National Chiao Tung University

ABSTRACT

In recent years, H.264/AVC High Profile video standard, which has been adopted by the
Digital Video Broadcasting (DVB)-HDTV broadcast:service and the Blu-ray Disc storage
format, is necessary in demand. The computation time of motion compensation unit is usually
accounted for most of the video decoding system because of the enormous data transfer with
reference frame memories. Particularly in the most advanced H.264/AVC Main/High Profile
video standard supports bi-prediction reference frame, which makes the memory bandwidth
required for a significant increase. Our proposed reduction strategies of memory bandwidth
cannot only effectively reduce the required memory bandwidth up to 80% but also
maintaining the same decoding order as that of entire video decoding system. The proposed
restructured interpolator can save 20% of the number of logic gates compared to traditional
design. Our motion compensator also support H.264 Baseline Profile @ 4.0 Level and
Main/High Profile @ 4.0 Level, in terms of real-time decoding up to 1080 HD @ 100 MHz,

while the total number of 68k NAND2 CMOS logic gate count.
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Chapter 1
Introduction

1.1 Motivation

In recent years, the newest video coding standard published jointly as Part 10 of
MPEG-4 and ITU-T Recommendation H.264 ‘[1] provides fine video compression
performance. The new H.264/AVC standard provides a technical solution for a wider range of
applications, including video-on-demand (VOD), mobile networks, high definition TV,
broadcast over cable, satellite,"cable modem,-DSL or terrestrial, interactive or serial storage
like BD, conversational services over ISDN,-Ethernet, LAN, wireless, or mobile network,
multimedia messaging services over DSL, ISDN, etc.

Besides, in Nov. 2004, Digital video broadcasting handheld, DVB-H [5], has mandated
support of Main Profile for H.264/AVC SDTYV receivers, with an option for the use of High
Profile. The support of High Profile is mandated for H.264/AVC HDTYV decoder. Moreover,
high definition TV requires huge data transmission particular in frame memory, a memory
controller that efficiently communicates with frame memory is the most significant over the
entire video decoding system. Within the video decoding system, motion compensation
always dominates the total amount of data transmission especially when SDRAM or
DDR-SDRAM is adopted as external frame memories. Motion compensation should also

provide efficient memory bandwidth reduction to reduce memory bandwidth.



1.2 Thesis Organization

This thesis is organized as follows. The algorithm description and analysis is discussed in
Chapter 2. In Chapter 3, the motion compensation engine for H.264/AVC video decoder is
presented firstly. Then, the motion compensation engine for H.264 high profile is illustrated.
In Chapter 4, we propose the bandwidth reduction strategies to reduce the required bandwidth
particularly in H.264/AVC integral and fractional motion compensation. We also presents
frame memory organization, and memory bandwidth analysis. Implementation result is given

in Chapter 5. Finally, conclusion and future work is shown in Chapter 6.



Chapter 2
Algorithm Description and Analysis
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Fig 2.2 General structure of H.264 decoder

Fig 2.1 and Fig 2.2 shows the general structure of H.264/AVC video encoder and

decoder respectively [6]. The H.264/AVC design covers a Video Coding Layer (VCL) and

3



Network Abstraction Layer (NAL). We only discuss on VCL that efficient represents the
video content. The concept of H.264/AVC submits the so-called block-based hybrid video
coding. It consists of hybrid of temporal and spatial prediction and is simultaneous with

transform coding.

This chapter is structured as follows. The software profiling is illustrated in section 2.1.
Then, the algorithm of H.264/AVC motion compensation would be described in section 2.2.

Finally, the H.264/AVC high profile is presented in section 2.3

2.1 Profiling
Others (Intra Prediction, etc.)
7%
o 32%
Write File 8% Motion Compensation
9%

PSNR Computation

7%
De-blocking Filter

9 11%
CAV Reconstruction
9%

1Q/IDCT 8% Ref. Frame Copy

Fig 2.3 H.264/AVC video decoder software profile on ARM processor (JM 8.2)



Fig 2.3[8] shows the H.264/AVC profile on ARM processor. The reference software is
JM 8.2 [7]. We can find motion compensation related modules, including motion
compensation, reconstruction, and reference frame copy, occupy 51 % proportion of the entire
video decoder. Parallel processing, bandwidth reduction, or pipeline processing on ASIC

design can significantly reduce this dominated part.

2.2 Inter Prediction Algorithm for H.264/AVC Standard

H.264/AVC standard supports variable block size (VBS) in inter prediction [1] [2]. The
smallest block size could reach least 4x4 for luma and 2x2 for chroma. Fig 2.4 [1] illustrates

all types of partitions.

0 0 1
Macroblock 0 0 1
partitions 1 2 | 3
16x16 16x8 8x16 8x8
Sub-macroblock 0 0 1
partitions 0 0 1
1 2 3
8x8 8x4 4x8 4x4

Fig 2.4 Macroblock partitions and sub-macroblock partitions

H.264/AVC standard also supports high motion resolution that reaches quarter motion
accuracy for luma sample and one-eighth for chroma sample. Luma half sample interpolation
with a 6-tap (1, -5, 20, 20, -5, 1) symmetrical FIR filter and quarter sample interpolation with
bilinear filter are illustrated in Fig 2.5 (a)-(c). The prediction value of chroma component is

generated using bilinear interpolator illustrated in Fig 2.5(d), and the displacement can
5



achieve one-eighth accuracy. From mathematical equations, they are both 2-D interpolation.
However, based on hardware implementation, these equations can be divided into two 1-D to

reduce hardware cost, in other words, horizontal filter first and then vertical one, or vice

versa.

I:‘ |:| I:‘ I:‘ chadohcdn| G b El
¥ s 5
hbid >kﬁ| h j
n P, r

] [] [] [] 0 TG

d=(G+h+1)>>1
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- - (b)
o aEIoaE
3l d e; flg
j:) b Y5 [«]m
o [eilalr A OB
HE B Eaiy = ?f |
o |
0 0O E5 miESn | I |
O---*--0
. C D
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h=((A-5xC+20xG+20xM-5xR+T)+16)>>5
j=((aa-5xbb+20xh+20xs-5xgg+hh)+16)>>5
(@)

Fig 2.5 (a) Luma half sample with 6-tap FIR, (b) luma quarter sample with bilinear
filter, (c) chroma sample with bilinear filter. Upper-case letters indicate the full samples

and lower-case letters indicates the interpolated fractional samples

Motion vector difference (MVD) and motion vector prediction (MVP) generate the

motion vector which Eq. 2.1 express the equation.

MVx MVDx + MVPx

Eq. 2.1
MVy

MVDy + MVPy



MVD is decoded from bit-stream and MVP is predicted according to neighboring motion
vectors. MVP algorithm, contains directional prediction for 16 x 8 or 8 x 16 block size and
median prediction for other block sizes. The detail of MVP decision is shown in Fig 2.6 [8].
Eq. 2.2 expresses the equation of median prediction. Besides, some boundary conditions or
exceptions have to be handled carefully. For instance, when MVC is not available, its value is

replaced by MVD. We do not go into detail of those trivial boundary conditions in here.

MVP = median (MVA ,MVB ,MVC ) Eq. 2.2
ext6  C B 16x8 r—| g | —
L ol
A—> | AP ¢
A—ls L — | el
(a) (b) ()

Fig 2.6 (a) Directional prediction.for8.x 16 block size, (b) directional prediction for

16 x 8 block size, (c) median prediction

In addition to the motion-compensated block size described in Fig 2.4, a P macroblock
can also be coded to P_SKIP mode. For this coding mode, neither residual signal nor motion
information is transmitted. In other words, motion vectors are only decided according to MVP.
The reconstructed reference pixels are obtained similar to macroblock type P_16x16.
Macroblock coded in P_SKIP are often located in large area with no change or slow motion.
In addition to the above techniques, H.264/AVC also supports multiple reference frame,
weighted prediction and direct mode for B slice, which we will present in section 2.3. These
tools can also improve coding efficiency efficiently.
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2.3 Inter Prediction for H.264/AVC High profile Standards

Considering motion compensation, the tools supported by H.264/AVC Main/High Profile
are B slices, Weighted Prediction and Interlace video.

In an inter-coded macroblock of B slice, each macroblock partition may be predicted
from one or two reference pictures, forward and backward the current picture in temporal
order. This tool provides better coding efficiency with more possibilities to select the
best-match prediction references for the macroblock partitions in B slice. Fig 2.7 shows the 3
reference directions: (a) Forward and backward reference pictures, the so-called bi-directional
reference, (b) backward reference, and (¢) forward references [6]. B slices use two lists of
coded reference pictures, LIST Oand LIST 1.-These two lists can include backward and/or

forward coded pictures respectively.

(a) forward and backward

(b) two backward U

XY"—
\_\/‘t/‘( (c) two forward

Fig 2.7 Bi-prediction examples



In B slice, there are four prediction modes: (a) direct mode, (b) LIST 0 mode, (c)
LIST_1 mode, and (d) bi-predictive mode. For a macroblock, each partition can choose
different prediction modes. When the 8 x 8 partition size is used, the chosen mode for each
8x8 partition is applied to all sub-partition within that partition. Fig 2.8 shows two examples
of prediction mode combinations. In Bi-predictive mode, two motion-compensated reference
regions are obtained from LIST_0 and LIST_1 picture respectively. The motion vectors from
LIST 0 and/or LIST_1 in a bi-predictive macroblock or block are predicted form neighboring
motion vectors with the same temporal direction. For instance, a motion vector from the
current macroblock pointing to a forward picture is predicted from other neighboring vectors

that also point to forward pictures.

. Bi L4
Bi-pred ored =
L1 Direct LI0

Fig 2.8 Examples of prediction modes in B slice macroblocks

Similar to the skipped P macroblock coded in P_SKIP mode, a B macroblock can also be
coded in direct mode. In direct mode, no motion vector is transferred for a B slice macroblock
or macroblock partition encoded. Instead, the decoder predicts the motion vectors of LSIT_0
and LIST_1 with neighboring vectors and carries out bi-predictive motion compensation
block. There are spatial and temporal mode can be used to calculate the LIST_0 and LIST_1
motion vectors for direct mode macroblocks or partitions.

Spatial direct mode is similar to P_SKIP mode. Furthermore, it supports bi-prediction

and 4x4 block size accuracy. The double motion vectors are decided according to MVP.



However, some conditions or exceptions have to be handled carefully. For example, in case of
the co-located MB or the partition in the picture that contains the co-located macroblock has a
motion vector that is less than +/- 1/2 luma samples in magnitude (and in some other
conditions), one or both of the predicted vectors are set to zero. We do not go into detail of
those trivial conditions here.

Temporal direct mode differs from P_SKIP mode. The same with the spatial direct mode,
the block size is also 4 x 4 block size accuracy, the motion vectors mvL0, mvL1 are derived
as scaled versions of the motion vector mvCol of the co-locate sub-macroblock partition. The
scaled method is based on the picture-order-count (POC) distance between the current and
LIST_1/LIST_O picture. Fig 2.9 shows the illustration of temporal direct-mode motion vector
inference. When the object is constant velocity motion, it is suitable-coded in temporal direct
mode. When the object is the average form backward. and forward, it is suitable-coded in
spatial direct mode. When the object is still, it“is suitable-coded in skip mode. Encoder can
use skip/direct mode to save one/two motion vector differences (mvd) in every skip/direct

mode partition for further enhance compression efficiency.

List O Current List 1
reference picture reference

/

x|4

l<
|‘ Vl‘
Distance of picture order count i
time

>

Fig 2.9 Example for temporal direct-mode motion vector

10



Another tool supported in Main/High Profile is Weighted Prediction (WP), which is a
method of scaling the samples to increase the video quality in H.264/AVC video decoding. An
application of weighted prediction is to control the relative weighted of interpolated regions to
the motion compensated prediction process. For example, WP may be effective in coding of
‘fade’ transitions (where one scene fades into another). There are three modes in Weighted
Prediction. When Default mode is in use, two motion compensated reference regions are
obtained from LIST_0 and LIST 1 picture respectively and each sample of the prediction
block is calculated as an average of the LIST_O and LIST_1 prediction samples. Eq. 2.3

expresses the equation

predPart = (predPartL0O + predPartgLbl+1) >>1 Eqg. 2.3

When explicit or implicit mode is in use, EqQ. 2.4 is used to calculate the sample of the
prediction block. The difference between explicit and implicit mode is the weighting factors
are calculated based on the picture-order-count distance between LIST 0 and LIST_1
reference pictures in implicit mode. It is similar to temporal direct mode in motion vector
prediction. When explicit mode is in use, the encoder determines weighting factors. In other
words, implicit mode objection is to save weighted prediction parameter in bit-stream for

further enhance compression efficiency.

predPart = ((predPartLO*w, + predPartLl*w, +2"°"") >> (logWD +1)) + ((0, + 0, +1) >> 1)) Eq. 2.4

As for interlace video tool, video signal may be sampled as a sequence of complete
frames or interlaced fields. An interlaced video sequence contains a series of fields. A field

consists of either the odd-numbered or the even-numbered lines within a complete video
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frame. Fig 2.10 illustrates the fields in video sequence. Half of the data in a complete video
frame is represented as a field and is sampled at each temporal interval. The advantage of
interlaced video coding is that it is possible to send twice as many fields per second as the
number of frames in an equal progressive sequence with the same data rate, giving the
appearance of smoother motion. For instance, a NTSC video sequence consists of 60 fields
per second and, when played back, motion can appears smoother than in an equivalent

progressive video sequence containing 30 frames per second.

top bottom top bottom
field field field field

Fig 2.10 Interlaced video sequence

Frame coding is more efficient than field coding for progressive video and static pictures
in interlaced video. Oppositely, field coding is more efficient for moving pictures in interlaced
video. However, sometimes not complete frames are fast moving. Hence, H.264/AVC
Main/High profile provides another tool in interlaced video, macroblock-adaptive frame/field
(MBAFF), to provide macroblock level interlacing. Similar to MBAFF, the picture level
interlacing sometimes is called PicAFF. As an extension of PicAFF, MBAFF is used to
improve coding efficiency of picture with both static and moving regions [21]. In MBAFF
mode, the current slice is processed in units of 16 luma samples wide and 32 luma samples

high, each of which is coded as a “macroblock pair” as shown in Fig 2.11. The encoder can
12



choose to encode each MB pair as (a) frame macroblock pair (b) field macroblock pair and

may select the optimum coding mode for each region of the picture.

MB pair 16 MB pair 16
Sh
- %
16 16
N
32 X 32 X
16 16 16 16
(a)frame MB mode (b)field MB mode

Fig 2.11Macroblock-Adaptive Frame-Field Coding

2.4 Bandwidth Requirement for Inter Prediction

Up to now, we can find interpolationissue becomes more and more important in
state-of-the-art video coding. The interpolation window becomes double for the same block;
In other words, it requires double cycles to interpolate each macroblock. For instance, it
requires two 9 x 9 interpolation windows to interpolate a luma 4 x 4 block and four 3 x 3
interpolation windows to interpolate two chroma 2 x 2 blocks in B macroblock.

In worst case, interpolator needs 398MB/s in P frame, 796MB/s in B frame when
supporting 1920 x 1088 30fps. In other words, motion compensation needs huge memory
bandwidth requirement. Huge data also means large power consumption for bus activity and
data operation.

To reduce bandwidth requirement from frame memory, strategies of memory bandwidth

reduction for motion compensation will be proposed in Chapter 4.
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2.5 Summary

From the H.264/AVC profiling on ARM processor, an efficient hardware accelerator or
ASIC design for motion compensation is important. The inter prediction for H.264/AVC
Baseline, Main/High profiles, and the bandwidth requirement are also illustrated in this

Chapter.
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Chapter 3

Motion Compensation Design for
H.264/AVC Main/High Profile video
decoder

The state-of-the-art video coding standard H.264/AVC provides better compression ratio
that significantly outperforms all previous video compression standards. However,
H.264/AVC supports Main/High profile.and provides many tools compare with Baseline
Profile for further enhance compression ratio. “Therefore, a development of combining
multi-video coding profiles is essential to support:modern multimedia systems. Therefore, it
is the challenge of designing efficient video decoder for multi-profile video application
without significantly increase complexity.

This chapter will discuss that designing of motion compensation, which dominates the
amount of data transfer on the H.264/AVC video decoder. The rest part is structured as
follows. Section 3.1 illustrates motion compensation engine for H.264/AVC decoder. The
combined motion compensation engine for H.264/AVC Baseline/Main/High profile and the

analysis is discussed in section 3.2. Finally, summary is given in section 3.3.
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3.1 Motion Compensation Engine for H.264/AVC decoder

External
Frame
Memory

A { 32

Bus Interface

l

Address Svnchronizer Read Pixels
Generator Y Buffer
ry +
v
Motion Data | Motion Weighted
——=  Vector Interpolator #» .
Predictor
Generator

_Result

Fig 3.1 Motion compensation engine for H.264 video decoder

Fig 3.1 illustrates the whole motion compensation engine for H.264/AVC video decoder.
Firstly, Motion vector generator generates motion vector according to motion data. Then, the
address generator uses motion vector with reduction strategies of memory bandwidth to
generate address of reference region. Moreover, transfer reference address to system memory
controller (also named well-known arbiter). The tasking of memory access controller is
scheduling consecutive access command and sending to frame memories. The burst read data
is kept in read data buffer and then filtered through interpolator. Finally, the interpolated

reference data pass through Weighted Predictor to produce motion compensation result. The
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result will be added to the residual data and then pass through de-blocking filter. In our
proposed decoder, ping-pong structured external frame memory [9], double memories stored
reference and current frame reciprocally, is adopted.

The following subsection will discuss the detail of other modules except reduction
strategies of memory bandwidth. The detailed discussion of reduction strategies of memory
bandwidth are shown in Chapter 4. Subsection 3.2 illustrates motion vector generator (MVG)
Supports Main/High Profile including motion vector predictor and the related storages.
Subsection 3.3 combines luma and chroma interpolator design. Subsection .3.4 shows

Weighted Predictor design. Finally, summary is presented in section 3.5

3.2 MVG support Main/High profile

Frame
boundary

Frame
boundary

Fig 3.2 Motion vectors information storage for motion vector predictor for QCIF

frame format.
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There are two tools in MVG for supported Main/High profile. The first one is B slice
type, which has double motion vectors. The second one is MBAFF mode. In MBAFF mode,
the handle of macroblock is Macroblock pair. The same with P slice, the required total storage
for motion vector generator, Fig 3.2 shows an example. Total amount of 4 x 11 x 2 both
components of the motion vector have to be stored for QCIF frame format. Fig 3.3 (a) shows
the detail of required neighboring motion vectors. To decode TO-T15 in current top MB, it
needs neighboring motion vectors in left (TLO-TL3, MVL0-MVL3), above (TUO-TUS,
MVUO0-MVU3), above-right (TRU, MVRU), and above-left (TLU-MVLU) position. The 4 x
8 size of MV buffers is required because the maximum number of motion vector per MB pair
is thirty-two. If we reuse the same 4 x.4 size of MV buffers and add a number of buffers (T10,
T11, T14, and T15), the MV huffers can be further.reduced. Fig 3.3 (b) shows the reduced

version.
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BLU (L\YRIly MVUO | MVU1 | MVU2

2
<
=
c

TLO

TL1 TL1

TL2 TL2

TL3 TL3

BLO MVLO
BL1 MVL1

BL2 MVL2

BL3 MVL3

Fig 3.3 (a) Neighboring mation vectors needed when. decoding all motion vectors in

current MBAFF macroblock, (b) reduced and combined with non-MBAFF version

Fig 3.4 shows the detailed architecture of motion vector generator. This architecture
combine non-MBAFF and MBAFF mode. When operation in non-MBAFF TX (with X being
5, 7, 13, 15, and so on) storages can be closed for saving power. The same with P slice, Table
3.1 lists all MVA, MVB, MVC, and MVD for different block size position index. The
difference is MBAFF mode not only size position index but also current MB pair is
Frame/Field coding, current MB is Top/Bottom MB, and relative MB pair is Frame/Filed
coding. Therefore, LUT in MBAFF mode is eight times complexity than non-MBAFF mode.
For cost and area efficiency consideration, we combine MBAFF and non-MBAFF LUT.
Fortunately, we can find the condition of MVA, MVB, MVC, and MVD is the same with
non-MBAFF mode when condition of MBAFF mode is fixed in current MB pair is Field,

current MB is Bottom MB, and relative MB pair is Field. As mentioned above, we can use the
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same LUT to deal with non-MBAFF and MBAFF mode.

MVD (load from MV buffer)
motion_vector MVP, MV (write back to MV buffer)
predictor
mvA,_myvs)mve, mvD Left MV line buffer
Neighboring MVs
MV from Upper-/eft MB ’P TL2 I MVL2 T I MVL1 || TLO I MVLO |
MV from Upper MB MV from Current MB
MV from Upper-right MB MV from Left MB '\ T13 17 TS
0 2l 3 4 5 6 7 8 9 10 11I )RR e R e
e s s |
| 0 I(—
I
| ; | |
I
0 | I
- | I—
I
0 I
Tuo j&f Tru FIFO o L l
i I
FIFO / |
T T T T T T i % L - a
upperupper upper A left
left right Line MV FIFO 4x4 MV buffers

Fig 3.4 Motion vector generator architecture for QCIF-format support MBAFF

Table 3.1 Median prediction table in MBAFF frames
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current MB |T/B relative MB |mVvA mvB mvC mvD current MB |T/B relative MB |mVvA mvB mvC mvD
Frame TLO BUO BRU BLU Frame TLO BUO BU2 BLU
Top Top
Field Field
Frame Frame
Frame BLO T10 X TL3 Frame BLO T10 T14 TL3
Bot. Bot.
Field TL2 BL1 Field TL2 BL1
16x16 8x4_0
Frame TLO BUO BRU BLU Frame TLO BUO BU2 BLU
Top Top
Field TUO TRU TLU Field TUO TU2 TLU
Field Field
Fram TLO BUO BRU BLU Fram TLO BUO BU2 BLU
Bot. Bot.
Field BLO Field BLO
Frame TLO BUO BRU BLU Frame TL1 M V0 X TLO
Top Top
Field Field TLO BLO
Frame Frame
Frame BLO T10 X TL3 Frame BL1 M V0 X BLO
Bot. Bot.
Field TL2 BL1 Field TL2 BL2
16x8_0 8x4_1
Frame TLO BUO BRU BLU Frame TL2 TO X TL1
Top Top
Field TUO TRU TLU Field TL1 TLO
Field Field
Fram TLO BUO BRU BLU Fram TL2 BO X TL1
Bot. Bot.
Field BLO Field BL1 BLO
Frame TL2 M V2 X TL1 Frame MV1 BU2 BRU BU1
Top Top
Field TL1 BLO Field
Frame Frame
Frame BL2 M V2 X BL1 Frame MV1 T14 X T11
Bot. Bot.
Field TL3 BL2 Field
16x8_1 8x4_2
Frame BLO M V2 X TL3 Frame T1 BU2 BRU BU1
Top Top
Field TL2 TL1 Field TU2 TRU TU1l
Field Field
Fram BLO M V2 X TL3 Fram MV1 BU2 BRU BU1
Bot. Bot.
Field BL2 BL1 Field
Frame TLO BUO BU2 BLU Frame MV3 M V4 X M V1
Top Top
Field Field
Frame Frame
Frame BLO T10 T14 TL3 Frame MV3 MV4 X MV1
Bot. Bot.
Field TL2 BL1 Field
8x16_0 8x4_3
Frame TLO BUO BU?2 BLU Frame T3 T4 X T1
Top Top
Field TUO TU2 TLU Field
Field Field
Fram TLO BUO BU2 BLU Fram M V3 M V4 X MV1
Bot. Bot.
Field BLO Field
Frame MV1 BU2 BRU BU1 Frame TL2 M V2 M V6 TL1
Top Top
Field Field TL1 BLO
Frame Frame
Frame MV1 T14 X T11 Frame BL2 MV2 M V6 BL1
Bot. Bot.
Field Field TL3 BL2
8x16_1 8x4_4
Frame M V1 BU2 BRU BU1 Frame BLO T2 T6 TL3
Top Top
Field TU2 TRU TU1l Field TL2 TL1
Field Field
Fram MVi1 BU2 BRU BU1 Fram BLO MV2 M V6 TL3
Bot. Bot.
Field Field BL2 BL1
Frame TLO BUO BU2 BLU Frame TL3 M V8 X TL2
Top Top
Field Field TL1 BL1
Frame Frame
Frame BLO T10 T14 TL3 Frame BL3 M V8 X BL2
Bot. Bot.
Field TL2 BL1 Field TL3 BL3
8x8_0 8x4_5
Frame TLO BUO BU2 BLU Frame BL2 T8 X BL1
Top Top
Field TUO TU2 TLU Field TL3 TL2
Field Field
Fram TLO BUO BU2 BLU Fram BL2 M V8 X BL1
Bot. Bot.
Field BLO Field BL3 BL2
Frame MV1 BU2 BRU BU1 Frame MV9 M V6 X M V3
Top Top
Field Field
Frame Frame
Frame MV1 T14 X T11 Frame M V9 M V6 X MV3
Bot. Bot.
Field Field
8x8_1 8x4_6
Frame MV1 BU2 BRU BU1 Frame M V9 M V6 X M V3
Top Top
Field TU2 TRU TU1l Field
Field Field
Fram MV1 BU2 BRU BU1 Fram M V9 M V6 X M V3
Bot. Bot.
Field Field
Frame TL2 M V2 M V6 TL1 Frame MV1il |MV12 |X M V9
Top Top
Field TL1 BLO Field
Frame Frame
Bot Frame BL2 M V2 M V6 BL1 Bot Frame MV1i1l |MV12 |X M V9
ot. ot.
Field TL3 BL2 Field
8x8_2 8x4_7
Frame BLO M V2 M V6 TL3 Frame MV1i1l |MV12 |X M V9
Top Top
Field TL2 TL1 Field
Field Field
Fram BLO M V2 M V6 TL3 Fram MV11 MV12 X M V9
Bot. Bot.
Field BL2 BL1 Field
Frame MV9 M V6 X MV3 Frame TLO BUO BU1 BLU
Top Top
Field Field
Frame Frame
Frame MV9 M V6 X M V3 Frame BLO T10 T11 TL3
Bot. Bot.
Field Field TL2 BL1
8x8_3 4x8_0
Frame MV9 M V6 X M V3 Frame TLO BUO BU1 BLU
Top Top
Field Field TUO TU1l TLU
Field Field
Fram M V9 M V6 X M V3 Fram TLO BUO BU1 BLU
Bot. Bot.
Field Field BLO
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current MB |T/B relative MB  |mvA mvB mvC mvD current MB |T/B relative MB  |mvA mvB mvC mvD
Frame M Vo BU1 BU2 BUO Frame TL1 M VO MV1 TLO
Top Top
Field Field TLO BLO
Frame Frame
Frame M V0 T11 T14 T10 Frame BL1 M VO MV1 BLO
Bot Bot
Field Field TL2 BL2
4x8_1 4x4_2
Frame M V0 BU1 BU2 BUO Frame TL2 M V0 MV1 TL1
Top Top
Field TU1l TU2 TUO Field TL1 TLO
Field Field
Fram M V0 BU1 BU2 BUO Fram TL2 M V0 MV1 TL1
Bot. Bot.
Field Field BL1 BLO
Frame MV1 BU2 BU3 BU1 Frame M V2 MV1 X M VO
Top Top
Field Field
Frame Frame
Frame MV1 T14 T15 T11 Frame M V2 MV1 X M VO
Bot Bot
Field Field
4x8_2 4x4_3
Frame MV1 BU2 BU3 BU1 Frame MV2 MV1 X M V0
Top Top
Field TU2 TUu3 TU1l Field
Field Field
Fram MV1 BU2 BU3 BU1 Fram M V2 MV1 X M V0
Bot. Bot.
Field Field
Frame M V4 BU3 BRU BU2 Frame MV1 BU2 BU3 BU1
Top Top
Field Field
Frame Frame
Frame M V4 T15 X T14 Frame MV1 T14 T15 T11
Bot Bot
Field Field
4x8_3 4x4_4
Frame M V4 BU3 BRU BU2 Frame MV1 BU2 BU3 BU1
Top Top
Field TU3 TRU TU2 Field TU2 TU3 TU1l
Field Field
Fram M V4 BU3 BRU BU2 Fram MV1 BU2 BU3 BU1
Bot Bot
Field Field
Frame TL2 M V2 MV3 TL1 Frame M V4 BU3 BRU BU2
Top Top
Field TL1 BLO Field
Frame Frame
Frame BL2 M V2 MV3 BL1 Frame M V4 T15 X T14
Bot Bot.
Field TL3 BL2 Field
4x8_4 4x4_5
Frame BLO MV2 M V3 TL3 Frame M V4 BU3 BRU BU2
Top Top
Field TL2 TL1 Field TU3 TRU TU2
Field Field
Fram BLO M V2 M V3 TL3 Fram M V4 BU3 BRU BU2
Bot Bot
Field BL2 BL1 Field
Frame M Vs M V3 M V6 M V2 Frame M V3 M V4 M V5 MV1
Top Top
Field Field
Frame Frame
Bot Frame M V8 M V3 M V6 M V2 Bot Frame MV3 M V4 M V5 MV1
0 ot.
Field Field
4x8_5 4x4_6
Frame M V8 MV3 MV6 MV?2 Frame MV3 M V4 M V5 MV1
Top Top
Field Field
Field Field
Fram MV8 MV3 MV6 MVv2 Fram M V3 M V4 M V5 MV1
Bot. Bot.
Field Field
Frame M V9 M V6 M.V7 MV3 Frame M V6 M V5 X M V4
Top Top
Field Field
Frame Frame
Frame M V9 M V6 M V7 MV3 Frame M V6 M V5 X M V4
Bot Bot
Field Field
4x8_6 4x4_7
Frame M V9 M V6 M V7 MV3 Frame M V6 M V5 X M V4
Top Top
Field Field
Field Field
Fram M V9 M V6 M V7 MV3 Fram M V6 M V5 X M V4
Bot. Bot.
Field Field
Frame MV1i2 |MV7 X M V6 Frame TL2 M V2 MV3 TL1
Top Top
Field Field TL1 BLO
Frame Frame
Bot Frame MV1i2 |MV7 X M V6 Bot Frame BL2 M V2 M V3 BL1
0 0
Field Field TL3 BL2
4x8_7 4x4_8
Frame MV1i2 |MV7 X M V6 Frame BLO M V2 M V3 TL3
Top Top
Field Field TL2 TL1
Field Field
Fram MV1i2 |MV7 X M V6 Fram BLO M V2 M V3 TL3
Bot Bot
Field Field BL2 BL1
Frame TLO BUO BU1 BLU Frame M V8 M V3 M V6 M V2
Top Top
Field Field
Frame Frame
Frame BLO T10 T11 TL3 Frame MV8 MV3 M V6 M V2
Bot Bot.
Field TL2 BL1 Field
4x4_0 4x4_9
Frame TLO BUO BU1 BLU Frame M V8 MV3 M V6 M V2
Top Top
Field TUO TU1 TLU Field
Field Field
Fram TLO BUO BU1 BLU Fram M V8 MV3 M V6 M V2
Bot Bot
Field BLO Field
T Frame M VO BU1 BU2 BUO Top ([Frame TL3 M V8 M V9 TL2
op
Field Field TL1 BL1
Frame Frame
Bot Frame M V0 T11 T14 T10 Bot Frame BL3 MV8 M V9 BL2
0
Field Field TL3 BL3
4x4_1 4x4_10
T Frame M V0 BU1 BU2 BUO Top (Frame BL2 M V8 M V9 BL1
op
Field TU1L TU2 TUO Field TL3 TL2
Field Field
Bot Fram M Vo BU1 BU2 BUO Bot. |Fram BL2 MV8 M V9 BL1
ot.
Field Field BL3 BL2
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current MB |T/B relative MB |mVvA mvB mvC mvD
Top |[Frame MV10 |MV9 X M V8
Field
Frame
Bot. |Frame MV10 |MV9 X MVs8
Field
4x4_11
Top |[Frame MV10 |MV9 X MV8
. Field
Field
Bot. |Fram MV10 |MV9 X M V8
Field
Frame M V9 M V6 MV7 M V3
Top
Field
Frame
Frame M V9 M V6 MV7 M V3
Bot.
Field
4x4_12
Frame M V9 M V6 M V7 M V3
Top
. Field
Field
Fram M V9 M V6 MV7 M V3
Bot.
Field
Frame MV1i2 |MV7 X M V6
Top
Field
Frame
Frame MV1i2 |MV7 X M V6
Bot.
Field
4x4_13
Frame MV12 |MV7 X M V6
Top
. Field
Field
Fram MV12 |MV7 X M V6
Bot
Field
Frame MV11l |[MV12 [MV13 [MV9
Top
Field
Frame
Bot Frame MV11l |[MV12 [MV13 [MV9
ot.
Field
4x4_14
Frame MV11 MV12 MV13 M V9
Top
. Field
Field
Bot Fram MV1i1l |[MV12 |MV13 |MV9
ot.
Field
Frame MVi4 |MV13 |X MV12
Top
Field
Frame
Frame MV14 |MV1I3 |X MV12
Bot.
Field
4x4_15
Frame MV14 |MV13 [X MV12
Top
. Field
Field
Fram MV1i4 |MV13 |X MV12
Bot.
Field

As for B slice, we can use hardware

because motion vector prediction of LIST 1 can be hidden below data-read cycles of LIST 0
from frame memory. However, it is not only process twice but also need consider many extra
conditions. For example, Fig 2.8 shows one partition predicted by LO direction, and
neighboring partition predicted by L1 direction. When predicting direction is different, the

neighboring MV cannot be used to predict current MV. Here, we do not discuss them for

clarity.

In addition to considered predicting direction, B slice has new direct mode. There are two
direct modes in B slice, one is spatial direct mode (SDM) and the other one is temporal direct

mode (TDM). The challenge of direct mode in B slice is to find where the co-located

sharing to process twice mvp for B slice type
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macroblock is and where the co-located partition is. Because current picture and co-located
picture can be field, frame, and MBAFF coding types. Therefore, both of the co-located
macroblock and co-located partition determine formula is about eight kinds and these
determine formula will involve multiplier, divider, and remainder, which are high complexity
component. However, if we use macroblock coordinate (x and y) which originally transferred
from system to motion compensation unit to find co-located macroblock/partition. We can
significantly reduce complexity. Table 3.2 shows the mapping table of co-located macroblock
after coordinated method reduction. The Y means y-axis. Table 3.3 shows the mapping table

of co-located partition. Fig 3.5 shows the entire motion compensation architecture.

Table 3.2 Co-located macroblock table

Curr Col Original equation New equation
FLD FRM 2 * PicWidthInMbs* (\CurrMbAddr /PicWidthInMbs ) +( CurrMbAddr Y<<1
% PicWidthInMbs) + PicWidthInMbs * ( yCol / 8 ) +blk_Num[3]
FLD AFRM 2 * CurrMbAddr + (yCol / 8) Y<<1
-FRM +blk_Num[3]
AFRM 2 * CurrMbAddr + bottom_field flag Y<<1
-FLD +bottom_field_flag
FRM FLD PicWidthInMbs * ( CurrMbAddr./ ( 2 * PicWidthInMbs ) ) + Y>>1
( CurrMbAddr % PicWidthInMbs)
AFRM  FLD CurrMbAddr/ 2 Y>>1

AFRM  AFRM 2 * ( CurrMbAddr /2 ) + ( ( topAbsDiffPOC < bottomAbsDiffPOC) ?  Y[0]=0
-FRM  -FLD 0:1)

AFRM  AFRM 2 * ( CurrMbAddr/2 ) + (yCol / 8) Y[0]=0
-FLD  -FRM +blk_num[3]
Other CurrMbAddr Don‘t change
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Table 3.3 Co-located partition table

FLD FRM

FLD AFRM-FRM
FRM FLD

AFRM FLD

-FRM

AFRM AFRM
-FRM -FLD
AFRM AFRM
-FLD -FRM
Other

(2 *yCol ) % 16
(2 *yCol ) % 16
8 * ( (CurrMbAddr / PicWidthInMbs ) % 2) + 4 * (yCol / 8 )

8 * ( CurrMbAddr % 2 ) +4 * (yCol / 8 )

8 * ( CurrMbAddr % 2 )+ 4 * (yCol / 8)

(2 *yCol ) % 16

yCol

myp
MUX

direct predictor

y=0/8
y=4/12

Y[0]=0
y=0/4
y=812
Y[0]!=0
y=0/4
y=8/12

X[0]=0
y=0/4
y=8/12
X[0]!=0
y=0/4
y=8/12

y=0/8
y=4/12

=>0
=>8

=>0
=>4

=>8
=>12

=>0
=>4

=>8
=>12

=>0
=>8

Don’t change

~

Co-lgcated

motion vector
predictor

mvVA, mvB,

Nighbo

.

mvC, mvD

/. MVs
T

Col/LO intra flag

|1 Line intra flag

LO Line MV FIFO

— 4x4 MV buffers

1 Line MV FIF

—

A

N

Addr Gen.
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Fig 3.5 Motion vector generator architecture

3.3 Interpolator Design

3.3.1 Luma Interpolator Design

FIR

i
C

/ FIR

Fig 3.6 Separate 1-D interpolator design (no parallel)

In this subsection, several different interpolator designs will be presented. Reviewing the
fractional pixel interpolation for H.264/AVC in Fig 2.5, 6-tap FIR with (1, -5, 20, 20, -5, 1)
coefficient and bilinear filter are needed for half and quarter pixel interpolation. For cost and
area efficiency consideration, Li’s and Shen’s interpolator filter unit and two-stage recursive
algorithm is proposed in [10] and [11]. These designs are area efficiency and suitable for P
slice. However, as for B slice, throughput is a very important issue and long execution cycles
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in these designs cause the real-time of video decoding cannot be meted.

Oppositely, consider throughput and standard-compatible design, Chien’s [4] proposed
separate 1-D design that separates horizontal and vertical interpolation and processes in
parallel based on 4 x 4 block size. This design owns better throughput, although it may need

more storages. Fig 3.6 shows separate 1-D interpolator design without processing in parallel.

Table 3.3 Comparison of execution cycles for different architectures

Architecture ‘ Ideal execution cycles
Shen’s and Li’s desing 13
Separate 1-D (no parallel) 36
Separate 1-D (2 parallel) 18
Separate 1-D (4 parallel) 9

Assuming that all 9 x 9 interpolated data for each 4x 4 block are ready and they can be
accessed randomly, Table 3.3lists the execution cycles for different architecture. For Shen’s
and Li’s design, the result outputs depend on fractional pixel positions. For a, b, ¢, d, h, and n
position 4 clock cycles are needed to finish'one 4x4 block. For e, g, p, and r, it takes 8 cycles
to finish one 4 x 4 block interpolator. For f, j, q, i, and Kk, the cycles to finish one 4x4 block are
13 cycles which detailed operation is described in Li’s [10] and Shen’s [4]. As for separate
1-D design, the first data outputs at the 6™ clock cycle and the following 3 data generates after
3 clock cycles. Therefore, the separate 1-D design without parallel needs 36 ((6 + 3) x 4)
cycles to complete interpolation of one 4 x 4 block. Similarly, separate 1-D design with 2 and
4 parallel requires 18 ((6 + 3) x 2) and 9 (6 + 3) cycles respectively. Finally, 4-parallel
separate 1-D architecture is our selection due to smaller required execution cycles that can be

hidden below data-read cycles from frame memory.
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Fig 3.7 Only one half pixel is needed

Fig 3.8 shows original 4-parallel separate 1-D luma interpolator. For cost consideration,
multiplier in FIR can be simplified to adders and shifters. We will discuss FIR design later.
Because the original 4-parallel separate 1-D-interpolator produces b and s half pixels at the
same time for produce any position fractional pixel. However, either b or s half pixels is
needed when produce interpolated pixel. If we check MV, we can know which half is needed
after all. Therefore, we can modify 4-parallel separate 1-D interpolator to reduce the path
storages and one FIR. The similar design can be-seen in [12][13] and [14], but these designs
require four multiplexers and we require only one multiplexer. Fig 3.9 shows the enhance

4-parallel separate 1-D interpolator.
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Fig 3.8 Original 4-parallel separate 1-D luma interpolator
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Fig 3.9 Enhance 4-parallel separate 1-D luma interpolator
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3.3.2 Chroma Interpolator Design

OO

SRR
@@@®®.
0 _ ®_O

Fig 3.10 Interpolation window for each 2 x 2 chroma block

i=(8-xFrac )*(8 - yFrac )* A+ xFrac * (8- yFrac )*B + (8 — xFrac )* yFrac *C + xFrac * Eq 3.1
yFrac *D = (8 — xFrac )*[(8 — yFrac )* A+ yFrac *C]+ xFrac *[(8 — yFrac )*B + yFrac * D]

Because of 4:2:0 chroma format and quarter precision of luma inter prediction, chroma
inter prediction displacement can achieve one-eighth. motion accuracy. Chroma inter
prediction must process based on 2 x-2 block size when luma inter prediction process based
on 4 x 4 block size. Chroma interpolation requires 3 x 3 interpolated data for each 2 x 2 block
as shown in Fig 3.10. For chroma 2 x 2 block including A, B, C and D, the corresponding
fractional sample is e, f, g and h whose precision is one-eighth. Compared with direct
mapping design with 8 multipliers which equation is listed in Fig 2.5 (c), we rewrite the

equation listed in Eq. 3.1 and the number of multiplier number can be reduced to 4.

i=(8-xFrac)*[(8 - yFrac)* A+ yFrac*C]+ xFrac*[(8 - yFrac)*B + yFrac*D] Eq 3.2
=(8-Frac)*M + Frac*N
M =N =(8-Frac)*0O + Frac*P

We can also rewrite the equation listed in Eq. 3.2. The Frac, O, and P are any

corresponding value in Eg. 3.2. We can find as luma interpolator, chroma interpolator can
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separate into horizontal and vertical filter. The corresponding separate 1-D design is
illustrated in Fig 3.11 (a) and the vertical / horizontal filter is illustrated in Fig 3.11 (b).
2-parallel separate 1-D chroma interpolator are required to generate interpolated value in
2-pixel parallel, and it takes 3 cycles to filter 2 x 2 pixels if all required interpolated data are
ready and they can be accessed randomly. Based on 2-parallel separate 1-D chroma

interpolator design illustrated in Fig 3.12, only one cycle latency is required.

Frac L>B_¢ l
T PR JedsFac O

FIR

X X
yFrac
v
(a) (b)

Fig 3.11 (a) Chroma interpolator, (b) vertical/horizontal filter
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Fig 3.12 2-parallel chroma interpolator

3.3.3 Combine Luma and Chroma FIR Design

Luma
Output

Luma Output = A - 5B + 20C + 20D - 5E +F

(a) (b)

Fig 3.13 (a) Luma FIR design in Chen’s[3], (b) bilinear filter

Especially note that luma and chroma interpolation for H.264/AVC are different. That is,
no matter what on algorithm level or hardware level, the computation sources cannot be
shared. Therefore, the combination of luma and chroma parts is the space of improvement. As
luma and chroma interpolator filter described in above, the adder and shifter can be shared
when the architecture of chroma horizontal/vertical filter in Fig 3.11 (b) restructure to adder
and shifter. Besides, we can further reduce critical path by merge rounding stage. The
combined interpolator design is shown in Fig 3.14 and the cost penalty is MUX x 2 and
bitwise AND x 6 when compared with the FIR design proposed in Chen’s [3] and shown in

Fig 3.13. Fig 3.15 illustrates the decoding path of luma FIR filter and chroma
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horizontal/vertical filter. Because chroma interpolation for H.264/AVC is 2 x 2 block size
basis, only eight luma FIR filters are required to replace with combined luma/chroma

interpolators. Fig 3.16 indicates the entire interpolator architecture for H.264/AVC.

Rounding
Coefficient

Chroma Luma
Output Output

Fig 3.14 Combined luma/chroma interpolator design for H.264
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XFrac[0]Y iFrac[0] X Frac[1]Y iFrac[1] X Frac[2]YiFrac[2]

Luma Chroma
Output Output

Luma Output = (A - 5B + 20C + 20D - 5E +F +16 )>>5 Chroma Output =Frac*X + (8-Frac)*Y
(a) (b)

Fig 3.15 (a) Path of luma FIR interpolator, (b) path of chroma 1/8 bilinear
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Fig 3.16 Entire interpolator architecture
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3.34

Cost Analysis

Table 3.2 Comparison of requisite modules

Wang’s Chen’s [16] | Li’s [10] | Tsai’s[14] Shen’s Proposed
[15] ICASSP’06 | ISCAS’07 | MWSCAS’05 | [11]
ISCAS’05 ICME’09
FIR 13 12 4 12 4 12
Bilinear 2 12 4 4 4 0
Technology | 0.18 0.18 0.18 0.18 0.18 0.09
(um)
Gate count 20,686 15,000 13,027 21,506 11,823 13,201
Working 100 150 100 125 100 100
Frequency
(MHz)
Latency 560 320 304 144+NA 288+NA | 144+48
(Cycles/MB)
luma+chroma

Because of multipliers of 6-tap filter are simplified to adders and shifters in all references.

Therefore, in literature [10] and [11] use hardware sharing 6-tap FIRs to compute twice to

reduce area cost in interpolator design. However, throughput is a very important issue and

long execution cycles in interpolator design lead to not enough throughput in B slice. Our

restructured interpolator combines luma and chroma filter and through determine MV to

reduce a filter and one-path storages in traditional design. Table 3.2 lists the comparisons

between our restructured interpolator design and other design. It shows our interpolator can

almost achieve as gate count of [10] and [11] and owns enough throughputs although it

requires paying some control overhead to support multi-mode operations.
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3.4 Weighted Prediction

logWwD

p=((pLO*W_ + pL1*W_ +2 ) >> (logWD +1)) + ((0, + 0, +1) >> 1) Eq' 3.3

MOy S logW D) + 0, ] Eq.3.4

logWD -1

p={[((pLO*W +2

+[((pL1*W, +2 )>>1logWD) +o0,]+1}>>1)

logWD -1

p=(pLO*W +2 ) >>logWD) + o0, Eqg. 3.5

logWD -1

p={pLO*W, +[2 + (0, << logWD)]} >> logWD

Weighted prediction is the final stage of motion compensation behind the interpolator.
Weighted prediction is a tool.of scaling motion compensated samples to increase the video
quality in H.264/AVC video decoding. In this subsection, weighted predictor architecture is
proposed to collocate with interpolator-and eliminate the latency overhead. Chen’s [16]
proposed weighted prediction architecture has low complexity. However, it has long critical
path and large memory requirement (1.5kb). The design of Azevedo’s [12] weighted predictor
is simply implemented by direct mapping design and require an embedded memory to store
rounding coefficient. Compared with direct mapping design which equation is listed in Eq.
3.3, we can use the same predictor twice to generate predicted value, first is LIST_O
prediction and second is LIST_1 prediction as shown in Eq. 3.4. The component of rounding
and offset can be advanced and combined in the same stage. Therefore, the predictor can be
further modified to reduce the critical path as shown in Eq. 3.5. Moreover from Eq. 3.5, the
W, means weight factor and the value depend on weight flag from bit-stream. When weight

flag is equal to 1, the value of weight factor shall be in the range of -128 to 127, inclusive.
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When weight flag is equal to 0, weight factor shall be in the range of 2° to 2, inclusive [1].
From the above discussion, if we determine the highest weight factor two bit we can use an
eight bits multiplier and shifter instead of a nine bits multiplier. The predictor is shown in Fig

3.17.

Weight factor[8:7]

Weight factor[7:0] —

> "
predPart
<
-
X
— <<7 |
+ >> >
Round >
>+
offset << |
LogWD 1

Fig 3.17 Weighted predictor design

Moreover, when B slice is involved, we use hardware sharing to operate twice. In
addition, a 4 x 4 storages array is required to store intermediate results. Fig 3.18 illustrates the
complete weighted predictor design. The same as temporal direct mode in motion vector
generator, weighted predictor has implicit mode which weighting factors are calculated based
on the relative temporal positions of LIST_0 and LIST_1 reference picture. Weighting factor
in the implicit mode is derived from temporal direct mode data-path in order to reduce
hardware cost. Furthermore, divider occupies the main area cost and computation time in the

temporal direct mode design. We can use loop-up table (LUT) to replace divider because the
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dividend is a constant value. Table 3.2 lists the comparison for implementation results. For

[12], it was not presented in comparison because lack of related detail information.

B-LO
- | 4 [
Luma/Cb—— PredllCtor Buffer| \ é
S B-L1 { &
: |~
Luma/Cr Pred21c:tor
—Pslice

Fig 3.18 Entire weight predictor architecture

ICASSP?06[16] proposed
Multiplier (bits) 9 8
Technology A8um .90um
Gate count 12,960 6,412
Working frequency 87TMHz 100MHz

Table 3.2 Comparison of execution cycles for different architectures
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3.5 Summary

In this chapter, a motion compensation engine for H.264/AVC Main/High Profile
decoder is presented. As for sharing design issue for multi-profile, our MVG use the same
module and storages to deal with P slice and B slice which include MBAFF and non MBAFF.
Our restructured interpolator presents the area efficiently compared with traditional design
and it is suitable for high throughput application such as coded in B slice video decoder.
Besides, the weighted predictor through hardware sharing with temporal direct mode and
critical path shorten to achieve area efficiency. When weighted predictor collocates with

interpolator, it only requires one cyclelatency overhead.
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Chapter 4
Memory Bandwidth Reduction

e
QO

.\‘\\?ﬂ

4x4 output pixels

9x9 reference pixels

Fig 4.1 4 x 4 block window-and the corresponding 9-x 9 interpolation window

Considering luma interpolation, the half position samples interpolated by applying 6-tap
FIR filter and quarter position samples performed by applying using bilinear filter. It means
interpolator needs six reference pixels to produce one interpolated pixel. Fig 4.1 shows to
interpolate each fractional sample value for each 4 x 4 block size; it needs 9 x 9 interpolation
window. Chroma interpolation, of which concept is similar to luma, interpolates each
fractional sample value for each 2 x 2 block size, it needs 3 x 3 interpolation windows. When
frame size is large and frame rate is high, interpolation causes heavy loading of memory
bandwidth. Moreover, motion compensation involves Main/High Profile; it supports B slices
in which reference frame from one direction increase to two directions. From the above

discussion, Main/High Profile doubles the memory bandwidth requirement. In worst case,
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interpolator needs memory bandwidth requirement, 398MB/s in P slices and 796MB/s in B
slices, when support 1080 HD @ 30 fps. The heavy loading of memory bandwidth also means
huge power consumption for bus activity and data operation.

The rest of this chapter is organized as follows. Firstly, section 4.1 discusses our
reduction strategies of memory bandwidth. In addition, an analysis of bandwidth reduction

limit is presented in section 4.2. Finally, summary is given in section 4.3.
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4.1 Reduction strategies of memory bandwidth

Memory bandwidth always dominates the performance of entire video decoder. Several
methods have been proposed to reduce the required memory bandwidth and they can be
mainly classified to two directions, first one is frame recompression and another one is
redundancy reduction of pixels transmission. With regard to the frame recompression, Fig 4.2
illustrates the concept. Frame data will be compressed before writing to frame memory, and
reference frame data will be decompressed before reading into video decoder. However, frame
recompression method must consider many issues which like necessary random access
capability demanded from motion compensation, low complexity property due to area cost
and power saving, and minimize required additional execution cycles to compress/decompress
data such that meet the real time throughput requirement of video decoder. Here we do not go
into detail because our system have two dedicated modules, embedded compressor, between
motion compensation and frame memory and embedded decompressor between frame

memory and de-blocking module respectively.

Global bus

recompress

Frame
Memory

Video
Decoder

decompress

—_—— e e — — — —_ — =

Fig 4.2 Embedded compress/decompress method
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As for second solution, transmission reduction of redundant pixels, which can be
classified into two solutions that first one is data fetch time reducing and the other one is data
(pixel) reusing. The following subsection will discuss the detail of reduction strategies of
memory bandwidth. Subsection 4.2.1 illustrates first strategy of data fetch times reducing.
Subsection 4.2.2 gives second strategy of data fetch times reducing. Subsection 4.2.3
illustrates first strategy of data reusing. Finally, subsection 4.2.4 presents second strategy of

data reusing.

4.1.1 Exact Fetch Necessary Pixels

G a | b|c|H
d | e g
h|l1/7 k|m
n|p|q|r
M S N

Fig 4.3 Fractional sample positions for quarter sample luma interpolation

Fig 4.3 illustrates the luma samples ‘a’ to ‘s’ at fractional sample positions. In traditional
method, when interpolate fractional pixel, it always fetch 9x9 interpolation windows.
However, there are not all pixels required in all fractional sample position. For example, the
sample at half sample position labeled b is derived by the nearest integer position samples in
the horizontal direction. Similarly, the sample at half sample position labeled h is derived by
the nearest integer position samples in the vertical direction. Fig 4.4 illustrates interpolation of

the samples at a, b, and ¢ positions only need 9 x 4 interpolation windows. Fig 4.5 illustrates
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interpolation of the samples at d, h, and n positions only need 4 x 9 interpolation windows.
We can depend on motion vector value to exact fetch necessary pixels instead of fetch 9 x 9
interpolation window. Similar to luma interpolation, chroma interpolation can determine
motion vector to decide interpolation window as well. Table 4.1 shows the summary of luma
interpolation windows. Table 4.2 shows the summary of chroma interpolation windows. The
strategy is also used in other design [14], [10], and [11]. As for bandwidth reduction result, we

will show it later.

9x4 reference pixels

4x4 output pixels

Fig 4.4 Fractional sample only need horizontal samples

&

)

4x4 output pixels

4x9 reference pixels

Fig 4.5 Fractional sample only need vertical samples
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Table 4.1 Summary of luma interpolation windows

Pixel position Interpolation Window Size

G (Integer) 4x4

a, b, ¢ (Horizontal)  4x9

d, h, n (\Vertical) 9x4

&anTr 9x4+4x5

others 9x9

Table 4.2 Summary of chroma interpolation windows

Pixel position Interpolation Window Size
Integer 2X2
Horizontal 3x2
Vertical 2x3
Others 3x3

4.1.2 Pre-fetch Mechanism

The second strategy of reduced fetching times is Pre-fetch Mechanism. Frame memories
are such the largest memory storage over the entire video decoder that it are located on
off-chip. Because bus interface has fixed width, every fetching may fetch unneeded pixels
when fetch interpolation windows. If we save these unneeded pixels, it may be used in the
future. Hence, we can further reduce fetching times. Fig 4.6 illustrates the interpolation
window mismatch with bus interface and pre-fetch mechanism. The strategy is also used in

other design [11]
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Bus interface is
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4.1.3 Intra MB Pixel Reusing

v9]
| <—17—>| 4—9—»' 4—7—»'

«+——4—» | -——5—» | «—O4—>» |
| | | |

Fig 4.7 4x4 block window and the corresponding 9x9 interpolation window and

overlapped region for neighboring.interpolation window

Similar to reduced fetching times, pixel reusing can separate into intra MB overlap pixels
reusing and inter MB overlap pixels reusing. The concept of overlap pixels reusing is if two
motion vectors of horizontal neighboring 4 x 4 blocks are the same, 5 x 9 overlap region
between two interpolation windows can be reused. Similarly, if two motion vectors of vertical
neighboring 4 x 4 blocks are the same, 9 x 5 overlap region between two interpolation
windows can be reused. Fig 4.7 illustrates four motion vectors of neighboring 4 x 4 blocks are
the same and the corresponding 9 x 9 interpolation windows. We can see there are two
vertical 5 x 9 overlap region indicated by “A” and two horizontal 9 x 5 overlap region
indicated by “B” can be reused.

The first strategy of overlap pixels reusing is Intra MB Overlap Pixels reusing. Fig 4.8
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illustrates the Intra MB overlap pixels reusing. There are some methods have been proposed
in [14-16]. In Tsai’s [14] - Tsai proposed VIDZ to achieve horizontal and vertical data reusing.
Besides, based on the VIDZ flow, all vertically overlapped interpolation windows can be
reused without additional storages. However, the violation of the inherent double-z-scan order,
VIDZ cannot fit into a 4 x 4-block level pipeline. Moreover, in system view, VIDZ induces
extra synchronization buffers because of different scanning order with other modules (for

example, residual decoder) which must follow scanning order in standard [1].

| - ]
7 — IntraMB
| — interpolation
{ window overlap
1 3 L[ region

Fig 4.8 Intra MB overlap pixels reusing

414  Inter MB Pixel Reusing

The second strategy of overlap pixel reusing is Inter MB Overlap Pixels reusing. Up to
now, literatures of neighboring-based pixels reusing almost focus on reusing pixels which
inside the same MB. However, there are overlap region between interpolated windows which

located on neighboring MB can be reused. Fig 4.9 illustrates overlapped region for
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neighboring interpolation windows on horizontal neighboring MB. Only stores horizontal MB
overlap regions is our selection. This is because if we want to reuse vertical MB overlap
regions, there are MB regions of entire frame width needed to be store and only provide

limited space of improve efficiency. Subsection 4.3 will show the analysis.

Inter MB

- — interpolation

window overlap

8 [ 9 |12 [ 13718 [ 9 | 12 [ 13 | = ro=

10 | 11 [ 14 [ 150110 | 11 | 14 | 15

previous MB current MB

Fig 4.9 Inter MB overlap pixels reusing

The required content buffers are 5 x 9 pixels and'9 x 5 pixels for horizontal and vertical
overlapped region for neighboring interpolation windows respectively. In order to minimize
the content buffer size, the lifetime analysis of reference data shows that only three horizontal
and three vertical blocks is required to be saved in the worst case.Table 4.3 shows the lifetime
analysis. Horizontal axis shows 4 x 4 partition ordering, vertical axis shows the used storages,
and filed is which partition horizontal or vertical overlap region of partition is stored. For
example, in partition 1, horizontal overlap region of partition 1 will be stored in HO and
vertical overlap region of partition 1 will be stored in VVO. Content buffers can be implemented
in local registers or SRAM. However, SRAM needs several cycles to finish content-swap

operation, so we use local registers in order to minimize latency on carrying out content-swap.

Table 4.3 Storage requirement and lifetime analysis
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4x410(1(2|3|4|5/6(7|8(9|10(11|12|13|14|15|0|1|2|3
Storai
HO 111/3(3|5 15
H1 7 1113
H2 919 (11|11 |13
VO 0112 7 12 | 13 012
V1 3 819 3
V2 4(15|6 11

Time—>

4.2  Limit of Reduced Memory Bandwidth

Our memory bandwidth reduction can be classified into data fetch time reducing and
pixel reusing. In ideal condition, there exists reduction limit of memory bandwidth in terms of
reduced fetch times. In ideal condition, all pixels locate on integer position. Table 4.4 shows
all pixel position and their “reduction percent. The reduction percent is original 9 x 9
interpolation window comparewith exact interpolation window that only fetch required pixel.
In Table 4.4, even though all pixels locate on integer position, G, we can see the limit of
memory bandwidth reduction is 80%. ‘However, all pixels located in integer position is

impossible in real sequence

Table 4.4 Summary of luma interpolation windows and reduction percent

Pixel position | Interpolation Window Size Reduction percent
G 4x4 80.25%

a,b,c 4x9 55.56%

d,h,n 9x4 55.56%

e,qpr 9x4+4x5 30.86%
f.i,),kq 9x9 0%

In another aspect, in terms of pixel reusing, Fig 4.10 illustrates all partitions can use all

overlap region include previous upper MB overlap region and previous left MB overlap
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region. Table 4.5 shows summary of reduction percent in different overlap region. We can see
even though all partition have horizontal and vertical overlap regions can reuse in ideal
condition, the limit of bandwidth reduction is 80%. However, if we want to reuse previous
upper MB overlap region, each MB needs to be saved and only after process all following
MB of frame width then can be reused and discarded because of characteristic of raster
scanning. In other words, if we want to achieve upper MB overlap pixels reusing which is
required to store MB overlap region of the entire row of frame. The storage depend on frame
width and often very large. For example, it needs 21.6KB in 1080 HD. The storage is too
large and only enhances 6% of memory bandwidth reduction. Hence, our selection is Intra
MB with left MB. In ideal condition, we can achieve up to 74% bandwidth saving which is

close to idea limit without huge overhead.

<« Previous upper MB
overlap region

T current MB
Previous lefter MB
overlap region

Fig 4.10 All overlap region include between previous upper MB and left MB

Table 4.5 Summary of reduction percent in different overlap region
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Overlap region Reduction percent

(all) Intra MB 65.97%
Intra MB + left MB 74.07%
Intra MB + left MB + upper MB 80.25%

In terms of data fetch times reducing and data reusing, it will not both happen all in ideal
condition at the same time. This is because of integer pixel need not other pixels to interpolate
result. In other words, it only bypasses reference pixels, so there are no overlap pixels to be
reused. Fig 4.11 illustrates two motion vectors of neighboring 4 x 4 blocks are the same, there

is no overlap region between two interpolating windows for data reusing.

4x4 reference pixels

4x4 output pixels
block 0 block 1

Fig 4.11 No overlap region can be reused
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4.3 Summary

In this chapter, memory bandwidth, there are two directions adopted to reduce
requirement of memory bandwidth. In these two directions, there are four strategies to achieve
efficiently reducing memory bandwidth. Finally, the analysis of .reduced memory limit is
discussed. The simulation result will show in chapter 5 and present our strategies is effective

because of the close to limit of reduced memory bandwidth.
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Chapter 5
Experiment Result

5.1 System Specification

Table 5.1 Video decoder specification in our design

H.264/AVC decoder

I, P, Bslice
Variable block size: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4
Single reference frame (each direction)
Search range: [-128, +127.75]
Fractional motion resolution: quarter for luma, 1/8 for chroma
Frame/Field coding
Scalable High Profile (future)
Decoding capability: H:264/AVC: 1080 HD, 301ps
SVC: 720-HD = 1080 HD, 30fps (future)

Working Frequency:

H.264/AVC: 100 MHz

SVC: 150 MHz (future)
External Memory and Bus

Table 5.1 lists the specification of our H.264 video decoder. Fig 5.1 shows the whole
H.264/AVC video decoder. We can see there exists embedded compressor and embedded
decompressor to further reduce memory bandwidth requirement. Fig 5.2 shows the simulation
result that applies our reduction strategies of memory bandwidth [17]. Memory bandwidth

can be saved 71~80% and is very close to the limit of our analysis result shown in subsection
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4.3. Fig 5.3 shows the comparison with related work [14]. If we pay attention to the extreme
conditions, we can see that the reduction of memory bandwidth is very close to the limit in
Akiyo sequence. In addition, the difference of memory bandwidth reduction in Stefan
sequence is the largest. After we further analyze Akiyo and Stefan sequence, Fig 5.4 shows
the ratio of pixels position in Akiyo and Stefan sequence. The reviewing of fractional sample
position for luma interpolation is showed in Fig 4.3. In Akiyo sequence, the ideal condition
(integral pixels) occupy up to 90%, so the memory bandwidth reduction is very close to the
limit of memory bandwidth. In Stefan sequence, the pixels position is closely uniform
distribution. In other words, ideal condition is less. That is, when the ratio of fractional
position increases, comparing with other works will shows we can significantly enhance

bandwidth reduction (Up to 11%).

< ’ )

AHB Master/Slave Interface & SVC Arbiter

A A
A\ 4
SvVC Embedded Temporary Embedded
Bitstream Decompressor Data Compressor
A
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> Data Fetch <SRAM>Data Fetch & Pixels
Operation
. < SRAM >
y Motion
Compensation
Entropy  |coef. Residye ) Deblocking
» 1Q IT > .
Decoder Filter
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Fig 5.1 Motion compensation engine for H.264 video decoder
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Fig 5.4 Ratio of pixels position in Akiyo and Stefan sequence

Even though the above discussion depend on different sequence characteristic, however,
Fig 5.5 and Fig 5.6 [8] show the luma and chroma integer/fractional motion vector proportion
for different foreman-QCIF bit-rate. In high bit rate coding (128 kbps), fractional motion
vector occupies about 80 %. However, in low bit rate (32 kbps), fractional part only occupies
40 %. Higher bit-rate, higher fractional MV proportion, has better quality with more
execution time to read pixels data from frame memory than integer motion vector. This gap
may become more obvious especially when SDRAM is used as frame memory. In other words,
our proposal is more suitable in high bit-rate than previous works for higher reduction of
memory bandwidth.
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Luma integer/fractional motion vector proportion (foreman-QCIF)
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Fig5.5 Luma integer/fractional motion vector proportion for H.264/AVC
Chroma integer/fractional motion vector proportion (foreman-QCIF)
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Fig 5.6 Chroma integer/fractional motion vector proportion for H.264/AVC
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5.2 Comparison with Related Works

Table 5.2 lists the comparison with related works about motion compensation. We only
focus on memory bandwidth reduction and interpolator design comparison. This is because
memory bandwidth always is bottleneck of motion compensation and interpolator is key
module in motion compensation. For another reason, each related works support different
specification. We can see our memory bandwidth optimization is better than previous works
although our storage is not least. However, our storage size is after trade-off and can get better
performance. In terms of interpolator, [10] and [11] use hardware sharing to operate twice to
achieve area efficiency. Even though these hardware sharing is suitable for Baseline Profile,
but the poor throughput is not meet real-time decode in Main/High Profile. Moreover, our
interpolator gate count is very close to-these-previous work [10] [11] and provide enough

throughput performance in Main/High-Profile.

Table 5.2 H.264decoder comparison with related work
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ISCAS | ICASSP | ISCAS | MWSCAS | ICME Proposed
*05[15] | *06[16] | °07[10] | 05[14] '09[11]

Data 6-tap

paths Bilinear 2 12 4 4 4 0
Technology (um) 0.18 0.18 0.18 0.18 0.18 UMC .09
Gate Interpolator 20,686 15,000 13,027 21,506 11,823 13,201
count 4 tal 43k 61k 32k 47K N/A 68k
Storage(Bytes) 54 81 2000 228 432 396
Bandwidth 30% 48% 60~80% 60~79% 70% 71~80%
Optimization

Working 100 150 100 125 100 100
Frequency (max:176)
(MHz2)

Profile BL BL BL BL BL HP
Latency 560 320 304 144+NA 288+NA 144+48
(Cycles/MB)

luma+chroma
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Chapter 6
Conclusion and Future Work

6.1 Conclusion

Motion compensation engine consists of three parts: motion vector generator,
interpolator, and weighted predictor. Firstly, motion vector generator needs to support many
tools in Main/High Profile. The challenge of motion vector generator is high complexity. We
use hardware sharing to deal with double motion vectors, use coordinate mapping method to
process direct modes, and merge MBAFF mode LUT and-non-MBAFF mode LUT effectively
to reduce the complexity. The design of interpolator, 4-parallel separate 1-D architecture gives
the most space on high throughput compared with other proposed architectures. Hence, our
interpolator is suitable for B slice and our restructured design can significantly reduce area
cost. Lastly, weighted predictor located on last stage of motion compensation engine, we use
LUT to deal with complicated implicit mode and collocate with interpolator in order to
execute operation only occupies one cycle.

The design target of memory bandwidth reduction is to reduce external memory access
and improve throughput of motion compensation engine. The proposed reduction strategies of
memory bandwidth for motion compensation need 319 pixel storages is after trade-off and
own better performance than other works. After applying these strategies, the memory
bandwidth requirement can save the required bandwidth about 71~80 %. Moreover, achieve

efficient memory access scheduling.

63



6.2 Future Work

The proposed motion compensator for H.264/AVC standard only supports up to
Main/High Profile. If we want to support H.264/SVC/MVC, there are many issues should be
taken into account. For example, hierarchical B pictures [18] [19]. In addition, a successor to
H.264/AVC, High Efficiency Video Coding (HEVC) [20], is a proposed video compression
standard, currently under development. If we want to support HEVC, the subjects such as
extended macroblock size (EMS), decoder-side motion vector derivation (DMVD), 2-D
non-separable adaptive interpolation filter (AIF), separable AIF, Direction AlIF,
Competition-based scheme for motion vector selection and coding, and so on tools should be
taken into account for a next generation-motion-compensator.

In terms of memory bandwidth; our -proposed -mechanism can effectively reduce
bandwidth requirement. However, there only focus on one single module in system view.
Hence, there are still many important issues: should-be considered in order to provide
bandwidth reduction in the viewpoint.of overall system. For example, when embedded
compressor/decompressor is disabled, a smarter SDRAM controller should be designed

include scheduled memory accesses.
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