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應用緊密耦合記憶體之 Linux 內核效能最佳化 
 
學生：林榮燦 指導教授：黃育綸 

國立交通大學  電機學院  電機與控制學程碩士班 

摘 要       

 
  緊密耦合記憶體 (Tightly-Coupled Memory，TCM) 比傳統記憶體結構

擁有高速存取與低耗電的優點。為此，TCM 最適合用於關鍵的常用程式和

資料結構。當前此領域的研究都是集中在非作業系統的嵌入式應用程式，

例如多媒體資料的處理，以提高整體效能。可能是由於 Linux 內核程式碼

和其資料結構是龐大且複雜的，因此沒有關於將作業系統內核函數程式放

到 TCM 之性能影響的討論。不當安排內核函數程式在 TCM 中會造成效

能降低。在本論文中，我們分析 TCM 的利用率和效能的影響，並把 Linux 

內核函數程式根據 TCM 的容量進行分組。然後，我們選擇不同群組的 

Linux 內核函數程式進行個別編譯，在系統執行期間將這些群組放入 TCM 

並且不再置換。通過使用 lmbench 的實驗，我們找到把 exec() 或 schedule() 

函數程式放置到 TCM 可以縮短本地端通信延遲 13%-14%。 
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Degree Program of Electrical and Computer Engineering 

National Chiao Tung University 

Abstract 

 

TCM (Tightly-Coupled Memory) is advantaged of high-speed data access 

with lower power consumption than the traditional memory architecture. As 

such, TCM is a best fit to hold mission critical routines and data structures. Prior 

research of this area has emphasized on how TCM can be applied to non-OS 

embedded applications, like media streaming, to improve the overall 

performance. Possibly due to large and complicated Linux kernel code base and 

its data structures, there is no discussion regarding the performance impact when 

placing OS kernel functions into TCM. An improper arrangement of kernel 

functions in TCM can contrarily downgrade the performance. In this paper, we 

analyze the utilization and performance impact of TCM, and classify Linux 

kernel functions into groups per the TCM capacity. Then, we select different 

groups of Linux kernel functions at the compiling time and place these function 

groups into TCM without swapping them out during execution. By conducting 

the experiments with lmbench, we find that placing exec() or schedule() into 

TCM can reduce the local communication latency by a factor of 13% - 14%. 
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Chapter 1 

Introduction 

This chapter introduces a novel memory technology, tightly-coupled 

memory (TCM), providing high speed data access within a central processing 

unit. After a brief introduction to TCM, we describe the pros and cons of the 

novel memory technology, our motivation, and the synopsis of the thesis. 

 

1.1 Tightly-coupled memory 

TCM, a high speed SRAM (Static Random Access Memory) is designed in 

an embedded processor like Level 1 cache as shown in Figure 1.1. TCM 

memory address space is included within 4 GB (Giga-Bytes) memory map of a 

32-bit CPU (Central Processing Unit). TCM can be used to store frequently 

accessed data or instructions. The advantage of TCM is that a CPU can access 

required instructions or data in one clock cycle to reduce the access latency 

around 25 cycles caused by an off-chip main memory. 

However, in order to achieve the same clock frequency as a CPU, the size 

of TCM is limited like a cache. The size of TCM is usually between 4 KB to 32 

KB (Kilo-Bytes). The limitation might lead the performance down if the size of 

an application program is too large to fit into TCM. For example, the size of a 

program containing a function foo_a and its subfunction foo_b is 100 KB. Since 

the program size is larger than TCM size, the function foo_a is located in TCM 

and its subfunction foo_b is located in the off-chip main memory. Trivially, 

accessing function foo_a can be done in one clock cycle, but more clock cycles 

are required due to the accessing to foo_b in the main memory. The total 

execution time might be greater than the processor without using TCM. TCM 
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has a disadvantage of limited size, so how we arrange appropriate code from 

huge codes such as Linux kernel into TCM is very important. 

 

 
Figure 1.1: Memory diagram 

 

 

 

Figure 1.2: TCM memory address space 
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Although a cache and a TCM are both made up of SRAM cells, the 

operations are different. A cache is designed to hold the instructions and data 

from recently accessed memory locations to improve performance of general 

purpose processors. A cache contains tag RAM and data RAM. The tag RAM is 

mapped against the external memory address. If the instruction or data exists in 

the cache, the processor fetches them in one clock cycle to reduce the accesses 

to the main memory. On the other hand, TCM only contains data RAM and is 

located as a part of the main memory address map. Avoiding a check of the tag 

RAM can reduce the total execution time. According to the characteristics of 

cache and TCM, many cache or TCM studies were proposed to improve the 

system performance. There is a detailed comparison between cache and TCM in 

[1], and the result shows that TCM has 40% lower power consumption and 34% 

smaller area than a cache memory with the same capacity. 

 
1.2 Motivation   

With the progress of science and technology, an embedded system becomes 

an integral part of human life. To handle a growing number of computing 

operations, instead of developing faster CPUs, we also consider the improvent 

of performance when running programs with the existing CPUs. 

Under the existing CPU architectures, we can find out that ARM processers 

design TCMs and MIPS introduces Scratchpad memory to improve the system 

performance. The memory is located within a processer, its priority is higher 

than caches, and provides high speed performance without accessing system bus. 

According to the statistics shown in Figure 1.3 (data source: ARM official 

website in 2011), for mobile computing, ARM’s processer market share will be 

greater than 50% by 2015, especially 85% for Media Tablets, and >30% for 

Mobile PC. So we consider ARM processer as our research platform. 
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        Figure 1.3: ARM processer market share rate  

(data source: ARM official website in 2011) 

In general, the TCM memory is used by non-OS software, because it is 

easy to be controlled by a designer. Regarding Linux, Android OS, and so on, 

the code structure is very complex and code size is much more than TCM 

memory size. Our purpose is to research how to select proper kernel functions 

from a common Linux kernel into the limited TCM memory space to improve 

the overall performance. 

 

1.3 Synopsis 

The remainder of this paper is organized as follows. Chapter 2 discusses 

related work. Chapter 3 describes TCM performance evaluation. Chapter 4 

proposes kernel classification. Chapter 5 explains the experimental environment 

and presents the results. Finally, Chapter 6 is the conclusion of the thesis. 
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Chapter 2  

Related work 

Existing work on the TCM utilization can be classified into three categories: 

(1) apply to a data memory only; (2) apply to an instruction memory only; or (3) 

apply to both of an instruction memory and a data memory. Base on above 

categories, they can be further divided into two classes: one is static allocation 

and the other is dynamic allocation. The difference is whether the contents of 

TCM are changed during the program execution or not. The purpose of TCM 

memory utilization is to improve the performance of program execution and 

reduce the electrical energy. 

 
2.1 Data TCM allocation scheme 

   For static data TCM, the optimization methods for data memory are 

presented in [3, 4, 5, 6, 7, 8]. In most of researches, test data patterns were 

analyzed to find frequently accessed variables and constants. For example, P. 

Panda et al. in [3] propose some partitioning strategies: (1) assign scalars to 

SRAM and arrays to DRAM; (2) array with size larger than SRAM is placed in 

DRAM; (3) arrays with highest intersecting life times are placed in SRAM; (4) 

arrays with highest variable access count are placed in SRAM.  

   For dynamic data TCM, a dynamic management method of data memory is 

presented in [9]. Ning Deng et al. propose a memory address random sampling 

scheme to identify the frequently accessed region during execution time. The 

proposed software handler can deal with TCM allocation. 

    [3, 4, 5, 6, 9] discuss the allocation of both global data and stack variables 

to TCM, while [7] and [8] can only allocate global data to TCM. 
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2.2 Instruction TCM allocation scheme 

   For static instruction TCM, an example is described in [10]. F. Angiolin et al. 

propose a patching tool to do binary code relocation. First of all, the source code 

of application is compiled to binary one. Then, the binary image runs on target 

platform to collect the statistics of an execution trace. Those statistics and the 

application-independent information such as the size of the target TCM are 

analyzed by the TCM analysis algorithm. Eventually, some optimal code 

segments are found and passed to the patching tool. This tool modifies the 

original binary image of application to insert jump instructions, adjust some 

critical instructions, and move code to different address regions. The experiment 

proves that a post-compilation approach improves application optimization 

without compiling source code of application again. 

For dynamic instruction TCM, the optimization methods for instruction 

memory are presented in [11, 12, 13]. For example, M. Kandemir et al. in [11] 

propose an algorithm to decide frequently accessed instructions into TCM. The 

algorithm has four steps: (1) divide the code into regions; (2) assign timestamp 

for each region; (3) select the instructions copied to and evicted from TCM 

according to code profiling; (4) decide if instructions are swapped actually 

according to cost analysis. The result of experiment shows the execution time 

has a great improvement.  

The common characteristic of the above mothods is that the application 

code needs to be profiling in advance. This means that the application binrary or 

source code must be modified one or more times. 
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2.3 Both of instruction and data TCM allocation scheme 

The representative research of instruction and data TCM static allocation is 

[14]. An algorithm analyzes the application and selects best program and data 

code into limited size of TCM to save the maximum of electrical energy. S. 

Steinke et al. define two memory object types; one is program memory object 

which is a function or a basic block; the other is data memory object which is a 

variable. Program memory objects are put into instruction TCM while data 

memory objects are put into data TCM. Based on the limited size of TCM, S. 

Steinke et al. define the related equations and apply the method of [15] to gain 

the cost for the use of a TCM memory. According to analysis of cost, the best 

set of memory objects can be found. Finally, S. Steinke et al. compare the TCM 

versus Cache performance in the same memory size. The result shows TCM 

saves about 22% of electrical energy. 

 

 

2.4 The analysis of instruction code  

In order to select the proper codes into an instruction TCM, an appropriate 

analysis method is necessary. Most of prior researches focus on loop blocks 

analysis of the trace of an application program. In [16], He Yi et al. built a 

kernel-storage model shown in Figure 2.1 to analyze the hot spot loop blocks of 

key instructions in stream programs. The left of Figure 2.1 is a kernel contains 

two loop functions. LOOP1 function has L1 instructions and is executed C1 

times, while LOOP2 function has L2 instructions and is executed C2 times. 

Besides, LOOP1 includes LOOP2. The right of Figure 2.1 is an instruction TCM 

and its depth is L.  

If L ≥ L1, it means all instructions of LOOP1 can be placed in the 
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instruction TCM. If L1 > L ≥ L2, it means only LOOP2 function can be placed 

in the instruction TCM. Because LOOP1 includes LOOP2, He Yi et al. define 

that LOOP2 is the Hot Code of LOOP1. 

 

Figure 2.1 The kernel-storage model (data source: [16]) 

 

Based on the analysis, He Yi et al. define Kernel Hot Code for each stream 

media application program. The Kernel Hot code is placed into an instruction 

TCM when running the specific program.  

Loop analysis, however, has several disadvantages: (1) the system structure 

and relationship of loop functions should be very complex; (2) different 

applications need to design a specific system structure. Besides, all prior 

researches of TCM memory focus on a non-OS embedded application program, 

because it is easy to be analyzed. Regarding Linux, Android OS, and so on, the 

code structure is very complex and the size of the code is much more than the 

size of TCM memory. We purpose a method to select proper kernel codes into 

the limited TCM memory space to improve the performance. 
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Chapter 3 

The performance evaluation 

All prior researches of TCM memory focus on a non-OS embedded 

application program, because it is easy to be analyzed. Regarding Linux, 

Android OS, and so on, the code structure is very complex and code size is 

much more than the size of TCM memory. If use of TCM is not good, the 

performance is down. So an analysis model is necessary. In this chapter, we 

describe the architecture of ARM processor with TCM, the proposed analysis 

model, and a comparison analysis when kernel uses TCM or not. 

 
3.1 Hardware architecture 

Under normal circumstances, an embedded operation system is designed to 

run at cache memory due to performance reason. There is a basic ARM 

embedded system architecture shown in Figure 3.2. We simplify the description 

of the embedded system and discuss the minimum requirement of running an 

operation system, so the architecture only contains an ARM processer, a system 

bus, and a main memory.  

Generally, an ARM processer has a central processing unit (CPU), an 

Instruction Cache, a Data Cache, and a memory management unit (MMU) inside. 

The CPU core handles the execution of instructions. The Instruction Cache and 

Data Cache are designed to have the same clock frequency as a CPU core and 

store a few used instructions and data recently. Compared with the off chip main 

memory, the Instruction Cache reduces the fetch instruction latency while the 

Data Cache reduces load or store data latency. However, a cache memory has a 

disadvantage of high cost so that a cache memory is not suitable for large size. A 

MMU shown in Figure 3.1 controls the mapping between the physical address 
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memory space and the virtual address memory space for general operation 

systems. A general operation system has a multi-user and multi-process kernel. 

Each user program has its own address memory space and other unrelated 

programs can not see and access it. This address space is referred to as virtual 

address. In fact, the kernel and all programs are placed in the same off chip main 

memory. This address space is referred to as physical address. A MMU is an 

important bridge between them. 

 

 

Figure 3.1 MMU checking and translation mechanism 

 

A main memory is enough to store whole embedded operation system 

including the kernel, applications, and file system named RAM disk … and so 

on. But the main memory has long access latency. An Advanced 

Microcontroller Bus Architecture (AMBA) bus is an on-chip communications 

standard defined by ARM Limited. 
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Figure 3.2 Original embedded system architecture 

 
 

After a system booted, whole operation system is placed in an off chip 

main memory. When the processer executes a process or task, the CPU fetches 

wanted instructions from the Instruction Cache and loads wanted data from the 

Data Cache first. If the caches don’t store these instructions and data, the CPU 

fetches them from external main memory through system bus and stores a copy 

in the Instruction Cache and the Data Cache. If the Cahe is full, the unused 

instructions and data recently are replaced by new ones. 

Because the access latency of an off chip main memory is much greater 

than a cache memory, it is important issue to reduce the number of times that a 

CPU accesses an off chip main memory.  
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Figure 3.3 Proposed embedded system architecture 
 

In this paper, we propose a new architecture shown in Figure 3.3. We add 

an Instruction TCM used in the embedded system. According to the proposed 

method, we choose the proper kernel codes in the compile phase and then put 

them into the Instruction TCM when the operation system power on. The 

instructions in the Instruction TCM are always alive and are never replaced in 

the run-time phase. 

When the processer executes a process or task, the CPU fetches wanted 

instructions from the Instruction TCM directly if the TCM has them. Then the 

CPU fetches other wanted instructions from the Instruction Cache and loads 

wanted data from the Data Cache first. If the caches don’t store these 
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instructions and data, the CPU fetches them from external main memory through 

system bus and stores a copy in the Instruction Cache and the Data Cache. If 

most of the instructions of a process are placed in the TCM, the proposed 

architecture can reduce the number of times that a CPU accesses an off chip 

main memory. And then the performance of an operation system can improve. 

 
3.2 Definition and analysis 

This section describes our analysis model. The total kernel codes have n 

instructions; some of them have x instructions put in a TCM memory and the 

others have y instructions placed in a cache memory. A formula can be defined 

as follows. 

                              Eq (1) 

If x = 0, it means running an operation system doesn’t use a TCM memory. 

Otherwise, If y = 0, it means running an operation system doesn’t use a cache 

memory. In this paper, we focus on performance enhancement using current 

cache memory architecture of an operation system. So we don’t consider y = 0. 

If x = 0, an operation system always runs at a cache memory. A formula 

for total execution time of a task or process can be defined as follows. 

          mctcmno tbty ×+×=−T              Eq (2) 

Where  

y : Numbers of instructions in a cache memory. 

ct : The execution time of one instruction in a cache memory. 

mt : The execution time that a processer copies the instructions of one cache line 

yxn +=
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from an off chip main memory to a cache memory when the CPU can not fetch 

the required instructions from a TCM and a cache memory. 

b : The number of times that a processer copies the instructions of one cache 

line from an off chip main memory to a cache memory after the CPU completed 

a task or process of an operation system. 

 
If x ≠ 0, an operation system runs at a TCM memory and a cache 

memory. A formula for total execution time of a task or process can be defined 

as follows. 

 

mcttcm tbtytx ×+×+×=T           Eq (3) 

Where  

x : Numbers of instructions in a TCM memory. 

tt : The execution time of one instruction in a TCM memory. 

y : Numbers of instructions in a cache memory. 

ct : The execution time of one instruction in a cache memory. 

mt : The execution time that a processer copies the instructions of one cache line 

from an off chip main memory to a cache memory when the CPU can not fetch 

the required instructions from a TCM and a cache memory.  

b : The number of times that a processer copies the instructions of one cache 

line from an off chip main memory to a cache memory after the CPU completed 

a task or process of an operation system. 

In this paper, we adopt a static TCM allocation scheme. But, the TCM 

memory capacity of a processer is limited. For this reason, the size constraint is 

defined as follows. 
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TCM of size ≤x          Eq (4) 

When tcmnotcm −≤ TT under the condition of Eq (4), we can improve the 

performace of an operation system. If the select instructions are improper, it is 

possible to cause tcmT  is greater than tcmno−T .  

 
3.3 Examples 

We assume that a CPU clock and a system bus clock use the same 

frequency. The CPU which accesses a TCM and a cache needs to spend one 

clock cycle. And the CPU which accesses a main memory on the system bus 

needs to spend 25 clock cycles. The size of a cache or a TCM is 8 instructions. 

A Linux executes the function 10 times after the Linux system powered on. In 

this section, we discuss the relationship between TCM capacity and Function 

size. They contain Function size ≤ TCM, TCM < Function size ≤ Instruction 

cache + TCM, and Instruction cache + TCM < Function size. 

 
Table 3.1 An example of function allocation 

Location Function 

Instruction 
TCM 

tcm_a( ) 
hello_tcm( )  
{  ... 
   tcm_a( ); 
   ... 
   foo_b( ); 
   ... 
   foo_c( ); 
   ...  

foo_d( ); 
   ... 
} 
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Off chip main 
memory 

foo_b( ) 
foo_c( ) 
foo_d( ) 
foo_e( )

 

 
Case 1: Function size ≤ TCM 

There is one function called hello_tcm. Function hello_tcm contains three 

subfunctions, tcm_a, foo_b, foo_c, foo_d, and foo_e. The size of the function is 

6 instructions.  

Without TCM: whole function is copied to the cache one time and is 

executed ten times in the cache, so tcmno−T = 6x10x1 + 1x25 = 85 cycles 

according to Eq(2).  

With TCM: whole function has been placed in the TCM and can be 

executed ten times directly, so tcmT = 6x10x1 + 0x1 + 0x25 = 60 cycles 

according to Eq(3).  

We can get tcmnotcm −≤ TT , so with TCM is better than without TCM. 

 
Case 2: TCM < Function size ≤ Instruction cache + TCM 

There is one function called hello_tcm. Function hello_tcm contains three 

subfunctions, tcm_a, foo_b, foo_c, foo_d, and foo_e. The size of the function is 

16 instructions.  

Without TCM: the value of b  is 20 (= 





8

16 x10), so tcmno−T = 16x10x1 

+ 20x25 = 660 cycles according to Eq(2).  

With TCM: a half function has been placed in the TCM, and the 



17 

remainder is copied to the cache from the main memory one time and is 

executed ten times, so tcmT = 8x10x1 + 8x10x1 + 1x25 = 185 cycles 

according to Eq(3).  

We can get tcmnotcm −≤ TT , so with TCM is better than without TCM. 

 
Case 3a: Instruction cache + TCM < Function size & continuous subroutines  

There is one function called hello_tcm as shown in Table 3.1. Function 

hello_tcm contains three subfunctions, tcm_a, foo_b, foo_c, foo_d, and foo_e. 

The size of whole function is 17 instructions. hello_tcm and tcm_a are 8 

instructions while foo_b, foo_c, foo_d, and foo_e are 9 instructions.   

Without TCM: the value of b  is 30 (= 





8

17 x10), so tcmno−T = 17x10x1 

+ 30x25 = 920 cycles according to Eq(2).  

With TCM: hello_tcm and tcm_a has been placed in the TCM. If foo_b, 

foo_c, foo_d, and foo_e are contiguous in the main memory, the CPU 

needs to access the main memory two times when running whole function 

every time, so tcmT = 8x10x1 + 9x10x1 + 





8

9 x10x25 = 670 cycles 

according to Eq(3).  

We can get tcmnotcm −≤ TT , so with TCM is better than without TCM. We 

assume that foo_b() has 3 instructions, foo_c() has 3 instructions, foo_d() has 2 

instructions, and foo_e() has one instruction. Since the CPU fetches a cache line 

(8 instructions) in one time, the CPU spent 2 (= 





8

9 ) times to copy these 

subfunctions from the off chip main memory to the cache. Figure 3.4 shows the 

instruction cache and main memory layout with TCM for cache 3a.  
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Figure 3.4 The icache and main memory layout with TCM for case 3a 

 
Case 3b: Instruction cache + TCM < Function size & discontinuous 

subroutines 

There is one function called hello_tcm as shown in Table 3.1. Function 

hello_tcm contains three subfunctions, tcm_a, foo_b, foo_c, foo_d, and foo_e. 

The size of whole function is 17 instructions. hello_tcm and tcm_a are 8 

instructions while foo_b, foo_c, foo_d, and foo_e are 9 instructions.  

Without TCM: the value of b  is 30 (= 





8

17 x10), so tcmno−T = 17x10x1 

+ 30x25 = 920 cycles according to Eq(2).  

With TCM: hello_tcm and tcm_a has been placed in the TCM. If foo_b, 

foo_c, foo_d, and foo_e are discontiguous in main memory, the CPU needs 
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to access the main memory three times when running whole function every 

time, so tcmT = 8x10x1 + 9x10x1 + 4x10x25 = 1170 cycles according to 

Eq(3).  

We can get tcmnotcm −> TT , so with TCM is worse than without TCM. We 

assume that foo_b() has 3 instructions, foo_c() has 3 instructions, foo_d() has 2 

instructions, and foo_e() has one instruction. The parent function, hello_tcm(), is 

distant from off chip main memory. The subfunctions may be discontiguous 

because the compiler may think these subfunctions have no relationship. Since 

these subfunctions are discontiguous, the CPU spent 4 times to copy these 

subfunctions from the off chip main memory to the cache. Figure 3.5 shows the 

instruction cache and main memory layout with TCM for cache 3b.  

 

 
Figure 3.5 The icache and main memory layout with TCM for case 3b 
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According to our analysis model, we get a TCM capacity vs. function size 

trend as shown in Figure 3.6. The trend shows that if improper functions are 

placed into the TCM, the overall system performance may be downgraded.  
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Figure 3.6 TCM capacity vs. function size trend 

 
 

 
It is very important to select the proper kernel codes and place them into 

the TCM. However, the kernel is too huge to fit all into the TCM, so we classify 

the OS kernel according to characteristics of the kernel functions. The proposed 

kernel classification is detailed in Chapter 4. 

Case 1 

Case 2

Case 3b

Case 3a
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Chapter 4 

Kernel classification 

Generally, a kernel image is too huge to be placed into TCM, so we must 

divide kernel to meet the limitation of TCM memory space. Furthermore, 

according to the proposed model in Chapter 3, to select appropriate instructions 

into TCM is very important, otherwise, the performance is down. In this chapter, 

we devide and classify kernel to process intensive, memory-intensive, and 

I/O-intensive according to the characteristics of kernel functions. 

 

4.1 Process intensive  

A process is an executing program in general operating systems. However, 

besides the executing program code, a process also includes some resources 

such as processor state, an address space, kernel data, and one or more threads. 

The most important part of process-intensive kernel functions is a process 

management. The process management involves process creation, process 

termination, and process scheduleing. 

 

4.1.1 Process creation 

A kernel uses fork() and exec() functions to complete a process creation. 

First of all, the fork() function creates a child process copied from the current 

process. And then exec() function loads the program code into the address space 

and execute it with the child process resources. In a Linux kernel, the major 

functions used to create processes are do_fork(), do_execve(), and so on. 

 



22 

4.1.2 Process termination 

A process must die eventually. When a process terminates, the kernel 

releases the resources of the process and notifies the parent process. For 

example, a process completes its job to terminate, or a sub-function terminates 

and returns its main function in a program. The process calls the exit() system 

call to do that. Sometimes, a process terminates involuntarily when the process 

receives an exception such as ctrl+C signal from a keyboard. In a Linux kernel, 

the major function used to terminate processes is do_exit(). 

 

4.1.3 Process scheduling 

The process scheduler is designed to select which process can be executed 

by the processer. The process scheduler manages the runnable processes to share 

the finite resource of processor time in the operation system. A good scheduler 

makes full use of system resources so that users think that multiple processes are 

executing simultaneously. An operation system with the process scheduler is 

called multitasking operating system such as Linux. The major function of the 

process scheduler is schedule() in a Linux kernel. 

 

4.1.4 Context switching 

A context switching function is responsible to switch from one runnable 

process to another. The context switching is one part of the process scheduler. It 

does two basic jobs: 1) to store the data of current process including stack 

information and the processor registers; 2) to change virtual memory mapping 

and the processor state from current process to the new process. In a Linux 

kernel, the major function of context switching is context_switch(). 
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4.2 Memory-intensive 

The most important part of memory-intensive kernel functions is a memory 

management. The virtual memory can be much larger than the physical memory 

in the operation system. As shown in Figure 4.1, each process has its own 4 GB 

address memory space and other unrelated processes can not see and access it. 

This address space is referred to as virtual memory address. In fact, these 

processes are placed in the same off chip main memory. This address space is 

referred to as physical memory address. The memory management system is 

responsible for managing process address spaces. 

 

 

Figure 4.1 Memory address space for 32-bit CPU 
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4.2.1 Page table operation 

Although user application programs operate on a virtual memory, the 

processor operates them directly on a physical address. For this reason, when a 

user application program accesses a virtual memory address, it must first be 

translated into a physical address before the processor can deal with the request. 

In order to complete the translation, memory management unit (MMU) and page 

tables are necessary. A MMU is implemented in a processer. Page tables are 

placed in an off-chip main memory and store the mapping index between the 

virtual address and the physical address.  

The page tables consist of three levels in a Linux. The multiple levels 

allow a small populated memory space to store a huge index map. If the page 

tables were designed as a single array, their size would be enormous. Three 

levels of page tables also can use on an architecture which does not support 

three levels in hardware. For example, the ARM processer uses a two-level page 

table for 4KB page size.  

The top level page table is called page global directory (PGD). The PGD 

stores the entries of the second level directory. The second level page table is 

called page middle directory (PMD). PMD stores the entries of the final level 

page table. The final level page table is called page table entry (PTE). Page table 

entry stores the physical pages. In general, page table look-up is handled by 

hardware. Figure 4.2 shows a translation flow from a virtual address to 

corresponding physical address using page tables. Each process has its own page 

tables. In Linux kernel, the major function of kernel page table is paging_init(). 



25 

 
Figure 4.2 Page tables 

 
 
 
4.2.2 Virtual memory allocator    

In a Linux kernel, the function of virtual memory allocator is referred to as 

vmalloc(), and allocated memory is contiguous in a virtual address and not 

necessarily contiguous in a physical RAM. That is, the virtual memory allocator 

can allocate noncontiguous physical memory space. For example, a user 

application program uses virtually contiguous memory space and never knows 

that physical memory space is contiguous or not.  

 

4.2.3 Buddy system (physical page allocator) 

When a kernel needs for memory allocation such as load a process, the 

kernel applies a buddy system minimum page mechanism to manage unused 

memory debris. In a buddy system, a page frame represents a group of 

contiguous minimum pages. The area of unused page is divided into ten species 

of block size. Respectively they are 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 

contiguous minimum pages. Each minimum page of a Linux system is 4 KB. 

The buddy system uses a method called free_area[10] array as shown in Figure 
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4.3 to store the usage status of those page frames. The first page frame chain 

stores starting address of isolated idle minimum page, that is prevous and next 

page have been used. The second page frame chain stores starting address of 

first page in two contiguous minimum pages. The third page frame chain stores 

starting address of first page in four contiguous minimum pages. And so on. 

 

 

Figure 4.3 The array of a buddy system 

 

If there is a requirement of memory, the system is looking for the smallest 

block of sufficient size. For example, suppose that a process requires 15 pages, 

the system first checks whether the 16 pages frame chain has available free 

blocks or not. If not, then system looks for a 32 pages frame to the process. If 

the 32 pages frame chain has available free blocks, the system allocates 15 pages 

to the process and moves remaining 17 pages to 16 pages frame chain and one 

page frame chain. If the 32 pages frame chain still has no available free pages, 

the system searches free pages in next chain and makes a similar treatment. 
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After the process completed, it should release used page frame. Then the 

system attempts to combine these released pages with adjacent unused area to a 

single contiguous block, and stores starting address of new block into page 

frame chain. In a Linux kernel, the major functions of a buddy system are 

alloc_pages(), alloc_page(), __alloc_pages(), __free_pages(), free_pages(), 

free_page(), and so on. 

 

4.2.4 Slab system (allocates small memory blocks) 

In a Linux 2.6 kernels, a slub allocator replaces the slab allocator. 

Although slub allocator and slab allocator are different algorithms, they are 

generally referred to as "slab allocator". Following the old name is to indicate 

the level of memory management mechanism. When kernel needs to allocate a 

small amount of memory like required memory of malloc function, a slab 

allocator is used and its allocated data is known as object. Slab object is stored 

in the page frame of buddy system, if we want to assign an object of size 32 

bytes, slab requests a minimum page (4KB) from the buddy system, and then 

assign a slab allocator. And slab allocator preserves some bits to record layout 

information, and the remaining space is divided into objects of size 32 bytes. 

When the similar configuration request occurs, these empty objects can be used. 

Figure 4.4 shows a slab structure. The top level is a cache chain. Each 

cache contains a list of slabs, which is a contiguous memory block (typically 

page). There are 3 kinds of slab below, 

slabs_empty:  all objects on a slab marked as free 

slabs_partial:  a slab has both used and free objects 

slabs_ful:  all objects on a slab marked as used 
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Figure 4.4 Layout of the slab allocator 

 

Slab in the slabs_empty list is the main candidate for recycling, i.e the 

memory is returned to the operating system. In slab list, each slab is a 

contiguous memory block (one or more contiguous pages), which is divided into 

some objects. These objects are basic elements which are allocated and released 

from a specific cache.  

The object is allocated and released from the slab, so a single slab can be 

moved between slab lists. For example, when all objects are used in a slab, the 

slab needs to be moved from slabs_partial list to slabs_full list. When an object 

in one slab of slabs_full list is released, this slab needs to be moved from 

slabs_full list to slabs_partial list. After all objects of this slab are released, this 

slab needs to be moved from slabs_partial list to slabs_empty list. The major 
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functions of a slab system are kmem_cache_create(), kmem_cache_alloc(), 

kmem_cache_free(), kmem_cache_destroy(), kmem_cache_shrink() in a Linux 

kernel. 

 

4.2.5 Page fault operation (page table allocates physical memory pages)            

We all know that each minimum page of a Linux operating system is 4 KB. 

When user executes some programs, the operating system loads a number of 

pages including the partial programs from storage device to main memory. 

When a program needs a page which is not in main memory and there is also no 

free page in main memory, the operating system takes currently unused page 

back to the storage device and then loads the required page into main memory. 

If there are some free pages in main memory, the operating system can copy the 

required page from storage device into a free page in main memory. Finally, the 

operating system modifies the mapping between virtual address and physical 

address for the required page. This operation is referred to as "Page Fault". In a 

Linux kernel, the major function is do_page_fault(). 

 

4.2.6 Physical page reclamation 

A system eventually uses all available pages for various reasons. The 

operating system needs to select currently unused pages and then empties out 

them before physical main memory is exhausted. In order to reduce the amount 

of access storage device I/O, the operating system also uses the page cache. 

Page cache area is the kernel to access the data first. After the required data 

could not be found in Page cache, kernel finds it in storage device. All data that 

is first read from storage device is stored in the page cache. Continued access of 

operation causes page cache area is getting bigger. It eventually consumes all of 
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memory that can be used by operation system. Therefore, the least recently used 

data is moved out of page cache, and then limited memory space can store more 

frequently access data.  

How does operation system select currently unused page? General 

operation system uses LRU (Least Recently Used) lists to store age information 

of each page so that the least recently used page can be easily scanned for 

replacement. The LRU in operation system consists of two lists which are the 

active list and the inactive list. The active list contains all working processes and 

the inactive list contains reclaim candidates. All the process pages and file pages 

are managed in two LRU lists by page replacement policy. In a Linux, the major 

functions of page reclamation are add_to_page_cache(), lru_cache_add(), 

activate page(), and so on. 

 

4.3 I/O-intensive 

The I/O-instensive kernel functions contain all peripherals of an operation 

system such as interrupt controllers, file systems, timer controllers, Ethernet 

controllers, SD card controllers, NAND flash controllers, and so on. In this 

paper, we only select some of all device controllers to do experiments.  

 

4.3.1 Interrupts and interrupt handlers 

Interrupts allow hardware devices to communicate with the processor 

actively. At any time, a hardware device generates an interrupt electronic signal 

into the interrupt controller, and then the controller passes the signal to the 

processor. The processor receives the signal and interrupts its current work. 

Furthermore, it notifies the operating system to deal with the interrupt. The 

function which the operating system deals with a specific interrupt is called 
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interrupt service routine (ISR) or. Each interrupt signal has a corresponding 

interrupt handler. For example, one interrupt handler deals with interrupt signals 

from the keyboard, while another interrupt handler deals with interrupt signals 

from the timer.  

Since an interrupt can occur at any time, the interrupt handler can be 

performed at any time. It is very important to complete the work of interrupt 

handler as soon as possible. Otherwise, it causes a reduction in performance to 

interrupt previous work too long. For example, the operation system receives the 

networking packets from Internet. The interrupt handler needs to copy 

networking packets from the network device into main memory, unpack them, 

and send them to associated application or network protocol stack. Clearly, this 

is heavy workload for the operation system, especially with gigabit Ethernet 

cards. In a Linux, the major functions are asm_do_IRQ(), irq_enter(), irq_exit(), 

and so on. 

 

4.3.2 Virtual file system (VFS) 

The file system in a common operating system is a way to manage files, 

data, and equipments. A Linux supports many types of file systems such as ext2, 

ext3, NFS, SMBFS, FAT, NTFS, and iso9660. The ext2 and ext3 are a Linux 

original file systems; the NFS (Network file system) and SMBFS (Samba file 

system) are network file systems; the FAT and NTFS are file systems of 

Mircosoft Window operation systems; iso9660 is CD-ROM system format. Each 

file system has its own storing methods and formats. In order to access required 

data among these file systems easily and efficiently, the operation system uses 

an abstraction layer, which is called virtual file system (VFS), to communicate 

with these file systems. That is, programs can use standard system calls to read 

and write data among different file systems via VFS, as shown in Figure 4.5. 
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Figure 4.5 The flow of write() system call  

In a Linux operating system, the file can also be a device such as a storage 

disk, a CD-ROM, a Modem, and so on. Device file can correspond to the 

hardware device directly. Through the kernel, user can use the hardware device. 

Since ARM embedded system uses a RAM disk as its file system, we discuss 

ramfs file system in this paper. The major functions of ramfs file system are 

generic_file_mmap(), generic_file_aio_read(), generic_file_aio_write(), 

do_sync_read(), do_sync_write(), and so on. 

 

4.3.3 Timer controller 

The timer controller is a very important and frequent role in an operation 

system. The purpose of timer controller is to provide a method for issuing an 

interrupt signal at a periodic time. The operation system sets a counter in the 

timer controller to an initial value. The value of the counter decreases at a fixed 

rate until the value reaches zero. When the value of the connter reaches zero, an 

interrupt signal is triggered. The major functions are based on the driver of timer 

controller. 
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Chapter 5  

Experiments  

In this chapter, we discuss the experimental environments and 

experimental procedure. Then the experimental results are provided. The end of 

the chapter is the analysis of the experimental results. 

 
5.1 Environments 

We discuss the experimental environments including required hardwares 

and required softwares in this section. 

 
5.1.1 Hardware requirements 

There are required hardwares for the experiments below. 

- ARM PB926 evaluation board (EVB): it contains an ARM926 processer, 

a Linux v2.6.35 operation system, and a lmbench benchmark program.  

- Personal computer (PC):  to install a GNU GCC compiler tool chain for 

ARM processers, a linux OS, and related programs. 

- J&D codeviser ICE:  to burn revised Linux v2.6.35 into the NOR flash 

of PB926 EVB. 

- Ethernet cable:  data transfer between a PB926 EVB and a personal 

computer. 

- RS-232 (UART) cable:  to control the operation of PB926 EVB. 

 

5.1.2 Software requirements 

There are required softwares for the experiments below. 
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- Windows XP OS on PC:  Window XP Professional Service Pack 3. 

- VMware player on PC:  the software that allows us to create a virtual 

machine on current window operation system environment. 

- Linux OS on PC:  ubuntu 9.10  

- Tool chain on PC: 

arm-2010.09-50-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2 

- Linux Kernel source on PB926 EVB :  linux-2.6.35 

- Kernel patch on PB926 EVB:  kernel_src_patch-2.6.35-arm1 and 

kernel_config_2.6.35-arm1_config-2.6.35-arm1-versatile 

- Benchmark on PB926 EVB:  lmbench-3.0-a9 

 

5.1.3 Experimental environment 

An ICE debug program, which burns revised Linux v2.6.35 kernel image 

into the NOR flash of PB926 EVB, only installs Microsoft window operation 

system. And a GNU GCC compiler tool chain for ARM processers works on a 

Linux operation system. So we need two kinds of operation systems in our 

experiment. At first, we prepare a Windows XP personal computer including 

ICE debugging programs and use a Vmware player to create a virtual machine 

on the Windows XP desktop environment. Then we install an Ubuntu v9.10 

Linux operation system on the virtual machine in Figure 5.1. 

 

Figure 5.1 Experimental environment 
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We transfer data among a Windows XP, an Ubuntu, and a Linux of PB926 

EVB by Ethernet. Their IP address settings are shown as below. 

- PB926 IP address:  192.168.0.1 

- Ubuntu IP address:  192.168.0.2 

- Windows XP IP address: 192.168.0.101 

 

Data transfer between a Windows XP and an Ubuntu via Ethernet is Samba 

file sharing protocol. And data transfer between an Ubuntu and a Linux of 

PB926 via Ethernet is Network file system (NFS) protocol.  

For Samba server setting of Ubuntu, we add a sharing folder named pub in 

the /etc/samba/smb.conf as illustrated in Figure 5.2. And then we execute 

/etc/init.d/samba restart command to run the Samba server according to new 

setting. Finally, the Windows XP can access the pub folder of the Ubuntu 

directly. 

 

Figure 5.2 Samba server setting in the /etc/samba/smb.conf 

 

For NFS server setting of the Ubuntu, we add the following line in the 

/etc/exports and then execute /etc/init.d/nfs-kernel-server start command to run 

the NFS server. The following line meant that the Ubuntu can connect to the 

PB926 when the Ubuntu access lmbench folder.  

 

/mnt/lmbench 192.168.0.1(rw,no_subtree_check,no_root_squash) 
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On the other hand, we execute following commands in the Linux of PB926 

EVB through UART console port (The default setting is 38400 baud, 8 data bits, 

1 stop bit, no parity, and no hardware/software flow control.). The following 

commands mean that the PB926 can connect to /mnt/lmbench folder of the 

Ubuntu by NFS protocol when the PB926 access lmbench folder. 

      

> mkdir /mnt/lmbench 
> mount –t nfs –o nolock 192.168.0.2:/mnt/lmbench /mnt/lmbench 

 

After complete the above Samba and NFS setting, we can put the lmbench 

benchmark program and its performance reports in the Ubuntu and run it in the 

Linux of PB926 via NFS protocol easily.  

 

 Building the embedded Linux kernel of PB926 

This section describes how to build the kernel on the Ubuntu Linux host 

machine. To build the ARM Embedded Linux kernel, we require the kernel 

source for the 2.6.35 kernel, the ARM-specific patch for the kernel source, and 

the PB926 EVB kernel configuration files. The kernel source can be obtained 

from http://www.kernel.org/ , while the other files can be obtained from 

http://www.arm.com/community/software-enablement/linux.php?tab=Linux+OS

+Downloads. Besides, the embedded Linux file system can be obtained from 

http://www.busybox.net/ . 

To compile Linux kernel, we need the 2010.09 release of the CodeSourcery 

toolchain for the ARM-based Linux platform. It is available from 

http://www.codesourcery.com. In Table 5.1, there are all of required files which 

building the embedded Linux kernel of PB926. 
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Table 5.1 Required files 

Directory / File Description 

linux-2.6.35 Directory containing kernel source 

kernel_src_patch-2.6.35-arm1 The kernel source patch for ARM platform 

kernel_config_2.6.35-arm1_co
nfig-2.6.35-arm1-versatile 

Configuration file for PB926 board 

busybox-1.17.3 Directory containing file system 

arm-2010.09-50-arm-none-lin
ux-gnueabi-i686-pc-linux-gnu.
tar.bz2 

ARM GUN GCC compiler 

 

To set up compiler environment, extract the ARM GNU GCC compiler 

archive (arm-2010.09-50-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2) 

into the working folder such as /pub/work/ and then execute the following 

commands to set compiler path in the Ubuntu. 

Export PATH=/pub/work/linux-2.6.35:$PATH 
export PATH=/pub/arm-2010.09/bin:$PATH 
export CROSS_COMPILE=/pub/arm-2010.09/bin/arm-none-linux-gnueabi- 
 

To prepare the file system of the Linux kernel after setting up compiler 

environment, enter the /pub/work/ /busybox-1.17.3 directory and execute make 

install command to generate the PB926 file system folder we needed in 

/pub/work/rootfs.  

To prepare the Linux kernel after generating the file system of the Linux 

kernel, enter the /pub/work/linux-2.6.35 directory and execute the ARM patch.  

Patch –p1 < ../ kernel_src_patch-2.6.35-arm1 

Then copy the configuration file into linux-2.6.35 directory and change file 
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name to .config .  

cp ../kernel_config_2.6.35-arm1_config-2.6.35-arm1-versatile .config 

Modify .config file to add the PB926 file system path below. 

CONFIG_INITRAMFS_SOURCE=”/pub/work/rootfs”  

Run the make oldconfig command to import the configuration settings from 

the new configuration file. Then, we modify the kernel configuration with   

make menuconfig command according to our demand. 

 

 Select a classified Linux kernel code into TCM in the compile phase 

According to our method of the Linux Kernel classification, we add 

required configurations in the Linux kernel codes. When we compile the Linux 

kernel codes, we decide which code can be placed in the TCM memory with 

Linux menuconfig function as shown in Figure 5.3. 

 

Figure 5.3 The setting of Linux kernel configuration 
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 Burning the embedded Linux kernel image file into NOR flash of PB926 

This section describes how to write linux image file (zImage) into NOR 

flash of PB926.  

1. Connect a J&D codeviser ICE to the JTAG port. 

2. Power on the board. 

3. Connect the codeviser debugger to the target. 

4. Turn on the semihosting function. 

5. Load and execute the file Boot_Monitor.axf by debugger. 

6. Load zImage into the NOR flash memory as below. 

At the Boot Monitor prompt enter: 

> flash 

Flash> write image path\zImage 

where path is the directory (D:\tmp for example) that contains linux 

image file. Please note that the long path names can cause a problem, 

so move the image file to a temporary directory to avoid this. 

7. Wait program running until the prompt is displayed again before 

proceeding. 

8. Turn off the platform and remove ICE. 

 

 

 Running the embedded Linux kernel of PB926 

This section describes how to run the embedded Linux kernel of PB926. At 

first, we connect UART on the PB926 board to a serial port on personal 

computer using RS-232 cable. Then configure a terminal emulator (such as 

HyperTerminal in Windows XP) to connect to the serial port. The default 
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setting is 38400 baud, 8 data bits, 1 stop bit, no parity, and no 

hardware/software flow control.  

After the board power on, we should see a startup message as below in the 

terminal emulator: 

 

ARM PB926EJ-S Boot Monitor 
Version: V4.1.7 
Build Date: Feb 17 2009 
Endian: Little 

     

Then execute flash run u-boot command in the terminal emulator to 

configure the Linux kernel startup arguments. The U-Boot passes the contents of 

the following bootargs environment variable to the kernel command line.  

Setenv bootargs root=/dev/mtdblock0 mtdparts=armflash.0:30520k@0x2C0000(cramfs) 
ip=192.168.0.1 mem=128M console=ttyAMA0 

setenv bootcmd cp.b 0x340C0000 0x7fc0 0xF45A00\;bootm 

saveenv 

Restart the PB926 EVB after set bootargs environment variable. Then 

execute flash run u-boot command in the terminal emulator, the PB926 will boot 

up the Linux kernel automatically. After the Linux booted up, run the lmbench 

benchmark program to get performance information of revised linux kernel. 

 

5.2 Experiments 

Through use of lmbench benchmark program, we get the experimental 

result of revised linux kernel based on our proposed linux kernel classification. 

In this section, we analyze the experimental result. There are lmbench basic 

system parameters in Table 5.2. The parameters in our tested ARM embedded 
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board: the processor runs at 192 Mhz, has 8 TLB pages, its cache line has 32 

bytes, the value of mem par is 1, and the value of scal load is 1. 

 

 
Table 5.2 Lmbench basic system parameters 

Basic system parameters 

Mhz The processor clock frequency 

Tlb pages  The number of Translation Lookaside Buffer page 

Cache line bytes  The size of a cache line 

Mem par  Memory hierarchy parallelism: 

How many requests can the memory service in parallel?  

Scal load  The number of running lmbench   

 

According to proposed linux kernel classification, we implement 22 

different experimental kernels below and compare the performance with original 

version of linux kernel.  

 fork: the linux kernel allocates fork related functions in TCM.      

 exec: the linux kernel allocates exec related functions in TCM.      

 exit: the linux kernel allocates exit related functions in TCM.      

 exec+exit: the linux kernel allocates exec and exit related functions in TCM. 

 schedule (sched): the linux kernel allocates schedule related functions in 

TCM.  

 context switching (cs): the linux kernel allocates context switching related 

functions in TCM.    
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 thread: the linux kernel allocates thread related functions in TCM.     

 schedule+context switching: the linux kernel allocates schedule and context 

switching related functions in TCM.   

 sched+cs+thread: the linux kernel allocates schedule, context switching, 

and thread related functions in TCM. 

 fork+sched+cs: the linux kernel allocates fork, schedule, and context 

switching related functions in TCM.       

 tlb: the linux kernel allocates Translation Lookahead Buffer (TLB) related 

functions in TCM.        

 vmlloc: the linux kernel allocates virtual memory related functions in TCM.     

 buddy: the linux kernel allocates Buddy system related functions in TCM. 

 slub: the linux kernel allocates slab Allocator related functions in TCM. 

 page fault (pf): the linux kernel allocates page fault related functions in 

TCM. 

 page reclamation: the linux kernel allocates page reclamation related 

functions in TCM. 

 irq: the linux kernel allocates interrupt related functions in TCM.     

 ram file system (ramfs): the linux kernel allocates file system related 

functions in TCM. 

 timer: the linux kernel allocates timer related functions in TCM.     

 sched+cs+irq+timer: the linux kernel allocates schedule, context switching, 

interrupt, and timer related functions in TCM. 
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 slub+pf+ramfs: the linux kernel allocates slab allocator, page fault, and file 

system related functions in TCM. 

 tlb+irq+timer: the linux kernel allocates TLB, interrupt, and timer related 

functions in TCM. 

In this chapter, we design 4 experiments to evaluate the performance of our 

method below. 

  Exp #1: Process benchmark for process-intensive 

  Exp #2: Context switching benchmark for process-intensive 

  Exp #3: File & virtual memory system benchmark for memory-intensive 

and I/O-intensive 

  Exp #4: Local communication benchmark for I/O-intensive 

 

5.2.1 Exp #1: Process benchmark 

We execute the lmbench benchmark program to test the above kernels. 

First of all, we get results of process related benchmark below. Table 5.3 shows 

lmbench process parameters. They contain simple system call, simple I/O access, 

file status access, file open and close, file descriptor select, signal installation, 

signal handling, fork process, exec process, and shell process. The time unit is 

microsecond and smaller is better 

The simple system call latency is shown in Figure 5.4. The original latency 

is 1.49 ms. We find out that sched+cs+thread (1.44 ms), fork+sched+cs (1.45 

ms), and vmlloc (1.44ms) functions have smaller latency while exec (1.54ms), 

exit (1.55ms), exec+exit (1.55ms), and page reclamation (1.54ms) functions 

have bigger latency. And the latency of other functions is the same as the 

latency of original kernel. It is interesting that integrating schedule, context 

switching and thread functions or fork functions is better than single one. 
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Table 5.3 The lmbench process parameters 

Processor, Processes  

- times in microseconds - smaller is better 

Null call  A simple system call accesses a process ID 

Null I/O  To read one byte from /dev/zero and write one byte to /dev/null

Stat  To read the status of a file 

Open clos  To open a file and close it immediately 

Slct tcp  To select which file descriptor is ready for reading or writing. 

Sig inst  To install a signal handler  

Sig hndl  To handle a signal handler 

Fork proc  To fork a new process and then exit (process fork+exit) 

Exec proc  To fork a new process and let this process run a new program. 
(process fork+execve) 

Sh proc  To fork a new process and let this process run a new program 
by the system shell. (process fork+/bin/sh -c) 
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Figure 5.4 The simple system call latency 
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The simple I/O latency is shown in Figure 5.5. The original latency is 5.08 

ms. The latency of most of functions is between 3.8 ms and 4.7 ms. Only the 

latency of sched+cs+thread functions is 5.08 ms. We find out that the latency of 

all functions is smaller than or equal to the latency of original kernel.  
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Figure 5.5 The simple I/O latency 
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Figure 5.6 File status access latency 

 

The file status access latency is shown in Figure 5.6. The original latency is 

16.6 ms. The latency of most of functions is between 16.5 ms and 16.7 ms. Most 

of functions have similar latency, but sched+cs+thread(19.1 ms), slub(18.5 ms), 
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and slub+pf+ramfs (18.1 ms) functions have bigger latency. sched+cs+thread 

contains schedule, context switching, and thread functions while slub+pf+ramfs 

contains slub allocator, page fault, and ram file system functions.  

The file open and close latency is shown in Figure 5.7. The original latency 

is 27.4 ms. The latency of most of functions is between 24.9 ms and 27.4 ms. 

We find out that the latency of almost all of functions is smaller than or equal to 

the latency of original kernel except sched+cs+thread (30.2 ms) and ram file 

system (30.3 ms) functions.  
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Figure 5.7 File open and close latency 
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Figure 5.8 File descriptor select latency 
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The file descriptor select is shown in Figure 5.8. The original latency is 

113 ms. The latency of most of functions is between 113 ms and 114 ms. The 

fork (112 ms), exec (112 ms), and page reclamation (112 ms) functions have 

smaller latency while irq (115 ms) and timer (115ms) functions have the biggest 

latency.  

The signal installation is shown in Figure 5.9. The original latency is 6.06 

ms. The latency of most of functions is between 6.06 ms and 6.22 ms. Most of 

functions have similar latency while exec+exit (8.05 ms), schedule+context 

switching (7.68 ms), vmlloc (10.8 ms), slub (8.89 ms), irq (8.12 ms), and 

slub+pf+ramfs (7.76 ms) functions have bigger latency. slub+pf+ramfs contains 

slub allocator, page fault, and ram file system functions. 
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Figure 5.9 Signal installation latency 

 
The signal handling is shown in Figure 5.10. The original latency is 14 ms. 

The latency of most of functions is between 14 ms and 15.6 ms. Most of 

functions have bigger latency. The result shows that the operation of signal 

handling often needs to access the main memory when we allocate these 

functions into TCM. 
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Figure 5.10 Signal handling latency 

 

The fork process running latency is shown in Figure 5.11. The original 

latency is 6210 ms. The latency of most of functions is between 6070 ms and 

6282 ms. A half of functions have smaller latency, especially exec (5136 ms) 

and schedule (4998 ms) functions.  
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Figure 5.11 Fork process running latency 

 
The exec process running latency is shown in Figure 5.12. The original 

latency is 19000 ms. The latency of most of functions is between 18000 ms and 

19000 ms. All of functions have smaller or the same latency, especially exec 
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(16000 ms) and schedule (15000 ms) functions.  
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Figure 5.12 Exec process running latency 
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Figure 5.13 Shell process running latency 

 

The shell process running latency is shown in Figure 5.13. The original 

latency is 43000 ms. The latency of most of functions is between 41000 ms and 

43000 ms. All of functions have smaller or the same latency, especially exec 

(35000 ms) and schedule (35000 ms) functions.  
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The result of process benchmark shows exec and schedule functions can 

gain the best performance. As for other functions, some tests are good but some 

tests are weak. Overall, they have still some improvement. 

 

5.2.2 Exp #2: Context switching benchmark 

In this section, we discuss and analyze the results of context switching 

related benchmark. Table 5.4 shows lmbench context switching parameters. 

They contain 2p/0K ctxsw, 2p/16K ctxsw, 2p/64K ctxsw, 8p/16K ctxsw, 8p/64K 

ctxsw, 16p/16K ctxsw, and 16p/64K ctxsw. The time unit is microsecond and 

smaller is better. 

 
Table 5.4 The lmbench context switching parameters 

Context switching 

- times in microseconds - smaller is better 

2p/0K ctxsw There are 2 processes and each process size is 0K.  

2p/16K ctxsw There are 2 processes and each process size is 16K.   

2p/64K ctxsw There are 2 processes and each process size is 64K. 

8p/16K ctxsw There are 8 processes and each process size is 16K. 

8p/64K ctxsw There are 8 processes and each process size is 64K. 

16p/16K ctxsw There are 16 processes and each process size is 16K. 

16p/64K ctxsw There are 16 processes and each process size is 64K. 

 

The 2p/0K context switching latency is shown in Figure 5.14. The original 

latency is 182.4 ms. The latency of most of functions is between 150.2 ms and 
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181.3 ms. All of functions have smaller latency, especially fork (151.7 ms) and 

schedule (150.2 ms) functions.  
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Figure 5.14 2p/0K context switching latency 
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Figure 5.15 2p/16K context switching latency 

 

The 2p/16K context switching latency is shown in Figure 5.15. The 

original latency is 302.2 ms. The latency of most of functions is between 245 ms 

and 317 ms. Most of functions have smaller or similar latency, especially 

schedule (245 ms) functions. The 2p/64K context switching latency is shown in 
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Figure 5.16. The original latency is 307.6 ms. The latency of most of functions 

is between 218.7 ms and 290 ms. All of functions have smaller latency, 

especially schedule functions.  
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Figure 5.16 2p/64K context switching latency 
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Figure 5.17 8p/16K context switching latency 

 
The 8p/16K context switching latency is shown in Figure 5.17. The 

original latency is 321.8 ms. The latency of most of functions is between 268.4 

ms and 326.9 ms. Most of functions have smaller or similar latency, especially 

schedule functions. The 8p/64K context switching latency is shown in Figure 

5.18. The original latency is 342.9 ms. The latency of most of functions is 
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between 184.8 ms and 296.9 ms. All of functions have smaller latency, 

especially sched+cs+thread (117.5 ms) functions.  
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Figure 5.18 8p/64K context switching latency 

 
The 16p/16K context switching latency is shown in Figure 5.19. The 

original latency is 325.3 ms. The latency of most of functions is between 264.9 

ms and 331.3 ms. Most of functions have smaller or similar latency, especially 

schedule (264.9 ms) functions. The 16p/64K context switching latency is shown 

in Figure 5.20. The original latency is 296.8 ms. The latency of most of 

functions is between 189.4 ms and 278.1 ms. Most of functions have smaller or 

similar latency, especially sched+cs+thread (118.9 ms) functions.  

After we analyze the results of context switching benchmark, it shows 

most of functions can gain the better performance, especially schedule functions. 

This proves the proposed method can work well for context switching 

application. 
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Figure 5.19 16p/16K context switching latency 
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Figure 5.20 16p/64K context switching latency 

 

 
5.2.3 Exp #3: File & virtual memory system benchmark 

In this section, we discuss and analyze the results of file and virtual 

memory system related benchmark. Table 5.5 shows lmbench file and VM 

system parameters. They contain file creation, file deletion, memory mapping 

latency, fault protection operation, page fault operation, and 100 file descriptors 

selection. The time unit is microsecond and smaller is better. 
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Table 5.5 The lmbench file & virtual memory system latency parameters 

File & VM system latencies 

- times in microseconds - smaller is better 

0K File Create To create a 0K file  

0K File Delete To delete a 0K file 

10K File Create To create a 10K file 

10K File Delete To delete a 10K file 

MMap Latency  To set up a memory mapping 

Prot Fault  To do a fault protection operation 

Page Fault  To do a page fault operation  

100fd selct  To select 100 file descriptors 
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Figure 5.21 0K file creation latency 

 

The 0K file creation latency is shown in Figure 5.21. The original latency 

is 54.4 ms. The latency of most of functions is between 50.4 ms and 56.7 ms.  
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Most of functions have bigger latency except exec (45.8 ms), schedule (51.3 ms), 

and irq (50.4 ms) functions. The 0K file deletion latency is shown in Figure 5.22. 

The original latency is 36.7 ms. The latency of most of functions is between 

35.2 ms and 37.8 ms. Although a halt of functions have bigger latency, 

especially fork (39.4 ms) and slub (39 ms), there are still some excellent 

functions such as exec (34.4 ms).  
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Figure 5.22 0K file deletion latency 
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Figure 5.23 10K file creation latency 

 

The 10K file creation latency is shown in Figure 5.23. The original latency 

is 235.7 ms. The latency of most of functions is between 183 ms and 282.2 ms. 



57 

Although a halt of functions have bigger latency, there are still some excellent 

functions such as exec (176.6 ms) and schedule (183 ms). The 10K file deletion 

latency is shown in Figure 5.24. The original latency is 70.2 ms. The latency of 

most of functions is between 68.1 ms and 71.9 ms. Although a halt of functions 

have bigger latency, especially fork (73.8 ms) and page reclamation (75.4 ms), 

there are still some excellent functions such as exec (68.9 ms) and irq (68.1 ms).  
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Figure 5.24 10K file deletion latency 
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Figure 5.25 Memory mapping latency 

 

The memory mapping latency is shown in Figure 5.25. The original latency 
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is 7016 ms. The latency of most of functions is between 6797 ms and 7397 ms. 

Most of functions have bigger or similar latency, especially buddy system (8794 

ms), page fault (8794 ms), and slub+pf+ramfs (9662 ms). The fault protection 

latency is shown in Figure 5.26. The original latency is 3.671 ms. The latency of 

most of functions is between 3.139 ms and 4.093 ms. Although a halt of 

functions have bigger or similar latency, especially buddy system (4.731 ms), 

page fault (4.731 ms), and slub+pf+ramfs (4.815 ms), there are still some 

excellent functions such as fork (2.549 ms).  
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Figure 5.26 Fault protection latency 
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Figure 5.27 Page fault latency 

The page fault latency is shown in Figure 5.27. The original latency is 14.2 
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ms. The latency of most of functions is between 13.6 ms and 14.6 ms. Although 

most of functions have bigger or similar latency, especially buddy system (17.9 

ms), page fault (17.9 ms), and slub+pf+ramfs (18.1 ms), there are still some 

better functions such as schedule (13.6 ms) and exec (13.8 ms).  

The 100 file descriptors selection latency is shown in Figure 5.28. The 

original latency is 56.4 ms. The latency of most of functions is between 55.9 ms 

and 56.9 ms. Although some functions have bigger latency, especially thread 

(57.9 ms), sched+cs+thread (57.6 ms), slub (57.6 ms), slub+pf+ramfs (57.3 ms), 

and sched+cs+irq+timer (57.2 ms), there are still some excellent functions such 

as exit (55.9 ms), page reclamation (55.8 ms), ram file system (55.9 ms), and 

timer (55.8 ms). 
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Figure 5.28 100 file descriptors selection latency 

 

After we analyze the results of file and virtual memory system benchmark, 

most of functions can not always gain the better performance. For example, 

schedule functions have smaller latency in file creation, memory mapping, and 

page fault tests but have bigger latency in other tests. This is because file and 
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virtual memory system often needs to access main memory via system bus. 

According to our proposed model, if Linux operation system can not allocate all 

related functions in TCM, the value of variable b  in Eq(3) may become bigger. 

It causes tcmnotcm −≥ TT . 

In results, buddy system, page fault, and slub+pf+ramfs functions are not 

suitable for file and virtual memory system application. However, exec functions 

are very suitable.  

 

5.2.4 Exp #4: Local communication benchmark 

In this section, we discuss and analyze the results of local communication 

related benchmark. Table 5.6 shows lmbench local communication parameters. 

They contain pipe communication, AF UNIX communication, UDP socket, TCP 

socket, TCP connection. The time unit is microsecond and smaller is better. 

 

Table 5.6 The lmbench local communication latency parameters 

Local Communication latencies in microseconds 

- smaller is better 

Pipe To measure interprocess communication latency 
through pipes 

AF UNIX To establish AF_UNIX stream 

UDP To establish the UDP socket pair 

TCP To establish the TCP socket pair 

TCP conn To connect the TCP socket pair 
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Figure 5.29 Pipe latency 

 

The pipe latency is shown in Figure 5.29. The original latency is 387.9 ms. 

The latency of most of functions is between 371.5 ms and 390.7 ms. The exec 

(332.6 ms) and schedule (329.4 ms) functions have excellent pipe latency. The 

AF UNIX latency is shown in Figure 5.30. The original latency is 699 ms. The 

latency of most of functions is between 581 ms and 699 ms. The exec (581 ms), 

schedule (579 ms), sched+cs+thread (493 ms), and sched+cs+irq+timer (529 

ms) functions have excellent latency.  
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Figure 5.30 AF UNIX latency 

 

The UDP latency is shown in Figure 5.31. The original latency is 750.8 ms. 
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The latency of most of functions is between 743.8 ms and 761 ms. The exec 

(672.7 ms) and schedule (651.7 ms) functions still have excellent latency. 
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Figure 5.31 UDP latency 

 

The TCP latency is shown in Figure 5.32. The original latency is 1040 ms. 

The latency of most of functions is between 1020 ms and 1055 ms. The exec 

(909 ms) and schedule (903.7 ms) functions still have excellent latency.  

 

TCP

1040
1042

909

1053
1045

903.7

1031 1053
1035

1042
1040 1055

1048 1061
1056

1061
1042 1053

1055
1044

1039
1020 1051

800

900

1000

1100

original
fork exec exit

exec+exit

schedule (
sch

ed)

contex
t sw

itching (cs)
thread

schedule+
contex

t sw
itching

sched+cs+
threa

d

fork+sch
ed+cs tlb

vmlloc
buddy slub

page fau
lt (p

f)

page reclamation irq

ram file
 system

 (ra
mfs)tim

er

sched+cs+
irq+tim

er

slub+pf+ramfs

tlb+irq+tim
er

kernel implementation

ms

 

Figure 5.32 TCP latency 
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Figure 5.33 TCP connection latency 

 

The TCP connection latency is shown in Figure 5.33. The original latency 

is 2478 ms. The latency of most of functions is between 2441 ms and 2488 ms. 

There are some excellent functions such as exec (2137 ms) and schedule (2122 

ms).  

After we analyze the results of local communication benchmark, we find 

out exec and schedule functions are very suitable for local communication 

application. 

 

5.3 Analysis 

In this section, we summarize the experimental results in Table 5.7 ~ 5.10. 

The negative percentage means that the latency of revised linux is smaller than 

the latency of original linux while the positive percentage means that the latency 

of revised linux is greater than the latency of original linux. Finally, 0.0% 

indicates that the latency of revised linux is the same as the latency of the 

original linux.  
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For lmbench process latency benchmark, we only care fork proc latency, 

exec proc latency, and sh proc latency, because these patterns can be close to the 

real situation. According to Table 5.7, we can place exec, schedule, schedule + 

context switching + thread (sched+cs+thread), fork + schedule + context 

switching (fork+sched+cs), tlb, buddy, slub, page fault, or irq functions into the 

TCM to gain better performance. 

 
Table 5.7 Summary of lmbench process latency 

Functions 
null 
call 

null
IO 

stat
open
clos

slct
TCP

sig 
inst

sig 
hndl 

fork 
proc 

Exec
proc

Sh 
proc

fork      0.0% -23.4% 5.4% -1.5% -0.9% 0.0% 0.0% 0.2% 0.0% 0.0%
exec      3.4% -11.8% 0.0% 1.1% -0.9% 2.6% 1.4% -17.3% -15.8% -18.6%
exit      4.0% -11.8% 0.6% -2.9% 0.0% 11.4% 11.4% 2.8% 0.0% 0.0%
exec+exit 4.0% -22.0% 0.6% 1.5% 0.9% 32.8% 11.4% 1.9% 0.0% 0.0%
schedule (sched) 0.0% -13.4% 0.0% -9.1% 0.9% 1.0% 8.6% -19.5% -21.1% -18.6%
context switching (cs)   0.0% -8.1% 0.0% 0.7% 0.0% 0.0% 10.0% 1.2% 0.0% 0.0%
thread    0.0% -8.5% -0.6% -7.7% 0.0% 0.3% -0.7% 0.3% 0.0% -2.3%
schedule+context 
switching   0.0% -11.2% 0.0% -7.7% 0.9% 26.7% 12.9% 0.3% -5.3% -2.3%

sched+cs+thread -3.4% 0.0% 15.1% 10.2% 0.9% 9.2% 9.3% -2.0% -5.3% -4.7%
fork+sched+cs      -2.7% -21.7% 0.0% -9.1% 0.9% 0.0% 0.7% -0.7% 0.0% -2.3%
tlb       0.0% -1.8% 0.0% 0.0% 0.9% 0.0% 0.0% -1.5% -5.3% -2.3%
vmlloc    -3.4% -23.2% 0.6% -6.9% 0.0% 78.2% 0.7% 0.9% -5.3% -4.7%
buddy 0.0% -24.4% 4.2% -8.0% 0.9% 0.3% 1.4% -0.7% -5.3% -2.3%
slub 0.0% -7.1% 11.4% -3.6% 0.0% 46.7% 2.9% -0.5% -5.3% -2.3%
page fault (pf) 0.0% -24.4% 4.2% -8.0% 0.9% 0.3% 1.4% -0.7% -5.3% -2.3%
page reclamation 3.4% -22.4% 0.6% -7.7% -0.9% 2.1% 11.4% 2.2% 0.0% 0.0%
irq       0.0% -22.6% -0.6% -5.5% 1.8% 34.0% 7.9% -2.3% -5.3% -4.7%
ram file system 0.0% -23.0% 3.6% 10.6% 0.0% 12.7% 12.1% 0.7% -5.3% -2.3%
timer     0.0% -22.8% -0.6% -8.0% 1.8% -0.5% 4.3% 0.7% -5.3% -4.7%
sched+cs+irq+timer 0.0% -22.2% 0.0% -8.8% 0.9% 0.0% 1.4% 1.2% 0.0% 0.0%
slub+pf+ramfs 0.0% -23.8% 9.0% 2.6% 0.0% 28.1% 10.0% 2.7% 0.0% 0.0%
tlb+irq+timer 0.0% -8.7% 0.6% -8.4% 0.0% 0.3% 11.4% 1.4% 0.0% -2.3%
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For lmbench context switching latency benchmark shown in Table 5.8, 

most functions can gain better performance, especially fork, exec, exec + exit, 

schedule, schedule + context switching, buddy, slub, page fault, irq, schedule + 

context switching + irq + timer (sched+cs+irq+timer), or tlb + irq + timer 

functions. The result shows that our kernel classification is suitable for context 

switching application.  

 
Table 5.8 Summary of lmbench context switching latency 

Functions 
2p/0K

ctxsw

2p/16K

ctxsw

2p/64K

ctxsw

8p/16K

ctxsw

8p/64K 

ctxsw 

16p/16K

ctxsw 

16p/64K

ctxsw

fork      -16.8% -15.6% -27.9% -16.7% -30.7% -16.6% -18.9%

exec      -15.2% -13.3% -28.1% -15.9% -28.0% -16.4% -18.9%

exit      -2.6% 6.7% -20.4% -0.4% -23.3% -0.2% -7.3%

exec+exit -13.7% -15.4% -27.2% -16.3% -30.9% -16.1% -19.6%

schedule (sched) -17.7% -18.9% -28.5% -15.1% -31.3% -18.6% -19.5%

context switching (cs)   -4.0% 4.7% -5.7% -1.6% -46.1% -1.9% -36.2%

thread    -0.7% -1.3% -25.8% 2.5% -27.2% 2.4% -10.7%

schedule+context switching  -6.2% -0.3% -28.9% -3.3% -31.1% -3.0% -20.0%

sched+cs+thread -7.6% 0.4% -24.0% -3.2% -65.7% 1.7% -59.9%

fork+sched+cs      -5.6% 1.4% -17.3% -1.0% -14.0% 0.4% 3.6%

tlb       -3.1% 3.9% -17.9% 1.2% -13.4% 1.8% -7.7%

vmlloc    -2.7% 4.3% -9.1% 3.0% -14.0% 4.2% 3.4%

buddy -14.9% -14.9% -26.8% -16.6% -30.9% -15.8% -18.5%

slub -16.1% -14.0% -24.9% -14.4% -28.8% -14.6% -14.0%

page fault (pf) -14.9% -14.9% -26.8% -16.6% -30.9% -15.8% -18.5%

page reclamation -3.1% 2.5% -18.2% -2.8% -23.9% -0.1% -13.1%

irq       -0.6% -16.4% -24.0% -14.3% -29.0% -15.1% -16.5%

ram file system -4.7% 4.9% -13.0% 1.6% -15.5% 4.0% -10.0%

timer     -1.5% 2.6% -13.6% 2.6% -7.3% 3.1% 3.3%

sched+cs+irq+timer -4.9% -3.7% -15.0% -2.1% -15.7% -1.8% -6.3%

slub+pf+ramfs -4.1% 0.9% -19.3% -1.6% -9.6% -1.9% -9.6%

tlb+irq+timer -0.9% -14.3% -27.2% -14.8% -28.6% -15.2% -16.5%
 

For lmbench file & VM system latency benchmark, we only care 10K File 
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Create/Delete, Mmap Latency, and Page Fault, because these patterns can be 

close to the real situation. According to Table 5.9, we can place exec, schedule, 

or schedule + context switching + irq + timer (sched+cs+irq+timer) functions 

into the TCM to gain better performance. Although, the latency of schedule 

functions with TCM is bigger than the latency of original functions without 

TCM regarding 10K File Delete latency. We should ignore this item, because 

the difference between orginal latency (70.2 ms) and schedule functions latency 

(71.9 ms) is only 1.7 ms as shown in Figure 5.24. This value is much smaller 

than the difference in 10K File Create latency (52.7 ms) as shown in Figure 

5.23. 

Table 5.9 Summary of lmbench file & VM system latency 

Functions 
0K File
Create

0K File
Delete

10K 
File 

Create

10K 
File 

Delete

Mmap 
Latency

Prot  
Fault 

Page 
Fault

100fd
selct 

fork      2.2% 7.4% -3.1% 5.1% 1.6% -30.6% -0.7% 0.7%
exec      -15.8% -6.3% -25.1% -1.9% -3.1% -6.6% -2.8% -0.7%
exit      0.2% -1.1% -3.9% -0.7% 1.4% 3.5% 0.0% -0.9%
exec+exit -0.2% 0.3% -5.8% 2.3% 0.3% 2.0% 0.7% -0.7%
schedule (sched) -5.7% 3.0% -22.4% 2.4% -2.3% 11.5% -4.2% 0.7%
context switching (cs)   3.9% -1.6% 2.2% 2.0% 0.2% -12.6% 0.7% -0.5%
thread    -0.4% 2.7% 19.7% 1.7% 1.5% 0.3% 0.7% 2.7%
schedule+context 
switching   2.2% -3.3% 1.8% 1.3% 2.4% -14.5% -0.7% 0.9%

Sched+cs+thread -2.2% -4.1% 23.3% -1.6% 5.4% 1.8% 0.7% 2.1%
fork+sched+cs      -0.2% 2.7% -3.5% 2.3% 2.8% 5.0% 1.4% 0.7%
tlb       7.5% 3.0% 18.7% 0.1% 7.6% 1.1% 5.6% 0.9%
vmlloc    5.5% -1.1% 20.4% -0.4% 2.6% 1.8% 0.7% -0.5%
buddy 4.2% 1.9% -1.6% 3.6% 25.3% 28.9% 26.1% -0.5%
slub 4.0% 6.3% 19.7% 1.3% 1.1% -1.9% 0.7% 2.1%
page fault (pf) 4.2% 1.9% -1.6% 3.6% 25.3% 28.9% 26.1% -0.5%
page reclamation 4.8% 1.9% -6.7% 7.4% 3.4% -4.4% 2.8% -1.1%
irq       -7.4% -1.1% 20.9% -3.0% 2.8% -5.8% 0.7% 0.4%
ram file system 1.1% 4.4% 16.2% 3.0% 0.8% -1.4% 1.4% -0.9%
timer     1.1% -1.4% 19.0% -0.9% 2.6% 3.9% 2.8% -1.1%
sched+cs+irq+timer 2.2% 2.5% -1.1% -1.1% -0.2% -0.4% -0.7% 1.4%
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slub+pf+ramfs 6.6% -1.4% 1.2% -1.9% 37.7% 31.2% 27.5% 1.6%
tlb+irq+timer 2.0% 0.5% 21.3% 1.3% 9.8% -3.3% 6.3% -0.4%

 

For lmbench local communication latency benchmark shown in Table 5.10, 

we can place exec, schedule, context switching, schedule + context switching, 

fork + schedule + context switching (fork+sched+cs), schedule + context 

switching + irq + timer (sched+cs+irq+timer), or slub + page fault + RAM file 

system (slub+pf+ramfs) functions into the TCM to gain better performance. 

 
Table 5.10 Summary of lmbench local communication latency  

Functions pipe
AF 

UNIX
UDP TCP 

TCP 
conn 

fork      0.7% -0.6% 0.8% 0.2% 0.4% 

exec      -14.3% -16.9% -10.4% -12.6% -13.8% 

exit      -0.2% -1.0% 1.2% 1.3% 0.2% 

exec+exit 10.8% 0.1% 1.0% 0.5% -0.6% 

schedule (sched) -15.1% -17.2% -13.2% -13.1% -14.4% 

context switching (cs)   -1.3% -4.7% -0.2% -0.9% -0.9% 

thread    0.7% -0.3% 1.3% 1.3% -0.3% 

schedule+context switching -2.9% -6.9% -0.9% -0.5% -2.1% 

sched+cs+thread -4.2% -29.5% 1.3% 0.2% -1.0% 

fork+sched+cs      -2.1% -6.3% -0.8% 0.0% -0.8% 

tlb      0.7% -0.1% 1.5% 1.4% 1.5% 

vmlloc    0.2% 0.0% 2.5% 0.8% 0.0% 

buddy 1.3% -4.0% 1.4% 2.0% -0.5% 

slub 0.6% -2.7% 0.8% 1.5% 0.9% 

page fault (pf) 1.3% -4.0% 1.4% 2.0% -0.5% 

page reclamation 0.6% 0.0% 0.2% 0.2% -1.5% 

irq       4.8% 0.3% 1.6% 1.3% 1.9% 

ram file system -1.1% -0.6% 1.5% 1.4% 0.5% 

timer     1.5% -2.3% 2.1% 0.4% 0.7% 

sched+cs+irq+timer -2.5% -24.3% -0.7% -0.1% -0.5% 

slub+pf+ramfs -1.3% -3.1% -0.2% -1.9% -1.4% 
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tlb+irq+timer 4.2% 0.9% 2.9% 1.1% 1.1% 

 

Overall, to place exec or schedule functions into the TCM can gain best 

performance according to the experimental results in Table 5.7 ~ 5.10. 

According to the specific application, the user should place related kernel 

functions in the TCM. But our experimental results except exec or schedule 

functions show the optimization modification must be done in order to improve 

the overall performance. Our experimental results can also provide the direction 

on the kernel optimization.  

For example, to place irq fucntions into the TCM can only improve the 

process and context switching latency, but file & virtual memory system and 

local communication latency become worse. So the user should focus on file & 

virtual memory system and local communication latency to optimize the related 

kernel code. 

. 
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Chapter 6 

Conclusion  

All prior researches of tightly-coupled memory (TCM) focus on non-OS 

embedded application program, because it is easy to be analyzed. Regarding 

Linux, Android OS, and so on, the code structure is very complex and code size 

is much more than TCM memory size. According to the different applications, 

the most frequently accessed kernel functions are not the same. Since there are 

hundreds of the applications, we are unable to list all applications and analyze its 

most frequently used code. Therefore, we can only settle for second best to use a 

general classification of the kernel code.  

In this paper, we analyze the utilization and performance impact of TCM, 

and classify Linux kernel functions into groups per the TCM capacity. Then, we 

select different groups of Linux kernel functions at the compiling time and place 

these function groups into TCM without swapping them out during execution. 

By conducting the experiments with lmbench, we find that placing exec() or 

schedule() into TCM can reduce the local communication latency by a factor of 

13% - 14%. 

This paper has identified that exec() or schedule() can improve the overall 

performance. If the user does not have any needs for a specific application, the 

user can put them directly into TCM and reduce kernel development time. If the 

user has a need for a specific application, our results also provide the direction 

on the kernel optimization.  
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