R F ?f 48 L e Bk Linux P % 2cay & i 1

Optimizing Linux Kernel Performance with Tightly-Coupled Memory

g2 T HER

hEREIETH B

Bt B 2i4m s Bz Linux p 2o & iE (v
Optimizing Linux Kernel Performance with Tightly-Coupled Memory

oA R Student : Jung-tsan Lin
hERE I RTS Advisor : Yu-Lun Huang
B o2~ F
Eil L GETRNAE T at Ui
L
A Thesis

Submitted to College of Electrical and Computer Engineering
National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of

Master of Science
in

Electrical and Control Engineering

July 2012

Hsinchu, Taiwan, Republic of China

B % B8 4 fe M2 Linux pPosi i i

g4y SR ES R

Rzd +F HFR THagiEemdsr

%48 £ szt (Tightly-Coupled Memory » TCM) - @ 2iis il B ix

P B FEE LT iR St TCM Bif & * 2P eEa T ¥ A28 e
AT IR P R TR g AT RS

e 5 58 T A e 0 3 B FERE AR o Bt Ad 3T Linux AR B
frd TR BHEAR < 2 AFfe g FIph il G BN IT R kS PO AR 5
] TCM 2z fhiae F2 5B endim o 4 5 TP s iz i TCM ¢ ¢ g = 9%
R B A ¢ AP A4 TEM #91 * F frokil B85 B4 Linux
AP S AR 13 TCM thE Bt A o 2R1s » APER A b3 e in

Linux P 4% S0 8cA2 50 18 17 B W S &k 353

“\"
prc
I
St
=1
o3
=

P H E2x~ TCM
#¥ AR B R Imbench ¢hf %> A P45 7l exeq() & schedule()
St g P TCM 7 5@ 3 gl BB 13%-14% -

Optimizing Linux Kernel Performance with Tightly-Coupled Memory

student : Jung-tsan Lin Advisors : Dr. Yu-Lun Huang

Degree Program of Electrical and Computer Engineering

National Chiao Tung University

Abstract

TCM (Tightly-Coupled Memory) is advantaged of high-speed data access
with lower power consumption than the traditional memory architecture. As
such, TCM i1s a best fit to-hold mission critical routines and data structures. Prior
research of this area has emphasized on how TCM can be applied to non-OS
embedded applications, like" mediastreaming, to improve the overall
performance. Possibly due to large and complicated Linux kernel code base and
its data structures, there is no discussion regarding the performance impact when
placing OS kernel functions into TCM. An improper arrangement of kernel
functions in TCM can contrarily downgrade the performance. In this paper, we
analyze the utilization and performance impact of TCM, and classify Linux
kernel functions into groups per the TCM capacity. Then, we select different
groups of Linux kernel functions at the compiling time and place these function
groups into TCM without swapping them out during execution. By conducting
the experiments with Imbench, we find that placing exec() or schedule() into

TCM can reduce the local communication latency by a factor of 13% - 14%.

il

=+ o
U
FARD RRAML UK S THEFAARLEY IR LL R A
A ORE S F Ao G L RAF ORI Ak Lok R R BHRA
BARF D 3L 0 %A AR DA RAF YRR €T
AL o

R AR A e R s A RA S B R R R
Btk el 3 B EF - Aes T e E R e

iii

Contents

&
Abstract
PEE
Contents
List of Figures
List of Tables
Chapter 1 Introduction
1.1 Tightly-coupled memory (TCM)
1.2 Motivation
1.3 Synopsis
Chapter 2 Related work
2.1 Data TCM allocation scheme
2.2 Instruction TCM allocation scheme
2.3 Both of instruction and data T€CM allocation scheme
24 The analysis of instruction code
Chapter 3 The performance evaluation
3.1 Hardware architecture
3.2 Definition and analysis
33 Examples
Chapter 4 Kernel classification
4.1 Process-intensive
4.1.1 Process creation
4.1.2 Process termination

4.1.3 Process scheduling
4.1.4 Context switching
4.2 Memory-intensive

421 Page table operation

v

11
i1
v

vii

xii

O© O 9 9 & »n n B~ W=

[\ I \© R \© R O R N0 I O R O S i
AW N NN M= = W

4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.3

4.3.1
4.3.2
433

Chapter 5

5.1

5.1.1
5.1.2
5.1.3
5.2

5.2.1
52.2
523
52.4
53

Chapter 6

References

Virtual memory allocator

Buddy system

Slab system

Page fault operation

Physical page reclamation
[/O-intensive

Interrupts and interrupt handlers
Virtual file system (VFS)

Timer controller

Experiments

Environments

Hardware requirement

Software requirement

Experimental environment
Experiments

Exp #1: Process benchmark

Exp #2: Context switching benchmark
Exp #3: File & VM system benchmark
Exp #4: Local communication benchmark
Analysis

Conclusion

25
25
27
29
29
30
30
31
32
33
33
33
33
34
40
43
50
54
60
63
69
70

Figure 1.1
Figure 1.2
Figure 1.3
Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9

Figure 5.10
Figure 5.11
Figure 5.12

List of Figures

Memory diagram

TCM memory address space

ARM processer market share rate

The kernel-storage model

MMU checking and translation mechanism
Original embedded system architecture
Proposed embedded system architecture

The icache and main memory layout with TCM for case 3a
The icache and main memory layout with TCM for case 3b
TCM capacity vs. function size trend

Memory address_space for:32-bit CPU

Page tables

The array of a buddy system

Layout of the slab allocator

The flow of write() system call

Experimental environment

Samba server setting in the /etc/samba/smb.conf
The setting of Linux kernel configuration

The simple system call latency

The simple I/O latency

File status access latency

File open and close latency

File descriptor select latency

Signal installation latency

Signal handling latency

Fork process running latency

Exec process running latency

vi

[I S S\ "\

10
11
12
18

20
23
25
26
28
32
34
35
38
44
45
45
46
46
47
48
48
49

Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31
Figure 5.32
Figure 5.33

Shell process running latency
2p/0OK context switching latency
2p/16K context switching latency
2p/64K context switching latency
8p/16K context switching latency
8p/64K context switching latency
16p/16K context switching latency
16p/64K context switching latency
OK file creation latency

OK file deletion latency

10K file creation latency

10K file deletion latency

Memory mapping latency

Fault protection latency

Page fault latency

100 file descriptors selectionlatency
Pipe latency

AF UNIX latency

UDP latency

TCP latency

TCP connection latency

vii

49
51
51
52
52
53
54
54
55
56
56
57
57
58
58
59
61
61
62
62
63

Table 3.1
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 5.9
Table 5.10

List of Tables

An example of function allocation

Required files

The Imbench basic system parameters

The Imbench process parameters

The Imbench context switching parameters

The Imbench file & VM system latency parameters
The Imbench local communication latency parameters
Summary of Imbench process latency

Summary of Imbench context switching latency
Summary of Imbench file & VM system latency

Summary of Imbenchlocal communication latency

viii

15
37
41
44
50
55
60
64
65
66
67

Chapter 1

Introduction

This chapter introduces a novel memory technology, tightly-coupled
memory (TCM), providing high speed data access within a central processing
unit. After a brief introduction to TCM, we describe the pros and cons of the

novel memory technology, our motivation, and the synopsis of the thesis.

1.1 Tightly-coupled memory

TCM, a high speed SRAM (Static Random Access Memory) is designed in
an embedded processor like Level 1 cache as shown in Figure 1.1. TCM
memory address space is included within 4 GB (Giga-Bytes) memory map of a
32-bit CPU (Central Processing Unit). TCM can be used to store frequently
accessed data or instructions. The advantage of TCM is that a CPU can access
required instructions or data in one clock-cycle to reduce the access latency

around 25 cycles caused by an off-chip main memory.

However, in order to achieve the same clock frequency as a CPU, the size
of TCM is limited like a cache. The size of TCM is usually between 4 KB to 32
KB (Kilo-Bytes). The limitation might lead the performance down if the size of
an application program is too large to fit into TCM. For example, the size of a
program containing a function foo_a and its subfunction foo_b is 100 KB. Since
the program size is larger than TCM size, the function foo_a is located in TCM
and its subfunction foo b is located in the off-chip main memory. Trivially,
accessing function foo_a can be done in one clock cycle, but more clock cycles
are required due to the accessing to foo_b in the main memory. The total

execution time might be greater than the processor without using TCM. TCM

has a disadvantage of limited size, so how we arrange appropriate code from

huge codes such as Linux kernel into TCM is very important.

'y 4 Speed
On-chip
L1 Cache
/ L2 Cache \
i A

/ DDR memory \
/ Hard Disk \ .
v Size

Figure 1.1: Memory diagram

i ¢
N+1
N
Memory
map
0

Figure 1.2: TCM memory address space

Although a cache and a TCM are both made up of SRAM cells, the
operations are different. A cache is designed to hold the instructions and data
from recently accessed memory locations to improve performance of general
purpose processors. A cache contains tag RAM and data RAM. The tag RAM is
mapped against the external memory address. If the instruction or data exists in
the cache, the processor fetches them in one clock cycle to reduce the accesses
to the main memory. On the other hand, TCM only contains data RAM and is
located as a part of the main memory address map. Avoiding a check of the tag
RAM can reduce the total execution time. According to the characteristics of
cache and TCM, many cache or TCM studies were proposed to improve the
system performance. There is a detailed comparison between cache and TCM in
[1], and the result shows that TCM has 40% lower power consumption and 34%

smaller area than a cache memory with the same capacity.

1.2 Motivation

With the progress of science and technology, an embedded system becomes
an integral part of human life; To handle a growing number of computing
operations, instead of developing faster CPUs, we also consider the improvent

of performance when running programs with the existing CPUs.

Under the existing CPU architectures, we can find out that ARM processers
design TCMs and MIPS introduces Scratchpad memory to improve the system
performance. The memory is located within a processer, its priority is higher
than caches, and provides high speed performance without accessing system bus.
According to the statistics shown in Figure 1.3 (data source: ARM official
website in 2011), for mobile computing, ARM’s processer market share will be
greater than 50% by 2015, especially 85% for Media Tablets, and >30% for

Mobile PC. So we consider ARM processer as our research platform.

Categories of Mobile Computing

Q00 -
EH Mobile PC

800 - kd Mini-notebooks™®

700 H Media Tablets

e | ARM Units
600 —

500 -

Shipments (Mu)

2011 2012 2013 2014 2015

ARM’s Market Share >50% by 2015
85% Media Tablets, >30% Mobile PC

Figure 1.3: ARM processer market share rate
(data source: ARM official website in 2011)

In general, the TCM memory is-used by non-OS software, because it is
easy to be controlled by a-designer. Regarding-Linux, Android OS, and so on,
the code structure is vety complex and code size is much more than TCM
memory size. Our purpose is to research how to-select proper kernel functions
from a common Linux kernel into the Timited TCM memory space to improve

the overall performance.

1.3 Synopsis

The remainder of this paper is organized as follows. Chapter 2 discusses
related work. Chapter 3 describes TCM performance evaluation. Chapter 4
proposes kernel classification. Chapter 5 explains the experimental environment

and presents the results. Finally, Chapter 6 is the conclusion of the thesis.

Chapter 2

Related work

Existing work on the TCM utilization can be classified into three categories:
(1) apply to a data memory only; (2) apply to an instruction memory only; or (3)
apply to both of an instruction memory and a data memory. Base on above
categories, they can be further divided into two classes: one is static allocation
and the other is dynamic allocation. The difference is whether the contents of
TCM are changed during the program execution or not. The purpose of TCM
memory utilization is to improve the performance of program execution and

reduce the electrical energy.

2.1 Data TCM allocation scheme

For static data TCM, the ‘optimization methods for data memory are
presented in [3, 4, 5, 6, 7, 8]. In most of rescarches, test data patterns were
analyzed to find frequently accessed variables and constants. For example, P.
Panda et al. in [3] propose some partitioning strategies: (1) assign scalars to
SRAM and arrays to DRAM; (2) array with size larger than SRAM is placed in
DRAM; (3) arrays with highest intersecting life times are placed in SRAM; (4)

arrays with highest variable access count are placed in SRAM.

For dynamic data TCM, a dynamic management method of data memory is
presented in [9]. Ning Deng et al. propose a memory address random sampling
scheme to identify the frequently accessed region during execution time. The

proposed software handler can deal with TCM allocation.

[3, 4, 5, 6, 9] discuss the allocation of both global data and stack variables
to TCM, while [7] and [8] can only allocate global data to TCM.

2.2 Instruction TCM allocation scheme

For static instruction TCM, an example is described in [10]. F. Angiolin et al.
propose a patching tool to do binary code relocation. First of all, the source code
of application is compiled to binary one. Then, the binary image runs on target
platform to collect the statistics of an execution trace. Those statistics and the
application-independent information such as the size of the target TCM are
analyzed by the TCM analysis algorithm. Eventually, some optimal code
segments are found and passed to the patching tool. This tool modifies the
original binary image of application to insert jump instructions, adjust some
critical instructions, and move code to different address regions. The experiment
proves that a post-compilation approach improves application optimization

without compiling source code of application again.

For dynamic instruction TCM; the optimization methods for instruction
memory are presented in [11,.12, 13]. For example, M. Kandemir et al. in [11]
propose an algorithm to decide frequently accessed instructions into TCM. The
algorithm has four steps: (1) divide the code into regions; (2) assign timestamp
for each region; (3) select the instructions copied to and evicted from TCM
according to code profiling; (4) decide if instructions are swapped actually
according to cost analysis. The result of experiment shows the execution time

has a great improvement.

The common characteristic of the above mothods is that the application
code needs to be profiling in advance. This means that the application binrary or

source code must be modified one or more times.

2.3 Both of instruction and data TCM allocation scheme

The representative research of instruction and data TCM static allocation is
[14]. An algorithm analyzes the application and selects best program and data
code into limited size of TCM to save the maximum of electrical energy. S.
Steinke et al. define two memory object types; one is program memory object
which is a function or a basic block; the other is data memory object which is a
variable. Program memory objects are put into instruction TCM while data
memory objects are put into data TCM. Based on the limited size of TCM, S.
Steinke et al. define the related equations and apply the method of [15] to gain
the cost for the use of a TCM memory. According to analysis of cost, the best
set of memory objects can be found. Finally, S. Steinke et al. compare the TCM
versus Cache performance in.the same memory size. The result shows TCM

saves about 22% of electrical energy.

2.4 The analysis of instruction code

In order to select the proper codes into an instruction TCM, an appropriate
analysis method is necessary. Most of prior researches focus on loop blocks
analysis of the trace of an application program. In [16], He Yi et al. built a
kernel-storage model shown in Figure 2.1 to analyze the hot spot loop blocks of
key instructions in stream programs. The left of Figure 2.1 is a kernel contains
two loop functions. LOOP1 function has L1 instructions and is executed C1
times, while LOOP2 function has L2 instructions and is executed C2 times.
Besides, LOOPL1 includes LOOPZ2. The right of Figure 2.1 is an instruction TCM
and its depth 1s L.

If L > L1, it means all instructions of LOOP1 can be placed in the

instruction TCM. If L1 > L > L2, it means only LOOP2 function can be placed
in the instruction TCM. Because LOOP1 includes LOOP2, He Y1 et al. define
that LOOP2 is the Hot Code of LOOP1.

| e e
ETESLE LI LURFNY >I

Pl
ad LU o

~ kernel

Figure 2.1-The kernel-storage model (data source: [16])

Based on the analysis, He'Yi et al. define Kernel Hot Code for each stream
media application program. The Kernel Hot code is placed into an instruction

TCM when running the specific program.

Loop analysis, however, has several disadvantages: (1) the system structure
and relationship of loop functions should be very complex; (2) different
applications need to design a specific system structure. Besides, all prior
researches of TCM memory focus on a non-OS embedded application program,
because it is easy to be analyzed. Regarding Linux, Android OS, and so on, the
code structure is very complex and the size of the code is much more than the
size of TCM memory. We purpose a method to select proper kernel codes into

the limited TCM memory space to improve the performance.

Chapter 3

The performance evaluation

All prior researches of TCM memory focus on a non-OS embedded
application program, because it is easy to be analyzed. Regarding Linux,
Android OS, and so on, the code structure is very complex and code size is
much more than the size of TCM memory. If use of TCM is not good, the
performance is down. So an analysis model is necessary. In this chapter, we
describe the architecture of ARM processor with TCM, the proposed analysis

model, and a comparison analysis when kernel uses TCM or not.

3.1 Hardware architecture

Under normal circumstances, an embedded operation system is designed to
run at cache memory due to performance reason. There is a basic ARM
embedded system architecture shown in Figute 3.2. We simplify the description
of the embedded system and discuss -the minimum requirement of running an
operation system, so the architecture only contains an ARM processer, a system

bus, and a main memory.

Generally, an ARM processer has a central processing unit (CPU), an
Instruction Cache, a Data Cache, and a memory management unit (MMU) inside.
The CPU core handles the execution of instructions. The Instruction Cache and
Data Cache are designed to have the same clock frequency as a CPU core and
store a few used instructions and data recently. Compared with the off chip main
memory, the Instruction Cache reduces the fetch instruction latency while the
Data Cache reduces load or store data latency. However, a cache memory has a
disadvantage of high cost so that a cache memory is not suitable for large size. A

MMU shown in Figure 3.1 controls the mapping between the physical address

9

memory space and the virtual address memory space for general operation
systems. A general operation system has a multi-user and multi-process kernel.
Each user program has its own address memory space and other unrelated
programs can not see and access it. This address space is referred to as virtual
address. In fact, the kernel and all programs are placed in the same off chip main
memory. This address space is referred to as physical address. A MMU is an

important bridge between them.

Virtual Checking and translation Physical
Memory mechanism. " Memory
Process A Translation
IJJ Tables
Process B Management
ROM
RAM
Process C
| D _ RAM
P D TLB TLB RAM
rocess RAM
RAM
Process E RAM

Figure 3.1 MMU checking and translation mechanism

A main memory is enough to store whole embedded operation system
including the kernel, applications, and file system named RAM disk ... and so
on. But the main memory has long access latency. An Advanced
Microcontroller Bus Architecture (AMBA) bus is an on-chip communications

standard defined by ARM Limited.

10

Processer

CPU Core

Instruction

Data Cache Cache

rMemory Management Unit

< AMBA BUS >

Off chip main Memory

Figure 3.2-Original embedded system architecture

After a system booted, whole operation system is placed in an off chip
main memory. When the processer executes a process or task, the CPU fetches
wanted instructions from the Instruction Cache and loads wanted data from the
Data Cache first. If the caches don’t store these instructions and data, the CPU
fetches them from external main memory through system bus and stores a copy
in the Instruction Cache and the Data Cache. If the Cahe is full, the unused

instructions and data recently are replaced by new ones.

Because the access latency of an off chip main memory is much greater
than a cache memory, it is important issue to reduce the number of times that a

CPU accesses an off chip main memory.

11

Processer

CPU Core

Instruction
TCM

Instruction

Data Cache X
Cache

Femory Management Unit

< AMBA BUS >

Off chip main Memory

Figure 3.3 Proposed embedded system architecture

In this paper, we propose a new architecture shown in Figure 3.3. We add
an Instruction TCM used in the embedded system. According to the proposed
method, we choose the proper kernel codes in the compile phase and then put
them into the Instruction TCM when the operation system power on. The
instructions in the Instruction TCM are always alive and are never replaced in

the run-time phase.

When the processer executes a process or task, the CPU fetches wanted
instructions from the Instruction TCM directly if the TCM has them. Then the
CPU fetches other wanted instructions from the Instruction Cache and loads

wanted data from the Data Cache first. If the caches don’t store these

12

instructions and data, the CPU fetches them from external main memory through
system bus and stores a copy in the Instruction Cache and the Data Cache. If
most of the instructions of a process are placed in the TCM, the proposed
architecture can reduce the number of times that a CPU accesses an off chip

main memory. And then the performance of an operation system can improve.

3.2 Definition and analysis

This section describes our analysis model. The total kernel codes have N
instructions; some of them have X instructions put in a TCM memory and the

others have Y instructions placed in a cache memory. A formula can be defined

as follows.

N=Xx+Yy Eq (1)

If X = 0, it means running an, operation system.doesn’t use a TCM memory.

Otherwise, If Y = 0, it means running an operation system doesn’t use a cache
memory. In this paper, we focus on performance enhancement using current

cache memory architecture of an operation system. So we don’t consider Y = 0.

If X = 0, an operation system always runs at a cache memory. A formula

for total execution time of a task or process can be defined as follows.

Tno—tcm = thC + bXtm Eq (2)

Where

Y : Numbers of instructions in a cache memory.

t.: The execution time of one instruction in a cache memory.

t..: The execution time that a processer copies the instructions of one cache line

13

from an off chip main memory to a cache memory when the CPU can not fetch

the required instructions from a TCM and a cache memory.

b: The number of times that a processer copies the instructions of one cache
line from an off chip main memory to a cache memory after the CPU completed

a task or process of an operation system.

If X #0, an operation system runs at a TCM memory and a cache
memory. A formula for total execution time of a task or process can be defined

as follows.

T,

tcm

= Xxt, + yxt, +bxt_ Eq (3)

Where

X : Numbers of instructions ina TCM memory-

L, : The execution time of one instruction in a TCM memory.

Y : Numbers of instructions in a.cache memory.

tc : The execution time of one instruction in a cache memory.

t., : The execution time that a processer copies the instructions of one cache line
from an off chip main memory to a cache memory when the CPU can not fetch
the required instructions from a TCM and a cache memory.

D : The number of times that a processer copies the instructions of one cache
line from an off chip main memory to a cache memory after the CPU completed

a task or process of an operation system.

In this paper, we adopt a static TCM allocation scheme. But, the TCM
memory capacity of a processer is limited. For this reason, the size constraint is

defined as follows.

14

X <size of TCM Eq (4)

When Tign < T emunder the condition of Eq (4), we can improve the

performace of an operation system. If the select instructions are improper, it is

possible to cause Tiem is greater than Totom.

3.3 Examples

We assume that a CPU clock and a system bus clock use the same
frequency. The CPU which accesses a TCM and a cache needs to spend one
clock cycle. And the CPU which accesses a main memory on the system bus
needs to spend 25 clock cycles. The size-of a cache or a TCM is 8 instructions.
A Linux executes the function 10 times after the Linux system powered on. In
this section, we discuss the relationship between TCM capacity and Function
size. They contain Function size < TCM, TCM-< Function size < Instruction

cache + TCM, and Instruction cache + TCM < Function size.

Table 3.1 An example of function allocation

Location Function
tcm_a()
hello_tcm()

{ ..
tem_a();
Instruction foo b();
TCM
foo c();
foo d();
}

15

foo b()
Off chip main | foo_c()
memory foo_d()

foo &)

Case 1: Function size <TCM

There is one function called hello_tcm. Function hello_tcm contains three
subfunctions, tcm_a, foo_b, foo c, foo _d, and foo_e. The size of the function is

6 instructions.

Without TCM: whole function is copied to the cache one time and is

executed ten times in the-cache, so Tno_tcm= 6x10x1 + 1x25 = 85 cycles

according to Eq(2).
With TCM: whole function has been placed in the TCM and can be

executed ten times directly, so Tem= 6x10x1 + 0x1 + 0x25 = 60 cycles
according to Eq(3).

We can get Tiem < Thotom , so with TCM is better than without TCM.

Case 2: TCM < Function size < Instruction cache + TCM

There is one function called hello_tcm. Function hello_tcm contains three
subfunctions, tcm_a, foo_b, foo c, foo d, and foo_e. The size of the function is

16 instructions.

Without TCM: the value of b is 20 (= {%-‘ x10), s0 Tioem= 16x10x1

+ 20x25 = 660 cycles according to Eq(2).

With TCM: a half function has been placed in the TCM, and the

16

remainder is copied to the cache from the main memory one time and is

executed ten times, so Tien= 8x10x1 + 8x10x1 + 1x25 = 185 cycles

according to Eq(3).

We can get Tiem < Thostem , so with TCM is better than without TCM.

Case 3a: Instruction cache + TCM < Function size & continuous subroutines

There is one function called hello_tcm as shown in Table 3.1. Function
hello_tcm contains three subfunctions, ttm_a, foo b, foo ¢, foo d, and foo _e.
The size of whole function is 17 instructions. hello tcm and tcm a are 8

instructions while foo b, foo c, foo _d, and foo_eare 9 instructions.

Without TCM: the yalue-of b is 30 (=(lﬂxm), s0 Thotem= 17x10x1
+ 30x25 = 920 cycles according to Eq(2).

With TCM: hello_tcm and tcm_a has‘been placed in the TCM. If foo_b,
foo c, foo d, and foo_e are contiguous in the main memory, the CPU

needs to access the main memory two times when running whole function

every time, so lem= 8x10x1 + 9x10x1 + mxloxzs = 670 cycles
according to Eq(3).

We can get thm < T o_tcms SO with TCM is better than without TCM. We

assume that foo_b() has 3 instructions, foo_c() has 3 instructions, foo_d() has 2

instructions, and foo_€() has one instruction. Since the CPU fetches a cache line

(8 instructions) in one time, the CPU spent 2 (=%W) times to copy these

subfunctions from the off chip main memory to the cache. Figure 3.4 shows the

instruction cache and main memory layout with TCM for cache 3a.

17

Off chip

Cache (8 mstructions) MAin memory

Begin
Stage 1 foo b| foo b| foo b| foo ¢
ﬁ) Oic ﬁ) O—C fO Oid ﬁ) 07 d
foo e
e foo d
Stage 2 fOO e
foo ¢
foo b
0xC0002000

Figure 3.4 The icache and main memory layout with TCM for case 3a

Case 3b: Instruction cache + TCM < Function size & discontinuous

subroutines

There is one function called hello_tcm as shown in Table 3.1. Function
hello_tcm contains three subfunctions, ttm_a, foo b, foo c, foo _d, and foo e.
The size of whole function is 17 instructions. hello tcm and tcm a are 8
instructions while foo b, foo_c, foo_d, and foo_e are 9 instructions.

Without TCM: the value of b is 30 (=F?7-‘X10), so Lo iem= 17x10x1

+ 30x25 = 920 cycles according to Eq(2).

With TCM: hello_tcm and tcm_a has been placed in the TCM. If foo_b,

foo_c, foo_d, and foo_e are discontiguous in main memory, the CPU needs

18

to access the main memory three times when running whole function every
time, so Lim= 8x10x1 + 9x10x1 + 4x10x25 = 1170 cycles according to

Eq(3).

We can get Tiom > Tno_tcm, so with TCM is worse than without TCM. We

assume that foo_b() has 3 instructions, foo_c() has 3 instructions, foo_d() has 2
instructions, and fo0_€() has one instruction. The parent function, hello_tcm(), is
distant from off chip main memory. The subfunctions may be discontiguous
because the compiler may think these subfunctions have no relationship. Since
these subfunctions are discontiguous, the CPU spent 4 times to copy these
subfunctions from the off chip main memory to the cache. Figure 3.5 shows the

instruction cache and main memory layout with TCM for cache 3b.

Cache (8 mnstructions) ('-)ﬁ chip
main memory
Begin
J’ 7900 10004000
Stage | 1200 Joo b Joo b
foo ¢]
0xC0003000
Stage 2 foo ¢ | foo ¢| foo ¢

Joo d 0xC0002000

foo d| foo d

Stage 3

foo e 0xC0001000

VNN

foo e

Stage 4

Figure 3.5 The icache and main memory layout with TCM for case 3b

19

According to our analysis model, we get a TCM capacity vs. function size

trend as shown in Figure 3.6. The trend shows that if improper functions are

placed into the TCM, the overall system performance may be downgraded.

300

250

200

150

Execution time

100

50

——TCM (best case)
—4&— TCM (worst case)
—8— Cache only

Case 3a

12345678 9101112131415161718192021222324252627282930

Function size

Figure 3.6 TCM capacity vs. function size trend

It is very important to select the proper kernel codes and place them into

the TCM. However, the kernel is too huge to fit all into the TCM, so we classify

the OS kernel according to characteristics of the kernel functions. The proposed

kernel classification is detailed in Chapter 4.

20

Chapter 4

Kernel classification

Generally, a kernel image is too huge to be placed into TCM, so we must
divide kernel to meet the limitation of TCM memory space. Furthermore,
according to the proposed model in Chapter 3, to select appropriate instructions
into TCM 1is very important, otherwise, the performance is down. In this chapter,
we devide and classify kernel to process intensive, memory-intensive, and

I/O-1intensive according to the characteristics of kernel functions.

4.1 Process intensive

A process is an executing program in general operating systems. However,
besides the executing program code, a process-also includes some resources
such as processor state, an.address space, kernel data, and one or more threads.
The most important part ofprocess-intensive kernel functions is a process
management. The process management involves process creation, process

termination, and process scheduleing.

4.1.1 Process creation

A kernel uses fork() and exec() functions to complete a process creation.
First of all, the fork() function creates a child process copied from the current
process. And then exec() function loads the program code into the address space
and execute it with the child process resources. In a Linux kernel, the major

functions used to create processes are do_fork(), do_execve(), and so on.

21

4.1.2 Process termination

A process must die eventually. When a process terminates, the kernel
releases the resources of the process and notifies the parent process. For
example, a process completes its job to terminate, or a sub-function terminates
and returns its main function in a program. The process calls the exit() system
call to do that. Sometimes, a process terminates involuntarily when the process
receives an exception such as ctrl+C signal from a keyboard. In a Linux kernel,

the major function used to terminate processes is do_exit().

4.1.3 Process scheduling

The process scheduler is designed to select which process can be executed
by the processer. The process scheduler manages the runnable processes to share
the finite resource of processor time in the operation system. A good scheduler
makes full use of system resources so that users think that multiple processes are
executing simultaneously. An operation system with the process scheduler is
called multitasking operating system such as Linux. The major function of the

process scheduler is schedule() in a Linux kernel.

4.1.4 Context switching

A context switching function is responsible to switch from one runnable
process to another. The context switching is one part of the process scheduler. It
does two basic jobs: 1) to store the data of current process including stack
information and the processor registers; 2) to change virtual memory mapping
and the processor state from current process to the new process. In a Linux

kernel, the major function of context switching is context_switch().

22

4.2 Memory-intensive

The most important part of memory-intensive kernel functions is a memory
management. The virtual memory can be much larger than the physical memory
in the operation system. As shown in Figure 4.1, each process has its own 4 GB
address memory space and other unrelated processes can not see and access it.
This address space is referred to as virtual memory address. In fact, these
processes are placed in the same off chip main memory. This address space is
referred to as physical memory address. The memory management system is

responsible for managing process address spaces.

Process A
4G

e 4G

Page Tables

0x0

Process B -

4G
page 1ables 0x0

0x0
Virtual Memory Physical Memory
address space address space

Figure 4.1 Memory address space for 32-bit CPU

23

4.2.1 Page table operation

Although user application programs operate on a virtual memory, the
processor operates them directly on a physical address. For this reason, when a
user application program accesses a virtual memory address, it must first be
translated into a physical address before the processor can deal with the request.
In order to complete the translation, memory management unit (MMU) and page
tables are necessary. A MMU is implemented in a processer. Page tables are
placed in an off-chip main memory and store the mapping index between the

virtual address and the physical address.

The page tables consist of ‘three levels in a Linux. The multiple levels
allow a small populated memory space to store a huge index map. If the page
tables were designed as -a single array, their size would be enormous. Three
levels of page tables also can use on an architecture which does not support
three levels in hardware. For example, the ARM processer uses a two-level page

table for 4KB page size.

The top level page table is called page global directory (PGD). The PGD
stores the entries of the second level directory. The second level page table is
called page middle directory (PMD). PMD stores the entries of the final level
page table. The final level page table is called page table entry (PTE). Page table
entry stores the physical pages. In general, page table look-up is handled by
hardware. Figure 4.2 shows a translation flow from a virtual address to
corresponding physical address using page tables. Each process has its own page

tables. In Linux kernel, the major function of kernel page table is paging_init().

24

PGD PMD PTE

struct mm_struct Pgd pmd ptd physical page
pgd pmd ptd
pgd pmd ptd
pgd pmd ptd
pgd pmd ptd struct page
pgd pmd ptd
pgd pmd ptd
pgd pmd ptd
Figure 4.2 Page tables

4.2.2 Virtual memory allocator

In a Linux kernel, the-function of virtual memory allocator is referred to as
vmalloc(), and allocated “memory is contiguous. in a virtual address and not
necessarily contiguous in-a physical RAM. That is, the virtual memory allocator
can allocate noncontiguous physical memory space. For example, a user
application program uses virtually contiguous memory space and never knows

that physical memory space is contiguous or not.

4.2.3 Buddy system (physical page allocator)

When a kernel needs for memory allocation such as load a process, the
kernel applies a buddy system minimum page mechanism to manage unused
memory debris. In a buddy system, a page frame represents a group of
contiguous minimum pages. The area of unused page is divided into ten species
of block size. Respectively they are 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512
contiguous minimum pages. Each minimum page of a Linux system is 4 KB.

The buddy system uses a method called free area[10] array as shown in Figure

25

4.3 to store the usage status of those page frames. The first page frame chain
stores starting address of isolated idle minimum page, that is prevous and next
page have been used. The second page frame chain stores starting address of
first page in two contiguous minimum pages. The third page frame chain stores

starting address of first page in four contiguous minimum pages. And so on.

order Free_area Free page blocks

0 ' ' 2% page sized block
y

2

3 ' 23 page sized block
4

5

6

7

8

9 pMax_order hage sized block

Max_order

Figure 4.3 The array of a buddy system

If there is a requirement of memory, the system is looking for the smallest
block of sufficient size. For example, suppose that a process requires 15 pages,
the system first checks whether the 16 pages frame chain has available free
blocks or not. If not, then system looks for a 32 pages frame to the process. If
the 32 pages frame chain has available free blocks, the system allocates 15 pages
to the process and moves remaining 17 pages to 16 pages frame chain and one
page frame chain. If the 32 pages frame chain still has no available free pages,

the system searches free pages in next chain and makes a similar treatment.

26

After the process completed, it should release used page frame. Then the
system attempts to combine these released pages with adjacent unused area to a
single contiguous block, and stores starting address of new block into page
frame chain. In a Linux kernel, the major functions of a buddy system are

alloc_pages(), alloc_page(), __alloc_pages(), _ free pages(), free pages(),
free page(), and so on.

4.2.4 Slab system (allocates small memory blocks)

In a Linux 2.6 kernels, a slub allocator replaces the slab allocator.
Although slub allocator and slab allocator are different algorithms, they are
generally referred to as "slab allocator". Following the old name is to indicate
the level of memory management mechanism. " When kernel needs to allocate a
small amount of memory like required- memory of malloc function, a slab
allocator is used and its allocated data is known as object. Slab object is stored
in the page frame of buddy system, 1f 'we want to assign an object of size 32
bytes, slab requests a minimum page (4KB) from the buddy system, and then
assign a slab allocator. And slab allocator preserves some bits to record layout
information, and the remaining space is divided into objects of size 32 bytes.

When the similar configuration request occurs, these empty objects can be used.

Figure 4.4 shows a slab structure. The top level 1s a cache chain. Each
cache contains a list of slabs, which is a contiguous memory block (typically

page). There are 3 kinds of slab below,
slabs_empty: all objects on a slab marked as free
slabs partial: a slab has both used and free objects

slabs_ful: all objects on a slab marked as used

27

last
cache
slabs g
—=| 81abs § —p pages

h 4
() — &3 S
e
@

pages

Figure 4.4 Layout of the slab allocator

Slab in the slabs empty list is the main candidate for recycling, i.e the
memory is returned to the operating system. In slab list, each slab is a
contiguous memory block (one or more contiguous pages), which is divided into
some objects. These objects are basic elements which are allocated and released

from a specific cache.

The object is allocated and released from the slab, so a single slab can be
moved between slab lists. For example, when all objects are used in a slab, the
slab needs to be moved from slabs partial list to slabs_full list. When an object
in one slab of slabs_full list is released, this slab needs to be moved from
slabs_full list to slabs_partial list. After all objects of this slab are released, this

slab needs to be moved from slabs partial list to slabs empty list. The major

28

functions of a slab system are kmem cache create(), kmem cache alloc(),
kmem _cache free(), kmem cache destroy(), kmem cache shrink() in a Linux

kernel.

4.2.5 Page fault operation (page table allocates physical memory pages)

We all know that each minimum page of a Linux operating system is 4 KB.
When user executes some programs, the operating system loads a number of
pages including the partial programs from storage device to main memory.
When a program needs a page which is not in main memory and there is also no
free page in main memory, the operating system takes currently unused page
back to the storage device and then loads the required page into main memory.
If there are some free pages in main memory, the operating system can copy the
required page from storage device into a free page in main memory. Finally, the
operating system modifies the mapping between virtual address and physical
address for the required page. This operation is referred to as "Page Fault". In a

Linux kernel, the major function is-do_page fault().

4.2.6 Physical page reclamation

A system eventually uses all available pages for various reasons. The
operating system needs to select currently unused pages and then empties out
them before physical main memory is exhausted. In order to reduce the amount
of access storage device 1/O, the operating system also uses the page cache.
Page cache area is the kernel to access the data first. After the required data
could not be found in Page cache, kernel finds it in storage device. All data that
is first read from storage device is stored in the page cache. Continued access of

operation causes page cache area is getting bigger. It eventually consumes all of

29

memory that can be used by operation system. Therefore, the least recently used
data is moved out of page cache, and then limited memory space can store more

frequently access data.

How does operation system select currently unused page? General
operation system uses LRU (Least Recently Used) lists to store age information
of each page so that the least recently used page can be easily scanned for
replacement. The LRU in operation system consists of two lists which are the
active list and the inactive list. The active list contains all working processes and
the inactive list contains reclaim candidates. All the process pages and file pages
are managed in two LRU lists by page replacement policy. In a Linux, the major
functions of page reclamation are add to page cache(), Iru_cache add(),

activate page(), and so on.

4.3 I/O-intensive

The I/O-instensive kernel functions contain all peripherals of an operation
system such as interrupt controllers, file systems, timer controllers, Ethernet
controllers, SD card controllers, NAND flash controllers, and so on. In this

paper, we only select some of all device controllers to do experiments.

4.3.1 Interrupts and interrupt handlers

Interrupts allow hardware devices to communicate with the processor
actively. At any time, a hardware device generates an interrupt electronic signal
into the interrupt controller, and then the controller passes the signal to the
processor. The processor receives the signal and interrupts its current work.
Furthermore, it notifies the operating system to deal with the interrupt. The

function which the operating system deals with a specific interrupt is called

30

interrupt service routine (ISR) or. Each interrupt signal has a corresponding
interrupt handler. For example, one interrupt handler deals with interrupt signals
from the keyboard, while another interrupt handler deals with interrupt signals

from the timer.

Since an interrupt can occur at any time, the interrupt handler can be
performed at any time. It is very important to complete the work of interrupt
handler as soon as possible. Otherwise, it causes a reduction in performance to
interrupt previous work too long. For example, the operation system receives the
networking packets from Internet. The interrupt handler needs to copy
networking packets from the network device into main memory, unpack them,
and send them to associated application or network protocol stack. Clearly, this
is heavy workload for the operation system, especially with gigabit Ethernet
cards. In a Linux, the major functions are asm.do _IRQ(), irq_enter(), irg_exit(),

and so on.

4.3.2 Virtual file system (VFS)

The file system in a common operating system is a way to manage files,
data, and equipments. A Linux supports many types of file systems such as ext2,
ext3, NFS, SMBFS, FAT, NTFS, and 1s09660. The ext2 and ext3 are a Linux
original file systems; the NFS (Network file system) and SMBFS (Samba file
system) are network file systems; the FAT and NTFS are file systems of
Mircosoft Window operation systems; 1509660 is CD-ROM system format. Each
file system has its own storing methods and formats. In order to access required
data among these file systems easily and efficiently, the operation system uses
an abstraction layer, which is called virtual file system (VFS), to communicate
with these file systems. That is, programs can use standard system calls to read

and write data among different file systems via VFS, as shown in Figure 4.5.

31

: : file system
write() sys_write() write
User :
VFS file system physical
Space Y storage

Figure 4.5 The flow of write() system call

In a Linux operating system, the file can also be a device such as a storage
disk, a CD-ROM, a Modem, and so on. Device file can correspond to the
hardware device directly. Through the kernel, user can use the hardware device.
Since ARM embedded system uses a RAM disk as its file system, we discuss
ramfs file system in this paper. The major functions of ramfs file system are
generic_file_ mmap(), generic_file aio_read(), generic file aio write(),

do sync read(), do_sync write(), and so on.

4.3.3 Timer controller

The timer controller is a very important and frequent role in an operation
system. The purpose of timer controller is to provide a method for issuing an
interrupt signal at a periodic time. The operation system sets a counter in the
timer controller to an initial value. The value of the counter decreases at a fixed
rate until the value reaches zero. When the value of the connter reaches zero, an
interrupt signal is triggered. The major functions are based on the driver of timer

controller.

32

Chapter 5

Experiments

In this chapter, we discuss the experimental environments and
experimental procedure. Then the experimental results are provided. The end of

the chapter is the analysis of the experimental results.

5.1 Environments

We discuss the experimental environments including required hardwares

and required softwares in this section.

5.1.1 Hardware requirements
There are required hardwares for the experiments below.

- ARM PB926 evaluation board (EVB): it contains an ARM926 processer,
a Linux v2.6.35 operation system, and a Imbench benchmark program.

- Personal computer (PC): to install a GNU GCC compiler tool chain for
ARM processers, a linux OS, and related programs.

- J&D codeviser ICE: to burn revised Linux v2.6.35 into the NOR flash
of PB926 EVB.

- Ethernet cable: data transfer between a PB926 EVB and a personal
computer.

- RS-232 (UART) cable: to control the operation of PB926 EVB.

5.1.2 Software requirements

There are required softwares for the experiments below.

33

- Windows XP OS on PC: Window XP Professional Service Pack 3.

- VMware player on PC: the software that allows us to create a virtual
machine on current window operation system environment.

- Linux OS on PC: ubuntu 9.10

- Tool chain on PC:
arm-2010.09-50-arm-none-linux-gnueabi-1686-pc-linux-gnu.tar.bz2

- Linux Kernel source on PB926 EVB : linux-2.6.35

- Kernel patch on PB926 EVB: kernel src patch-2.6.35-arm1 and
kernel config 2.6.35-arml_config-2.6.35-arm1-versatile

- Benchmark on PB926 EVB: |mbench-3.0-a9

5.1.3 Experimental environment

An ICE debug program, which burns revised Linux v2.6.35 kernel image
into the NOR flash of PB926 EVB, only installs Microsoft window operation
system. And a GNU GCC compiler tool-chain for ARM processers works on a
Linux operation system. So.we need two kinds of operation systems in our
experiment. At first, we prepare a Windows XP personal computer including
ICE debugging programs and use a Vmware player to create a virtual machine
on the Windows XP desktop environment. Then we install an Ubuntu v9.10

Linux operation system on the virtual machine in Figure 5.1.

Use |
E—
ICE
RS-232
+ Ubuntu 9.10 NES
Samba :
File Sharing | VMWare player Ethernet
Windows XP

Figure 5.1 Experimental environment

34

We transfer data among a Windows XP, an Ubuntu, and a Linux of PB926
EVB by Ethernet. Their IP address settings are shown as below.

- PB926 IP address: 192.168.0.1
- Ubuntu IP address: 192.168.0.2
- Windows XP IP address: 192.168.0.101

Data transfer between a Windows XP and an Ubuntu via Ethernet is Samba
file sharing protocol. And data transfer between an Ubuntu and a Linux of

PB926 via Ethernet is Network file system (NFS) protocol.

For Samba server setting of Ubuntu, we add a sharing folder named pub in
the /etc/samba/smb.conf as illustrated in Figure 5.2. And then we execute
[etc/init.d/samba restart command to run-the Samba server according to new
setting. Finally, the Windows XP can access-the pub folder of the Ubuntu
directly.

[pub]
path = /pub
valid users = @users
read only = no

public = yes
security = share

Figure 5.2 Samba server setting in the /etc/samba/smb.conf
For NFS server setting of the Ubuntu, we add the following line in the
/etc/exports and then execute /etc/init.d/nfs-kernel-server start command to run
the NFS server. The following line meant that the Ubuntu can connect to the

PB926 when the Ubuntu access Imbench folder.

/mnt/Imbench 192.168.0.1(rw,no_subtree check,no root squash)

35

On the other hand, we execute following commands in the Linux of PB926
EVB through UART console port (The default setting is 38400 baud, 8 data bits,
1 stop bit, no parity, and no hardware/software flow control.). The following
commands mean that the PB926 can connect to /mnt/Imbench folder of the

Ubuntu by NFS protocol when the PB926 access Imbench folder.

> mkdir /mnt/lmbench
> mount —t nfs —o nolock 192.168.0.2:/mnt/Imbench /mnt/Imbench

After complete the above Samba and NFS setting, we can put the Imbench
benchmark program and its performance reports in the Ubuntu and run it in the

Linux of PB926 via NFS protocol.easily:

B Building the embedded Linux kernel of PB926

This section describes how to build the kernel on the Ubuntu Linux host
machine. To build the ARM. Embedded Linux kernel, we require the kernel
source for the 2.6.35 kernel, the ARM-specific patch for the kernel source, and
the PB926 EVB kernel configuration files. The kernel source can be obtained

from http://www.kernel.org/ , while the other files can be obtained from

http:// www.arm.com/community/software-enablement/linux.php?tab=Linux+0OS

+Downloads. Besides, the embedded Linux file system can be obtained from

http://www.busybox.net/ .

To compile Linux kernel, we need the 2010.09 release of the CodeSourcery
toolchain for the ARM-based Linux platform. It 1is available from
http://www.codesourcery.com. In Table 5.1, there are all of required files which

building the embedded Linux kernel of PB926.

36

Table 5.1 Required files

Directory / File Description

linux-2.6.35 Directory containing kernel source

kernel src_patch-2.6.35-arm1 | The kernel source patch for ARM platform

kernel config 2.6.35-arml_co

nfig-2.6.35-arm 1 -versatile Configuration file for PB926 board

busybox-1.17.3 Directory containing file system

arm-2010.09-50-arm-none-lin
ux-gnueabi-1686-pc-linux-gnu. | ARM GUN GCC compiler
tar.bz2

To set up compiler environment, extract the ARM GNU GCC compiler
archive (arm-2010.09-50-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2)
into the working folder .such as /pub/work/ and then execute the following

commands to set compiler path in the Ubuntu.

Export PATH=/pub/work/linux-2.6.35:SPATH
export PATH=/pub/arm-2010.09/bin:$PATH
export CROSS COMPILE=/pub/arm-2010.09/bin/arm-none-linux-gnueabi-

To prepare the file system of the Linux kernel after setting up compiler
environment, enter the /pub/work/ /busybox-1.17.3 directory and execute make
install command to generate the PB926 file system folder we needed in

/pub/work/rootfs.

To prepare the Linux kernel after generating the file system of the Linux

kernel, enter the /pub/work/linux-2.6.35 directory and execute the ARM patch.
Patch —p1 <../ kernel src_patch-2.6.35-arm1

Then copy the configuration file into linux-2.6.35 directory and change file

37

name to .config .
cp ../kernel_config 2.6.35-arm1_config-2.6.35-arm1-versatile .config
Modify .config file to add the PB926 file system path below.
CONFIG_INITRAMFS SOURCE="/pub/work/rootfs”

Run the make oldconfig command to import the configuration settings from
the new configuration file. Then, we modify the kernel configuration with

make menuconfig command according to our demand.

B Seclect a classified Linux kernel code into TCM in the compile phase

According to our method-of the Linux- Kernel classification, we add
required configurations in the Linux kernel codes. When we compile the Linux
kernel codes, we decide which code can be placed in the TCM memory with

Linux menuconfig function as shown in Figure 5.3.

.config - Linux Kernel v2.6.35.8 Configuration

System Type
Arrow keys navigate the menu. <Enter> selects submenus --->. Highlighted letters are hotkeys. Pressing <Y> includes, <N=>
excludes, <M= modularizes features. Press <Esce<Esc> to exit, <?> for Help, </> for Search. Legend: [#] built-in [] excluded
<M> module =< > module capable

HAVE TCM exec
HAVE TCM exit
HAVE_TCM_sched

HAVE TCM context switch

HAVE_TCM_tlb

[

[

[

[

[3

[HAVE TCM_pagetable
[HAVE_TCM_vmalloc

[1 HAVE_TCM buddy

[1 HAVE TCM slub

[1 HAVE TCM do_page fault

[HAVE TCM page reclamation
[

[

[

[

HAVE_TCM_irq
HAVE TCM_timer
HAVE TCM_ramfs

HAVE _TCM_thread

) - t Support

ARM system type (ARM Ltd. Versatile family) --->
Versatile platform type --->

*** Processor Type *#*

% Processor Features =

Support Thumb user binaries

Disable I-Cache (I-bit)

Disable D-Cache (C-bit)

Force write through D-cache

Found robin I and D cache replacement algorithm

< Exit > < Help >

Figure 5.3 The setting of Linux kernel configuration

38

B Burning the embedded Linux kernel image file into NOR flash of PB926

This section describes how to write linux image file (zZiImage) into NOR
flash of PB926.

1. Connect a J&D codeviser ICE to the JTAG port.
2. Power on the board.
3. Connect the codeviser debugger to the target.
4. Turn on the semihosting function.
5. Load and execute the file Boot_Monitor.axf by debugger.
6. Load ZImage into the NOR flash memory as below.
At the Boot Monitor prompt enter:

> flash
Flash> write image path\zImage

where path is the directory (D:\tmp, for example) that contains linux
image file. Please note that the long path names can cause a problem,

so move the image file to a temporary directory to avoid this.

7. Wait program running until the prompt is displayed again before
proceeding.

8. Turn off the platform and remove ICE.

B Running the embedded Linux kernel of PB926

This section describes how to run the embedded Linux kernel of PB926. At
first, we connect UART on the PB926 board to a serial port on personal
computer using RS-232 cable. Then configure a terminal emulator (such as

HyperTerminal in Windows XP) to connect to the serial port. The default

39

setting is 38400 baud, 8 data bits, 1 stop bit, no parity, and no

hardware/software flow control.

After the board power on, we should see a startup message as below in the

terminal emulator:

ARM PB926EJ-S Boot Monitor
Version: V4.1.7

Build Date: Feb 17 2009
Endian: Little

Then execute flash run u-boot command in the terminal emulator to
configure the Linux kernel startup arguments. The U-Boot passes the contents of
the following bootargs environment variable to the kernel command line.

Setenv bootargs root=/dev/mtdblock0) mtdparts=armflash.0:30520k@0x2C0000(cramfs)
ip=192.168.0.1 mem=128M console=ttyAMA(
setenv bootcmd cp.b 0x340C0000 0x7fc0 0xF45A00\;bootm

saveenv

Restart the PB926 EVB after set bootargs environment variable. Then
execute flash run u-boot command in the terminal emulator, the PB926 will boot
up the Linux kernel automatically. After the Linux booted up, run the Imbench

benchmark program to get performance information of revised linux kernel.

5.2 Experiments

Through use of Imbench benchmark program, we get the experimental
result of revised linux kernel based on our proposed linux kernel classification.
In this section, we analyze the experimental result. There are Imbench basic
system parameters in Table 5.2. The parameters in our tested ARM embedded

40

board: the processor runs at 192 Mhz, has 8 TLB pages, its cache line has 32

bytes, the value of mem par is 1, and the value of scal load is 1.

Table 5.2 Lmbench basic system parameters

Basic system parameters

Mhz The processor clock frequency

TIb pages The number of Translation Lookaside Buffer page

Cache line bytes | The size of a cache line

Mem par Memory hierarchy parallelism:

How many requests can the memory service in parallel?

Scal load The number-of running Imbench

According to proposed linux kernel classification, we implement 22

different experimental kernels below and compare the performance with original

version of linux kernel.

fork: the linux kernel allocates fork related functions in TCM.

exec: the linux kernel allocates exec related functions in TCM.

exit: the linux kernel allocates exit related functions in TCM.

exectexit: the linux kernel allocates exec and exit related functions in TCM.

schedule (sched): the linux kernel allocates schedule related functions in
TCM.

context switching (cs): the linux kernel allocates context switching related

functions in TCM.

41

thread: the linux kernel allocates thread related functions in TCM.

schedulet+context switching: the linux kernel allocates schedule and context

switching related functions in TCM.

sched+cstthread: the linux kernel allocates schedule, context switching,

and thread related functions in TCM.

fork+sched+cs: the linux kernel allocates fork, schedule, and context

switching related functions in TCM.

tlb: the linux kernel allocates Translation Lookahead Buffer (TLB) related
functions in TCM.

vmlloc: the linux kernel allocates virtual memory related functions in TCM.
buddy: the linux kernel allocates:Buddy system related functions in TCM.
slub: the linux kernel allocates slab Allocator related functions in TCM.

page fault (pf): the linux kernel allocates page fault related functions in
TCM.

page reclamation: the linux kernel allocates page reclamation related

functions in TCM.
irg: the linux kernel allocates interrupt related functions in TCM.

ram file system (ramfs): the linux kernel allocates file system related

functions in TCM.
timer: the linux kernel allocates timer related functions in TCM.

sched+cstirg+timer: the linux kernel allocates schedule, context switching,

interrupt, and timer related functions in TCM.

42

B sSlub+pf+ramfs: the linux kernel allocates slab allocator, page fault, and file

system related functions in TCM.

B tlb+irgttimer: the linux kernel allocates TLB, interrupt, and timer related

functions in TCM.

In this chapter, we design 4 experiments to evaluate the performance of our

method below.

® Exp #1: Process benchmark for process-intensive

® Exp #2: Context switching benchmark for process-intensive

® Exp #3: File & virtual memory system benchmark for memory-intensive
and I/O-intensive

® Exp #4: Local communication benchmark for I/O-intensive

5.2.1 Exp #1: Process benchmark

We execute the Imbench benchmark program to test the above kernels.
First of all, we get results of process related benchmark below. Table 5.3 shows
Imbench process parameters. They contain simple system call, simple I/O access,
file status access, file open and close, file descriptor select, signal installation,
signal handling, fork process, exec process, and shell process. The time unit is

microsecond and smaller 1s better

The simple system call latency is shown in Figure 5.4. The original latency
is 1.49 ms. We find out that sched+cs+thread (1.44 ms), fork+sched+cs (1.45
ms), and vmlloc (1.44ms) functions have smaller latency while exec (1.54ms),
exit (1.55ms), exectexit (1.55ms), and page reclamation (1.54ms) functions
have bigger latency. And the latency of other functions is the same as the
latency of original kernel. It is interesting that integrating schedule, context

switching and thread functions or fork functions is better than single one.

43

Table 5.3 The Imbench process parameters

Processor, Processes

- times 1n microseconds - smaller is better

Null call A simple system call accesses a process ID
Null I/O To read one byte from /dev/zero and write one byte to /dev/null
Stat To read the status of a file
Open clos To open a file and close it immediately
Slct tcp To select which file descriptor is ready for reading or writing.
Sig inst To install a signal handler
Sig hndl To handle a signal handler
Fork proc To fork a new process and then exit (process fork+exit)
Exec proc To fork anew process and let this-process run a new program.
(process fork+execve)
Sh proc To fork a newprocess and let this process run a new program
by the system shell.(process fork+/bin/sh -c)
null call
o e =
SN \@ SIS O 9O] (00 (0 (00

L5
1.4
1.4

W

RORReadannannnnnl

<
G o

A Xg;l»\ \\6& \Q%\ @‘A \\\&\‘é @%é 8(0‘5 Qo «&\OQ A %\\& \\\Q‘{\ RO 6&’ 6(\@(\6‘?“@6&%’%@6

@}.66\)\6;\@ ‘I"\ 6>< \&X ‘Z&% (60 ,5\%((\ %X \OXQ&X\OX\
S ® RSO 9 Q@é’* aest (o
QOQ e,é\)\e (%‘\ *

< kernel implementation

Figure 5.4 The simple system call latency

44

The simple I/O latency is shown in Figure 5.5. The original latency is 5.08
ms. The latency of most of functions is between 3.8 ms and 4.7 ms. Only the
latency of sched+ cs+thread functions is 5.08 ms. We find out that the latency of

all functions is smaller than or equal to the latency of original kernel.

R N
bfb bfb s) b‘g\ &65 bﬁ\ X
i ®
4.3 3%9 qﬂb 29 19 a%% || 3% 29N 29> 49N 49Y 19° g
Iinalannnnnn
3

X S
%\Q‘b &0& ‘!‘e @$\60>< @C\f@?‘\%@%\ @fb \\\Q‘%&&Zﬁé 8@% \\
< .

NS

S TS O o o o ¥ e

A o S S
N M) <) > N 5%
X\@b\) p X Qﬁ}«g@&c&o Q‘&Q %e@ o8 XC‘%X %\\;0 < &
SO <© Nid QR S
QOQ 66\)\6 <
DS

kernel implementation

Figure 5.5 The simple 1/O latency

null stat

NE
19 \%FJ AS

- 2
17 [e° H (60 46T 67 (68 (60 (62 (608 [(60 (o© ¢ 5% \6? \6 A7

TIRTER HHHH HHHH]

o o NI NI
o o8 A S X RITPSUERS IR % &S Lo
S '{\%\Q {0 d@ Qﬂ" Xeﬂ\\s Q& 0‘5\(\‘6‘3‘ \\’ QX:Q%(\‘ G &0 &6‘3 %\fX “\Q\ \\0 A\ {b“&&% ,&\6\‘ X«(gsxﬁ%‘i&\\((\
™) ><% Q QL AT X
%cfﬁ\e‘é $\%‘ﬂ\ eﬁ*\ Q& 0 S Q%% ‘z»%e“ &d ﬂ%\e S QW 0
0‘\6 \QXQ Q 9\\ X
c @6\) g‘b

X

«© kernel implementation

Figure 5.6 File status access latency

The file status access latency is shown in Figure 5.6. The original latency is
16.6 ms. The latency of most of functions is between 16.5 ms and 16.7 ms. Most

of functions have similar latency, but sched+cs+thread(19.1 ms), slub(18.5 ms),

45

and slub+pf+ramfs (18.1 ms) functions have bigger latency. sched+ cs+thread
contains schedule, context switching, and thread functions while slub+ pf+ramfs

contains slub allocator, page fault, and ramfile system functions.

The file open and close latency is shown in Figure 5.7. The original latency
i1s 27.4 ms. The latency of most of functions is between 24.9 ms and 27.4 ms.
We find out that the latency of almost all of functions is smaller than or equal to
the latency of original kernel except sched+cstthread (30.2 ms) and ram file

system (30.3 ms) functions.

open clos
ms
32 o> s
N 5Y \
1 ® .

;g ,):\Ab(7 AL o6 AL ’7:\6 ,\b(6 o)
2% AAd &9 157 1‘3’1‘ sY 252 ¥ B 45 %
22
20

NN S \M
0‘\%\‘\%‘ ;—\0(\& *@ e‘:t@gxqj’\\%&gbzo%@%\\x\ qx\\&ﬂg e‘bi\ éxcﬁ’ \\ \\Qc’ 66* %\\) \\lw\i& \0Q \‘0‘ (&\% \\ Qi(\\(i\e{ \%\"ﬁ& X\\\'{\e‘

P\ '\(\ﬁ\ X STy T 3% Q> &L @(‘\ 3P XQ \OX\\

%&66615%\1‘\ 00“\6:&66 ot Q%%Q?&Q \Q’%{’\ 68&% %\&o ®

QQ& @\QX @\“& <

& kernel implementation
Figure 5.7 File open and close latency

ms slet TCP
116 \\rj \\5
115 \\b‘ \\b‘ \\b‘ \\b‘ \\b‘ \\b‘ \\b‘ \\b‘ \b‘
114 \\’5 \\’5 \\’b \\“) \\”J \\”J \\”J

R

A N 6 \NO < > S) 2
06%\@ o & e:l»e Xeﬁ»\ ‘o@&(\ \cﬁ\«\\ X\\‘\ e;z>é éxcﬁ‘ X ‘&\0 56‘1 ‘5\2 \\\Q\Q o0 \i‘t N «\@X\\

in‘z*‘({\ X\\\

b \6\ o N x% QF (S
o N X ‘0 R\
8“66 = o“@"»c}ﬁ\?’b o Q{A% ‘b~°¢ e""s
EOSNSS O o 9 R
CP‘\\ &\X\QX o
9
&« kernel implementation

Figure 5.8 File descriptor select latency

46

The file descriptor select is shown in Figure 5.8. The original latency is
113 ms. The latency of most of functions is between 113 ms and 114 ms. The
fork (112 ms), exec (112 ms), and page reclamation (112 ms) functions have
smaller latency while irq (115 ms) and timer (115ms) functions have the biggest

latency.

The signal installation is shown in Figure 5.9. The original latency is 6.06
ms. The latency of most of functions is between 6.06 ms and 6.22 ms. Most of
functions have similar latency while exec+exit (8.05 ms), schedule+context
switching (7.68 ms), vmlloc (10.8 ms), dub (8.89 ms), irg (8.12 ms), and
slub+ pf+ramfs (7.76 ms) functions have bigger latency. slub+ pf+ramfs contains

slub allocator, page fault, and ram file system functions.

ms sig inst
12 AQ: o
10 o® @ % W 6
ue N L ¥
8 696 696 6')} G- 6.\’7, 696 69% 6o 696 Q.Qb 69‘6 69‘6 6.\9 6- bg”) 696 69%
6
2
0
T\ :
0{\%\& ;‘0\\& zﬂgﬂ 6&0 o < 6& %\G%\\\‘ 6%6 “‘6&‘&\5&‘?\6&&% ¥ (&\ 5 é& £ \\\QK\ wo \‘0‘& 6&3 \6\ x\\@ix@“& x\\@e
eﬁ»@é \e\ X\ @‘\cﬁ:& & ‘\&Xc_,e Q%%Q"x (ec\‘b %@ e \‘o 59 \‘OX\
3o (s 0 &
RN g &\\ &
o™ 5\3?’ o
& kernel implementation

Figure 5.9 Signal installation latency

The signal handling is shown in Figure 5.10. The original latency is 14 ms.
The latency of most of functions is between 14 ms and 15.6 ms. Most of
functions have bigger latency. The result shows that the operation of signal
handling often needs to access the main memory when we allocate these

functions into TCM.

47

sig hndl

ms S
16 N R LY NS A s
15.5 VD N N \
15 LA M
14.5 \’59 \D(\ D« \b(\ \b‘ bp \&.
14 I H
35 H H H
13
12.5
%\Q‘& ;\0\‘(* o eﬂ;\@c \Q 6&0 \c:‘a\ @% \\‘“ X\‘@é éXc,% x\‘O \\00 6& %\0 \@2 &xxo‘\ RO 6\&\\\6\ ,&\(g\zi 2&({\5 '\&\eﬁ
& e q«\“’x\\ aSptee® & Q@C\ s\°‘° ‘o*"? o
50\\°\e$x RN ¥ o 9 Q‘qua (\\e‘e’ﬂ
o \\@6\\ @

kernel implementation

Figure 5.10 Signal handling latency

The fork process running latency is shown in Figure 5.11. The original
latency is 6210 ms. The latency. of most of functions is between 6070 ms and
6282 ms. A half of functions haversmaller latency, especially exec (5136 ms)

and schedule (4998 ms) functions.

ms fork proc
7000 SN T Q) N T A o5
oso0 OV TS @ @O o (6 WO (6 (1O (O 0 @ @ P O @D
6000
5500 50 oo
5000
4500 I I
4000
AN %
0{\%@% gq& & ¢ \e xeﬁ‘\ X\@& @5\\@% X\'ﬂe@ yo% Qo “\\\00 ady \x@%\ ‘A\\oﬂ\ \<°\\ 6&’ R x\\6\ @(& x\\®
eF \6\ O Xc o oS eﬁa\ 5 ><\°* QeSS
SN (@S RO e o W
S ¢H \6
o X@w\ef @ S
e kernel implementation

Figure 5.11 Fork process running latency

The exec process running latency is shown in Figure 5.12. The original
latency 1s 19000 ms. The latency of most of functions is between 18000 ms and

19000 ms. All of functions have smaller or the same latency, especially exec

48

(16000 ms) and schedule (15000 ms) functions.

€Xec proc
ms 0 Q Q Q 0 @
20000 SaC I S0 I 1 0 I (oo
AT AT AT AT ADTAD ABT AR

15000

10000
Y :
0{\%\‘@ &0& eﬁg‘c 27:6 xeﬂ‘\ X\f\\ \C’%\Q@‘A \\\\ X\,@’éé éxcc" \\\0 \\00 6& $\‘z \»&@,\&\ SO (ﬂ\&\ \“\05.&\6\%@*\& 05(\\6\6
NP\ Sy % ><° < @0 \e,\'“ A Y ‘OX\‘
6«1{\% \eﬁv \@6 ;&0(\(‘ Q‘A%Q ;-‘\\6 %% eéxcﬁ $\\)« N\
co‘\ " o
)

kernel implementation

Figure 5.12 Exec process running latency

s sh proc
45000 > °
B &\ngn, u\QQ
40000
W A
35000 I I
30000
AR SRV \ o SRR Y S oS
0‘.\%\&\ O a8 eﬂ;@g \% eﬁS\ g%\\@‘b \\&(\0\0@ Q&c,% R\ \\0 6& A\ \\\Q? RO @ 6\9\% \ﬂ“ X\‘{(\&x ‘%ﬁ(\r&&(\&\e
o o% \\c (S = %e% @0\ &> OG5
& $\§ﬂ o O & o N Q%%e (\e%ﬂ% X\Q&o% QO A
X V) O\ Q
o ¥ o o
A%

kernel implementation

Figure 5.13 Shell process running latency

The shell process running latency is shown in Figure 5.13. The original
latency is 43000 ms. The latency of most of functions is between 41000 ms and
43000 ms. All of functions have smaller or the same latency, especially exec

(35000 ms) and schedule (35000 ms) functions.

49

The result of process benchmark shows exec and schedule functions can
gain the best performance. As for other functions, some tests are good but some

tests are weak. Overall, they have still some improvement.

5.2.2 Exp #2: Context switching benchmark

In this section, we discuss and analyze the results of context switching
related benchmark. Table 5.4 shows Imbench context switching parameters.
They contain 2p/0K ctxsw, 2p/16K ctxsw, 2p/64K ctxsw, 8p/16K ctxsw, 8p/64K
ctxsw, 16p/16K ctxsw, and 16p/64K ctxsw. The time unit is microsecond and

smaller is better.

Table 5.4 The Imbench context switching parameters

Context switching

- times 1in microseconds - smaller is better

2p/OK ctxsw | There are 2 processes and each process size is 0K.

2p/16K ctxsw | There are 2 processes and each process size is 16K.

2p/64K ctxsw | There are 2 processes and each process size is 64K.

8p/16K ctxsw | There are 8 processes and each process size is 16K.

8p/64K ctxsw | There are 8 processes and each process size is 64K.

16p/16K ctxsw | There are 16 processes and each process size is 16K.

16p/64K ctxsw | There are 16 processes and each process size is 64K.

The 2p/0OK context switching latency is shown in Figure 5.14. The original

latency is 182.4 ms. The latency of most of functions is between 150.2 ms and

50

181.3 ms. All of functions have smaller latency, especially fork (151.7 ms) and
schedule (150.2 ms) functions.

2p/0K ctxsw
ms
3 \ > 0
\‘Q/ a2 \\%\‘ r\‘) 1\ 9
¢ 5 o>\ Aoty N 5 AN
180 \ N \,\\\\@’5 \f), \ \ N NEEEY
1 st 2 2
XIS H S M
y e ol
AN QD \O
0{\ %\(\‘6 "\0‘\& Qﬂ‘ec Qﬂ" Xeﬂ.,\\% 6&‘\ cﬁ\\@% \\\.\\‘\%‘\&6%6 8&% \\ \\00 66* s\\) \\(QR\ \\00 \‘0\ (Q&$ N X\\ &X‘:&{(\R X\&\
A+ NS O e \&x%e e& @0\% \6\ C‘,><'\°\0 X0 ~0><\0‘
S o&\‘etc\\e' ot o R I R S
00‘\\6 - & v ‘%’Q& %G‘\
&« © kernel implementation
Figure 5.14 2p/0K context'switching latency
2p/16K ctxsw
ms 5
340 o7 0 ORI SRS nF
320 PP > S
300
N N
ol I 2 ¢5‘>6 AR RPN NI 7
240
o LY 1111]
200
« -
@“% W o o \\6& @\x« w“x\@@ pet Wt o \\®§ N \(Qex\\ o "
X 6\6 «ﬂ» 66 ‘\g Q‘&\e "&% @e\ ﬁ@@ . ‘OXQ \‘0’“0‘
A&° FOSEAN o & &
00‘\\6 ¥ @6\(\ <
© kernel implementation

Figure 5.15 2p/16K context switching latency

The 2p/16K context switching latency is shown in Figure 5.15. The
original latency is 302.2 ms. The latency of most of functions is between 245 ms
and 317 ms. Most of functions have smaller or similar latency, especially

schedule (245 ms) functions. The 2p/64K context switching latency is shown in

51

Figure 5.16. The original latency is 307.6 ms. The latency of most of functions
is between 218.7 ms and 290 ms. All of functions have smaller latency,

especially schedule functions.

ms 2p/64K ctxsw

6
30 A8V S
300 0

280 e ,Lr)bﬁ 2 X

N
260 “
24

W \
») EINE 3 33 9
P ﬁ,\qq > %ﬂ H H PN H > s
2

pnll0all nln i

AN QN \
&@“% (o e e xe*‘ e& c%«ﬂ* @\\ﬁ\%& o \\ \\°° O s\‘; \\\Q%:ox@‘\ “0‘& St xx\ﬁ“xwﬁ& Xw@

5

g .
7N 5 9

’Lb’\ '),65' qﬁa\b(

S O

\% N\ 3¢
\ X% g@c '@\’Q >< Q X< \
%Q\er & «ﬂ\ = \eﬂ‘ \‘\e & i\& Q?’ Q‘Z’%e &\6 «® & £S5 N
00‘\ v o
¥ kernel implementation

Figure 5.16 2p/64K context switching latency

8p/16K ctxsw
ms
340 % 5 e oo e Ok
330 pY c (o7 LRI 1 59 6®
320 E PPN > U
310
300
20 N yo? SUh SIS ~
SRS @ !
780 N AN A ’ﬂl N ”/D P WD 'LD
270 o = o
260
v 5
o o g e«p@ Qx%*\@ a‘@s.\‘\ @)\\\ o \\\\\0‘%&@6 o x\ \\oc RORES \\@’“ wo® \\&0\& & @eX\\ &X@@& e
e PN \{\\c\‘\ e*\% &Cﬁ’ (\&xs““ o r\ < c\ @\6‘ x'\\‘on ‘ox\‘
& \" & x O
sg\g(\@s% SOSEAN E «\(\\6% o
V) A <
&

o kernel implementation

Figure 5.17 8p/16K context switching latency

The 8p/16K context switching latency is shown in Figure 5.17. The
original latency is 321.8 ms. The latency of most of functions is between 268.4
ms and 326.9 ms. Most of functions have smaller or similar latency, especially
schedule functions. The 8p/64K context switching latency is shown in Figure

5.18. The original latency is 342.9 ms. The latency of most of functions is

52

between 184.8 ms and 296.9 ms. All of functions have smaller latency,

especially sched+cstthread (117.5 ms) functions.

ms 8p/64K ctxsw
400 % N
5 9 oed.opd SN EA\}
350 I . . mgb« ,qu ,lqu N Sl%q. E q’%q- %]
300 5\ TN ”:b 35‘3 (le 7 A 2 10 0 N

250
200
150
100

it

D b o NI <
RO O Qﬂ‘e e e& \\@7’ Q\\&i‘\g &&% PP IR \\Q%\ SR (g\%\\“\ X\\<°Xﬁf&€‘& oi(\\\“

5 Wi s o
o v!»\@ &\i& e %‘!Q“\&\ x@)(\\%"xQ N
BOSY N e &
o W O
SN @\?‘ o
¥ kernel implementation

Figure 5.18 8p/64K context switching latency

The 16p/16K context switching latency is shown in Figure 5.19. The
original latency is 325.3 ms. The latency of most of functions is between 264.9
ms and 331.3 ms. Most of functions have smaller or similar latency, especially
schedule (264.9 ms) functions. The 16p/64K context switching latency is shown
in Figure 5.20. The original latency is 296.8 ms. The latency of most of
functions is between 189.4 ms and 278.1 ms. Most of functions have smaller or

similar latency, especially sched+cs+thread (118.9 ms) functions.

After we analyze the results of context switching benchmark, it shows
most of functions can gain the better performance, especially schedule functions.
This proves the proposed method can work well for context switching

application.

53

16p/ 16K ctxsw

) P R
63'5 ,,9/67“33\ S q/bﬁ >

979’5%

N 3\5

&Y 0% 62 %
Oy A e
ol K £ YK f

il I ninil 1

F e N © AR 5
&9 ‘0% W S X@p \\Q& \Cﬁ\\@% X\\‘\\\@?’é S ® e\ && $\\; \&\9% S RS 6‘&% \“\ex\\@& @“& A

0 2
390 IR)

‘l\ \% X\\Q \ RCY RS
| 6\6% i \?ﬂ‘ 65 oi\(”X$ Q(A%a @G ‘5%\ %X\ \OXQ \\\OX\
© \Qﬁ‘\' s X\ 5 Q‘b% ;{\6% \\66
o 65‘\’\6 o EN

S
V)

B kernel implementation

Figure 5.19 16p/16K context switching latency

ms 16p/64K ctxsw
350 [t %) e S
7 : N 09 1q T AT AT Ly
300 r)’bﬁfbm@b ,5% 3 q}\'%ff;) r)’b‘\quﬁ ,Lb{\-) gk B
250 X
-
200 \ 9
150 N
100 =
RS X
0{\%\0% %oi\f‘ JRC Ao X@*B\\%K@& \cﬁa\ @% X\\Q% @6 ycﬁ Q0 @\o‘* Ay ‘e\\z xq&j %»\\09 \(0»& ,‘0&\ 6@;)& «\&X@@& o
N\ xo\\\ ey <& N \OXQ \ox\
e,,o\Né s X“’p e s S0 S S
o e@\)a T

« kernel implementation

Figure 5.20 16p/64K context switching latency

5.2.3 Exp #3: File & virtual memory system benchmark

In this section, we discuss and analyze the results of file and virtual
memory system related benchmark. Table 5.5 shows Imbench file and VM
system parameters. They contain file creation, file deletion, memory mapping
latency, fault protection operation, page fault operation, and 100 file descriptors

selection. The time unit is microsecond and smaller is better.

54

Table 5.5 The Imbench file & virtual memory system latency parameters

File & VM system latencies

- times in microseconds - smaller is better

OK File Create To create a OK file

OK File Delete To delete a OK file

10K File Create To create a 10K file

10K File Delete To delete a 10K file

MMap Latency To set up a memory mapping
Prot Fault To do a fault protection operation
Page Fault To do a page fault operation
1001fd selct To select 100 file descriptors

OK File create

me D2 a4 4 %
5 56 5 56 e o 5655
o> 5 i oD 5 -0 oA 85 g5 5 5
5\?> ® 5Q~b‘
50 %
[I H H
40 I
Y N O = Q \¢ < o S S o8
GO o &\e\i 2 S xxs@ & V8 %\2 \&@«»‘A“O RS o Xx\“‘w“& o
e\‘;&)\e W e‘f‘xx\a&o&o&x be% %e s & c,%X \‘OXQ R
O i & e e
%COQ\Q 5 ¥ S {b\ "\\ o

kernel implementation

Figure 5.21 OK file creation latency

The OK file creation latency is shown in Figure 5.21. The original latency

1s 54.4 ms. The latency of most of functions is between 50.4 ms and 56.7 ms.

55

Most of functions have bigger latency except exec (45.8 ms), schedule (51.3 ms),

and irq (50.4 ms) functions. The OK file deletion latency is shown in Figure 5.22.

The original latency is 36.7 ms. The latency of most of functions is between

352 ms and 37.8 ms. Although a halt of functions have bigger latency,

especially fork (39.4 ms) and slub (39 ms), there are still some excellent

functions such as exec (34.4 ms).

ms N OK File delete
40 2
39 N i &
A §
8 eI b A% Ak N0
3 26” ! 2” 20” 361 26 pl
36 N H S
ol B H I | | 1
34 D
‘\ .
R o 69@ X @\‘6& BEN e‘&\ \‘\%&6&6 p W s o \\\"“ wo® NS ‘(\O&“ o o m&“
é&es o e o e &L ;;0@‘ R ‘oxQ \‘ox“
o AN o™ 0 O ‘\6‘5
xS s Q R\
000 5
&
< kernel implementation
Figure 5.22 OK file deletion latency
ms 10K File create
0 L\ S Y Y 3
300 160 o5 N KLY S O 9 o T
bsp DR et 0 U VAR O I DM
© <
e A
200 A
o LAY |
100
N \
00\(\% &0‘\& *I\e‘o ?ﬁ‘\ *\%X@& %\0‘5\\\0 \\\Q\&eﬁé 8&% ‘\ \\OQ é&s %\\; \x\gj 0‘\ \‘0‘\ (0&\ \6\’6 X\\«\:xi (‘\r‘ X\\@
& N C o SRRty x\‘ QS o 8
b 6 6 i\é % 6‘ \‘0 \0
06.15% . ST 50 O 6\&\\6%% %o‘\e
© R I
\\Q

e kernel implementation

Figure 5.23 10K file creation latency

The 10K file creation latency is shown in Figure 5.23. The original latency

is 235.7 ms. The latency of most of functions is between 183 ms and 282.2 ms.

56

Although a halt of functions have bigger latency, there are still some excellent
functions such as exec (176.6 ms) and schedule (183 ms). The 10K file deletion
latency is shown in Figure 5.24. The original latency is 70.2 ms. The latency of
most of functions is between 68.1 ms and 71.9 ms. Although a halt of functions
have bigger latency, especially fork (73.8 ms) and page reclamation (75.4 ms),

there are still some excellent functions such as exec (68.9 ms) and irq (68.1 ms).

10K File delete

ms ,\5.&
76 ,\3.% o 0 n
74 NI (6 S and O N . 1 s
72 Mo LI
oD @) o> e ©° @
68
64
@@ o e ?ﬂ;\ » e& @\ & By \\ie& <P x\ \\o ROREN \,\@“ W™ \‘0(ﬁ“@x\“‘exxx X\&\
Qj’e \e\“a. 0 & O\ xQ&X x\
N e & 1
o NS &%“\
QV'O kernel implementation
Figure 5.24 10K file deletion latency
ms Mmap Latency gb@
)

'\ S &
8000 00 AW i (1@ OS85t g0
6000 I I H
4000

A R
0{\%\(\‘6 9\0(\5 ?ﬁ’ep Qﬂ" X?ﬁ’\ “6& \Cﬁ’\«@(b \\\\\ \&6{56 8@% Qo 6\\\00 66% %\\r\) \’@‘&\ \\o‘\ \'&0\\ 6\"\%

4 & > X\\ {x®
666\6 R X‘ &c Q&XS % 6@0\ C}eﬂﬁ\ xx&‘i\)ow x\‘
S QT K0 ST Ao S D\
T o™ P e
d o @
s
* kernel implementation

Figure 5.25 Memory mapping latency

The memory mapping latency is shown in Figure 5.25. The original latency

57

i1s 7016 ms. The latency of most of functions is between 6797 ms and 7397 ms.
Most of functions have bigger or similar latency, especially buddy system (8794
ms), page fault (8794 ms), and slub+pf+ramfs (9662 ms). The fault protection
latency is shown in Figure 5.26. The original latency is 3.671 ms. The latency of
most of functions is between 3.139 ms and 4.093 ms. Although a halt of
functions have bigger or similar latency, especially buddy system (4.731 ms),
page fault (4.731 ms), and Slub+pf+ramfs (4.815 ms), there are still some

excellent functions such as fork (2.549 ms).

Prot Fault
5
RO y

0,95 .\ b)
o 3'\3 PPN O 35“93%5'\3.6\%% N 55
%

b
AN X
0{\%\@ o 1 e«s\ &\\@& g%\\@: \\c\\‘“‘ s o A\ \\00\&& %\2 “@%\ $° \s‘\& <) @aw@e& &‘\%

o
\ < e O S\ SO Q> oS
sﬁ“e?;ﬁ&& S e‘i‘& 66)(§o ‘\&X Q?’%z% o f\\\e s X@GX & QR
o NS o *
&« kernel implementation
Figure 5.26 Fault protection latency
ms Page Fault
A9 9 RS
19 A A >

18
17

16 Fx2 3\ RN R DR Rk LRy N IR RULE WS
15 Ak N 3% Ak A& %6 AR A A A& AN Ak A& A\ A& AR A AN

LR nnnnns

A X \Y
0{\%&% o ?‘*\ X o \\e‘& \C‘Q&& \&6“\‘\%&\5@6 < ¥ \\00\\6& & \\KQ&\ 8o \‘0\\ RS X\\“‘&x@“‘;\ x\\i“e"
%

\3 « o &
SN Y & XINGKO ¥
& 6 %ql » e \@y &0& & . :\3 N

o S
00 6\\\6 <

& . .
« kernel implementation

Figure 5.27 Page fault latency

The page fault latency is shown in Figure 5.27. The original latency is 14.2

58

ms. The latency of most of functions is between 13.6 ms and 14.6 ms. Although
most of functions have bigger or similar latency, especially buddy system (17.9
ms), page fault (17.9 ms), and slub+pf+ramfs (18.1 ms), there are still some

better functions such as schedule (13.6 ms) and exec (13.8 ms).

The 100 file descriptors selection latency is shown in Figure 5.28. The
original latency is 56.4 ms. The latency of most of functions is between 55.9 ms
and 56.9 ms. Although some functions have bigger latency, especially thread
(57.9 ms), sched+cs+thread (57.6 ms), slub (57.6 ms), slub+ pf+ramfs (57.3 ms),
and sched+cstirg+timer (57.2 ms), there are still some excellent functions such
as exit (55.9 ms), page reclamation (55.8 ms), ram file system (55.9 ms), and
timer (55.8 ms).

ms
58

o W
[V e N |

59

1001fd selct
e o

o> go®
40 559 40

4o®
A

Tl

07

5@,% 569

40" a0

e

A

o)

T

|

60

1

T
s\ g

A

H

\O
%\“% o e}\ e%,\‘@& @’\ & ‘(\\& e?*é & \\ \\00 NS ‘5\\2 \“j\ SR “‘@ &;x\“‘g:@‘fzfi&@
e 0 W AS
O Y ><0 X% o 5! SR
%Gﬂ‘e\e«;&%\ﬂ \e‘f;a‘\eﬁ &0‘\‘ Q&Q‘?’% &\\6 «® SRR\ A\
o™ >

Rl

kernel implementation

Figure 5.28 100 file descriptors selection latency

After we analyze the results of file and virtual memory system benchmark,
most of functions can not always gain the better performance. For example,
schedule functions have smaller latency in file creation, memory mapping, and

page fault tests but have bigger latency in other tests. This is because file and

59

virtual memory system often needs to access main memory via system bus.

According to our proposed model, if Linux operation system can not allocate all

related functions in TCM, the value of variable D in Eq(3) may become bigger.

It causes thm 2 Tno—tcm .

In results, buddy system, page fault, and slub+ pf+ramfs functions are not
suitable for file and virtual memory system application. However, exec functions

are very suitable.

5.2.4 Exp #4: Local communication benchmark

In this section, we discuss and analyze the results of local communication
related benchmark. Table 5.6 shows Imbench local communication parameters.
They contain pipe communication, AF UNIX communication, UDP socket, TCP

socket, TCP connection. The time unit is microsecond and smaller is better.

Table 5.6 The Imbench local communication latency parameters

Local Communication latencies in microseconds

- smaller is better

Pipe To measure interprocess communication latency
through pipes

AF UNIX To establish AF_UNIX stream

UDP To establish the UDP socket pair

TCP To establish the TCP socket pair

TCP conn To connect the TCP socket pair

60

Pipe

ms Q
460 0 7
o N N d 2 \g
420 3%'\9,59Q ,,ﬁ;\- %n_., ,5 \;) ,\g%qu ,.chb 391 ,bC)Q 391 gQ %q) 393 q%’L %rl'\ D
380 o
300 l
> ; \Y 5
o{\%‘@ (o e e’i@ @0 6& \0%\ @% \\“\\&@?’6 o \\ \\00 O a® x@? oo \«x&) x\“@xx\&g@‘&x\'@‘b
¢H e>\)\e \\Q\\ $ 6% ,@C\ %\6 $><\‘ \on \‘ox\
ST o o N o SIS
5 Q
o a o °
¢!
< kernel implementation

Figure 5.29 Pipe latency

The pipe latency is shown in Figure 5.29. The original latency is 387.9 ms.
The latency of most of functions is between 371.5 ms and 390.7 ms. The exec
(332.6 ms) and schedule (329.4 ms) functions have excellent pipe latency. The
AF UNIX latency is shown in Figure 5.30. The original latency is 699 ms. The
latency of most of functions is between 581 ms and 699 ms. The exec (581 ms),
schedule (579 ms), sched+cst+thread (493 ms), and sched+cs+irg+timer (529

ms) functions have excellent latency.

©
5 40 9
L
I I i “L’
o (o (o8 *1; S & D o 0P o o ~\\‘° o° 8 a® 0D oo g &)
0{\00\“ SOV o e Xe e @ & \&\\\i‘\\@‘& && \ o s\& \,\&Q 2O ¥ % o (&\

\(\\
N @ @0\
6 \eﬂ‘ «(\e

£ .o
X\\ %X‘fﬁo \\\'0
S

o™ & \on bx\
@*I»\% ot Q‘b%?%%e Qe o e(\eé* \
00‘\ S &> °

&
< kernel implementation

Figure 5.30 AF UNIX latency

The UDP latency is shown in Figure 5.31. The original latency is 750.8 ms.

61

The latency of most of functions is between 743.8 ms and 761 ms. The exec

(672.7 ms) and schedule (651.7 ms) functions still have excellent latency.

UDP

"
W
700 (\ 6‘3\1

650 I I
600

U\ SR\ ¥ \‘0 ©
L it (@ o 2 SRR P A AP (D ao® W St £ .ot
0‘\%\0 KO o %$ec &%c, @& Cﬁ\ﬁ\@ \\C‘\\ﬁ\%‘\s@ XO \\ o %\s‘\ \\\Q \0 h\ (Qf\ o X\\@&X‘%\i\ 05\\6\

X\
o\, S © N W W
S \\Q @:\ e& ? &x Q%%Q < & %%\e\ Q'Q"X\s\ xQ R
P Sua & Qe® Q\(@é
o eb\\\ o :
O kernel implementation

Figure 5.31 UDP latency

The TCP latency is shown-in Figure 5.32. - The original latency is 1040 ms.
The latency of most of functions is between 1020 ms and 1055 ms. The exec

(909 ms) and schedule (903.7 ms) functions still have excellent latency.

TCP
?11500 NARERV &> \g 2 N O ‘-‘\’ NGRS \g ’55 > o
A\ \Q’)’
1000 A
QQQ 9@"
900 I I
800
R\ S G SR VRN R WY AR
RO O iecX6$\ \@G? \° \\\‘\%&e& SR = 3\:_: \x\QS N \‘\ S < xx\‘gx&%‘f&o‘x\\“@
N\ vl ><% Y 2 AT X X
A A Xe& o o o STAN TS
ST o S e e ST
® RN o
\\Q

kernel implementation

Figure 5.32 TCP latency

62

ms

2600
2500
2400
2300
2200
2100
2000

0 ARV
'L\q;\ ,-L\qﬂ’ H
] i

0\ N Y RN O O O o« . 3
@S}SA OV 1 e of \§§2> \9§\g¢5b \9%6§5§> QKCﬁ S (&QQ “bﬁﬂ N \S\SSN o 6'\‘ S ‘63)5) i*<&6& o

N C Qa o>
NS) c x“a & o o X\ﬂ NS
et \6’%@6 o W™ o WV
Qoq&@ N : > &) &
<
\\@

kernel implementation

Figure 5.33 TCP connection latency

The TCP connection latency is shown in Figure 5.33. The original latency
is 2478 ms. The latency of most of functions is between 2441 ms and 2488 ms.
There are some excellent functions such as-exec(2137 ms) and schedule (2122

ms).

After we analyze the results of local communication benchmark, we find
out exec and schedule functions are very suitable for local communication

application.

5.3 Analysis

In this section, we summarize the experimental results in Table 5.7 ~ 5.10.
The negative percentage means that the latency of revised linux is smaller than
the latency of original linux while the positive percentage means that the latency
of revised linux is greater than the latency of original linux. Finally, 0.0%
indicates that the latency of revised linux is the same as the latency of the

original linux.

63

For Imbench process latency benchmark, we only care fork proc latency,

exec proc latency, and sh proc latency, because these patterns can be close to the

real situation. According to Table 5.7, we can place exec, schedule, schedule +

context switching + thread (sched+cs+thread), fork + schedule + context

switching (fork+sched+cs), tlb, buddy, slub, page fault, or irq functions into the

TCM to gain better performance.

Table 5.7 Summary of Imbench process latency

Functions null | null stat | OPEN slct | sig | sig | fork | Exec Sh
call 10 clos |TCP | inst | hndl | proc | proc | proc
fork 0.0%|-23.4%| 5.4%]|-1.5%|-0.9%| 0.0%| 0.0%| 0.2%| 0.0%| 0.0%
exec 3.4%]|-11.8%| 0.0%| 1.1%|-0.9%| 2.6%| 1.4%|-17.3%-15.8%]|-18.6%
exit 4.0%]-11.8%)| 0.6%| -2.9%)| 0.0%|11.4%|11.4%| 2.8%| 0.0%| 0.0%
exec+ exit 4.0%|-22:0%| 0.6%| 1.5%/0.9%|32.8%|11.4%| 1.9%| 0.0%| 0.0%
schedule (sched) 0.0%|413.4%0.0%)| -9.1%| 0.9%| 1.0%| 8.6%|-19.5%|-21.1%|-18.6%
context switching (cs) 0.0%| -8:1%]| 0.0%| 0:7%} 0.0%| 0.0%[10.0%| 1.2%| 0.0%| 0.0%
thread 0.0%| -8.5%] -0.6%|=7.7%]| 0.0%| 0.3%|-0.7%| 0.3%| 0.0%| -2.3%
schedul e+ context
switching 0.0%|-11.2%] 0.0%|-7.7%| 0.9%[26.7%(12.9%| 0.3%| -5.3%| -2.3%
sched+cstthread -3.4%)| 000%][15.1%[10:2%) 0.9%| 9.2%| 9.3%| -2.0%)| -5.3%)| -4.7%
fork+sched+cs 2.7%]|-21.7%| 0.0%]-9.1%]| 0.9%| 0.0%| 0.7%)| -0.7%| 0.0%)| -2.3%
tlb 0.0%]| -1.8%| 0.0%]| 0.0%]| 0.9%]| 0.0%| 0.0%)| -1.5%)| -5.3%)| -2.3%
vmlloc -3.4%|-23.2%| 0.6%|-6.9%]| 0.0%|78.2%| 0.7%| 0.9%| -5.3%| -4.7%
buddy 0.0%|-24.4%| 4.2%]| -8.0%| 0.9%| 0.3%| 1.4%| -0.7%)| -5.3%]| -2.3%
sub 0.0%)| -7.1%]|11.4%)| -3.6%| 0.0%|46.7%| 2.9%| -0.5%)| -5.3%)| -2.3%
page fault (pf) 0.0%]|-24.4%| 4.2%]| -8.0%| 0.9%| 0.3%| 1.4%| -0.7%)| -5.3%]| -2.3%
page reclamation 3.4%|-22.4%| 0.6%|-7.7%|-0.9%| 2.1%[11.4%| 2.2%| 0.0%| 0.0%
irq 0.0%]|-22.6%]| -0.6%| -5.5%| 1.8%|34.0%| 7.9%| -2.3%)| -5.3%| -4.7%
ramfile system 0.0%|-23.0%| 3.6%|10.6%| 0.0%|12.7%[12.1%| 0.7%| -5.3%| -2.3%
timer 0.0%|-22.8%] -0.6%)| -8.0%| 1.8%|-0.5%| 4.3%| 0.7%| -5.3%| -4.7%
sched+ cs+irgt+timer 0.0%|-22.2%| 0.0%]| -8.8%| 0.9%| 0.0%| 1.4%| 1.2%| 0.0%| 0.0%
slub+ pf+ramfs 0.0%|-23.8%]| 9.0%)| 2.6%]| 0.0%[28.1%[10.0%| 2.7%| 0.0%| 0.0%
tIb+irg+timer 0.0%| -8.7%| 0.6%]|-8.4%]| 0.0%| 0.3%|11.4%| 1.4%| 0.0%| -2.3%

64

For Imbench context switching latency benchmark shown in Table 5.8,

most functions can gain better performance, especially fork, exec, exec + exit,

schedule, schedule + context switching, buddy, slub, page fault, irg, schedule +

context switching + irq + timer (sched+cstirg+timer), or tlb + irq + timer

functions. The result shows that our kernel classification is suitable for context

switching application.

Table 5.8 Summary of Imbench context switching latency

R 2p/0K | 2p/16K | 2p/64K | 8p/16K | 8p/64K [16p/16K(16p/64K

ctxsw | ctxsw | ctxsw | ctxsw | ctxsw | ctxsw | ctxsw
fork -16.8%| -15.6%)| -27.9%| -16.7%| -30.7%| -16.6%| -18.9%
exec -15.2%| -13.3%)| -28.1%| -15.9%| -28.0%| -16.4%| -18.9%
exit -2.6%| 1 6.7%]| 0 ~20.4%| -0.4%| -23.3%| -0.2%| -7.3%
exec+exit -13.7%| -15.4%)| -27.2%| -16.3%| -30.9%| -16.1%| -19.6%
schedule (sched) “17.7%| =18.9%| -28.5%| -15.1%| -31.3%| -18.6%| -19.5%
context switching (cs) 4.0%| 4.7%| - -57%| - -1.6%| -46.1%| -1.9%| -36.2%
thread -0.7%| =1.3%| -25.8%| _ 2.5%| -27.2%| 2.4%| -10.7%
schedulet+context switching |=6.2%| * -0.3%|--28.9%| -3.3%| -31.1%| -3.0%)| -20.0%
sched+ cs+thread -7.6%,. 0.4%| -24.0%| -3.2%| -65.7% 1.7%| -59.9%
fork+sched+cs -5.6%[" 1.4%| -17.3%| -1.0%| -14.0%| 0.4%| 3.6%
tib -3.1%| 3.9%| -17.9%| 1.2%| -13.4% 1.8%| -7.7%
vmlloc 2.7%) 43%| -9.1%| 3.0%| -14.0%| 4.2%| 3.4%
buddy -14.9%| -14.9%)| -26.8%]| -16.6%| -30.9%| -15.8%| -18.5%
Slub -16.1%| -14.0%| -24.9%| -14.4%| -28.8%| -14.6%| -14.0%
page fault (pf) -14.9%| -14.9%)| -26.8%]| -16.6%| -30.9%| -15.8%| -18.5%
page reclamation 3.1%| 2.5%| -18.2%| -2.8%| -23.9%| -0.1%| -13.1%
irg -0.6%| -16.4%| -24.0%| -14.3%| -29.0%| -15.1%)| -16.5%
ram file system “4.7%| 4.9%| -13.0%| 1.6%| -15.5% 4.0%| -10.0%
timer -1.5%| 2.6%| -13.6%| 2.6%| -73%| 3.1%| 3.3%
sched+cs+irg+timer -4.9%| -3.7%| -15.0%| -2.1%| -15.7%| -1.8%| -6.3%
slub+ pf+ramfs -4.1%| 0.9%| -193%| -1.6%| -9.6%| -1.9%| -9.6%
tib+irg+timer -0.9%| -14.3%| -27.2%| -14.8%)| -28.6%| -15.2%)| -16.5%

For Imbench file & VM system latency benchmark, we only care 10K File

65

Create/Delete, Mmap Latency, and Page Fault, because these patterns can be

close to the real situation. According to Table 5.9, we can place exec, schedule,

or schedule + context switching + irq + timer (sched+cstirg+timer) functions

into the TCM to gain better performance. Although, the latency of schedule

functions with TCM 1is bigger than the latency of original functions without

TCM regarding 10K File Delete latency. We should ignore this item, because

the difference between orginal latency (70.2 ms) and schedule functions latency

(71.9 ms) 1s only 1.7 ms as shown in Figure 5.24. This value is much smaller

than the difference in 10K File Create latency (52.7 ms) as shown in Figure

5.23.
Table 5.9 Summary of Imbench file & VM system latency
Functions 0K File|0K File }?(:lle(ii‘(:llj Mmap | Prot | Page | 100fd
Create | Delete Create | Delete Latency| Fault | Fault | selct
fork 22%| (TA%| 3.1%| > 5.1%| 1.6%|-30.6%| -0.7%| 0.7%
exec -15.8%]| -6.3%[251%]| 1.9%| -3.1%| -6.6%| -2.8%| -0.7%
exit 02%| ~1:1%|-3.9%| -0.7%| 1.4%| 3.5%| 0.0%| -0.9%
exect exit -0.2%| . 03%| -5.8%|2.3%| 0.3%| 2.0%| 0.7%| -0.7%
schedule (sched) -5.7%| C 3.0%1-224%| 2.4%| -2.3%| 11.5%| -4.2%| 0.7%
context switching (cs) 3.9%| -1.6%| 2.2%| 2.0%| 0.2%|-12.6%| 0.7%| -0.5%
thread 0.4%| 2.7%| 19.7%| 1.7%| 1.5%| 0.3%| 0.7%| 2.7%
schedul e+ context
switching 22%| -3.3%| 1.8%| 1.3%| 2.4%|-14.5%| -0.7%| 0.9%
Sched+cstthread 2.2%| -4.1%]| 23.3%| -1.6%| 5.4%| 1.8%| 0.7%| 2.1%
fork+sched+cs -0.2%| 2.7%| -3.5%| 2.3%| 2.8%| 5.0%| 1.4%| 0.7%
tlb 7.5%| 3.0%| 18.7%| 0.1%| 7.6%| 1.1%| 5.6%| 0.9%
vmliloc 5.5%| -1.1%| 20.4%| -0.4%| 2.6%| 1.8%| 0.7%| -0.5%
buddy 42%| 1.9%| -1.6%| 3.6%| 25.3%| 28.9%| 26.1%| -0.5%
slub 4.0%| 6.3%| 19.7%| 1.3%| 1.1%| -1.9%| 0.7%| 2.1%
page fault (pf) 42%| 1.9%| -1.6%| 3.6%| 25.3%| 28.9%| 26.1%| -0.5%
page reclamation 4.8%| 1.9%| -6.7%| 7.4%| 3.4%| -4.4% 2.8%| -1.1%
irq 7.4%| -1.1%| 20.9%| -3.0%| 2.8%| -5.8%| 0.7%| 0.4%
ramfile system 1.1%| 4.4%)| 16.2%| 3.0%| 0.8%| -1.4%| 1.4%| -0.9%
timer 1.1%)| -1.4%)| 19.0%| -0.9%| 2.6%| 3.9%| 2.8%| -1.1%
sched+cstirg+timer 22%| 2.5%| -11%| -11%| -0.2%| -0.4%| -0.7%| 1.4%

66

slub+ pf+ramfs

6.6%

-1.4%| 1.2%| -1.9%

37.7%

31.2%

27.5%

1.6%

tib+irg+timer

2.0%

0.5%| 21.3%| 1.3%

9.8%

-3.3%

6.3%

-0.4%

For Imbench local communication latency benchmark shown in Table 5.10,

we can place exec, schedule, context switching, schedule + context switching,

fork + schedule + context switching (fork+sched+cs), schedule + context

switching + irq + timer (sched+cst+irg+timer), or slub + page fault + RAM file

system (slub+pf+ramfs) functions into the TCM to gain better performance.

Table 5.10 Summary of Imbench local communication latency

Functions pipe U?I?X UDP | TCP Zo(slfn
fork 0.7%|. “0.6%| 0.8%| 0.2%| 0.4%
exec -14.3%1-16.9%]-10.4%|-12.6%|-13.8%
exit 0.2%| -1.0%" 1.2%| 1.3%| 0.2%
exect exit 10.8%). 0.1%} 1.0%| 0.5%| -0.6%
schedule (sched) 15.1%]-17.2%]|-13.2%|-13.1%|-14.4%
context switching (cs) -1.3%}4.7%| -0.2%]| -0.9%| -0.9%
thread 0.7%| -0.3%| 1.3%| 1.3%| -0.3%
schedulet+context switching| -2,9%| -6.9%)| -0.9%)| -0.5%| -2.1%
sched+cst+thread -4.2%|-29.5%| 1.3%| 0.2%| -1.0%
fork+sched+cs 2.1%)| -6.3%| -0.8%| 0.0%]| -0.8%
tlb 0.7%| -0.1%| 1.5%| 1.4%| 1.5%
vmlloc 0.2%| 0.0%| 2.5%| 0.8%| 0.0%
buddy 1.3%)| -4.0%| 1.4%| 2.0%| -0.5%
slub 0.6%| -2.7%| 0.8%| 1.5%| 0.9%
page fault (pf) 1.3%| -4.0%| 1.4%| 2.0%| -0.5%
page reclamation 0.6%| 0.0%| 0.2%| 0.2%| -1.5%
irg 4.8%| 03%| 1.6%| 1.3%| 1.9%
ram file system -1.1%)| -0.6%| 1.5%| 1.4%| 0.5%
timer 1.5%| -2.3%| 2.1%| 0.4%| 0.7%
sched+cstirg+timer -2.5%|-24.3%| -0.7%| -0.1%| -0.5%
slub+pf+ramfs -1.3%]| -3.1%)| -0.2%)| -1.9%]| -1.4%

67

tlb+irg+ timer | 22%] 09%| 29% 11 1.1%)

Overall, to place exec or schedule functions into the TCM can gain best

performance according to the experimental results in Table 5.7 ~ 5.10.

According to the specific application, the user should place related kernel
functions in the TCM. But our experimental results except exec or schedule
functions show the optimization modification must be done in order to improve
the overall performance. Our experimental results can also provide the direction

on the kernel optimization.

For example, to place irq fucntions into the TCM can only improve the
process and context switching latency, but file & virtual memory system and
local communication latency. become. worse. So the user should focus on file &
virtual memory system and local communication'latency to optimize the related

kernel code.

68

Chapter 6

Conclusion

All prior researches of tightly-coupled memory (TCM) focus on non-OS
embedded application program, because it is easy to be analyzed. Regarding
Linux, Android OS, and so on, the code structure is very complex and code size
i1s much more than TCM memory size. According to the different applications,
the most frequently accessed kernel functions are not the same. Since there are
hundreds of the applications, we are unable to list all applications and analyze its
most frequently used code. Therefore, we can only settle for second best to use a

general classification of the kernel code.

In this paper, we analyze the utilization and performance impact of TCM,
and classify Linux kernel functions into groups per the TCM capacity. Then, we
select different groups of Linux kernel functions at the compiling time and place
these function groups into TCM without swapping them out during execution.
By conducting the experiments.with Imbench, we find that placing exec() or
schedule() into TCM can reduce the local communication latency by a factor of
13% - 14%.

This paper has identified that exec() or schedule() can improve the overall
performance. If the user does not have any needs for a specific application, the
user can put them directly into TCM and reduce kernel development time. If the
user has a need for a specific application, our results also provide the direction

on the kernel optimization.

69

[10]

[11]

[12]

[13]

[14]

[15]

References

L. I. Xii, R. Banakar, S. Steinke, B. sik Lee, M. Balakrishnan, and P. Marwedel,
"Comparison of cache- and scratch-pad based memory systems with respect to
performance, area and energy consumption."

R. Banakar et.al., "Scratchpad Memory: A Design Alternative for Cache On-chip
Memory in Embedded Systems," CODES, 2002.

P.Panda, N.Dutt, and A.Nicolau. "Efficient utilization of scratch-pad memory in
embedded processor applications," In Proc. DATE, 1997.

O. Avissar, R. Barua, and D. Stewart, "An optimal memory allocation scheme for
scratch-pad-based embedded systems," Trans. on Embedded Computing Sys., vol. 1,
no. 1, pp. 6-26, 2002.

O. A. Ece, "Heterogeneous memory management for embedded systems," 2001.

P.Panda, F.Catthoor, N.D.Dutt, K.Danckaert, E.Brockmeyer, and C. et al. "Data and
memory optimizations for embedded systems," In ACM (TODAES), Vol. 6.,
pp-142-206, April.

Wanessa Pereira Dias et al. "Performance Analysis of Cache and Scratchpad Memory
in an Embedded High Performance Processor," 2011

P. R. Panda, N. D. Dutt,-and A. Nicolau, "On-chip-vs. off-chip memory: the data
partitioning problem in embedded processor-based systems," ACM Trans. Des.
Autom. Electron. Syst., vol. 5;no. 3, pp. 682=704, 2000.

Ning Deng et al. "A Novel Adaptive Scratchpad Memory Management Strategy," 2009

F.Angiolin, F.Menichelli, A.Ferrero, L.Benini, and M.Olivier. "A post compiler
approach to scratchpad mapping of code," In Proceedings of the ACM International
Conference on Compiler, Architecture, and Synthesis for Embedded System (CASES),
Washington, USA, September 2004.

M. Kandemir and A. Choudhary, "Compiler-Directed Scratch Pad Memory Hierarchy
Design and Management," DAC, 2002.

Hongmei Wang et al. " Dynamic Management of Scratchpad Memory Based On
Compiler Driven Approach, " 2010

Andhi Janapsatya et al. " A Novel Instruction Scratchpad Memory Optimization
Method based on Concomitance Metric, " 2006

S. Steinke, L. Wehmeyer, B. sik Lee, and P. Marwedel, "Assigning program and data
objects to scratchpad for energy reduction,”" in Proceedings of the conference on
Design, automation and test in Europe. IEEE Computer Society, 2002, p. 409.

G. L. Nehmhauser and L. A. Wolsey. "Integer and Combinatorial Optimization." John

70

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Wilsey and Sons, New York, NY, 1988.

He Yi et al. "Software Managed Instruction Scratchpad Memory Optimization in
Stream Architecture based on Hot Code Analysis of Kernels," 13th Euromicro
Conference on Digital System Design: Architectures, Methods and Tools, 2010

Carl Staelin "Imbench: an extensible micro-benchmark suite," 2005
Mel Gorman "Understanding the Linux® Virtual Memory Manager," 2004

"RealView Platform Baseboard for ARM926EJ-S™ User Guide,"
http://infocenter.arm.com, ARM Limited, April 2003.

Rob Landley, "BusyBox - The Swiss Army Knife of Embedded Linux, "
http://www.busybox.net/

Alessandro Rubini, Jonathan Corbet, "Linux Device Drivers, Second Edition, "
O'Reilly Media, Inc., 2001

Linus Torvalds, "The Linux Kernel Archives," http://www.kernel.org/

"ARMO926EJ-S Technical Reference Manual", http://infocenter.arm.com,
ARM Limited, April 2003:

H. Cho, B. Egger, J. Lee, and H. Shin, “Dynamic data scratchpad memory
management for a memory subsystem with a mmu,” SIGPLAN Not., vol. 42, no. 7,
pp. 195-206, 2007.

A. Chatzigeorgiou and G. Stephanides, “Evaluating performance and power of
object-oriented vs. procedural programming in.embedded processors,” in
da-Europe ’02: Proceedings of'the 7th Ada-Europe International Conference on
Reliable Software Technologies. London, UK: Springer-Verlag, 2002, pp. 65-75

71

