
國 立 交 通 大 學

電機學院 電子與光電學程

碩 士 論 文

適用於 H.264/AVC 之降低記憶體頻寬的動作補償

A Memory Bandwidth-Reduction Motion Compensator for

H.264/AVC Application

研 究 生：陳浩民

指導教授：李鎮宜 教授

中 華 民 國 九 十 九 年 十二 月

適用於 H.264/AVC 之降低記憶體頻寬的動作補償

A Memory Bandwidth-Reduction Motion Compensator for

H.264/AVC Application

研 究 生：陳浩民 Student：Hao-Min Chen

指導教授：李鎮宜 Advisor：Chen-Yi Lee

國 立 交 通 大 學

電機學院 電子與光電學程

碩 士 論 文

A Thesis

Submitted to College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Electronics and Electro-Optical Engineering

December 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年十二月

適用於 H.264/AVC 之降低記憶體頻寬的動作補償

學生：陳浩民 指導教授：李鎮宜 教授

國 立 交 通 大 學 電 機 學 院 電 子 與 光 電 學 程 碩 士 班

摘 要

近年來，對於已被數位視訊廣播的高傳真電視廣播服務和藍光光碟所採用的

H.264/AVC High Profile 視訊標準，其需求是很必要的。而動作補償單元的計算量通常占

了整個視訊解碼系統的大多數，這是由於它需要對參考畫面的記憶體有相當大量的資料

傳輸。特別在目前最先進的 H.264/ AVC Main/High Profile 視訊標準支援了雙向參考畫

面，因而使得所需的記憶體頻寬大量增加。我們提出的記憶體頻寬縮減策略除了可有效

地減少所需的記憶體頻寬高達 80 %之外，同時維持和整個視訊解碼系統相同的解碼順

序。和傳統的架構相較之下，針對 H.264 提出的可重新架構的內插器，可省下 20 % 的

邏輯閘數量。我們的動作補償單元同時支援了 H.264 Baseline Profile @ 4.0 Level 和

H.264 Main/High Profile @ 4.0 Level，對即時解碼能力而言可達到 1080 HD @ 100.0

MHz，而總邏輯閘數量為 68 K。

A Memory Bandwidth-Reduction Motion Compensator for

H.264/AVC Application

Student : Hao-Min Chen Advisor : Dr. Chen-Yi Lee

Degree Program of Electrical and Computer Engineering

National Chiao Tung University

ABSTRACT

In recent years, H.264/AVC High Profile video standard, which has been adopted by the

Digital Video Broadcasting (DVB) HDTV broadcast service and the Blu-ray Disc storage

format, is necessary in demand. The computation time of motion compensation unit is usually

accounted for most of the video decoding system because of the enormous data transfer with

reference frame memories. Particularly in the most advanced H.264/AVC Main/High Profile

video standard supports bi-prediction reference frame, which makes the memory bandwidth

required for a significant increase. Our proposed reduction strategies of memory bandwidth

cannot only effectively reduce the required memory bandwidth up to 80% but also

maintaining the same decoding order as that of entire video decoding system. The proposed

restructured interpolator can save 20% of the number of logic gates compared to traditional

design. Our motion compensator also support H.264 Baseline Profile @ 4.0 Level and

Main/High Profile @ 4.0 Level, in terms of real-time decoding up to 1080 HD @ 100 MHz,

while the total number of 68k NAND2 CMOS logic gate count.

Acknowledgements

首先要感謝的是我的指導教授李鎮宜研發長在我的碩士生涯中給我的指導與鞭

策，在他熱心指導過程中，雖然常常我有很爆笑的回應，但總是能很有耐心的指導我。

接下來要感謝，帶領我的博士班學長，也是我們 Si2 多媒體組 leader 李曜，在他有

效的領導與熱心的幫助，讓我的研究持續有進展；另外要感謝王勝仁學長，他的論文非

常優秀，很值得我借鏡，對我的研究幫助很大；接下來要感我們 Si2 實驗室的成員們，

耀琳，謝謝你為了教我 ICLAB 常常陪我熬夜；還有見縫就插針的的明瑜；要把好的 idea

分給我的建辰；分享酒店文化的義澤，分享把妹經驗的人偉；常常幫我介紹的勝舜；下

課常一起聊天的元雍與盈鋒；老是說真的的長宏；常回來的子明學長；老是叫我捐錢的

欣儒；大家一起做研究，一起敖夜，一起唱歌，一起聊天，一起聚餐。在苦悶的研究生

涯帶來了豐富的歡樂色彩。

最後要感謝的是我的家人，強列的要求我再進修，也由於有他們的支持，讓我可

以在沒有後顧之憂的，全心完成我的研究。

 i

Contents

CHAPTER 1 INTRODUCTION ... 1

1.1 MOTIVATION ... 1

1.2 THESIS ORGANIZATION .. 2

CHAPTER 2 ALGORITHM DESCRIPTION AND ANALYSIS ... 3

2.1 PROFILING ... 4

2.2 INTER PREDICTION ALGORITHM FOR H.264/AVC STANDARD ... 5

2.3 INTER PREDICTION FOR H.264/AVC HIGH PROFILE STANDARDS 8

2.4 BANDWIDTH REQUIREMENT FOR INTER PREDICTION .. 13

2.5 SUMMARY ... 14

CHAPTER 3 MOTION COMPENSATION DESIGN FOR H.264/AVC MAIN/HIGH

PROFILE VIDEO DECODER .. 15

3.1 MOTION COMPENSATION ENGINE FOR H.264/AVC DECODER 16

3.2 MVG SUPPORT MAIN/HIGH PROFILE ... 17

3.3 INTERPOLATOR DESIGN ... 26

3.3.1 Luma Interpolator Design .. 26

3.3.2 Chroma Interpolator Design .. 31

3.3.3 Combine Luma and Chroma FIR Design ... 33

3.3.4 Cost Analysis .. 37

 ii

3.4 WEIGHTED PREDICTION.. 38

3.5 SUMMARY ... 41

CHAPTER 4 MEMORY BANDWIDTH REDUCTION .. 42

4.1 REDUCTION STRATEGIES OF MEMORY BANDWIDTH.. 44

4.1.1 Exact Fetch Necessary Pixels ... 45

4.1.2 Pre-fetch Mechanism .. 47

4.1.3 Intra MB Pixel Reusing .. 49

4.1.4 Inter MB Pixel Reusing... 50

4.2 LIMIT OF REDUCED MEMORY BANDWIDTH .. 52

4.3 SUMMARY ... 55

CHAPTER 5 EXPERIMENT RESULT ... 56

5.1 SYSTEM SPECIFICATION ... 56

5.2 COMPARISON WITH RELATED WORKS .. 61

CHAPTER 6 CONCLUSION AND FUTURE WORK ... 63

6.1 CONCLUSION ... 63

6.2 FUTURE WORK .. 64

BIBLIOGRAPHY ... 65

 iii

List of Figures

FIG 2.1 GENERAL STRUCTURE OF H.264 ENCODER .. 3

FIG 2.2 GENERAL STRUCTURE OF H.264 DECODER .. 3

FIG 2.3 H.264/AVC VIDEO DECODER SOFTWARE PROFILE ON ARM PROCESSOR (JM 8.2) 4

FIG 2.4 MACROBLOCK PARTITIONS AND SUB-MACROBLOCK PARTITIONS 5

FIG 2.5 (A) LUMA HALF SAMPLE WITH 6-TAP FIR, (B) LUMA QUARTER SAMPLE WITH BILINEAR

FILTER, (C) CHROMA SAMPLE WITH BILINEAR FILTER. UPPER-CASE LETTERS INDICATE THE

FULL SAMPLES AND LOWER-CASE LETTERS INDICATES THE INTERPOLATED FRACTIONAL

SAMPLES .. 6

FIG 2.6 (A) DIRECTIONAL PREDICTION FOR 8 X 16 BLOCK SIZE, (B) DIRECTIONAL PREDICTION FOR

16 X 8 BLOCK SIZE, (C) MEDIAN PREDICTION .. 7

FIG 2.7 BI-PREDICTION EXAMPLES ... 8

FIG 2.8 EXAMPLES OF PREDICTION MODES IN B SLICE MACROBLOCKS .. 9

FIG 2.9 EXAMPLE FOR TEMPORAL DIRECT-MODE MOTION VECTOR ... 10

FIG 2.10 INTERLACED VIDEO SEQUENCE .. 12

FIG 2.11MACROBLOCK-ADAPTIVE FRAME-FIELD CODING.. 13

FIG 3.1 MOTION COMPENSATION ENGINE FOR H.264 VIDEO DECODER 16

FIG 3.7 MOTION VECTORS INFORMATION STORAGE FOR MOTION VECTOR PREDICTOR FOR QCIF

FRAME FORMAT. ... 17

FIG 3.8 (A) NEIGHBORING MOTION VECTORS NEEDED WHEN DECODING ALL MOTION VECTORS IN

CURRENT MBAFF MACROBLOCK, (B) REDUCED AND COMBINED WITH NON-MBAFF

 iv

VERSION .. 19

FIG 3.9 MOTION VECTOR GENERATOR ARCHITECTURE FOR QCIF-FORMAT SUPPORT MBAFF ... 20

FIG 3.10 MOTION VECTOR GENERATOR ARCHITECTURE .. 26

FIG 3.11 SEPARATE 1-D INTERPOLATOR DESIGN (NO PARALLEL) .. 26

FIG 3.12 ONLY ONE HALF PIXEL IS NEEDED .. 28

FIG 3.13 ORIGINAL 4-PARALLEL SEPARATE 1-D LUMA INTERPOLATOR 29

FIG 3.14 ENHANCE 4-PARALLEL SEPARATE 1-D LUMA INTERPOLATOR 30

FIG 3.15 INTERPOLATION WINDOW FOR EACH 2 X 2 CHROMA BLOCK ... 31

FIG 3.16 (A) CHROMA INTERPOLATOR, (B) VERTICAL/HORIZONTAL FILTRR 32

FIG 3.17 2-PARALLEL CHROMA INTERPOLATOR .. 33

FIG 3.18 (A) LUMA FIR DESIGN IN CHEN‟S [3], (B) BILINEAR FILTER .. 33

FIG 3.19 COMBINED LUMA/CHROMA INTERPOLATOR DESIGN FOR H.264 34

FIG 3.20 (A) PATH OF LUMA FIR INTERPOLATOR, (B) PATH OF CHROMA 1/8 BILINEAR 35

FIG 3.21 ENTIRE INTERPOLATOR ARCHITECTURE ... 36

FIG 3.22 WEIGHTED PREDICTOR DESIGN .. 39

FIG 3.23 ENTIRE WEIGHT PREDICTOR ARCHITECTURE .. 40

FIG 4.1 4 X 4 BLOCK WINDOW AND THE CORRESPONDING 9 X 9 INTERPOLATION WINDOW 42

FIG 4.8 EMBEDDED COMPRESS/DECOMPRESS METHOD .. 44

FIG 4.9 FRACTIONAL SAMPLE POSITIONS FOR QUARTER SAMPLE LUMA INTERPOLATION 45

FIG 4.10 FRACTIONAL SAMPLE ONLY NEED HORIZONTAL SAMPLES .. 46

FIG 4.11 FRACTIONAL SAMPLE ONLY NEED VERTICAL SAMPLES ... 46

FIG 4.12 PRE-FETCH MECHANISM .. 48

FIG 4.13 4X4 BLOCK WINDOW AND THE CORRESPONDING 9X9 INTERPOLATION WINDOW AND

OVERLAPPED REGION FOR NEIGHBORING INTERPOLATION WINDOW 49

FIG 4.14 INTRA MB OVERLAP PIXELS REUSING .. 50

FIG 4.15 INTER MB OVERLAP PIXELS REUSING .. 51

 v

FIG 4.16 ALL OVERLAP REGION INCLUDE BETWEEN PREVIOUS UPPER MB AND LEFT MB 53

FIG 4.17 NO OVERLAP REGION CAN BE REUSED ... 54

FIG 5.1 MOTION COMPENSATION ENGINE FOR H.264 VIDEO DECODER 57

FIG 5.2 SIMULATION RESULTS OF BANDWIDTH REDUCTION STRATEGIES 58

FIG 5.3 COMPARE RELATED WORKS ... 58

FIG 5.4 RATIO OF PIXELS POSITION IN AKIYO AND STEFAN SEQUENCE 59

FIG 5.5 LUMA INTEGER/FRACTIONAL MOTION VECTOR PROPORTION FOR H.264/AVC 60

FIG 5.6 CHROMA INTEGER/FRACTIONAL MOTION VECTOR PROPORTION FOR H.264/AVC 60

 vi

List of Tables

TABLE 3.1 MEDIAN PREDICTION TABLE IN MBAFF FRAMES.. 20

TABLE 3.2 CO-LOCATED MACROBLOCK TABLE ... 24

TABLE 3.3 CO-LOCATED PARTITION TABLE ... 25

TABLE 4.2 SUMMARY OF LUMA INTERPOLATION WINDOWS .. 47

TABLE 4.3 SUMMARY OF CHROMA INTERPOLATION WINDOWS ... 47

TABLE 4.4 STORAGE REQUIREMENT AND LIFETIME ANALYSIS .. 51

TABLE 4.5 SUMMARY OF LUMA INTERPOLATION WINDOWS AND REDUCTION PERCENT 52

TABLE 4.6 SUMMARY OF REDUCTION PERCENT IN DIFFERENT OVERLAP REGION 53

TABLE 5.1 VIDEO DECODER SPECIFICATION IN OUR DESIGN ... 56

TABLE 5.2 H.264DECODER COMPARISON WITH RELATED WORK ... 61

 1

Chapter 1

Introduction

1.1 Motivation

In recent years, the newest video coding standard published jointly as Part 10 of

MPEG-4 and ITU-T Recommendation H.264 [1] provides fine video compression

performance. The new H.264/AVC standard provides a technical solution for a wider range of

applications, including video-on-demand (VOD), mobile networks, high definition TV,

broadcast over cable, satellite, cable modem, DSL or terrestrial, interactive or serial storage

like BD, conversational services over ISDN, Ethernet, LAN, wireless, or mobile network,

multimedia messaging services over DSL, ISDN, etc.

Besides, in Nov. 2004, Digital video broadcasting handheld, DVB-H [5], has mandated

support of Main Profile for H.264/AVC SDTV receivers, with an option for the use of High

Profile. The support of High Profile is mandated for H.264/AVC HDTV decoder. Moreover,

high definition TV requires huge data transmission particular in frame memory, a memory

controller that efficiently communicates with frame memory is the most significant over the

entire video decoding system. Within the video decoding system, motion compensation

always dominates the total amount of data transmission especially when SDRAM or

DDR-SDRAM is adopted as external frame memories. Motion compensation should also

provide efficient memory bandwidth reduction to reduce memory bandwidth.

 2

1.2 Thesis Organization

This thesis is organized as follows. The algorithm description and analysis is discussed in

Chapter 2. In Chapter 3, the motion compensation engine for H.264/AVC video decoder is

presented firstly. Then, the motion compensation engine for H.264 high profile is illustrated.

In Chapter 4, we propose the bandwidth reduction strategies to reduce the required bandwidth

particularly in H.264/AVC integral and fractional motion compensation. We also presents

frame memory organization, and memory bandwidth analysis. Implementation result is given

in Chapter 5. Finally, conclusion and future work is shown in Chapter 6.

 3

Chapter 2

Algorithm Description and Analysis

Current
frame

ME

MC
Reference

frame

reconstruct
ed frame

Choose
intra

prediction

Intra
prediction

Filter

_

+

+

+

T

IT

Q

IQ

Reorder
Entropy
encoder

NAL

Inter

Intra

Fig 2.1 General structure of H.264 encoder

MC
Reference

frame

Intra
prediction

Filter

+

+
IT IQ

Inter

Intra

Reorder
Entropy
decoder

NAL
bitstream

Reconstructed
frame

Fig 2.2 General structure of H.264 decoder

Fig 2.1 and Fig 2.2 shows the general structure of H.264/AVC video encoder and

decoder respectively [6]. The H.264/AVC design covers a Video Coding Layer (VCL) and

 4

Network Abstraction Layer (NAL). We only discuss on VCL that efficient represents the

video content. The concept of H.264/AVC submits the so-called block-based hybrid video

coding. It consists of hybrid of temporal and spatial prediction and is simultaneous with

transform coding.

This chapter is structured as follows. The software profiling is illustrated in section 2.1.

Then, the algorithm of H.264/AVC motion compensation would be described in section 2.2.

Finally, the H.264/AVC high profile is presented in section 2.3

2.1 Profiling

Fig 2.3 H.264/AVC video decoder software profile on ARM processor (JM 8.2)

7%

8%

9%

7%

9%

9%

8%

11%

32%

Others (Intra Prediction, etc.)

Write File

PSNR Computation

De-blocking Filter

CAVLC

IQ/IDCT
Ref. Frame Copy

Reconstruction

Motion Compensation

 5

Fig 2.3[8] shows the H.264/AVC profile on ARM processor. The reference software is

JM 8.2 [7]. We can find motion compensation related modules, including motion

compensation, reconstruction, and reference frame copy, occupy 51 % proportion of the entire

video decoder. Parallel processing, bandwidth reduction, or pipeline processing on ASIC

design can significantly reduce this dominated part.

2.2 Inter Prediction Algorithm for H.264/AVC Standard

H.264/AVC standard supports variable block size (VBS) in inter prediction [1] [2]. The

smallest block size could reach least 4x4 for luma and 2x2 for chroma. Fig 2.4 [1] illustrates

all types of partitions.

0 0 1
0

1

0

2

1

3

0 0 1
0

1

0

2

1

3

16x16 16x8 8x16 8x8

8x8 8x4 4x8 4x4

Macroblock
partitions

Sub-macroblock
partitions

Fig 2.4 Macroblock partitions and sub-macroblock partitions

H.264/AVC standard also supports high motion resolution that reaches quarter motion

accuracy for luma sample and one-eighth for chroma sample. Luma half sample interpolation

with a 6-tap (1, -5, 20, 20, -5, 1) symmetrical FIR filter and quarter sample interpolation with

bilinear filter are illustrated in Fig 2.5 (a)-(c). The prediction value of chroma component is

generated using bilinear interpolator illustrated in Fig 2.5(d), and the displacement can

 6

achieve one-eighth accuracy. From mathematical equations, they are both 2-D interpolation.

However, based on hardware implementation, these equations can be divided into two 1-D to

reduce hardware cost, in other words, horizontal filter first and then vertical one, or vice

versa.

G a c H

d

n

M

e

i

f g

k m

N

p q r

I

P

J

Q

R S

T U

B

DC

A

F

L

E

K s

h j

b

bb

aa

gg

hh

xFrac

yFrac

8-xFrac

8-yFrac

A B

DC

b=((E-5xF+20xG+20xH-5xI+J)+16)>>5
h=((A-5xC+20xG+20xM-5xR+T)+16)>>5

j=((aa-5xbb+20xh+20xs-5xgg+hh)+16)>>5

G H

M

e g

m

N

p r

s

h j

b

e=(G+j+1)>>1
g=(b+m+1)>>1

G a c H

d

n

M

i

f

k m

N

q

s

h j

b

d=(G+h+1)>>1
a=(G+b+1)>>1

(b)

i

i=((8-xFrac)*(8-yFrac)*A+xFrac*(8-yFrac)*B+(8-
xFrac)*yFrac*C+xFrac*yFrac*D+32)>>6

(a)

(c)

Fig 2.5 (a) Luma half sample with 6-tap FIR, (b) luma quarter sample with bilinear

filter, (c) chroma sample with bilinear filter. Upper-case letters indicate the full samples

and lower-case letters indicates the interpolated fractional samples

 Motion vector difference (MVD) and motion vector prediction (MVP) generate the

motion vector which Eq. 2.1 express the equation.

MVPyMVDyMVy

MVPxMVDxMVx




 Eq. 2.1

 7

MVD is decoded from bit-stream and MVP is predicted according to neighboring motion

vectors. MVP algorithm, contains directional prediction for 16 x 8 or 8 x 16 block size and

median prediction for other block sizes. The detail of MVP decision is shown in Fig 2.6 [8].

Eq. 2.2 expresses the equation of median prediction. Besides, some boundary conditions or

exceptions have to be handled carefully. For instance, when MVC is not available, its value is

replaced by MVD. We do not go into detail of those trivial boundary conditions in here.

),,(MVCMVBMVAmedianMVP  Eq. 2.2

8x16

A

C

A

B

Current
MB/Sub-MB

partition

A

D
B

C

(a) (b) (c)

16x8

Fig 2.6 (a) Directional prediction for 8 x 16 block size, (b) directional prediction for

16 x 8 block size, (c) median prediction

In addition to the motion-compensated block size described in Fig 2.4, a P macroblock

can also be coded to P_SKIP mode. For this coding mode, neither residual signal nor motion

information is transmitted. In other words, motion vectors are only decided according to MVP.

The reconstructed reference pixels are obtained similar to macroblock type P_16x16.

Macroblock coded in P_SKIP are often located in large area with no change or slow motion.

In addition to the above techniques, H.264/AVC also supports multiple reference frame,

weighted prediction and direct mode for B slice, which we will present in section 2.3. These

tools can also improve coding efficiency efficiently.

 8

2.3 Inter Prediction for H.264/AVC High profile Standards

Considering motion compensation, the tools supported by H.264/AVC Main/High Profile

are B slices, Weighted Prediction and Interlace video.

In an inter-coded macroblock of B slice, each macroblock partition may be predicted

from one or two reference pictures, forward and backward the current picture in temporal

order. This tool provides better coding efficiency with more possibilities to select the

best-match prediction references for the macroblock partitions in B slice. Fig 2.7 shows the 3

reference directions: (a) Forward and backward reference pictures, the so-called bi-directional

reference, (b) backward reference, and (c) forward references [6]. B slices use two lists of

coded reference pictures, LIST_0 and LIST_1. These two lists can include backward and/or

forward coded pictures respectively.

B

(c) two forward

(b) two backward

(a) forward and backward

Fig 2.7 Bi-prediction examples

 9

In B slice, there are four prediction modes: (a) direct mode, (b) LIST_0 mode, (c)

LIST_1 mode, and (d) bi-predictive mode. For a macroblock, each partition can choose

different prediction modes. When the 8 x 8 partition size is used, the chosen mode for each

8x8 partition is applied to all sub-partition within that partition. Fig 2.8 shows two examples

of prediction mode combinations. In Bi-predictive mode, two motion-compensated reference

regions are obtained from LIST_0 and LIST_1 picture respectively. The motion vectors from

LIST_0 and/or LIST_1 in a bi-predictive macroblock or block are predicted form neighboring

motion vectors with the same temporal direction. For instance, a motion vector from the

current macroblock pointing to a forward picture is predicted from other neighboring vectors

that also point to forward pictures.

Bi

pred
Bi-pred

L1

L1

Direct L0

Fig 2.8 Examples of prediction modes in B slice macroblocks

Similar to the skipped P macroblock coded in P_SKIP mode, a B macroblock can also be

coded in direct mode. In direct mode, no motion vector is transferred for a B slice macroblock

or macroblock partition encoded. Instead, the decoder predicts the motion vectors of LSIT_0

and LIST_1 with neighboring vectors and carries out bi-predictive motion compensation

block. There are spatial and temporal mode can be used to calculate the LIST_0 and LIST_1

motion vectors for direct mode macroblocks or partitions.

Spatial direct mode is similar to P_SKIP mode. Furthermore, it supports bi-prediction

and 4x4 block size accuracy. The double motion vectors are decided according to MVP.

 10

However, some conditions or exceptions have to be handled carefully. For example, in case of

the co-located MB or the partition in the picture that contains the co-located macroblock has a

motion vector that is less than +/- 1/2 luma samples in magnitude (and in some other

conditions), one or both of the predicted vectors are set to zero. We do not go into detail of

those trivial conditions here.

Temporal direct mode differs from P_SKIP mode. The same with the spatial direct mode,

the block size is also 4 x 4 block size accuracy, the motion vectors mvL0, mvL1 are derived

as scaled versions of the motion vector mvCol of the co-locate sub-macroblock partition. The

scaled method is based on the picture-order-count (POC) distance between the current and

LIST_1/LIST_0 picture. Fig 2.9 shows the illustration of temporal direct-mode motion vector

inference. When the object is constant velocity motion, it is suitable-coded in temporal direct

mode. When the object is the average form backward and forward, it is suitable-coded in

spatial direct mode. When the object is still, it is suitable-coded in skip mode. Encoder can

use skip/direct mode to save one/two motion vector differences (mvd) in every skip/direct

mode partition for further enhance compression efficiency.

List 1

reference

List 0

reference

Distance of picture order count

MV L0
MV L1

Current

picture

time

MV co-located

Fig 2.9 Example for temporal direct-mode motion vector

 11

Another tool supported in Main/High Profile is Weighted Prediction (WP), which is a

method of scaling the samples to increase the video quality in H.264/AVC video decoding. An

application of weighted prediction is to control the relative weighted of interpolated regions to

the motion compensated prediction process. For example, WP may be effective in coding of

„fade‟ transitions (where one scene fades into another). There are three modes in Weighted

Prediction. When Default mode is in use, two motion compensated reference regions are

obtained from LIST_0 and LIST_1 picture respectively and each sample of the prediction

block is calculated as an average of the LIST_0 and LIST_1 prediction samples. Eq. 2.3

expresses the equation

(0 1 1) 1p r e d P a r t p r e d P a r tL p r e d P a r tg L     Eq. 2.3

When explicit or implicit mode is in use, Eq. 2.4 is used to calculate the sample of the

prediction block. The difference between explicit and implicit mode is the weighting factors

are calculated based on the picture-order-count distance between LIST_0 and LIST_1

reference pictures in implicit mode. It is similar to temporal direct mode in motion vector

prediction. When explicit mode is in use, the encoder determines weighting factors. In other

words, implicit mode objection is to save weighted prediction parameter in bit-stream for

further enhance compression efficiency.

lo g

0 1 0 1
((0 * 1 * 2) (lo g 1)) ((1) 1))

W D
p red P a r t p re d P a r tL w p red P a r tL w W D o o         Eq. 2.4

As for interlace video tool, video signal may be sampled as a sequence of complete

frames or interlaced fields. An interlaced video sequence contains a series of fields. A field

consists of either the odd-numbered or the even-numbered lines within a complete video

 12

frame. Fig 2.10 illustrates the fields in video sequence. Half of the data in a complete video

frame is represented as a field and is sampled at each temporal interval. The advantage of

interlaced video coding is that it is possible to send twice as many fields per second as the

number of frames in an equal progressive sequence with the same data rate, giving the

appearance of smoother motion. For instance, a NTSC video sequence consists of 60 fields

per second and, when played back, motion can appears smoother than in an equivalent

progressive video sequence containing 30 frames per second.

top

field

top

field

bottom

field

bottom

field

Fig 2.10 Interlaced video sequence

Frame coding is more efficient than field coding for progressive video and static pictures

in interlaced video. Oppositely, field coding is more efficient for moving pictures in interlaced

video. However, sometimes not complete frames are fast moving. Hence, H.264/AVC

Main/High profile provides another tool in interlaced video, macroblock-adaptive frame/field

(MBAFF), to provide macroblock level interlacing. Similar to MBAFF, the picture level

interlacing sometimes is called PicAFF. As an extension of PicAFF, MBAFF is used to

improve coding efficiency of picture with both static and moving regions [21]. In MBAFF

mode, the current slice is processed in units of 16 luma samples wide and 32 luma samples

high, each of which is coded as a “macroblock pair” as shown in Fig 2.11. The encoder can

 13

choose to encode each MB pair as (a) frame macroblock pair (b) field macroblock pair and

may select the optimum coding mode for each region of the picture.

32

16 16

16

16

MB pair

 16

16

16

32

16

MB pair

(a)frame MB mode (b)field MB mode

Fig 2.11Macroblock-Adaptive Frame-Field Coding

2.4 Bandwidth Requirement for Inter Prediction

Up to now, we can find interpolation issue becomes more and more important in

state-of-the-art video coding. The interpolation window becomes double for the same block;

In other words, it requires double cycles to interpolate each macroblock. For instance, it

requires two 9 x 9 interpolation windows to interpolate a luma 4 x 4 block and four 3 x 3

interpolation windows to interpolate two chroma 2 x 2 blocks in B macroblock.

In worst case, interpolator needs 398MB/s in P frame, 796MB/s in B frame when

supporting 1920 x 1088 30fps. In other words, motion compensation needs huge memory

bandwidth requirement. Huge data also means large power consumption for bus activity and

data operation.

To reduce bandwidth requirement from frame memory, strategies of memory bandwidth

reduction for motion compensation will be proposed in Chapter 4.

 14

2.5 Summary

From the H.264/AVC profiling on ARM processor, an efficient hardware accelerator or

ASIC design for motion compensation is important. The inter prediction for H.264/AVC

Baseline, Main/High profiles, and the bandwidth requirement are also illustrated in this

Chapter.

 15

Chapter 3

Motion Compensation Design for

H.264/AVC Main/High Profile video

decoder

The state-of-the-art video coding standard H.264/AVC provides better compression ratio

that significantly outperforms all previous video compression standards. However,

H.264/AVC supports Main/High profile and provides many tools compare with Baseline

Profile for further enhance compression ratio. Therefore, a development of combining

multi-video coding profiles is essential to support modern multimedia systems. Therefore, it

is the challenge of designing efficient video decoder for multi-profile video application

without significantly increase complexity.

This chapter will discuss that designing of motion compensation, which dominates the

amount of data transfer on the H.264/AVC video decoder. The rest part is structured as

follows. Section 3.1 illustrates motion compensation engine for H.264/AVC decoder. The

combined motion compensation engine for H.264/AVC Baseline/Main/High profile and the

analysis is discussed in section 3.2. Finally, summary is given in section 3.3.

 16

3.1 Motion Compensation Engine for H.264/AVC decoder

Fig 3.1 Motion compensation engine for H.264 video decoder

Fig 3.1 illustrates the whole motion compensation engine for H.264/AVC video decoder.

Firstly, Motion vector generator generates motion vector according to motion data. Then, the

address generator uses motion vector with reduction strategies of memory bandwidth to

generate address of reference region. Moreover, transfer reference address to system memory

controller (also named well-known arbiter). The tasking of memory access controller is

scheduling consecutive access command and sending to frame memories. The burst read data

is kept in read data buffer and then filtered through interpolator. Finally, the interpolated

reference data pass through Weighted Predictor to produce motion compensation result. The

 17

result will be added to the residual data and then pass through de-blocking filter. In our

proposed decoder, ping-pong structured external frame memory [9], double memories stored

reference and current frame reciprocally, is adopted.

The following subsection will discuss the detail of other modules except reduction

strategies of memory bandwidth. The detailed discussion of reduction strategies of memory

bandwidth are shown in Chapter 4. Subsection 3.2 illustrates motion vector generator (MVG)

Supports Main/High Profile including motion vector predictor and the related storages.

Subsection 3.3 combines luma and chroma interpolator design. Subsection .3.4 shows

Weighted Predictor design. Finally, summary is presented in section 3.5

3.2 MVG support Main/High profile

Frame
boundary

Frame
boundary

……

0 Top

0 Bot.

1 Top

1 Bot.

2 Top

2 Bot.

3 Top

3 Bot.

4 Top

4 Bot.

5 Top

5 Bot.

7 Top

7 Bot.

6 Top

6 Bot.

8 Top

8 Bot.

9 Top

9 Bot.

10 Top

10 Bot.

11 Top

11 Bot.
Current
Bot. MB

24
Current
Top MB

Next MB
0 Top

Next MB
0 Bot.

Next MB
1 Top

Next MB
2 Top

Next MB
1 Bot.

Next MB
2 Bot.

Next MB
3 Top

Next MB
4 Top

Next MB
3 Bot.

Next MB
4 Bot.

Fig 3.2 Motion vectors information storage for motion vector predictor for QCIF

frame format.

 18

There are two tools in MVG for supported Main/High profile. The first one is B slice

type, which has double motion vectors. The second one is MBAFF mode. In MBAFF mode,

the handle of macroblock is Macroblock pair. The same with P slice, the required total storage

for motion vector generator, Fig 3.2 shows an example. Total amount of 4 x 11 x 2 both

components of the motion vector have to be stored for QCIF frame format. Fig 3.3 (a) shows

the detail of required neighboring motion vectors. To decode T0-T15 in current top MB, it

needs neighboring motion vectors in left (TL0-TL3, MVL0-MVL3), above (TU0-TU3,

MVU0-MVU3), above-right (TRU, MVRU), and above-left (TLU-MVLU) position. The 4 x

8 size of MV buffers is required because the maximum number of motion vector per MB pair

is thirty-two. If we reuse the same 4 x 4 size of MV buffers and add a number of buffers (T10,

T11, T14, and T15), the MV buffers can be further reduced. Fig 3.3 (b) shows the reduced

version.

 19

T7T6

T5T4

T13T12

T3T2

T1T0

T9T8

TL0

TL1

TL2

BRUBU0 BU1 BU3BU2

B7B6

B5B4

B15B14

B13B12

B3B2

B1B0

B11B10

B9B8

BL0

BL1

BL2

BLU

TL3

BL3

TLU TRUTU0 TU1 TU3TU2

T10 T11 T15T14

TL0

TL1

TL2

MVRUMVU0 MVU1 MVU3MVU2

MV7MV6

MV5MV4

MV15MV14

MV13MV12

MV3MV2

MV1MV0

MV11MV10

MV9MV8

MVL0

MVL1

MVL2

MVLU

TL3

MVL3

T10 T11 T15T14

TLU TRUTU0 TU1 TU3TU2

Fig 3.3 (a) Neighboring motion vectors needed when decoding all motion vectors in

current MBAFF macroblock, (b) reduced and combined with non-MBAFF version

Fig 3.4 shows the detailed architecture of motion vector generator. This architecture

combine non-MBAFF and MBAFF mode. When operation in non-MBAFF TX (with X being

5, 7, 13, 15, and so on) storages can be closed for saving power. The same with P slice, Table

3.1 lists all MVA, MVB, MVC, and MVD for different block size_position index. The

difference is MBAFF mode not only size_position index but also current MB pair is

Frame/Field coding, current MB is Top/Bottom MB, and relative MB pair is Frame/Filed

coding. Therefore, LUT in MBAFF mode is eight times complexity than non-MBAFF mode.

For cost and area efficiency consideration, we combine MBAFF and non-MBAFF LUT.

Fortunately, we can find the condition of MVA, MVB, MVC, and MVD is the same with

non-MBAFF mode when condition of MBAFF mode is fixed in current MB pair is Field,

current MB is Bottom MB, and relative MB pair is Field. As mentioned above, we can use the

 20

same LUT to deal with non-MBAFF and MBAFF mode.

4x4 MV buffers

Left MV line buffer

MVP

MVD (load from MV buffer)

MV (write back to MV buffer)

Line MV FIFO

0 1 2 3 4 5 6 7 8 9 10 11

upper leftupper
right

mvA, mvB, mvC, mvD

MV from Upper MB

MV from Left MB

MV from Current MB

MV from Upper-left MB

MV from Upper-right MB

Neighboring MVs

motion vector
predictor

MVL0MVL1MVL2

MV5MV7

F I F OMVU3

TLU

MV13

MV1MV3MV9

F I F OMVU1

MV11

MV4MV6

F I F OMVU2

MV0MV2MV8

F I F OMVU0 MVRU

MV10

MV15

MV14 MV12

upper
left

TL0

T5

TL1

T7T13

TL2

MVL3

TL3 T15

MVLU

TU2

TU1

TU0

TU3

T14

T11

TRU T10

F I F O

F I F O

F I F O

F I F O

Fig 3.4 Motion vector generator architecture for QCIF-format support MBAFF

Table 3.1 Median prediction table in MBAFF frames

 21

c ur r e n t M B T /B r e la t iv e M B m v A m v B m v C m v D

F r a m e T L 0 B U 0 B U 2 B L U

F ie ld

F r a m e B L 0 T 1 0 T 1 4 T L 3

F ie ld T L 2 B L 1

F r a m e T L 0 B U 0 B U 2 B L U

F ie ld T U 0 T U 2 T L U

F r a m T L 0 B U 0 B U 2 B L U

F ie ld B L 0

F r a m e T L 1 M V 0 X T L 0

F ie ld T L 0 B L 0

F r a m e B L 1 M V 0 X B L 0

F ie ld T L 2 B L 2

F r a m e T L 2 T 0 X T L 1

F ie ld T L 1 T L 0

F r a m T L 2 B 0 X T L 1

F ie ld B L 1 B L 0

F r a m e M V 1 B U 2 B R U B U 1

F ie ld

F r a m e M V 1 T 1 4 X T 1 1

F ie ld

F r a m e T 1 B U 2 B R U B U 1

F ie ld T U 2 T R U T U 1

F r a m M V 1 B U 2 B R U B U 1

F ie ld

F r a m e M V 3 M V 4 X M V 1

F ie ld

F r a m e M V 3 M V 4 X M V 1

F ie ld

F r a m e T 3 T 4 X T 1

F ie ld

F r a m M V 3 M V 4 X M V 1

F ie ld

F r a m e T L 2 M V 2 M V 6 T L 1

F ie ld T L 1 B L 0

F r a m e B L 2 M V 2 M V 6 B L 1

F ie ld T L 3 B L 2

F r a m e B L 0 T 2 T 6 T L 3

F ie ld T L 2 T L 1

F r a m B L 0 M V 2 M V 6 T L 3

F ie ld B L 2 B L 1

F r a m e T L 3 M V 8 X T L 2

F ie ld T L 1 B L 1

F r a m e B L 3 M V 8 X B L 2

F ie ld T L 3 B L 3

F r a m e B L 2 T 8 X B L 1

F ie ld T L 3 T L 2

F r a m B L 2 M V 8 X B L 1

F ie ld B L 3 B L 2

F r a m e M V 9 M V 6 X M V 3

F ie ld

F r a m e M V 9 M V 6 X M V 3

F ie ld

F r a m e M V 9 M V 6 X M V 3

F ie ld

F r a m M V 9 M V 6 X M V 3

F ie ld

F r a m e M V 1 1 M V 1 2 X M V 9

F ie ld

F r a m e M V 1 1 M V 1 2 X M V 9

F ie ld

F r a m e M V 1 1 M V 1 2 X M V 9

F ie ld

F r a m M V 1 1 M V 1 2 X M V 9

F ie ld

F r a m e T L 0 B U 0 B U 1 B L U

F ie ld

F r a m e B L 0 T 1 0 T 1 1 T L 3

F ie ld T L 2 B L 1

F r a m e T L 0 B U 0 B U 1 B L U

F ie ld T U 0 T U 1 T L U

F r a m T L 0 B U 0 B U 1 B L U

F ie ld B L 0

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

8 x 4 _ 7

4 x 8 _ 0

8 x 4 _ 4

8 x 4 _ 5

8 x 4 _ 6

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

8 x 4 _ 0

8 x 4 _ 1

8 x 4 _ 2

8 x 4 _ 3

c ur r e n t M B T /B r e la t iv e M B m v A m v B m v C m v D

F r a m e T L 0 B U 0 B R U B L U

F ie ld

F r a m e B L 0 T 1 0 X T L 3

F ie ld T L 2 B L 1

F r a m e T L 0 B U 0 B R U B L U

F ie ld T U 0 T R U T L U

F r a m T L 0 B U 0 B R U B L U

F ie ld B L 0

F r a m e T L 0 B U 0 B R U B L U

F ie ld

F r a m e B L 0 T 1 0 X T L 3

F ie ld T L 2 B L 1

F r a m e T L 0 B U 0 B R U B L U

F ie ld T U 0 T R U T L U

F r a m T L 0 B U 0 B R U B L U

F ie ld B L 0

F r a m e T L 2 M V 2 X T L 1

F ie ld T L 1 B L 0

F r a m e B L 2 M V 2 X B L 1

F ie ld T L 3 B L 2

F r a m e B L 0 M V 2 X T L 3

F ie ld T L 2 T L 1

F r a m B L 0 M V 2 X T L 3

F ie ld B L 2 B L 1

F r a m e T L 0 B U 0 B U 2 B L U

F ie ld

F r a m e B L 0 T 1 0 T 1 4 T L 3

F ie ld T L 2 B L 1

F r a m e T L 0 B U 0 B U 2 B L U

F ie ld T U 0 T U 2 T L U

F r a m T L 0 B U 0 B U 2 B L U

F ie ld B L 0

F r a m e M V 1 B U 2 B R U B U 1

F ie ld

F r a m e M V 1 T 1 4 X T 1 1

F ie ld

F r a m e M V 1 B U 2 B R U B U 1

F ie ld T U 2 T R U T U 1

F r a m M V 1 B U 2 B R U B U 1

F ie ld

F r a m e T L 0 B U 0 B U 2 B L U

F ie ld

F r a m e B L 0 T 1 0 T 1 4 T L 3

F ie ld T L 2 B L 1

F r a m e T L 0 B U 0 B U 2 B L U

F ie ld T U 0 T U 2 T L U

F r a m T L 0 B U 0 B U 2 B L U

F ie ld B L 0

F r a m e M V 1 B U 2 B R U B U 1

F ie ld

F r a m e M V 1 T 1 4 X T 1 1

F ie ld

F r a m e M V 1 B U 2 B R U B U 1

F ie ld T U 2 T R U T U 1

F r a m M V 1 B U 2 B R U B U 1

F ie ld

F r a m e T L 2 M V 2 M V 6 T L 1

F ie ld T L 1 B L 0

F r a m e B L 2 M V 2 M V 6 B L 1

F ie ld T L 3 B L 2

F r a m e B L 0 M V 2 M V 6 T L 3

F ie ld T L 2 T L 1

F r a m B L 0 M V 2 M V 6 T L 3

F ie ld B L 2 B L 1

F r a m e M V 9 M V 6 X M V 3

F ie ld

F r a m e M V 9 M V 6 X M V 3

F ie ld

F r a m e M V 9 M V 6 X M V 3

F ie ld

F r a m M V 9 M V 6 X M V 3

F ie ld

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

1 6 x 8 _ 0

1 6 x 8 _ 1

8 x 1 6 _ 0

8 x 1 6 _ 1

8 x 8 _ 0

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

1 6 x 1 6

F r a m e

F ie ld

T o p

B o t .

T o p

B o t .

8 x 8 _ 2

8 x 8 _ 3

8 x 8 _ 1

F ie ld

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

 22

c ur r e n t M B T /B r e la t iv e M B m v A m v B m v C m v D

F r a m e M V 0 B U 1 B U 2 B U 0

F ie ld

F r a m e M V 0 T 1 1 T 1 4 T 1 0

F ie ld

F r a m e M V 0 B U 1 B U 2 B U 0

F ie ld T U 1 T U 2 T U 0

F r a m M V 0 B U 1 B U 2 B U 0

F ie ld

F r a m e M V 1 B U 2 B U 3 B U 1

F ie ld

F r a m e M V 1 T 1 4 T 1 5 T 1 1

F ie ld

F r a m e M V 1 B U 2 B U 3 B U 1

F ie ld T U 2 T U 3 T U 1

F r a m M V 1 B U 2 B U 3 B U 1

F ie ld

F r a m e M V 4 B U 3 B R U B U 2

F ie ld

F r a m e M V 4 T 1 5 X T 1 4

F ie ld

F r a m e M V 4 B U 3 B R U B U 2

F ie ld T U 3 T R U T U 2

F r a m M V 4 B U 3 B R U B U 2

F ie ld

F r a m e T L 2 M V 2 M V 3 T L 1

F ie ld T L 1 B L 0

F r a m e B L 2 M V 2 M V 3 B L 1

F ie ld T L 3 B L 2

F r a m e B L 0 M V 2 M V 3 T L 3

F ie ld T L 2 T L 1

F r a m B L 0 M V 2 M V 3 T L 3

F ie ld B L 2 B L 1

F r a m e M V 8 M V 3 M V 6 M V 2

F ie ld

F r a m e M V 8 M V 3 M V 6 M V 2

F ie ld

F r a m e M V 8 M V 3 M V 6 M V 2

F ie ld

F r a m M V 8 M V 3 M V 6 M V 2

F ie ld

F r a m e M V 9 M V 6 M V 7 M V 3

F ie ld

F r a m e M V 9 M V 6 M V 7 M V 3

F ie ld

F r a m e M V 9 M V 6 M V 7 M V 3

F ie ld

F r a m M V 9 M V 6 M V 7 M V 3

F ie ld

F r a m e M V 1 2 M V 7 X M V 6

F ie ld

F r a m e M V 1 2 M V 7 X M V 6

F ie ld

F r a m e M V 1 2 M V 7 X M V 6

F ie ld

F r a m M V 1 2 M V 7 X M V 6

F ie ld

F r a m e T L 0 B U 0 B U 1 B L U

F ie ld

F r a m e B L 0 T 1 0 T 1 1 T L 3

F ie ld T L 2 B L 1

F r a m e T L 0 B U 0 B U 1 B L U

F ie ld T U 0 T U 1 T L U

F r a m T L 0 B U 0 B U 1 B L U

F ie ld B L 0

F r a m e M V 0 B U 1 B U 2 B U 0

F ie ld

F r a m e M V 0 T 1 1 T 1 4 T 1 0

F ie ld

F r a m e M V 0 B U 1 B U 2 B U 0

F ie ld T U 1 T U 2 T U 0

F r a m M V 0 B U 1 B U 2 B U 0

F ie ld

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

4 x 8 _ 1

4 x 4 _ 0

4 x 4 _ 1

4 x 8 _ 2

4 x 8 _ 3

4 x 8 _ 4

4 x 8 _ 5

4 x 8 _ 6

4 x 8 _ 7

c ur r e n t M B T /B r e la t iv e M B m v A m v B m v C m v D

F r a m e T L 1 M V 0 M V 1 T L 0

F ie ld T L 0 B L 0

F r a m e B L 1 M V 0 M V 1 B L 0

F ie ld T L 2 B L 2

F r a m e T L 2 M V 0 M V 1 T L 1

F ie ld T L 1 T L 0

F r a m T L 2 M V 0 M V 1 T L 1

F ie ld B L 1 B L 0

F r a m e M V 2 M V 1 X M V 0

F ie ld

F r a m e M V 2 M V 1 X M V 0

F ie ld

F r a m e M V 2 M V 1 X M V 0

F ie ld

F r a m M V 2 M V 1 X M V 0

F ie ld

F r a m e M V 1 B U 2 B U 3 B U 1

F ie ld

F r a m e M V 1 T 1 4 T 1 5 T 1 1

F ie ld

F r a m e M V 1 B U 2 B U 3 B U 1

F ie ld T U 2 T U 3 T U 1

F r a m M V 1 B U 2 B U 3 B U 1

F ie ld

F r a m e M V 4 B U 3 B R U B U 2

F ie ld

F r a m e M V 4 T 1 5 X T 1 4

F ie ld

F r a m e M V 4 B U 3 B R U B U 2

F ie ld T U 3 T R U T U 2

F r a m M V 4 B U 3 B R U B U 2

F ie ld

F r a m e M V 3 M V 4 M V 5 M V 1

F ie ld

F r a m e M V 3 M V 4 M V 5 M V 1

F ie ld

F r a m e M V 3 M V 4 M V 5 M V 1

F ie ld

F r a m M V 3 M V 4 M V 5 M V 1

F ie ld

F r a m e M V 6 M V 5 X M V 4

F ie ld

F r a m e M V 6 M V 5 X M V 4

F ie ld

F r a m e M V 6 M V 5 X M V 4

F ie ld

F r a m M V 6 M V 5 X M V 4

F ie ld

F r a m e T L 2 M V 2 M V 3 T L 1

F ie ld T L 1 B L 0

F r a m e B L 2 M V 2 M V 3 B L 1

F ie ld T L 3 B L 2

F r a m e B L 0 M V 2 M V 3 T L 3

F ie ld T L 2 T L 1

F r a m B L 0 M V 2 M V 3 T L 3

F ie ld B L 2 B L 1

F r a m e M V 8 M V 3 M V 6 M V 2

F ie ld

F r a m e M V 8 M V 3 M V 6 M V 2

F ie ld

F r a m e M V 8 M V 3 M V 6 M V 2

F ie ld

F r a m M V 8 M V 3 M V 6 M V 2

F ie ld

T o p F r a m e T L 3 M V 8 M V 9 T L 2

F ie ld T L 1 B L 1

B o t . F r a m e B L 3 M V 8 M V 9 B L 2

F ie ld T L 3 B L 3

T o p F r a m e B L 2 M V 8 M V 9 B L 1

F ie ld T L 3 T L 2

B o t . F r a m B L 2 M V 8 M V 9 B L 1

F ie ld B L 3 B L 2

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

B o t .

F r a m e

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

F ie ld

T o p

B o t .

F r a m e

T o p

B o t .

4 x 4 _ 6

4 x 4 _ 7

4 x 4 _ 8

4 x 4 _ 9

4 x 4 _ 1 0

4 x 4 _ 2

4 x 4 _ 3

4 x 4 _ 4

4 x 4 _ 5

F r a m e

T o p

B o t .

F ie ld

T o p

 23

c ur r e n t M B T /B r e la t iv e M B m v A m v B m v C m v D

T o p F r a m e M V 1 0 M V9 X M V 8

F ie ld

B o t . F r a m e M V 1 0 M V9 X M V 8

F ie ld

T o p F r a m e M V 1 0 M V9 X M V 8

F ie ld

B o t . F r a m M V 1 0 M V9 X M V 8

F ie ld

F r a m e M V 9 M V6 M V7 M V 3

F ie ld

F r a m e M V 9 M V6 M V7 M V 3

F ie ld

F r a m e M V 9 M V6 M V7 M V 3

F ie ld

F r a m M V 9 M V6 M V7 M V 3

F ie ld

F r a m e M V 1 2 M V7 X M V 6

F ie ld

F r a m e M V 1 2 M V7 X M V 6

F ie ld

F r a m e M V 1 2 M V7 X M V 6

F ie ld

F r a m M V 1 2 M V7 X M V 6

F ie ld

F r a m e M V 1 1 M V1 2 M V1 3 M V 9

F ie ld

F r a m e M V 1 1 M V1 2 M V1 3 M V 9

F ie ld

F r a m e M V 1 1 M V1 2 M V1 3 M V 9

F ie ld

F r a m M V 1 1 M V1 2 M V1 3 M V 9

F ie ld

F r a m e M V 1 4 M V1 3 X M V 1 2

F ie ld

F r a m e M V 1 4 M V1 3 X M V 1 2

F ie ld

F r a m e M V 1 4 M V1 3 X M V 1 2

F ie ld

F r a m M V 1 4 M V1 3 X M V 1 2

F ie ld

T o p

B o t .

T o p

F ie ld

F r a m e

F r a m e

F ie ld

F r a m e

F ie ld

F ie ld

F r a m e

F ie ld

F r a m e

B o t .

T o p

B o t .

T o p

B o t .

T o p

B o t .

T o p

B o t .

T o p

B o t .

T o p

B o t .

4 x 4 _ 1 1

4 x 4 _ 1 2

4 x 4 _ 1 3

4 x 4 _ 1 4

4 x 4 _ 1 5

As for B slice, we can use hardware sharing to process twice mvp for B slice type

because motion vector prediction of LIST_1 can be hidden below data-read cycles of LIST_0

from frame memory. However, it is not only process twice but also need consider many extra

conditions. For example, Fig 2.8 shows one partition predicted by L0 direction, and

neighboring partition predicted by L1 direction. When predicting direction is different, the

neighboring MV cannot be used to predict current MV. Here, we do not discuss them for

clarity.

In addition to considered predicting direction, B slice has new direct mode. There are two

direct modes in B slice, one is spatial direct mode (SDM) and the other one is temporal direct

mode (TDM). The challenge of direct mode in B slice is to find where the co-located

 24

macroblock is and where the co-located partition is. Because current picture and co-located

picture can be field, frame, and MBAFF coding types. Therefore, both of the co-located

macroblock and co-located partition determine formula is about eight kinds and these

determine formula will involve multiplier, divider, and remainder, which are high complexity

component. However, if we use macroblock coordinate (x and y) which originally transferred

from system to motion compensation unit to find co-located macroblock/partition. We can

significantly reduce complexity. Table 3.2 shows the mapping table of co-located macroblock

after coordinated method reduction. The Y means y-axis. Table 3.3 shows the mapping table

of co-located partition. Fig 3.5 shows the entire motion compensation architecture.

Table 3.2 Co-located macroblock table

Curr Col Original equation New equation

FLD FRM 2 * PicWidthInMbs * (CurrMbAddr / PicWidthInMbs) + (CurrMbAddr
% PicWidthInMbs) + PicWidthInMbs * (yCol / 8)

Y<<1
+blk_Num[3]

FLD AFRM
-FRM

2 * CurrMbAddr + (yCol / 8) Y<<1
+blk_Num[3]

AFRM
-FLD

2 * CurrMbAddr + bottom_field_flag Y<<1
+bottom_field_flag

FRM FLD PicWidthInMbs * (CurrMbAddr / (2 * PicWidthInMbs)) +
(CurrMbAddr % PicWidthInMbs)

Y>>1

AFRM FLD CurrMbAddr / 2 Y>>1

AFRM
-FRM

AFRM
-FLD

2 * (CurrMbAddr / 2) + ((topAbsDiffPOC < bottomAbsDiffPOC) ?
0 : 1)

Y[0]=0

AFRM
-FLD

AFRM
-FRM

2 * (CurrMbAddr / 2) + (yCol / 8) Y[0]=0
+blk_num[3]

Other CurrMbAddr Don’t change

 25

Table 3.3 Co-located partition table

L0 Line MV FIFO

Col/L0 intra flag

direct predictor

L1 Line intra flag

L1 Line MV FIFO

Addr Gen.

4x4 MV buffers

motion vector

predictor

MUX

mvA, mvB, mvC, mvD

Co-located

mvp

Neighboring

MVs

 26

Fig 3.5 Motion vector generator architecture

3.3 Interpolator Design

3.3.1 Luma Interpolator Design

F
I
R

F IR

F IR

F IR

Fig 3.6 Separate 1-D interpolator design (no parallel)

In this subsection, several different interpolator designs will be presented. Reviewing the

fractional pixel interpolation for H.264/AVC in Fig 2.5, 6-tap FIR with (1, -5, 20, 20, -5, 1)

coefficient and bilinear filter are needed for half and quarter pixel interpolation. For cost and

area efficiency consideration, Li‟s and Shen‟s interpolator filter unit and two-stage recursive

algorithm is proposed in [10] and [11]. These designs are area efficiency and suitable for P

slice. However, as for B slice, throughput is a very important issue and long execution cycles

 27

in these designs cause the real-time of video decoding cannot be meted.

Oppositely, consider throughput and standard-compatible design, Chien‟s [4] proposed

separate 1-D design that separates horizontal and vertical interpolation and processes in

parallel based on 4 x 4 block size. This design owns better throughput, although it may need

more storages. Fig 3.6 shows separate 1-D interpolator design without processing in parallel.

Table 3.3 Comparison of execution cycles for different architectures

Architecture Ideal execution cycles

Shen’s and Li’s desing 13

Separate 1-D (no parallel) 36

Separate 1-D (2 parallel) 18

Separate 1-D (4 parallel) 9

Assuming that all 9 x 9 interpolated data for each 4 x 4 block are ready and they can be

accessed randomly, Table 3.3 lists the execution cycles for different architecture. For Shen‟s

and Li‟s design, the result outputs depend on fractional pixel positions. For a, b, c, d, h, and n

position 4 clock cycles are needed to finish one 4x4 block. For e, g, p, and r, it takes 8 cycles

to finish one 4 x 4 block interpolator. For f, j, q, i, and k, the cycles to finish one 4x4 block are

13 cycles which detailed operation is described in Li‟s [10] and Shen‟s [4]. As for separate

1-D design, the first data outputs at the 6
th

 clock cycle and the following 3 data generates after

3 clock cycles. Therefore, the separate 1-D design without parallel needs 36 ((6 + 3) x 4)

cycles to complete interpolation of one 4 x 4 block. Similarly, separate 1-D design with 2 and

4 parallel requires 18 ((6 + 3) x 2) and 9 (6 + 3) cycles respectively. Finally, 4-parallel

separate 1-D architecture is our selection due to smaller required execution cycles that can be

hidden below data-read cycles from frame memory.

 28

a cG

h

d

n

H

m

M s N

fe g

ji k

qp r

b

Fig 3.7 Only one half pixel is needed

Fig 3.8 shows original 4-parallel separate 1-D luma interpolator. For cost consideration,

multiplier in FIR can be simplified to adders and shifters. We will discuss FIR design later.

Because the original 4-parallel separate 1-D interpolator produces b and s half pixels at the

same time for produce any position fractional pixel. However, either b or s half pixels is

needed when produce interpolated pixel. If we check MV, we can know which half is needed

after all. Therefore, we can modify 4-parallel separate 1-D interpolator to reduce the path

storages and one FIR. The similar design can be seen in [12][13] and [14], but these designs

require four multiplexers and we require only one multiplexer. Fig 3.9 shows the enhance

4-parallel separate 1-D interpolator.

 29

F
IR

FIR

FIR

FIR

FIR

FIR

F
IR

FIR

F
IR

FIR

FIR

F
IR

FIR

bilinear

bilinear

bilinear

bilinear

Fig 3.8 Original 4-parallel separate 1-D luma interpolator

 30

F
IR

FIR

FIR

FIR

FIR

FIR

F
IR

FIR

F
IR

FIR

F
IR

FIR

bilinear

bilinear

bilinear

bilinear

Fig 3.9 Enhance 4-parallel separate 1-D luma interpolator

 31

3.3.2 Chroma Interpolator Design

A B

D E

G H

C

F

I

e

h

f

g

Fig 3.10 Interpolation window for each 2 x 2 chroma block

]**)8[(*]**)8[(*)8(*

***)8(*)8(**)8(*)8(

DyFracByFracxFracCyFracAyFracxFracDyFrac

xFracCyFracxFracByFracxFracAyFracxFraci




 Eq. 3.1

Because of 4:2:0 chroma format and quarter precision of luma inter prediction, chroma

inter prediction displacement can achieve one-eighth motion accuracy. Chroma inter

prediction must process based on 2 x 2 block size when luma inter prediction process based

on 4 x 4 block size. Chroma interpolation requires 3 x 3 interpolated data for each 2 x 2 block

as shown in Fig 3.10. For chroma 2 x 2 block including A, B, C and D, the corresponding

fractional sample is e, f, g and h whose precision is one-eighth. Compared with direct

mapping design with 8 multipliers which equation is listed in Fig 2.5 (c), we rewrite the

equation listed in Eq. 3.1 and the number of multiplier number can be reduced to 4.

(8) * [(8) * *] * [(8) * *]

(8) * *

(8 -) * *

i x F ra c y F ra c A y F ra c C x F ra c y F ra c B y F ra c D

F ra c M F ra c N

M N F ra c O F ra c P

      

  

  

Eq. 3.2

We can also rewrite the equation listed in Eq. 3.2. The Frac, O, and P are any

corresponding value in Eq. 3.2. We can find as luma interpolator, chroma interpolator can

 32

separate into horizontal and vertical filter. The corresponding separate 1-D design is

illustrated in Fig 3.11 (a) and the vertical / horizontal filter is illustrated in Fig 3.11 (b).

2-parallel separate 1-D chroma interpolator are required to generate interpolated value in

2-pixel parallel, and it takes 3 cycles to filter 2 x 2 pixels if all required interpolated data are

ready and they can be accessed randomly. Based on 2-parallel separate 1-D chroma

interpolator design illustrated in Fig 3.12, only one cycle latency is required.

yFrac

xFrac

round

(b)(a)

F
IR

FIR
8

Frac

+

*

-

*

Fig 3.11 (a) Chroma interpolator, (b) vertical/horizontal filter

AB

DE

GH

C

I

F e

h

f

g

yFrac

xFrac

round

F
IR

FIR

yFrac

xFrac

round

F
IR

FIR

 33

Fig 3.12 2-parallel chroma interpolator

3.3.3 Combine Luma and Chroma FIR Design

<< 2

<< 2

Luma
Output

Luma Output = A - 5B + 20C + 20D - 5E +F

A F B E C D

round

(a) (b)

Fig 3.13 (a) Luma FIR design in Chen’s [3], (b) bilinear filter

Especially note that luma and chroma interpolation for H.264/AVC are different. That is,

no matter what on algorithm level or hardware level, the computation sources cannot be

shared. Therefore, the combination of luma and chroma parts is the space of improvement. As

luma and chroma interpolator filter described in above, the adder and shifter can be shared

when the architecture of chroma horizontal/vertical filter in Fig 3.11 (b) restructure to adder

and shifter. Besides, we can further reduce critical path by merge rounding stage. The

combined interpolator design is shown in Fig 3.14 and the cost penalty is MUX x 2 and

bitwise AND x 6 when compared with the FIR design proposed in Chen‟s [3] and shown in

Fig 3.13. Fig 3.15 illustrates the decoding path of luma FIR filter and chroma

 34

horizontal/vertical filter. Because chroma interpolation for H.264/AVC is 2 x 2 block size

basis, only eight luma FIR filters are required to replace with combined luma/chroma

interpolators. Fig 3.16 indicates the entire interpolator architecture for H.264/AVC.

<< 2

<< 2

<< 3

Chroma
Output

Bitwise AND

Luma
Output

<< 1

Rounding
Coefficient

Fig 3.14 Combined luma/chroma interpolator design for H.264

 35

<< 2

<< 1

<< 3

Chroma
Output

X X XY Y YFrac[0] Frac[1] Frac[2]iFrac[1] iFrac[2]iFrac[0]

Frac

Chroma Output =Frac*X + (8-Frac)*Y

Y

<< 2

<< 2

Luma
Output

A 1 F 1 B 1 E 1 C 1 D 1

Luma Output = (A - 5B + 20C + 20D - 5E +F +16)>>5

(b)

16

>>5

0

(a)

Fig 3.15 (a) Path of luma FIR interpolator, (b) path of chroma 1/8 bilinear

 36

R
_
F
IR

FIR

FIR

FIR

FIR

R
_
F
IR

R_FIR

R_FIR

R_FIR Restructured interpolator design

R_FIR

R_FIR

R
_
F
IR

R
_
F
IR

Reuse for Cb
Reuse for Cr

Fig 3.16 Entire interpolator architecture

 37

3.3.4 Cost Analysis

Table 3.2 Comparison of requisite modules

 Wang‟s

[15]

ISCAS‟05

Chen‟s [16]

ICASSP‟06

Li‟s [10]

ISCAS‟07

Tsai‟s[14]

MWSCAS‟05

Shen‟s

[11]

ICME‟09

Proposed

FIR 13 12 4 12 4 12

Bilinear 2 12 4 4 4 0

Technology

(um)

0.18 0.18 0.18 0.18
 0.18 0.09

Gate count 20,686 15,000 13,027 21,506 11,823 13,201

Working

Frequency

(MHz)

100 150 100 125 100 100

Latency

(Cycles/MB)

luma+chroma

560 320 304 144+NA 288+NA 144+48

Because of multipliers of 6-tap filter are simplified to adders and shifters in all references.

Therefore, in literature [10] and [11] use hardware sharing 6-tap FIRs to compute twice to

reduce area cost in interpolator design. However, throughput is a very important issue and

long execution cycles in interpolator design lead to not enough throughput in B slice. Our

restructured interpolator combines luma and chroma filter and through determine MV to

reduce a filter and one-path storages in traditional design. Table 3.2 lists the comparisons

between our restructured interpolator design and other design. It shows our interpolator can

almost achieve as gate count of [10] and [11] and owns enough throughputs although it

requires paying some control overhead to support multi-mode operations.

 38

3.4 Weighted Prediction

lo g

0 1 0 1
((0 * 1 * 2) (lo g 1)) ((1) 1)

W D
p p L W p L W W D o o           Eq. 3.3

lo g 1

0 0

lo g 1

1 1

{ [((0 * 2) lo g)]

[((1 * 2) lo g)] 1} 1)

W D

W D

p p L W W D o

p L W W D o





    

       

Eq. 3.4

lo g 1

0 0

lo g 1

0 0

(0 * 2) lo g)

{ 0 * [2 (lo g)]} lo g

W D

W D

p p L W W D o

p p L W o W D W D





    

      

Eq. 3.5

Weighted prediction is the final stage of motion compensation behind the interpolator.

Weighted prediction is a tool of scaling motion compensated samples to increase the video

quality in H.264/AVC video decoding. In this subsection, weighted predictor architecture is

proposed to collocate with interpolator and eliminate the latency overhead. Chen‟s [16]

proposed weighted prediction architecture has low complexity. However, it has long critical

path and large memory requirement (1.5kb). The design of Azevedo‟s [12] weighted predictor

is simply implemented by direct mapping design and require an embedded memory to store

rounding coefficient. Compared with direct mapping design which equation is listed in Eq.

3.3, we can use the same predictor twice to generate predicted value, first is LIST_0

prediction and second is LIST_1 prediction as shown in Eq. 3.4. The component of rounding

and offset can be advanced and combined in the same stage. Therefore, the predictor can be

further modified to reduce the critical path as shown in Eq. 3.5. Moreover from Eq. 3.5, the

W0 means weight factor and the value depend on weight flag from bit-stream. When weight

flag is equal to 1, the value of weight factor shall be in the range of -128 to 127, inclusive.

 39

When weight flag is equal to 0, weight factor shall be in the range of 2
0
 to 2

7
, inclusive [1].

From the above discussion, if we determine the highest weight factor two bit we can use an

eight bits multiplier and shifter instead of a nine bits multiplier. The predictor is shown in Fig

3.17.

M
U

X

+

offset

<<7

*

Weight factor[7:0]

predPart

LogWD

+

>>
Round

Weight factor[8:7]

<<

Fig 3.17 Weighted predictor design

Moreover, when B slice is involved, we use hardware sharing to operate twice. In

addition, a 4 x 4 storages array is required to store intermediate results. Fig 3.18 illustrates the

complete weighted predictor design. The same as temporal direct mode in motion vector

generator, weighted predictor has implicit mode which weighting factors are calculated based

on the relative temporal positions of LIST_0 and LIST_1 reference picture. Weighting factor

in the implicit mode is derived from temporal direct mode data-path in order to reduce

hardware cost. Furthermore, divider occupies the main area cost and computation time in the

temporal direct mode design. We can use loop-up table (LUT) to replace divider because the

 40

dividend is a constant value. Table 3.2 lists the comparison for implementation results. For

[12], it was not presented in comparison because lack of related detail information.

Predictor
1

Predictor
2

B-L1 M
U

X

P slice

C
lip

Luma/Cr

4x4
BufferLuma/Cb

A
v

erag
e

B-L0

Fig 3.18 Entire weight predictor architecture

 ICASSP‟06[16] proposed

Multiplier (bits) 9 8

Technology .18um .90um

Gate count 12,960 6,412

Working frequency 87MHz 100MHz

Table 3.2 Comparison of execution cycles for different architectures

 41

3.5 Summary

In this chapter, a motion compensation engine for H.264/AVC Main/High Profile

decoder is presented. As for sharing design issue for multi-profile, our MVG use the same

module and storages to deal with P slice and B slice which include MBAFF and non MBAFF.

Our restructured interpolator presents the area efficiently compared with traditional design

and it is suitable for high throughput application such as coded in B slice video decoder.

Besides, the weighted predictor through hardware sharing with temporal direct mode and

critical path shorten to achieve area efficiency. When weighted predictor collocates with

interpolator, it only requires one cycle latency overhead.

 42

Chapter 4

Memory Bandwidth Reduction

4x4 output pixels

9x9 reference pixels

interpolatio
n

Fig 4.1 4 x 4 block window and the corresponding 9 x 9 interpolation window

Considering luma interpolation, the half position samples interpolated by applying 6-tap

FIR filter and quarter position samples performed by applying using bilinear filter. It means

interpolator needs six reference pixels to produce one interpolated pixel. Fig 4.1 shows to

interpolate each fractional sample value for each 4 x 4 block size; it needs 9 x 9 interpolation

window. Chroma interpolation, of which concept is similar to luma, interpolates each

fractional sample value for each 2 x 2 block size, it needs 3 x 3 interpolation windows. When

frame size is large and frame rate is high, interpolation causes heavy loading of memory

bandwidth. Moreover, motion compensation involves Main/High Profile; it supports B slices

in which reference frame from one direction increase to two directions. From the above

discussion, Main/High Profile doubles the memory bandwidth requirement. In worst case,

 43

interpolator needs memory bandwidth requirement, 398MB/s in P slices and 796MB/s in B

slices, when support 1080 HD @ 30 fps. The heavy loading of memory bandwidth also means

huge power consumption for bus activity and data operation.

The rest of this chapter is organized as follows. Firstly, section 4.1 discusses our

reduction strategies of memory bandwidth. In addition, an analysis of bandwidth reduction

limit is presented in section 4.2. Finally, summary is given in section 4.3.

 44

4.1 Reduction strategies of memory bandwidth

Memory bandwidth always dominates the performance of entire video decoder. Several

methods have been proposed to reduce the required memory bandwidth and they can be

mainly classified to two directions, first one is frame recompression and another one is

redundancy reduction of pixels transmission. With regard to the frame recompression, Fig 4.2

illustrates the concept. Frame data will be compressed before writing to frame memory, and

reference frame data will be decompressed before reading into video decoder. However, frame

recompression method must consider many issues which like necessary random access

capability demanded from motion compensation, low complexity property due to area cost

and power saving, and minimize required additional execution cycles to compress/decompress

data such that meet the real time throughput requirement of video decoder. Here we do not go

into detail because our system have two dedicated modules, embedded compressor, between

motion compensation and frame memory and embedded decompressor between frame

memory and de-blocking module respectively.

Video
Decoder

Frame
Memory

recompress

decompress

Global bus

Fig 4.2 Embedded compress/decompress method

 45

As for second solution, transmission reduction of redundant pixels, which can be

classified into two solutions that first one is data fetch time reducing and the other one is data

(pixel) reusing. The following subsection will discuss the detail of reduction strategies of

memory bandwidth. Subsection 4.2.1 illustrates first strategy of data fetch times reducing.

Subsection 4.2.2 gives second strategy of data fetch times reducing. Subsection 4.2.3

illustrates first strategy of data reusing. Finally, subsection 4.2.4 presents second strategy of

data reusing.

4.1.1 Exact Fetch Necessary Pixels

a cG

h

d

n

H

m

M s N

fe g

ji k

qp r

b

Fig 4.3 Fractional sample positions for quarter sample luma interpolation

Fig 4.3 illustrates the luma samples „a‟ to „s‟ at fractional sample positions. In traditional

method, when interpolate fractional pixel, it always fetch 9x9 interpolation windows.

However, there are not all pixels required in all fractional sample position. For example, the

sample at half sample position labeled b is derived by the nearest integer position samples in

the horizontal direction. Similarly, the sample at half sample position labeled h is derived by

the nearest integer position samples in the vertical direction. Fig 4.4 illustrates interpolation of

the samples at a, b, and c positions only need 9 x 4 interpolation windows. Fig 4.5 illustrates

 46

interpolation of the samples at d, h, and n positions only need 4 x 9 interpolation windows.

We can depend on motion vector value to exact fetch necessary pixels instead of fetch 9 x 9

interpolation window. Similar to luma interpolation, chroma interpolation can determine

motion vector to decide interpolation window as well. Table 4.1 shows the summary of luma

interpolation windows. Table 4.2 shows the summary of chroma interpolation windows. The

strategy is also used in other design [14], [10], and [11]. As for bandwidth reduction result, we

will show it later.

4x4 output pixels

9x4 reference pixels

interpolatio
n

Fig 4.4 Fractional sample only need horizontal samples

.

interpolatio
n

4x9 reference pixels

4x4 output pixels

Fig 4.5 Fractional sample only need vertical samples

 47

Table 4.1 Summary of luma interpolation windows

Pixel position Interpolation Window Size

G (Integer) 4x4

a, b, c (Horizontal) 4x9

d, h, n (Vertical) 9x4

e, g, p, r 9x4+4x5

others 9x9

Table 4.2 Summary of chroma interpolation windows

Pixel position Interpolation Window Size

Integer 2x2

Horizontal 3x2

Vertical 2x3

Others 3x3

4.1.2 Pre-fetch Mechanism

The second strategy of reduced fetching times is Pre-fetch Mechanism. Frame memories

are such the largest memory storage over the entire video decoder that it are located on

off-chip. Because bus interface has fixed width, every fetching may fetch unneeded pixels

when fetch interpolation windows. If we save these unneeded pixels, it may be used in the

future. Hence, we can further reduce fetching times. Fig 4.6 illustrates the interpolation

window mismatch with bus interface and pre-fetch mechanism. The strategy is also used in

other design [11]

 48

Bus interface is
32bit=4 pixels

9x9 pixels
windows size

Pre-fetch pixels...

Memory boundary

Fig 4.6 Pre-fetch mechanism

 49

4.1.3 Intra MB Pixel Reusing

4

4

5

B

A

B

A

4

4

5

interpolation

interpolation

interpolation
interpolation

Fig 4.7 4x4 block window and the corresponding 9x9 interpolation window and

overlapped region for neighboring interpolation window

Similar to reduced fetching times, pixel reusing can separate into intra MB overlap pixels

reusing and inter MB overlap pixels reusing. The concept of overlap pixels reusing is if two

motion vectors of horizontal neighboring 4 x 4 blocks are the same, 5 x 9 overlap region

between two interpolation windows can be reused. Similarly, if two motion vectors of vertical

neighboring 4 x 4 blocks are the same, 9 x 5 overlap region between two interpolation

windows can be reused. Fig 4.7 illustrates four motion vectors of neighboring 4 x 4 blocks are

the same and the corresponding 9 x 9 interpolation windows. We can see there are two

vertical 5 x 9 overlap region indicated by “A” and two horizontal 9 x 5 overlap region

indicated by “B” can be reused.

The first strategy of overlap pixels reusing is Intra MB Overlap Pixels reusing. Fig 4.8

 50

illustrates the Intra MB overlap pixels reusing. There are some methods have been proposed

in [14-16]. In Tsai‟s [14]，Tsai proposed VIDZ to achieve horizontal and vertical data reusing.

Besides, based on the VIDZ flow, all vertically overlapped interpolation windows can be

reused without additional storages. However, the violation of the inherent double-z-scan order,

VIDZ cannot fit into a 4 x 4-block level pipeline. Moreover, in system view, VIDZ induces

extra synchronization buffers because of different scanning order with other modules (for

example, residual decoder) which must follow scanning order in standard [1].

Intra MB
interpolation
window overlap
region

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Fig 4.8 Intra MB overlap pixels reusing

4.1.4 Inter MB Pixel Reusing

The second strategy of overlap pixel reusing is Inter MB Overlap Pixels reusing. Up to

now, literatures of neighboring-based pixels reusing almost focus on reusing pixels which

inside the same MB. However, there are overlap region between interpolated windows which

located on neighboring MB can be reused. Fig 4.9 illustrates overlapped region for

 51

neighboring interpolation windows on horizontal neighboring MB. Only stores horizontal MB

overlap regions is our selection. This is because if we want to reuse vertical MB overlap

regions, there are MB regions of entire frame width needed to be store and only provide

limited space of improve efficiency. Subsection 4.3 will show the analysis.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

previous MB current MB

Inter MB
interpolation
window overlap
region

Fig 4.9 Inter MB overlap pixels reusing

The required content buffers are 5 x 9 pixels and 9 x 5 pixels for horizontal and vertical

overlapped region for neighboring interpolation windows respectively. In order to minimize

the content buffer size, the lifetime analysis of reference data shows that only three horizontal

and three vertical blocks is required to be saved in the worst case.Table 4.3 shows the lifetime

analysis. Horizontal axis shows 4 x 4 partition ordering, vertical axis shows the used storages,

and filed is which partition horizontal or vertical overlap region of partition is stored. For

example, in partition 1, horizontal overlap region of partition 1 will be stored in H0 and

vertical overlap region of partition 1 will be stored in V0. Content buffers can be implemented

in local registers or SRAM. However, SRAM needs several cycles to finish content-swap

operation, so we use local registers in order to minimize latency on carrying out content-swap.

Table 4.3 Storage requirement and lifetime analysis

 52

4 x 4

Storage

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 …

H0 1 1 3 3 5 15 …

H1 7 1 1 3 …

H2 9 9 11 11 13 …

V0 0 1 2 7 12 13 0 1 2 …

V1 3 8 9 3 …

V2 4 5 6 11 …

 Time

4.2 Limit of Reduced Memory Bandwidth

Our memory bandwidth reduction can be classified into data fetch time reducing and

pixel reusing. In ideal condition, there exists reduction limit of memory bandwidth in terms of

reduced fetch times. In ideal condition, all pixels locate on integer position. Table 4.4 shows

all pixel position and their reduction percent. The reduction percent is original 9 x 9

interpolation window compare with exact interpolation window that only fetch required pixel.

In Table 4.4, even though all pixels locate on integer position, G, we can see the limit of

memory bandwidth reduction is 80%. However, all pixels located in integer position is

impossible in real sequence

Table 4.4 Summary of luma interpolation windows and reduction percent

Pixel position Interpolation Window Size Reduction percent

G 4x4 80.25%

a, b, c 4x9 55.56%

d, h, n 9x4 55.56%

e, g, p, r 9x4+4x5 30.86%

f, i, j, k, q 9x9 0%

In another aspect, in terms of pixel reusing, Fig 4.10 illustrates all partitions can use all

overlap region include previous upper MB overlap region and previous left MB overlap

 53

region. Table 4.5 shows summary of reduction percent in different overlap region. We can see

even though all partition have horizontal and vertical overlap regions can reuse in ideal

condition, the limit of bandwidth reduction is 80%. However, if we want to reuse previous

upper MB overlap region, each MB needs to be saved and only after process all following

MB of frame width then can be reused and discarded because of characteristic of raster

scanning. In other words, if we want to achieve upper MB overlap pixels reusing which is

required to store MB overlap region of the entire row of frame. The storage depend on frame

width and often very large. For example, it needs 21.6KB in 1080 HD. The storage is too

large and only enhances 6% of memory bandwidth reduction. Hence, our selection is Intra

MB with left MB. In ideal condition, we can achieve up to 74% bandwidth saving which is

close to idea limit without huge overhead.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Previous upper MB
overlap region

current MB

Previous lefter MB
overlap region

Fig 4.10 All overlap region include between previous upper MB and left MB

Table 4.5 Summary of reduction percent in different overlap region

 54

Overlap region Reduction percent

(all) Intra MB 65.97%

Intra MB + left MB 74.07%

Intra MB + left MB + upper MB 80.25%

In terms of data fetch times reducing and data reusing, it will not both happen all in ideal

condition at the same time. This is because of integer pixel need not other pixels to interpolate

result. In other words, it only bypasses reference pixels, so there are no overlap pixels to be

reused. Fig 4.11 illustrates two motion vectors of neighboring 4 x 4 blocks are the same, there

is no overlap region between two interpolating windows for data reusing.

block 0
4x4 output pixels

block 1

inter
polat

ion

inter
polat

ion

4x4 reference pixels

Fig 4.11 No overlap region can be reused

 55

4.3 Summary

In this chapter, memory bandwidth, there are two directions adopted to reduce

requirement of memory bandwidth. In these two directions, there are four strategies to achieve

efficiently reducing memory bandwidth. Finally, the analysis of .reduced memory limit is

discussed. The simulation result will show in chapter 5 and present our strategies is effective

because of the close to limit of reduced memory bandwidth.

 56

Chapter 5

Experiment Result

5.1 System Specification

Table 5.1 Video decoder specification in our design

H.264/AVC decoder

I, P, B slice

Variable block size: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, 4x4

Single reference frame (each direction)

Search range: [-128, +127.75]

Fractional motion resolution: quarter for luma, 1/8 for chroma

Frame/Field coding

Scalable High Profile (future)

Decoding capability: H.264/AVC: 1080 HD, 30fps

 SVC: 720 HD – 1080 HD, 30fps (future)

Working Frequency:

 H.264/AVC: 100 MHz

 SVC: 150 MHz (future)

External Memory and Bus

Table 5.1 lists the specification of our H.264 video decoder. Fig 5.1 shows the whole

H.264/AVC video decoder. We can see there exists embedded compressor and embedded

decompressor to further reduce memory bandwidth requirement. Fig 5.2 shows the simulation

result that applies our reduction strategies of memory bandwidth [17]. Memory bandwidth

can be saved 71~80% and is very close to the limit of our analysis result shown in subsection

 57

4.3. Fig 5.3 shows the comparison with related work [14]. If we pay attention to the extreme

conditions, we can see that the reduction of memory bandwidth is very close to the limit in

Akiyo sequence. In addition, the difference of memory bandwidth reduction in Stefan

sequence is the largest. After we further analyze Akiyo and Stefan sequence, Fig 5.4 shows

the ratio of pixels position in Akiyo and Stefan sequence. The reviewing of fractional sample

position for luma interpolation is showed in Fig 4.3. In Akiyo sequence, the ideal condition

(integral pixels) occupy up to 90%, so the memory bandwidth reduction is very close to the

limit of memory bandwidth. In Stefan sequence, the pixels position is closely uniform

distribution. In other words, ideal condition is less. That is, when the ratio of fractional

position increases, comparing with other works will shows we can significantly enhance

bandwidth reduction (Up to 11%).

Deblocking

Filter

AHB Master/Slave Interface & SVC Arbiter

BUS

Embedded

Decompressor

Entropy

Decoder
IQ IT

Motion

Compensation

Intra

Prediction

Data Fetch
Data Fetch &

Operation

Data Fetch
Data Fetch &

Operation

MC info.

coef.

Intra info.

Residue

Embedded

Compressor

Filtered

Pixels

Temporary

Data
SVC

Bitstream

SRAM

SRAM

SRAM

Fig 5.1 Motion compensation engine for H.264 video decoder

 58

Fig 5.2 Simulation results of bandwidth reduction strategies

Fig 5.3 Compare related works

 59

Fig 5.4 Ratio of pixels position in Akiyo and Stefan sequence

Even though the above discussion depend on different sequence characteristic, however,

Fig 5.5 and Fig 5.6 [8] show the luma and chroma integer/fractional motion vector proportion

for different foreman-QCIF bit-rate. In high bit rate coding (128 kbps), fractional motion

vector occupies about 80 %. However, in low bit rate (32 kbps), fractional part only occupies

40 %. Higher bit-rate, higher fractional MV proportion, has better quality with more

execution time to read pixels data from frame memory than integer motion vector. This gap

may become more obvious especially when SDRAM is used as frame memory. In other words,

our proposal is more suitable in high bit-rate than previous works for higher reduction of

memory bandwidth.

 60

32 48 64 80 96 112 128
0

10

20

30

40

50

60

70

80

90

100
Luma integer/fractional motion vector proportion (foreman-QCIF)

bit rate(kbps)

p
ro

p
o
rt

io
n

integer
fraction

Fig 5.5 Luma integer/fractional motion vector proportion for H.264/AVC

32 48 64 80 96 112 128
0

10

20

30

40

50

60

70

80

90

100
Chroma integer/fractional motion vector proportion (foreman-QCIF)

bit rate(kbps)

p
ro

p
o
rt

io
n

integer
fraction

Fig 5.6 Chroma integer/fractional motion vector proportion for H.264/AVC

 61

5.2 Comparison with Related Works

Table 5.2 lists the comparison with related works about motion compensation. We only

focus on memory bandwidth reduction and interpolator design comparison. This is because

memory bandwidth always is bottleneck of motion compensation and interpolator is key

module in motion compensation. For another reason, each related works support different

specification. We can see our memory bandwidth optimization is better than previous works

although our storage is not least. However, our storage size is after trade-off and can get better

performance. In terms of interpolator, [10] and [11] use hardware sharing to operate twice to

achieve area efficiency. Even though these hardware sharing is suitable for Baseline Profile,

but the poor throughput is not meet real-time decode in Main/High Profile. Moreover, our

interpolator gate count is very close to these previous work [10] [11] and provide enough

throughput performance in Main/High Profile.

Table 5.2 H.264decoder comparison with related work

 62

 ISCAS

‟05[15]

ICASSP

‟06[16]

 ISCAS

‟07[10]

MWSCAS

‟05[14]

ICME

’09[11]
Proposed

Data

paths

6-tap 13 12 4 12 4 12

Bilinear 2 12 4 4 4 0

Technology (um) 0.18 0.18 0.18 0.18 0 .18 UMC .09

Gate

count

Interpolator 20,686 15,000 13,027 21,506 11,823 13,201

total 43k 61k 32k 47k N/A 68k

Storage(Bytes) 54 81 2000 228 432 396

Bandwidth

Optimization

30% 48% 60~80% 60~79% 70% 71~80%

Working

Frequency

(MHz)

100 150 100 125 100 100

(max:176)

Profile BL BL BL BL BL HP

Latency

(Cycles/MB)

luma+chroma

560 320 304 144+NA 288+NA 144+48

 63

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Motion compensation engine consists of three parts: motion vector generator,

interpolator, and weighted predictor. Firstly, motion vector generator needs to support many

tools in Main/High Profile. The challenge of motion vector generator is high complexity. We

use hardware sharing to deal with double motion vectors, use coordinate mapping method to

process direct modes, and merge MBAFF mode LUT and non-MBAFF mode LUT effectively

to reduce the complexity. The design of interpolator, 4-parallel separate 1-D architecture gives

the most space on high throughput compared with other proposed architectures. Hence, our

interpolator is suitable for B slice and our restructured design can significantly reduce area

cost. Lastly, weighted predictor located on last stage of motion compensation engine, we use

LUT to deal with complicated implicit mode and collocate with interpolator in order to

execute operation only occupies one cycle.

The design target of memory bandwidth reduction is to reduce external memory access

and improve throughput of motion compensation engine. The proposed reduction strategies of

memory bandwidth for motion compensation need 319 pixel storages is after trade-off and

own better performance than other works. After applying these strategies, the memory

bandwidth requirement can save the required bandwidth about 71~80 %. Moreover, achieve

efficient memory access scheduling.

 64

6.2 Future Work

The proposed motion compensator for H.264/AVC standard only supports up to

Main/High Profile. If we want to support H.264/SVC/MVC, there are many issues should be

taken into account. For example, hierarchical B pictures [18] [19]. In addition, a successor to

H.264/AVC, High Efficiency Video Coding (HEVC) [20], is a proposed video compression

standard, currently under development. If we want to support HEVC, the subjects such as

extended macroblock size (EMS), decoder-side motion vector derivation (DMVD), 2-D

non-separable adaptive interpolation filter (AIF), separable AIF, Direction AIF,

Competition-based scheme for motion vector selection and coding, and so on tools should be

taken into account for a next generation motion compensator.

In terms of memory bandwidth, our proposed mechanism can effectively reduce

bandwidth requirement. However, there only focus on one single module in system view.

Hence, there are still many important issues should be considered in order to provide

bandwidth reduction in the viewpoint of overall system. For example, when embedded

compressor/decompressor is disabled, a smarter SDRAM controller should be designed

include scheduled memory accesses.

 65

Bibliography

[1] Joint Draft ITU-T Rec. H.264 | ISO/IEC 14496-10 / Amd.3 Scalable video coding

[2] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra, “Overview of the H.264/AVC

video coding standard,” IEEE Trans. Circuits Syst. Video Technol., Vol. 13, no 7, pp.

560- 576, July 2003.

[3] T. C. Chen, Y. W. Huang, and L. G. Chen, “Fully utilized and reusable architecture for

fractional motion estimation of H.264/AVC,” IEEE International Conference of

Acoustics, Speech, and Signal Processing 2004, vol. 5, pp.V-9-12, May 2004

[4] C. D. Chien, H. C. Chen, L. C. Huang, and J. I. Guo, “A Low-power motion

compensation IP core design for MPEG-1/2/4 video decoding,” IEEE International

Symposium of Circuits and Systems, 2005, Vol. 5, pp.4542-4545, May 2005

[5] Digital Video Broadcasting - Wikipedia, the free encyclopedia Available from:

<http://en.wikipedia.org/wiki/Digital_Video_Broadcasting>

[6] Iain E. G. Richardson, “H.264 and MPEG-4 VIDEO COMPRESSION”, WILEY, 2003.

[7] Joint Video Team (JVT) reference software JM 8.2

[8] S. Z. Wang, “A Flexible Motion Compensation Memory Organization for Dual-standard

Video Decoder”, National Chiao-Tung University Taiwan, Master Thesis, June 2004.

[9] S. Wuytack, J. P. Diguet, and F. V. M. Catthoor, “Formalized methodology for data

reuse exploration for low-power hierarchical memory mappings,” IEEE Trans. VLSI

Syst., Vol. 6, no. 4, pp. 529-537, Dec. 1998.

[10] Y. Li, Y. Qu, and Y. He, “Memory Cache Based Motion Compensation Architecture for

HDTV H.264/AVC Decoder ”, IEEE International Symposium on Circuits and Systems,

pp. 2906-2909, May 2007

 66

[11] D. Y. Shen, T. H. Tsai,“A 4X4-block level pipeline and bandwidth optimized motion

compensation hardware design for H.264/AVC decoder”, IEEE International

Conference on Multimedia and Expo 2009, pp.1106-1109, Jul. 2009.

[12] A. Azevedo, B. Zatt, L. Agostini, S. Bampi, “Motion Compensation Decoder

Architecture for H.264/AVC Main Profile Targeting HDTV”, International Conference

on Very Large Scale Integration 2006, pp.52-57, Oct. 2006.

[13] B. Zatt, A. Susin, S. Bampi, L. Agostini, “HP422-MoCHA: A H.264/AVC High Profile

Motion Compensation Architecture for HDTV”, IEEE International Symposium on

Circuits and Systems 2008, pp.25-28, May 2008.

[14] C. Y. Tsai, T. C. Chen; T. W. Chen; L. G. Chen, “Bandwidth optimized motion

compensation hardware design for H.264/AVC HDTV decoder”, Circuits and Systems,

2005. 48th Midwest Symposium, Vol. 2, pp.1199-1202, Aug. 2005.

[15] S. Z. Wang, T. A. Lin, T. M. Liu, and C. Y. Lee, “A new motion compensation design

for H.264/AVC decoder,” IEEE International Symposium on Circuits and Systems 2005,

Vol. 5, pp.4558–4561, May 2005

[16] J. W. Chen, C. C. Lin, J. I. Guo, J. S. Wang, “Low Complexity Architecture Design of

H.264 Predictive Pixel Compensator for HDTV Application”, IEEE International

Conference Acoustics, Speech and Signal Processing 2006. (ICASSP), Vol. 3, pp. III -

III, May 2006.

[17] Joint Video Team (JVT) reference software JM 17.0

[18] H. Schwarz, D. Marpe, and T. Wiegand, “ANALYSIS OF HIERARCHICAL B

PICTURES AND MCTF”, IEEE International Conference on Multimedia and Expo

2006, pp.1929-1932, Jul. 2006

[19] M. Winken, H. Schwarz, D. Marpe, and T. Wiegand, “JOINT OPTIMIZATION OF

TRANSFORM COEFFICIENTS FOR HIERARCHICAL B PICTURE CODING IN

H.264/AVC”, IEEE International Conference on Image Processing 2007 (ICIP), Vol. 4,

pp.IV-89-IV-92, Sep. 2007

[20] .High Efficiency Video Coding - Wikipedia, the free encyclopedia Available from:

<http://en.wikipedia.org/wiki/HEVC>

 67

[21] L. Yu, J. Li, Y. Zhang, “Fast Picture and Macroblock Level Adaptive Frame/Field

Coding for H.264”, IEEE International Conference of Acoustics, Speech, and Signal

Processing 2006, pp. 768-771, Dec. 2006

 68

Vita

姓名：陳浩民

出生地：台灣省彰化市

出生日期：1977.11.18

學歷： 彰化縣立南興國民小學

 彰化縣立彰安國民中學

 國立虎尾科技大學 電機工程科

 明新科技大學 電機工程系

 國立交通大學 電機學院 (電子與光電學程) 碩士班

工作經歷： 太和科技服份有限公司 研發一處 工程師

 研發處專案一部 高級工程師

 研發處硬碟陣列部 科長

 研發處硬碟陣列部 經理

