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Persistent properties of crises in a Duffing oscillator
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Crises in a two-well forced oscillator of Duffing type are studied with an analog simulation. Its
features are discussed with the aid of return maps and phase portraits. Two types of boundary crisis
in a strange attractor following the Feigenbaum route to chaos are found. One is associated with a

hopping between two strange attractors and is confirmed with the presence of 1/f noise spectrum.
The other is associated with a hysteresis jump. A borderline of differentiating these two characters
is also indicated.

I. INTRODUCTION X+KX+aX+PX =F sin(cot) . (3)

Studies of chaotic motions in nonlinear dissipative sys-
tems are of great interest and have received much atten-
tion in recent years. ' The chaotic motion may exhibit a
crisis event with sudden qualitative change of a strange
attractor as a controlled parameter is varied. According
to Cxrebogi, Ott, and Yorke, the crisis in a one-
dimensional quadratic map occurs at certain parameter
values, for which the strange attractor collides with an
unstable periodic orbit. Since then, the crisis has been
confirmed experimentally in several physical systems, in-
cluding Josephson junctions ' and some nonlinear driven
oscillators. In particular, the analog simulation of the
rf-driven Josephson junction performed in our previous
work further indicates that the crisis induces either a
hopping state with 1/f low-frequence noise or a hysteresis
jump for different parameters set. Nevertheless, the oc-
currence of these two effects related to the crisis is not yet
fully understood. In fact, we note that a global descrip-
tion of persistent properties of the crisis in diverse physi-
cal systems is still necessary to find in order to elucidate a
true mechanism of the crises in chaotic dynamics.

To this end, we shall present an electronic analog study
of the crisis effects in a symmetrical two-well potential
forced oscillator, which also represents the dynamics of a
buckled beam as well as a plasma oscillator. ' Its
dynamics of motion can be modeled by the following
equation as

The chaotic motions in Eq. (3) have been investigated by
many authors in the past few years. " It is known that, at
a certain situation, the motion swings chaotically between
the two valleys as a hopping state. The features of the
hopping state such as the fractal dimension of both the
strange attractor and basin boundary, ' '' the 1/f low fre-
quency spectrum, ' and the similarity exponents' have
been found, respectively. In spite of such considerable ef-
forts so far, properties of the crisis in this system have not
yet been pointed out. The goal of this paper, therefore, is
to increase our understanding of the crisis event in the
Duffing equation. The important roles of the symmetry
and nonlinearity of the central barrier of the potential well
in the occurrence of crises are also emphasized.

The selection of the analog simulator which is con-
structed with two usual integrators and two multipliers is
based on the following reasons. It has the advantage of
fast response over the numerical calculations as the pa-
rameters are varied, so that it enables us to uncover quick-
ly a guideline by which a more precise study of the nu-

O.c—

X+XX+d V(X) /dX =F sin(tot ),
where K is the damping coefficient, F is the driving force,
co is the driving frequency, and V(X) is the potential. For
a two-well case, the potential V(X) is given by

V(X) = 2 aX + ,f3X—
g(x)

0.2-

—0.2—

with a &0 and /3&0. Thus, it has a central potential bar-
rier around X =0 and two stable equilibra at
X=+(—a/P)'~ as shown in Fig. 1. And Eq. (1) be-
comes an ordinary differential equation of Duffing type
as

FIG. 1. Symmetrical two-well potential V(X) with a central
barrier at X =0.
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merical calculation can be followed. Moreover, together
with a sample-hold circuit, it shows directly a return map
of the attractor on the scope so that the detailed features
of the crisis can be effectively traced.

II. EXPERIMENTAL RESULTS
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FIG. 2. State diagram in the parameter space F vs co with
threshold curves; 2, A ': downward jump; B, B': upward
jump; C: period doubling; D: boundary crisis, with damping
coefficient %=0.1. All dashed curves are obtained with an ini-
tial state above curve B. The dotted curve 2' is obtained with
an initial state above curves B' and B.

As pointed out in our previous paper, the dynamic
behaviors in Eq. (3) can be properly investigated by scan-
ning either the driving amplitude F or frequence co with
coefficients K, a, and P as parameters. From variations
of the phase portrait X versus X and/or the return map a
state diagram which illustrates the thresholds of hysteresis
jump, period doubling, and crisis in F versus co space is
constructed. The return map characterizes the voltage of
variable X at any instant, X„+&,as a function of the same
voltage but one period earlier, X„.A typical case with
K =0. 1, a = —1, P= 1, and 0.5 & co & l.4 is shown in Fig.
2. In this figure there are two similar groups of threshold
curves related to the primary and secondary resonances
with co in the ranges 0.8—1.4 and 0.5—0.7, respectively.
Both behave in a global manner. ' For convenience, we
focus only on the former case. Curves 3 and A' are the
downward-jump threshold, curves 8 and 8' are the
upward-jump threshold, curve C is the period-doubling
threshold, and curve D is the threshold of boundary crisis.
These curves intersect each other at critical points
(F~~,co~~) for curves A and B, (F&D,co&D) for curves A
and D, and (F~D, co&D) for curves B and D, respectively.
With reference to Fig. 2, there are two types of both crisis
and hysteresis, respectively, depending on the scanning
procedures. The salient features of each scanning are
summarized below.

A. Amplitude scanning

1. co )cogD

For a typical demonstration of the results, we choose
co= 1.2, a value larger than cozD (= 1.125), and set initially
the state at the equilibrium point X =1.0. As the driving
amplitude F is increased from zero (path I), a sequence of
transitions occur on the threshold curves. The phase por-
traits near these transitions are shown in Fig. 3. First of
all, on curve 8 with F=0.097, the unsymmetrical phase
portrait expands abruptly as shown in Fig. 3(a). This
behavior is referred as upward jump. On the contrary,
while F is turned back from above curve 8, the phase por-
trait is restored suddenly to the initial shape on curve 3
with F=0.033. This is referred to as a downward jump.
Hence, curves 3 and 8 form a hysteresis loop with the
motion confined only in the right valley. Note that, in
these situations, the nonlinear effect is small.

As F is increased to 0.182 on curve C, the threshold of
period doubling, the phase portrait splits into two cycles
as shown in Fig. 3(b). The state undergoes the
Feigenbaum's route to chaos soon after period four as F is
further increased. It implies that the nonlinear effect is
strong enough to cause the chaotic motion. Due to a less
steep slope of the potential well around the central barrier,
the trajectory of the phase portrait in the left-hand side
splits much more distinctly and approaches to the unsta-
ble equilibrium point at X =0. In other words, the
separation of the trajectory is essentially dependent on the
slope of the potential well. When F is increased a little bit
to 0.198 on curve D, the onset of crisis, the motion begins
to migrate into the left valley and exhibits a hopping state
as shown in Fig. 3(c). We refer to it later as crisis-induced
hopping.

As F is further increased, the state keeps on hopping
first and then is locked to some subharmonics. Figure
3(d) shows the phase portrait of a typical case for —,

'

subharmonic with F=0.268. This state exists in a small
interval of the driving amplitude. As F is increased to
0.321 on curve 8', the hopping state disappears suddenly
and becomes stable with a symmetrical phase portrait ex-
tending over the two valleys as shown in Fig. 3(e). It im-
plies that the central barrier plays no significant effect on
the motion for large excitations. In other words, the sys-
tem is again in a situation with small nonlinearity.

Alternatively, if the amplitude F is decreased from
above curve 8', a downward jurnp occurs at F=0.110 on
curve A'. The larger symmetrical phase portrait is re-
stored abruptly to a smaller nonsymmetrical one as shown
in Fig. 3(f). Note that curve A' is found only when the
initial state is above both curves 8 and 8 . This unusual
type of hysteresis with a great contraction implies a catas-
trophe associated with a symmetry breaking and ought to
receive more attention.

Now, in order to elucidate the features of crisis occur-
ring on curve D, the corresponding return maps as shown
in Fig. 4 are traced. Figure 4(a) shows the return map of
the chaotic attractor between the cascaded period dou-
blings and crisis with F=0.194. The map is similar to a
quadratic form, however, with a back-folded tail (mark).
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As F is further increased, the folded tail extends more and
more close to the line with X„+&——X„.At F=0.198 on
curve D the tail meets at a point (mark) on the line

X„+&——X„.The point is referred to as an unstable fixed
point with a slope dX„+~/dX„larger than 1 as shown in
Fig. 4(b). This case implies the occurrence of a boundary
crisis. In this moment, the motion in the right valley at
X&0 jumps into the left one at X &0 and, meanwhile,

develops a new part of the chaotic attractor with the simi-
lar quadratic shape. Therefore, it is a nondestructive type
of boundary crisis with abrupt expansion of the strange
attractor.

Similarly, the dynamic process of the state in the left
valley moving to the right one behaves in the same
manner as just mentioned. Thus, a crisis-induced hopping
between the two strange attractors appears. This feature

Ea)

(e)

FIG. 3. Phase portraits for co=1.2 and (a) F =0.092, the states just below (small) and above (large) curve B; (b) F=0.182, the

period-doubled state just above curve C; (c) F=0.198 the hopping state just above curve D; (d) F=0.268, the ~ subharrnonic state;

(e) F=0.321, the state just above curve B'; (f) F=0.110, the state just above (large) below (sma11) curve A'. X axis: X, 0.5U/div. Y

axis: X, 0.5 U /div.
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B. Frequency scanning

To find the dashed part of curves A, C, and D we in-
vestigate alternatively the dynamic process by frequency
scanning.

1. F)FgD

In the present case we choose F=0.100, a value be-
tween the critical ones of FzD ( =0.150) and F„D
(=0.045) as indicated in Fig. 2. As the frequency co is
lower down from 1.3 (path II) with the initial state above
curve B, the Feigenbaum route to chaos is first seen with
onset of period two at co=1.048 on curve C and then the
boundary crisis occurs at co=1.023 on curve D. The re-
turn map is shown in Fig. 6(a) where the strange attractor
contracts suddenly to a fixed point either in the original
right valley or in the left one rather than hopping. In
such a case the boundary crisis is referred to as destruc-
tive. Figure 6(b) shows the sampled signal X„asa func-
tion of frequency. It demonstrates the destructive feature

FIG. 4. Return maps with co=1.2 and (a) F=0.194, before
crisis; (b) F=0.198, crisis occurring on curve D.

n+1

is due to the nature of the symmetrical property of the po-
tential well. According to our observations, the state is
about equally likely to be in each valley of the potential
well and give rise to the low-frequency noise with approx-
imate I/f shape as shown in Fig. 5.

2. co (cogD

In this range, curves A, C, and D (dashed part) are not
found from this scanning process, because the process is
reversible. The hopping state above curve B directly re-
turns back to the initial stable state once the amplitude F
is lowered just below curve B and vice versa. (b)
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FICx. 5. Spectrum of the voltage signal X( t ) for crisis-
induced hopping with F=0. 199 and co = 1.2.

FIG. 6. (a) Return map of boundary crisis with F=0.100
and co=1.023, (b) response of voltage X„asa function of co with
F=0.100.
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with hysteresis after a cascade of period doublings. When
F is set larger than FzD, the crisis with hopping occurs on
curve D. The map is similar to Fig. 4(b). Hence curve 8
plays an important role in differentiating these two dis-
tinct types of boundary crisis.

2. F &FgD

However, if the driving amplitude F is chosen between
FzD &F &Fztt (0.015), then a hysteresis jump is observed
without any bifurcation or crisis occurring. Also, as F is
less than Fzz, the hysteresis disappears.

III. CONCLUSION

In this paper we have presented as intensive study of an
analog simulation for nonlinear oscillation with applica-
tion to the Duffing equation. Owing to the nonlinear ef-
fect, the dissipative system exhibits the following transi-
tion sequences: hysteresis, period doublings, and crises
with a global manner. The thresholds are shown in a state

diagram from which the transitions can be easily referred
to.

Two types of hysteresis are observed. One is accom-
panied by a symmetry breaking of the phase portrait as
occurred from a symmetrical two-valley to asymmetrical
one-valley motion. The other is confined to a one-valley
motion only. The former case with the symmetry break-
ing appears to be a large size contraction of the phase por-
trait.

Two types of boundary crisis are also observed. One is
associated with a hopping between two strange attractors,
and the other is associated with a destruction of the
chaotic attractor accompanying a hysteresis jump. The
former is also confirmed to have 1/f low-frequency noise.
The hysteresis upward-jump curve B acts as the border-
line for these two distinct types of crisis.

Our study not only supports the conjecture of Grebogi
et al. , but also further presents the persistent properties of
the crisis related to the symmetrical property and the
height of the central potential barrier in the Duffing equa-
tion.
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