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Abstract 
The most often used algorithm for acoustic echo cancellation is normalized least 

mean square (NLMS) algorithm due to its simplicity and robustness. However, the 

major drawback of NLMS algorithm is its slow convergence rate due to its constant 

step-size. We propose a new approach of adjusting step-size called optimum step-size 

NLMS. The word “optimum” means the step-size can provide the minimum tap 

coefficient error mean square error at each iteration step which leads the fastest 

convergence rate than other algorithms. Each tap has its individual time-variant 

step-size which adjusts with tap coefficient error variance. We analyze double talk 

detector proposed by J. C. Liu. It uses the concept of counter to record number of 

abrupt events happened during a short period when an abrupt change in residual echo. 

Echo return loss enhancement (ERLE) is used to indicate the cost of using different 

threshold. Finally, computer simulations will be presented to support the analysis.  
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Chapter 1 

Introduction 

 

In these years, hands-free telephone and teleconference systems are widely used 

[8], [18]. The main problem of those systems is acoustic echo which make listener 

annoyed. The problem comes about as a result of the reflections of the signal from the 

loudspeaker back to the microphone. We will introduce the fundamental problem and 

techniques of acoustic echo cancellation as below.  

 

Figure 1.1 Diagram of hands-free communication system 
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Figure 1.1 is a simplified diagram of a hands-free communication system, which 

provides an idea of how the acoustic echo causes inconvenience to the listeners in the 

rooms. Assume that a speaker in the far-end room is in communication using 

microphone with another speaker in the near-end room, the far-end speech will be 

transmitted back to the far-end room as a result of the coupling of the loudspeaker and 

microphone. That is, the far-end speakers will be annoyed by listening to his/her own 

speech delayed by the round-trip time of system. 

( )y n ( )t n

( )z n

ˆ( )y n

( )d n

 

Figure 1.2 Hands-free communication system with AEC 

 
A hands-free communication system with acoustic echo canceller (AEC) is 

shown in Figure 1.2 to overcome acoustic echo and provide satisfactory speech 

quality. The AEC estimates the impulse response of the room and generates an 

estimate of the echo. The estimated echo is then subtracted from the near-end 

microphone signal which includes the real echo. 

The most often used algorithm for AEC is least mean square (LMS) due to its 

simplicity, leading to its implementation in many applications [8]. However, the major 

drawback of LMS algorithm is its slow convergence rate. Due to a constant step-size, 

the inherent limitation of the LMS forces a compromise between the opposing 
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fundamental requirements of fast convergence rate and small misalignment. Many 

researches ([2], [4], [6]) have focused on using variable step-sizes to improve the 

convergence rate. Three of these step-size adjustments will be introduced in Chapter 2 

and a new approach (optimum time- & tap-variant step-size NLMS) which has the 

fastest convergence rate will be proposed in Chapter 3. The word “optimum” means 

the step-size can provide the minimum tap coefficient error mean square error (MSE) 

at each iteration step. We use individual time-variant step-size for each tap which 

results in optimum step-size NLMS (ONLMS) algorithm. Since it needs prior 

knowledge of room impulse response (RIR), we use an exponential decay room 

impulse response model for practical implementation in Section 3.4. We also provide 

a simplified piecewise ONLMS algorithm to reduce its computation load in Section 

3.5. We find that tap coefficient error variance is an important issue of step-size 

adjustment. When the tap coefficient error variance is large, we use a larger step-size 

and vice versa, so the step-size can vary with tap coefficient error variance. We will 

discuss this in Section 3.6. 

Double-talk (DT) is another serious problem in the acoustic echo cancellation. 

This situation occurs when simultaneous talks occurs for both near-end and far-end 

speakers. It makes the AEC filter fails to estimate room impulse response and filter 

coefficient diverges. In Chapter 4, we use the simple DT detection scheme proposed 

in [14]. It uses a counter to record the number of abrupt events happened during a 

short period when an abrupt change is detected in error signal. After a short time delay, 

if the value of counter is larger than threshold, then the system decides the abrupt 

change is caused by DT. Otherwise, it is by echo path change. 

In Chapter 5, computer simulations follow to verify the results of our analysis in 

Chapter 3 and Chapter 4. 
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The main efforts in this thesis are: 

(1) Proposed ONLMS algorithm which can provide the fastest convergence rate 

compare to other step-size adjustment algorithms e.g. variable step-size 

NLMS (VSNLMS) [2], exponentially weighted step-size NLMS (ESNLMS) 

[6], proportionate NLMS (PNLMS) [4]. 

(2) Provide simplified piecewise ONLMS algorithm to reduce the complexity. 

(3) Discuss why ESNLMS and PNLMS have two different slopes of convergence 

curve. 

(4) Analysis of Liu’s algorithm based on the system correct decision probability. 

(5) Give a practical choice of threshold according to average ERLE. 

  

In this thesis, lower case letters are scalar numbers, lower case letters with under 

line are vector forms, and bold capital letters are matrix forms. For example, a  is a 

scalar number, a  is a vector and A  is a matrix. 
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Chapter2  

 

Adaptive Algorithms for Acoustic 

Echo Canceller 

 

 We will introduce different adaptive algorithms for acoustic echo canceller (AEC) 

which belong to the category of stochastic gradient algorithms in this Chapter. The 

difference of these algorithms is the adjustment of step-size. Because of the inherent 

limitation of the least mean square (LMS) algorithm (tradeoff between fast 

convergence rate and small misalignment), researchers have been constantly looking 

for alternative approach to improve its performance. Many approaches use varying 

step-size including time-varying [2], tap-varying [6] or both time- & tap- varying [4] 

step-size, which will be introduced in Section 2.3. 

Throughout this thesis, the word “time-variant” represents all taps use identical 

step-size which is time-variant. The word “tap-variant” means each tap has individual 
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time-invariant step-size, and the word “time- & tap-variant” means each tap has its 

individual time-variant step-size. 

 

 

2.1 Configuration of an acoustic echo canceller 

Figure 2.1 shows the configuration of an acoustic echo canceller. The echo 

canceller identifies the impulse response ( )w n  between the loudspeaker and the 

microphone. An adaptive filter ˆ ( )w n  is used to identify ( )w n  since the impulse 

response ( )w n  can vary with time. For easy implementation and stability purpose, 

ˆ ( )w n  is usually implemented using an FIR filter. 

( )y n

noise ( )z n

ˆ( )y n

( )d n

ˆ ( )w n
 ( )w n

near-end speech t( )n

far-end speech  ( )x n

( )e n

 

Figure 2.1 Configuration of an acoustic echo canceller 

 

If ˆ ( )w n  is equal to ( )w n , then the echo-estimate ˆ( )y n  will be equal to the echo 

( )y n  and the echo can be cancelled perfectly under noise free and no double talk 

situation. Adaptive filtering is required to obtain a good replica of the echo, since the 
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echo path is usually unknown and the time varying. The adaptive algorithm should 

provide: 

1. Real-time operation. 

2. Fast convergence speed. 

3. High echo return loss enhancement (ERLE), 

where ERLE is defined as the ratio of the real echo power to the residual echo power: 

2

10 2

[ ( )]
ERLE(dB) 10log                                                   (2.1)

ˆ[( ( ) ( )) ]
E y n

E y n y n
=

−
 

 

2.2 Least mean square algorithm 

 The least mean square (LMS) algorithm is an iterative algorithm to adjust the 

estimated impulse response so as to minimize the mean square error. The adaptive 

identification algorithm for the AEC is described as follows [1]: 

         ˆ ( 1)w n + = ˆ ( )w n + ( ) ( )                                                                 (2.2)ue n x n                                 

ˆ( ) ( ) ( ) ( )Te n d n w n x n= −                                     (2.3) 

 : the scalar step-size

( ) : error signal (return signal)

( ) : the signal received by the microphone

( )  [ ( ),  ( -1),..., ( - 1)] : the far-end signal with length 

 : the number of tap weight

u

e n

d n

x n x n x n x n L L

L

= +

ˆs in the adaptive filter ( )w n

 

      

0 1( )  =  [ ( ), , ( )] , true echo path vector (room impulse response)T
Lw n w n w n−�

 

ˆ ( ) w n 0ˆ=  [ ( ), ,w n � 1ˆ ( )] , estimate echo path vector T
Lw n−  

 
To make the LMS algorithm insensitive to changes of the level of input signal, 

the step-size is normalized, resulting in the NLMS algorithm described as: 
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ˆ ( 1)w n + = ˆ ( )w n + 2 ( ) ( )
( )

u
e n x n

x n
                          (2.4) 

Convergence of the mean squared error (MSE) is guaranteed [1] when 0 2u< < , 

and is fastest at 1u =  for white noise. 

 The NLMS algorithm has been the focus of much study due to its simplicity, 

leading to its implementation in many applications. Its transient mean square error 

(MSE) depends on (1) the step-size parameter u  in the NLMS algorithm, (2) 

,  0, , 1i i Lλ = −� , the eigenvalues of the input correlation matrix, (3) the initial tap 

coefficient setting, (4) the number of iterations of the algorithm. Given these 

expressions, we are wondering: does there exist an optimum value for u  which 

yields rapid convergence and small MSE? It is clearly a tradeoff. The final excess 

MSE is directly proportional to the step-size of the NLMS while the convergence time 

increases as the step-size decreases. A constant step-size parameter controls both the 

convergence rate of the filter coefficients and the final MSE from the Wiener solution. 

This disadvantage turns up a thought: adjusting step-size. Three popular approaches 

of adjusting step-size will be introduced in the following Section. 

 

 

2.3 Step-size adjustment 

Instead of using a constant step-size, time-variant, tap-variant and time- & 

tap-variant step-size are used in [2], [6], [4], respectively. In this Section, we will 

introduce these three typical approaches of step-size adjustment. 
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2.3.1 Variable step-size NLMS algorithm 

One popular approach is to employ a time-varying (time-variant) step-size for 

coefficient update recursion. This is based on using large step-size when the algorithm 

is far from the optimal solution, thus speeding up the convergence rate. When the 

AEC filter coefficient is near the optimum, small step-size is used to achieve lower 

MSE, thus achieving better overall performance. 

 In [2], the step-size adjustment of variable step-size NLMS (VSNLMS) 

algorithm is controlled by the power of the error signal: 

2

max max

min max

                  ( 1) ( ) ( )      with  0 1,  0                           (2.5)

and 

             if  ( 1) 
                  ( 1)             if  ( 1) 

( 1)     

u n u n e n

u u n u

u n u u n u

u n

α β α β′ + = + < < >

′ + >
′+ = + >

′ +
                                          (2.6)

          otherwise

�
�
�
�
�

 

The motivation is that a large error signal i.e., ( )e n  will cause the step-size to 

increase to provide faster tracking while a small error signal will result in a decrease 

in the step-size to yield smaller misalignment. The constant maxu  is chosen to ensure 

that the MSE remains bounded and minu  is chosen to provide a minimum level of 

tracking ability. The VSNLMS algorithm has reduced the tradeoff between 

misalignment and convergence rate of the fixed step-size NLMS algorithm.  

 

2.3.2 Exponentially weighted step-size NLMS algorithm 

 Knowledge of the room impulse response (RIR) is rarely used in conventional 

algorithms. An adaptive algorithm taking into account the variation of an acoustic 

echo path is expected to improve convergence. 

 The exponentially weighted step-size NLMS (ESNLMS) algorithm [6] uses a 
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different step-size (tap-variant) for each tap of an adaptive filter. These step-sizes are 

time-invariant and weighted proportional to the expected variation of a RIR. The 

algorithm is based on the fact that the expected variation of a RIR becomes 

progressively smaller at the same exponential rate as the impulse response energy 

decays. As a result, the algorithm adjusts coefficients with large echo path variation in 

large steps, and coefficients with small echo path variation in small steps. The 

ESNLMS algorithm is expressed as: 

ˆ ( 1)w n + = ˆ ( )w n + 2

( )
( )

( )

e n
x n

x n
U                              (2.7)

 

and a diagonal step-size matrix U  with diagonal form is introduced to account for 

the tap-variant step-sizes: 

0

1

1

0

                                                                                        (2.8)

0 L

u

u

u −

� �
� �
� �=
� �
� �
� �	 


U
�

 

where  0   for  0, , -1i
iu u i Lγ= = …  and � is the room exponential attenuation factor 

(0 1)γ< < . 

The scalar step-size u  in Eq.(2.5) is replaced by a step-size matrix U  in 

Eq.(2.8). Elements iu  are time-invariant and decrease exponentially from 0u  to 

1Lu −  with the same ratio γ  as the real room impulse response ( )w n .  

 

 

2.3.3 Proportionate NLMS algorithm 

For acoustic echo cancellation, it is reasonable to assume that the echo path is 

sparse, i.e., many coefficients are zeros, therefore only the nonzero active coefficients 
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need to be identified (updated). This is the idea behind the proportionate NLMS 

(PNLMS) [4] algorithm. It exploits the sparseness of such impulse response to 

achieve significantly faster adaptation than NLMS. 

The PNLMS algorithm updates each coefficient of the filter independently of the 

others by adjusting the adaptation step-size in proportion to the estimated filter 

coefficient. Specific equations are  

 

, 0ˆ( ) max max , ( ) , ,{{i PNLMSu n w nρ δ= � 1ˆ ( )  ,}Lw n− ˆ ( )              (2.9)}iw n  

1

,
0

1
 ( ) ( )                                                                          (2.10)

N

i PNLMS
i

u n u n
N

−

=
= �  

ˆ ( 1)iw n + ,
2

( ) ( ) ( )ˆ ( )
( ) ( )

i PNLMS
i

u n e n x n i
w n

u n x n

β −= +  

where     :  scalar

              :  to avoid filter taps being stuck at zeros forever

              :  for the case when coefficients are zero

β

ρ

δ

 

 
 The step-sizes are calculated from the last estimate of the filter coefficients so 

that a large coefficient receives a large step-size, thus increasing the convergence rate. 

The concept is similar to ESNLMS algorithm, but the advantage of this technique 

compared to ESNLMS is that less a prior information is needed e.g., ( )w n . From 

Eq.(2.9), the active coefficients with large step-sizes are adjusted faster than non 

active coefficients (i.e., small or zero coefficients). Hence, PNLMS converges much 

faster than NLMS for sparse impulse response (i.e., responses for which only a few 

coefficients are significant).  

From Eq.(2.8) and Eq.(2.9), we observe that both ESNLMS and PNLMS 

algorithms rely on the concept of using large step-size for large tap. It is quite 

intuitive that large tap will produce large estimate tap coefficient error and should use 
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large step-size for fast tracking. This is appropriate at the stage of initial adaptation. 

However, this intuition is no longer sustained after initial period and this is why these 

two algorithms have two distinct slopes on convergence curve. 

From Eq.(2.5), the VSNLMS algorithm uses the power of error signal to adjust 

the step-size which is different from ESNLMS or PNLMS at first look. However, the 

same idea of large step-size used for large error (whether individuals or amount all 

taps), since the error signal is the sum of all taps coefficient error. This makes 

VNLMS use identical (time-variant) step-size. 

Computer simulation will compare standard NLMS algorithm and other variable 

step-size algorithms described above in Chapter 5. 
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Chapter 3 

Optimum Step-size for NLMS 

Algorithm 

 

 Most existing work on step-size optimization has considered a constant step-size 

[9], [10]. Two fairly easy approaches to optimize such a constant step-size are either 

to minimize the maximum of the absolute value of the eigenvalues of input signal 

correlation matrix or to minimize the steady state MSE. The latter approach is used 

most often in practice since after the initial convergence, which is a temporary 

phenomenon, one has to live with the steady state MSE. This consideration leads to a 

small step-size and hence slow convergence. Bershad [9] has considered choosing the 

step-size to minimize the MSE at the end of the observation interval via analysis and 

numerical evaluation. This is a quite meaningful criterion in applications such as 

channel equalization for data communications. Chen and Wang [10] derived a closed 

form formula for the optimum selection of the step-size for a desired MSE. The only 

attempt to derive an optimum variable step-size (time-variant) sequence was by Slock 

[7]. Slock determined the optimum step-size (time-variant) to provide the minimum 

MSE at each iteration step. A closed form solution for an optimum step-size sequence 

was derived for NLMS algorithm in case of discrete-valued white input signal by 
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Slock. 

 We are trying to find out optimum step-size to provide the minimum MSE at 

each iteration step which is similar to Slock. Slock has assumed that tap coefficient 

error variances are identical for all taps. This assumption results in time-variant 

step-size. Instead, we use individual time-variant step-size for each tap due to tap 

coefficient error variance may not be identical for each tap. The optimum step-size 

can be obtained by setting the derivative of tap coefficient error variance formula with 

respect to ( )iu n  equal to zero. Hence, the optimum step-size can provide minimum 

MSE at each iteration step. Slock also uses discrete-valued white signal as input 

signal which is different from the continuous-valued white Gaussian signal that we 

use. We use the RIR exponential decay model for practical implementation. This 

derivation is based on an LMS algorithm. 

We will introduce the optimum step-size sequence of Slock in Section 3.1. In 

Section 3.3, we derived optimum time- & tap-variant step-size LMS (OLMS) 

algorithm and the similar method based on the NLMS algorithm can obtain ONLMS 

algorithm. We also give the general iteration formula for the tap coefficient error 

variance. Practical implementation and simplified piece step-size of ONLMS 

algorithm will be proposed in Section 3.4 and Section 3.5, respectively. The 

comparison of convergence rate of ONLMS and other algorithms will be discussed in 

Section 3.6. Finally, comparison of computational complexity will be shown in 

Section 3.7. 

 

3.1 Optimum step-size sequence of Slock 

Slock has proposed a time varying (time-variant) step-size sequence [7] that 



 15 

provided the minimum MSE at each iteration step. A closed form solution for an 

optimum step-size sequence was derived for NLMS algorithm in case of discrete 

white input signal described below: 

2

( 1)
1

                  ( ) ( 1)                                                                     (3.1)
( 1)

1

u n
Lu n u n

u n
L

−−
= −

−−
 

and  

min
2(0) 1                                                                                         (3.2)
d

J
u

σ
= −  

where 2 2[ (0)]d E dσ =  and ( )d n is the signal received by the microphone . When 

min 0,  (0) 1J u= =  which leads to ( ) 1u n ≡ . It means that one should use maximum 

convergence speed in the noiseless case. On the other hand, if 2
min ,  (0) 0dJ uσ= =  

and hence ( ) 0u n ≡  which also shows: the equality of the noise to the variance of the 

desired signals means no improvement is possible by adapting the filter. The step-size 

curve of Eq.(3.1) decays with time which agrees the intuition that large step-size in 

initial state for fast convergence rate and small step-size in steady state for small 

misalignment. Different initial values (0)u  will merely correspond to a shift in time 

of the convergence process. 

Slock assumes that tap coefficient error variances are identical for all taps in his 

analysis. This assumption simplifies the analysis and results only in case of 

time-variant step-size. However, it may not be hold. This makes Slock’s algorithm 

converges slower then the proposed optimum step-size NLMS algorithm. In next 

Section, we derive time- & tap-variant optimum step-size without the assumption and 

further discuss this issue in Section 3.6. 
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3.2 Notations 

 Before derivation and descriptions, the following notations are used [see also Fig 

2.1]: 

2 2

2

0 1

                     =  [ ( ) ] , noise power 

                     =  far-end input signal variance

ˆ( )                 =  ( ) ( ) [ ( ), , ( )] ,coefficient error vector

( )            

z

x

T
L

E z n

v n w n w n v n v n

n

σ

σ

−− =

U

�

0

1

( ) 0
     =  time- & tap-variant step-size diagonal matrix

0 ( )

( )                =  [ ( ) ( )]  , correlation matrix of the far-end signal

( )                =  [ ( ) ( )]

L

T
x x

T
v

u n

u n

n E x n x n

n E v n v n

−

� �
� �
� �
� �	 


=R R

R

�

� � �

�

0

1

( )
, correlation matrix of tap coefficient error 

( )L

g n

g n−

� �
� �= � �
� �	 


�

 

 

Different from Slock, we assume the input signal ( )x n  is continuous-valued 

white Gaussian noise (WGN) in the following Sections. For simplicity, the 

assumption of echo path is time invariant (i.e., ( )w n w= ) and near-end speech 

( ) 0t n =  are also made. 
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3.3 Derivation of optimum time- & tap-variant step-size 

LMS algorithm 

 
We want to find out the step-size which can minimize each tap coefficient error 

variance i.e., MSE for each iteration step. Hence, we use step-size diagonal matrix 

( )nU  for LMS algorithm of Eq.(2.2) and (2.3) which can be rewritten as:  

         ˆ ( 1)w n + = ˆ ( )w n + ( ) ( ) ( )                                                              (3.3)n e n x nU  

ˆ                  ( ) ( ) ( ) ( )                                                                             (3.4)Te n d n w n x n= −  

We plug ˆ ( ) ( )w n v n w= +  into Eq.(3.4) so that 

                  ( ) ( ) ( ( ) ) ( )                                                                     (3.5)Te n d n v n w x n= − +
 

Substitute Eq.(3.5) into Eq.(3.3) to obtain  

ˆ ( 1)w n + ˆ= ( ) ( ) ( )[ ( ) ( ( ) ) ( )]Tw n n x n d n v n w x n+ − +U  

                ˆ= ( ) ( ) ( ) ( ) ( ) ( )( ( ) ) ( )                    (3.6)Tw n n x n d n n x n v n w x n+ − +U U  

and the coefficient error vector ˆ( ) ( )v n w n w= −  at time 1n +  becomes  

ˆ                 ( 1) ( 1)

ˆ                              = ( ) ( ) ( ) ( ) ( ) ( )( ( ) ) ( )

                              = ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( )]

                 

T

T T

v n w n w

w n n x n d n n x n v n w x n w

v n n x n v n x n n x n d n w x n

+ = + −

+ − + −

− + −

U U

U U

             =[ - ( ) ( ) ( )] ( ) ( ) ( ) ( )                                    (3.7)TI n x n x n v n n x n z n+U U  

We may now express the correlation matrix of the coefficient error as follows: 

2

2 2

( 1) ( ) 2 ( ) [ ( ) ( ) ( ) ( )] ( ) [ ( ) ( ) ( ) ( ) ( ) ( )]

                 ( )                                                                                                 

T T T T T
v v

z x

n n n E x n x n v n v n n E x n x n v n v n x n x n

nσ

+ = − +

+

R R U U

U R     (3.8)
 

 
where the cross-products terms [ - ( ) ( ) ( )] ( )TI n x n x n v nU  and ( ) ( ) ( )n x n z nU  in 
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Eq.(3.7) disappear because of the independent and zero mean assumptions of the 

noise ( )z n . 

We assume the step size is small, so that the LMS filter acts as a low-pass filter 

with a low cutoff frequency [1]. With this assumption, the variation of the coefficient 

error vector ( )v n  with time is slow compared with that of the input vector ( )x n . In 

the direct-averaging method [1], we may replace the product ( ) ( )Tx n x n  by its 

expected value and Eq.(3.8) becomes:  

2

2 2

( 1) ( ) 2 ( ) ( ) ( ) [ ( ) ( ) ( ) ( ) ( ) ( )]

                 ( )                                                                                                     (3.9)

T T T
v v x v

z x

n n n n n E x n x n v n v n x n x n

nσ
+ = − +

+

R R U R R U

U R

 

The Gaussian assumption (see in the Appendix) is used next to simplify the third term 

in Eq.(3.9), then we can obtain 

4 2 2 2( 1) ( 2 ( ) ) ( ) ( )[2 ( ) ( ( )) ] ( )         (3.10)v x v x v v z xn n n n n trace n nσ σ+ = − + + ⋅ +R I U R R U R R I U R  

The diagonal terms of Eq.(3.10) become 

1
2 2 4 2 4 2 2 2

0

( 1) (1 2 ( ) 2 ( ) ) ( ) ( ) ( ) ( )             (3.11)
L

i i x i x i i x j i x z
j

g n u n u n g n u n g n u nσ σ σ σ σ
−

=
+ = − + + +�  

Eq.(3.11) is the general iteration form of tap coefficient error variance. If we assume 

tap coefficient error variance are identical i.e., 0 1( ) ( )Lg n g n−= =� , then the fourth 

term of Eq.(3.11) will become 2 4( ) ( )xLu n g nσ  and Eq.(3.11) will be independent of 

i , which finally results in optimum time-variant step-size. However, this assumption 

used by Slock may not hold. We use identical (time-variant) step-size for individual 

tap coefficient error variance to verify it. Based on NLMS algorithm, Eq.(3.11) can be 

rewritten as 
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2 22 1
2 4 2 2

2 2
0

( )( )( )
( 1) (1 2 2 ) ( ) ( ( ) )               (3.12)

L
x

i x x i x j z
j

u nu nu n
g n g n g n

L L L
σσ σ σ σ

−

=

+ = − + + +�  

Due to different initial value 2 2ˆ(0) [( (0) ) ]i i ig E w w w= − = , coefficient error variance 

for different tap will not be identical for any n . Thus, using identical step-size for 

every tap converges slower than using individual step-size i.e., Slock’s algorithm has 

slower convergence rate than the ONLMS algorithm. 

The optimum time-& tap-variant step-size can be obtained by taking derivative 

of Eq.(3.11) with respect to ( )iu n  and setting the result equal to zero. 

1
2 4 4 2 2

0

( 1)
2 ( ) 4 ( ) ( ) 2 ( ) ( ) 2 ( ) 0       (3.13)

( )

L
i

x i i x i i x j i x z
ji

dg n
g n u n g n u n g n u n

du n
σ σ σ σ σ

−

=

+ = − + + + =�  

Thus we can get the optimum time- & tap-variant step-size  

, 1
2 2

0

( )
                  ( )             [LMS]                           (3.14)

(2 ( ) ( ) )

i
i OLMS L

x i j z
j

g n
u n

g n g nσ σ
−

=

=
+ +�

 

for  0, , -1i L= … . The similar method based on the NLMS algorithm by assuming the 

input signal ( )x n  is WSS with zero mean can be obtained as follows: 

, 1
2

0

( )
                  ( )                  [NLMS]                      (3.15)

(2 ( ) ( ) )

i
i ONLMS L

i j z
j

Lg n
u n

g n g n σ
−

=

=
+ +�

  

for  0, , -1i L= … . Difference between Eq.(3.14) and Eq.(3.15) is due to the 

denominator in Eq.(2.4), note that 2 2( ) xx n Lσ≈ . 

The step-size obtained from this approach is optimum in the sense that, if it is 

used from 0n =  to n k= , the tap coefficients error at the time instant n k=  is 

minimum. 

 Substitute Eq.(3.14) into Eq.(3.11), we can get a recursive formula for the tap 

coefficient error variance ( )ig n  as follows: 
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2
,                  ( 1) ( )(1 ( ))                   [LMS]                              (3.16)i i x i OLMSg n g n u nσ+ = −  

for  0, , -1i L= …  and similarly  

, ( )
                  ( 1) ( )(1 )                       [NLMS]                         (3.17)i ONLMS

i i

u n
g n g n

L
+ = −  

The ONLMS algorithm is summarized by the following equations:  

1. ˆ( ) ( ) ( ) ( )Te n d n w n x n= −  

2. 2
,

( )
( )       

(2 ( ) ( ( )) )
v

ONLMS
v ii v z

L n
n

n tr n σ
=

+ +
RU

R R I
 where 

0,

1,

( )

( )

( )

0

0

ONLMS

ONLMS

L ONLMS

u n

n

u n−

� 

� �

= � �
� �� �
� �

U �  

 

3. ˆ ( 1)w n + = ˆ ( )w n + 2

( )
( ) ( )

( )
ONLMS

e n
n x n

x n
U   

4. 
( )

( 1) ( )( )    ONLMS
v v

n
n n

L
+ = − UR R I  

The step-size adjustment is based on (2) and (4).  

 We will use ONLMS algorithm in the following discussion. 

  

 

3.4 Practical ONLMS algorithm 

 We have derived Optimum time- & tap-variant step-size for NLMS algorithm in 

Eq.(3.15). But it is useless since it requires prior knowledge of RIR iw  due to 

2ˆ( ) [( ( ) ) ]i ig n E w n w= − . However, we can use the exponential decay model of RIR 

and use the iteration form of ( )ig n  in Eq.(3.17) to for practical implementation. 
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iw

: en velopih

Assume the RIR iw  can be modeled as an exponential decay envelope ih  

shown in Figure 3.1. Let decay envelop function be: 

0
i

ih h γ=     for 1, , 1i L= −�                               (3.18) 

where γ  is the room exponential decay factor. 

 

 

 

 

 

 

       

Figure 3.1 RIR decay envelop 

 

 

The diagonal element of tap coefficient error variance matrix ( )v nR  is 

2ˆ( ) [( ( ) ) ],  0, , -1i i ig n E w n w i L= − = … . We let the initial filter tap coefficients to be 

zero i.e. ˆ (0) 0iw =  so that 2 2 2ˆ(0) [( (0) ) ]i i i i ig E w w w h= − = ≈ . We substitute (0)ig  

into Eq.(3.15) to get (0)iu . With (0)iu  plugged into Eq.(3.17) we can get (1)ig  

and so forth i.e., (0) (0) (1) (1)i i i ig u g u→ → → →� . Thus, we can obtain 

( ) iu n for  0, , -1i L= …  at any iteration step. The practical ONLMS algorithm with 

an exponential RIR model can be described as follows: 

1. Measure room exponential decay factor γ  to get 0
i

ih h γ=  

2. Set up initial value 2(0)i ig h≈  for  0, , -1i L= …  



 22 

3. 2
,

( )
( )       

(2 ( ) ( ( )) )
v

ONLMS
v ii v z

L n
n

n tr n σ
=

+ +
RU

R R I
where  

0,

1,

( )

( )

( )

0

0

ONLMS

ONLMS

L ONLMS

u n

n

u n−

� 

� �

= � �
� �� �
� �

U �  

4. ˆ( ) ( ) ( ) ( )Te n d n w n x n= −  

5. ˆ ( 1)w n + = ˆ ( )w n + ( ) ( ) ( )ONLMS n e n x nU   

6. 
( )

( 1) ( )( )    ONLMS
v v

n
n n

L
+ = − UR R I  

By using the exponential RIR model, we can implement the ONLMS algorithm. 

 

3.5 Simplified ONLMS algorithm 

 Using optimum time- & tap-variant step-size indeed increases convergence rate. 

However, this algorithm has a higher computational cost than the conventional LMS 

algorithms. 

 In order to reduce the computational load, we propose another simplified version 

of ONLMS algorithm which uses piecewise time-variant and tap-variant step-size. 

The method of choosing the step-size is described as follows: 

 

1. 00 n n≤ ≤  (initial state): At 0n = , from Eq.(3.15) we obtain 

2 2
, 1

2

0

(0)
 (0) (0)                  (3.20)

(2 (0) (0) )

i
i ONLMS i i iL

i j z
j

Lg
u g w h

g g
α α α

σ
−

=

= ≅ = ≈
+ +�

    

so iu  can be set proportional to 2(0)i ig h≈  i.e., 

        2          for  0, , -1                                                             (3.21)i iu h i Lα = …�                                                 
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Eq.(3.21) satisfied Eq.(3.15) only at 0n = . Convergence rate is fast only at the 

initial state and then slows down when 0n n> . 

2. 1n n>  (steady state): We substitute Eq.(3.15) into Eq.(3.17) to obtain  

1
2

0
1

2

0

( ) ( )
                ( 1) ( )( )                                                  (3.22)

2 ( ) ( )

L

i j z
j

i i L

i j z
j

g n g n
g n g n

g n g n

σ

σ

−

=
−

=

+ +
+ =

+ +

�

�
 

Since 
1

2

0

( ) ( )
L

i j z
j

g n g n σ
−

=
<< +�  , the fractional term of Eq.(3.22) will be close to but 

less than unity. After 1n  iterations, the difference among ( )ig n  for  0, , -1i L= …  

can be regarded as zero. Thus for 1n n> , 0 1( ) ( )Lg n g n−≈ ≈� , so iu  can be set 

proportional to 0 ( ) 1ig n =  (constant) i.e., 

                                                                                                        (3.23)iu iα ′ ∀�  

This turns into NLMS algorithm. Eq.(3.23) satisfied Eq.(3.15) when 1n n> . 

Convergence rate is fast only at steady state. 

 

3. For transient state 0 1n n n≤ ≤ , we set iu  proportional to 1/ 2 (0)ig  i.e., 

         for  0, , -1                                                           (3.24)i iu h i Lα ′′ = …�  

 This turns out to be the ESNLMS algorithm.  

 

0n 1n
2

i iu h∝ i iu h∝0 iu α′∝ n
 

Figure 3.2 Piecewise time-variant and tap-variant step-size for different state 
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In conclusion, Figure 3.2 illustrates three appropriate choices of step-size in 

different state. This results in piecewise time-variant and tap-variant step-size which 

reduces the computational load. However, simplified ONLMS does not perform as 

well as ONLMS.  

 

 

3.6 Comparison of convergence 

 In this Section, we are trying to find out the reason that ONLMS has fastest 

convergence rate than other algorithms and why PNLMS and ESNLMS have two 

distinct slopes of convergence curve from the point of view of the tap coefficient error 

variance The average power of error signal ( )e n  can be treated as convergence gain 

energy which is composed of all tap coefficient error variance, and can be expressed 

as [1]: 

1
2 2 2

0

                   ( ) [ ( ) ] ( )                                                     (3.25)
L

x i z
i

J n E e n g nσ σ
−

=
= = +�  

We can find out that both of the ESNLMS and PNLMS algorithms use large 

step-size for large taps and small step-size for small taps from Eq.(2.8) and Eq.(2.9), 

respectively. This means large taps have large ( )ig n  for these two algorithms at 

initial state. 

 At the stage of initial adaptation, the power of error signal is dominated by the 

contribution from large taps (large ( )ig n ). Convergence rate is very fast because 

large taps use large step-size. Eventually, however, the amount ( )ig n  at these taps 

reaches a point where it is becoming comparable to the amount ( )ig n  from the 
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others small taps, the amount ( )ig n  from small taps starts to dominate the power of 

error signal. The convergence rate then slows down because small taps use small 

step-size. This phenomenon makes both ESNLMS and PNLMS algorithms have two 

distinct slopes of convergence curve. For PNLMS algorithm, initial rapidly period 

through experiment [4] will last until ERLE achieved BREAK 10ERLE 10log ( )   ρ= −  

where � is defined in Eq.(2.9). Once BREAKERLE  has been achieves, PNLMS is no 

longer offering any advantage over NLMS with a constant step-size. 

Instead of just using large step-size, the ONLMS algorithm sets step-size directly 

proportionate to ( )ig n  which is similar to PNLMS and ESNLMS algorithms at 

initial state. Large ( )ig n  uses large step-size to increase the convergence rate. After 

the initial period, ( )ig n  becomes identical for every tap, which means the ( )J n  is 

composed of every ( )ig n  uniformly. From Eq.(3.15), identical ( )ig n  results in 

identical ( )iu n  thus convergence rate will not slow down. 

 In conclusion, ( )iu n  should be set proportional to ( )ig n  for fast convergence 

rate. Both PNLMS and ESNLMS algorithms use large step-size for large taps. This is 

appropriate since large taps indeed have large ( )ig n  at initial stage. However, when 

the values of ( )ig n  for large taps are less than those for small taps, the convergence 

rate then slows down. On the other hand, ( )ig n  for every tap will become identical 

for ONLMS algorithm after initial period. This results in identical ( )iu n  and will not 

slow down the convergence rate.  
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3.7 Computational complexity 

We have already discussed several approaches of adjusting step-sizes which 

increase the convergence rate. However, using time variant or tap-variant step-size 

has high computational complexity compared with the constant step-size. 

 The usual way to measure algorithm complexity is to compute required numbers 

of multiplications. Under this measure, LMS algorithm has a complexity of order 2L  

since every sample every one of L  impulse response estimated ˆ ( )iw n  must be 

multiplied by a delayed far-end signal to perform the convolution equation and these 

same delayed far-end signal samples must also be multiplied by a scaling of ( )e n  to 

perform the correlation needed in the update equation. NLMS algorithm has a 

complexity of order 3L  because in addition to the multiplies required before, 

squares of each of the ( )x n i−  are needed to form 
2( )x n .  

In practice, NLMS is usually implemented as an order 2L  algorithm with the 

simple trick of maintaining a running 2( )x n  by subtracting off the square of the 

outgoing sample. We assume this trick to be used by other algorithms as NLMS and 

the computational complexities of various algorithms are shown in Table 3.1. 

 We can find that the cost of increased convergence rate is the increased 

computation load. Traditional step-size adjustment approaches need L  

multiplications more compared to NLMS at every adaptation. ONLMS with has the 

fastest convergence rate needs additional 2L  multiplications. 

 

 

 



 27 

 

Algorithm Multiplications/sample 

LMS 2L 

NLMS 2L 

VSNLMS 3L 

ESNLMS 3L 

PNLMS 3L 

ONLMS 4L 

Simplified 
ONLMS 3L 

 

Table 3.1 Computational requirements for different algorithms 
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Chapter 4   

Double Talk Detection 
 
 In chapter 3, we introduced different adaptive algorithms for acoustic echo 

canceller. These adaptive algorithms always perform well in the single talk (ST) state. 

However, in the double talk (DT) state, we can see from Figure 2.1 that microphone 

input signal includes both near-end talker signal ( )t n  and echo signal ( )y n , the 

filter tap coefficients can fluctuate greatly or diverge to misestimate the echo path 

which means near-end signal acts as a large interference to the adaptive filter. Hence 

AEC should stop the filter adaptation during the double talk period. Therefore, double 

talk detectors are used in AEC to avoid DT situation. 

 Double talk detection (DTD) plays a very important part in AEC. The basic 

requirement for DTD is that it is able to detect DT quickly and accurately. Besides, it 

should also have the ability to distinguish the DT and room echo path change (EPC). 

In the past, there have been lots of researches on DTD. The conventional DTD 

algorithms are classified into three categories: (1) Level comparison type [11] is used 

to detect DT by comparing the error signal level with the primary input signal level 

e.g. Geigel DTD. (2) CLMS algorithm [12] is used to distinguish DT from varying 
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echo path and expanded CLMS has better performance than CLMS at the cost of 

higher computational complexity. (3) Cross-correlation type [13] can detect DT by 

making use of the orthogonal principle. In this Chapter, we adopt the level 

comparison to detect the abrupt change in error signal (signals sent to the far-end 

loudspeaker). In Section 4.1, the DT issue in echo canceller will be introduced and 

discussed. In Section 4.2, we will introduce a control scheme [14] which can 

discriminate DT and EPC after a short period dn . We are trying to find out the correct 

probability of system decision under DT or EPC situation. Further analysis will be in 

Section 4.3. 

 

 

4.1 Double talk in echo canceller 

( )y n

noise ( )z n

ˆ( )y n

( )d n

ˆ ( )w n
 ( )w n

speech t( )n

far-end speech  ( )x n

( )e n

 
Figure 4.1 Block diagram of the AEC with DTD. 

 

 One problem of the AEC is that the performance deteriorates drastically during 

the DT periods in which signals from both near-end and far-end speakers coexist. In a 
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common telephone call, the double talk is found to occupy up to 20 percent of the 

whole period [3]. During the DT periods, the echo is mixed into a large and strongly 

correlated near-end speed ( )t n  and results in a large interference component in the 

error ( )e n . Consequently, the AEC will quickly diverge from its converged state if 

the adaptive filter continues to update its coefficients during the DT periods. 

 We use the DTD to avoid the situation discussed above. According to the 

decision of the DTD, the adaptive filter updates its coefficients during ST periods and 

freezes adaptation during DT periods to avoid divergence. The basic DTD block 

diagram is shown in Figure 4.1. A simple and efficient way of detecting DT is to 

compare the magnitude of the far-end and near-end signals and declare DT if the 

near-end magnitude becomes large than a value set by the far-end signals. A proven 

algorithm that has been in commercial use for many years is the Geigel DTD [15]. In 

this algorithm, DT is declared if  

                  ( ) max{ ( ) , ( 1) , , ( 1)}                                     (4.1)d n x n x n x n Lβ≥ − − +�

 
The detector threshold β is set to 0.5 if the room attenuation is assumed to be 6 dB 

and to 0.71 if the attenuation is assumed to be 3 dB. The Geigel DTD is simple and 

fast. However, when the magnitude of ( )d n  is -6dB lower than 

max{ ( ) , ( 1) , , ( 1)} x n x n x n Lβ − − +�  during DT, the Geigel DTD fails to detect 

the DT. We can use another level comparison method to avoid this situation: 

2 2
                 ( ) ( )                                                                                     (4.2) x n C e n< ⋅
 

where C  is a constant larger than 1. If Eq.(4.2) takes place, then an abrupt change 

happened in error signal ( )e n . It will cause large ( )e n  when DT happened, 

regardless of the magnitude of ( )d n . 
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4.2 A scheme to distinguish EPC and DT 

 To distinguish EPC and DT is important for DTD because the adaptive filter 

coefficients should be continuously updated during EPC but should not during double 

talk periods. An adaptation architecture proposed in [14] illustrated in Figure 4.2 to 

achieve this goal. This scheme uses a counter to record the number of events 

happened within a short period dn  when an abrupt change in the error signal. After 

dn , the system can decide whether DT or EPC causes the abrupt change by compare 

the number of events with some threshold . 

 

( )y n

noise ( )z n

ˆ( )y n

( )d n

ˆ ( )w n
 ( )w n

near-end

speech t( )n

far-end speech  ( )x n

( )e n

( )fe n

( )ae n

fw

 
Figure 4.2 Liu’s scheme to distinguish DT or EPC. 

   

 We assume the convergence state is reached at beginning, then use Eq.(4.2) to 

detect an abrupt change. In Figure 4.2, whenever an abrupt change between ( )e n  

and ( )x n  is detected, an additional backup filter fw  and the modified Geigel 

detector is initiated. Within a short time dn , the modified Geigel detector compares 
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( )ae n  and ( )fe n  then outputs the smaller one to the far-end loudspeaker(error 

signal). This scheme is also used for detection of DT or EPC, while fw  is used to 

memorize the filter coefficients ˆ ( )w n  when the abrupt change occurs. 

 Suppose an abrupt change is detected. The filter fw  and its corresponding 

control logic as denoted by the dashed line in Figure 4.2 are activated immediately 

and the system yields 

ˆ                  ( ) 

ˆ                  ( ) ( ) ( ) ( )

                  ( ) ( ) ( )                                                                          (4.3)

f f

T
a

T
f f

w w n

e n d n w n x n

e n d n w x n

=

= − ⋅

= − ⋅

 

The output of error signal ( )e n  in the architecture during dn  is controlled by the 

modified Geigel as follows (assume room attenuation 6 dB ) 

( ),     d(n) 0.5 max{ ( ) , ( 1) , , ( 1)}
                  ( )      (4.4)

( ),     d(n) 0.5 max{ ( ) , ( 1) , , ( 1)}
a

f

e n x n x n x n L
e n

e n x n x n x n L

� < ⋅ − − +�= � ≥ ⋅ − − +��

�

�
 

After time dn , the modified Geigel detector will be disabled. 

 Let N  denote the number of abrupt events when ( )ae n  is greater than 

( )fe n  within time period dn . If the increase of error signal is due to DT, then 

( )ae n  using adaptive AEC filter ˆ ( )w n  should be higher than ( )fe n  using the 

frozen backup filter fw . Otherwise, if the error signal increase is due to EPC, ( )fe n  

should be higher than ( )ae n . Hence, the control logic after dn  can decide whether 

DT or EPC causes the abrupt change according to N  as follows: 

        echo path change
                  If   =                                                     (4.5)

                 double talk
T

T

N
N

N

<�
� ≥�

 

where TN  is the decision threshold for discriminating EPC from DT. The adaptive 
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filter coefficients after dn  performs as follows 

2
ˆ ( ) ( )              echo path change

( )ˆ                   ( 1)                    (4.6)

( )                                            double talkf

u
w n e n

x nw n

w n

� +�+ = �
�
�

 

The backup filter fw  with its corresponding control mechanism, disappears after dn , 

and the above logic continues until 2 2
( ) ( )x n C e n≥ ⋅ . 

 Below is a brief summary of the general process of the approach: If an abrupt 

change is detected at steady (converged) state, the backup filter coupled with the 

original AEC filter and its corresponding control logic are initialed. Error signal is the 

output according to the modified Geigel algorithm within a short delay dn  before 

new convergence. After dn , the system then determines DT or EPC according to 

Eq.(4.5). If the cause of the abrupt change in the error signal is DT, the adaptive filter 

ˆ ( )w n  is substituted with fw , and the algorithm stops the adaptation process 

( ˆ ( 1)w n + ˆ ( )w n= ), which prohibits coefficient update. Otherwise, the algorithm 

continues to update. 

 

4.3 Analysis of correct decision probability 

 Although Liu has proposed a scheme to distinguish DT or EPC, it requires 

further analysis on correct decision probability. In this Section, we will focus on the 

correct decision probability (or error probability) under DT situation using Liu’s 

scheme. 

Figure 4.3 illustrates the curve of misalignment 
ˆ ( )w w n

w
−

 . 
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Figure 4.3 Exhibition of the schemes reaction when detected DT. 

 

 DT happens at 4000n =  and is detected at 4065n = . The system starts to 

compare ( )  and  ( )a fe n e n  then decides the cause of abrupt change in error signal 

after dn . 

 

4.3.1 Assume ( )ae n  as Gaussian random variable 

 The correct decision of DT situation means when DT occurs, TN N≥  after dn . 

In other words, we want to find out the probability (correct probability) that ( )ae n  

has at least TN  times greater than ( )fe n  within dn  sample period. We assume 

ˆ ( )fw w n=

dn

compare ( ) ,  ( )a fe n e n

fn
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( )ae n  during for dn  time (sample), denoted as 1 2, , ,
dnx x x� , are Gaussian random 

variables with same variance 2σ  and different means 1, ,
dna a�  i.e., 2~ ( , )i i xx N a σ  

illustrated in Figure 4.4. We use 0a  to represent ( )fe n  which is assumed to be a 

constant. It is actually related to the parameter C  in Eq.(4.2). 

1x 2x 3x
dnx

1a 2a 3a
dna0a ( )a ie n

�

( )( )a iP e n

Figure 4.4 Each sample ( )ae n  is assumed to be a Gaussian random variable within          

 the period dn  samples 

 

 

Figure 4.5 Tap coefficient misalignments with different step-sizes under DT situation 
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Figure 4.5 averages fifty times experiments of the tap coefficient misalignment 

when DT happens at 4000n = . From Figure 4.5, we find out that tap coefficient 

misalignment increases exponentially when continuing the adaptation under DT 

situation. Since tap coefficient misalignment is another expression of error signal 

( )e n , we can assume ( 1)
1  i r

ia a e −= ⋅  for  2, , di n= � . The exponential factor γ  is 

related with the step-size. 

We use iA  to represent the abrupt event 0  (i.e., ( )  > ( ) )i a i fx a e n e n>  under 

DT situation. The probability of iA  can be expressed as 

0
0                  ( ) ( ) ( )                                                             (4.7)i i i ia

P A P x a f x dx
∞

= > = �  

where 

2

2

( )1
                  ( ) exp( )                                                           (4.8)

22
i i

i
xx

x a
f x

σπσ
− −= ⋅   

It’s hard to express the probability of detect DT correctly since ( )iP A  is different for 

1, , di n= � . For example, if 3,  2d Tn N= =  the probability of the system can 

correctly detect DT situation is written as  

1 2 3 1 3 2 2 3 1(correct) ( ) ( )(1 ( )) ( ) ( )(1 ( )) ( ) ( )(1 ( ))P P A P A P A P A P A P A P A P A P A= − + − + −  

It is even more complicate if dn  and TN  are even larger, so we try another way to 

discuss this issue. 

4.3.2 Decision sample 

 We use the random variable K called ”decision sample to describe the 

number of needed samples before the number of abrupt events 

0  (i.e., ( )  > ( ) )i a i fx a e n e n>  reaches TN  under DT situation. We can see from 
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Figure 4.5 that tap coefficient misalignment curves rise sharply at the initial stage 

when DT happened, which means the number of abrupt events 0ix a>  will increase 

closely and rapidly in the meantime. Thus, K  can be modeled as an exponential 

distribution illustrated as below 

 

k
dn

( )KP k

λ

threshold  TN
 

Figure 4.6 Exponential distribution of the decision sample K  

 

( )                   ( )                                                                                  (4.9)Tk N
KP k e λλ − −=

  

If K exceeds dn , which means there are not enough abrupt events 0ix a>  

within dn  period, therefore the system would declare EPC after dn  under DT 

situation. Right side of the dash line in Figure 4.6 indicates the probability that the 

system is unable to detect DT after dn  under DT situation, so the correct probability 

can be written as follows: 

( ) 1 ( )

                1 d

d d

n

P K n P K n

e λ−

≤ = − >

= −
                                (4.10) 

The factor  is a function of TN  and it will be increased while using smaller TN .  
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Smaller TN  can raises up the correct probability of system decision under DT 

situation. However, smaller TN  is not only sensitive to the back ground noise but 

also increases the error probability of system decision under EPC situation. It is 

obviously a tradeoff for system decision of an abrupt change in the error signal. So 

TN  plays an important role for system decision of an abrupt change in error signal. 

The relation between TN  is roughly inversely proportional from experiments. 

We will demonstrate this phenomenon in chapter 5. The correct probability of system 

decision will increase when dn  is larger, but it also increases the detection time of 

the system. 

 We then use the ERLE defined in Section 2.1 to represent the cost of system 

failing to detect an abrupt change in the error signal. Different TN  results in 

different average ERLE for both DT and EPC situation, which is defined as  

 

error correct                  ERLE( )= (error)ERLE + (correct)ERLE                           (4.11)TN P P

 

where errorERLE  is the cost ERLE  of a wrong decision and correctERLE  means a 

correct decision. We assume an abrupt change can be detected instantly, i.e., f ssw w≈  

where ssw  is the steady state estimated echo path. In other word, this ERLE can be 

treated as STERLE  when system decides the abrupt change is caused by DT and 

stops adaptation. Hence, Eq.(4.11) can be rewritten as  
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DT DT ST                  ERLE ( )= (EPC | DT)ERLE + (DT | DT)ERLE                    (4.12)TN P P
 

EPC ST ST                  ERLE ( )= (DT | EPC)ERLE + (EPC | EPC)ERLE               (4.13)TN P P
 

From [17], ERLE under ST (single talk) and DT is given as follows: 

 

10

(2 )
                  ERLE 10log                                                                   (4.14)y

ST
z

u P

uP

−
=

10

(2 )
                  ERLE 10log                                                                 (4.15)

( )
y

DT
t z

u P

u P P

−
=

+
 

where  ,     and  y z tP P P  are the power of ( ) ,   ( )  and  ( )y n z n t n , respectively. 

 In this Section, we analyzed Liu’s scheme under DT situation. The EPC situation 

can be analyzed using the similar method. The correct decision probability of Liu’s 

scheme is related to threshold TN  and delay period dn . Computer simulations will 

be shown in Chapter 5. 
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Chapter 5 

Computer Simulations 

 

 In this Chapter, computer simulations are used to verify the algorithm discussed 

in Chapter 3 and Chapter 4. First, we define some parameters to measure the 

convergence time in Section 5.1, and compare the convergence rate of different 

algorithms in Section 5.2. The performance of the proposed algorithm: ONLMS, its 

practical approach, simplified ONLMS with tap-variant step-size will be shown in 

Section 5.3. The issue of tap coefficients error will also be discussed in Section 5.4, 

and we will focus on the relation between coefficients error variance and step-size for 

different algorithms.  

 Nonlinear effect is a practical problem for AEC and we will simulate its effect to 

our algorithm in Section 5.5. Through Section 5.6-5.8, we give the cost of ERLE and 

find out its error probability of system decision under abrupt change (DT or EPC) at 

error signal using different threshold TN . We use white Gaussian noise as input 

signal without any additional statement in this Chapter and speech signals will also be 

used for verification in our results.  
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5.1 Simulation parameters and room impulse response 

 The room impulse response w , shown in Figure 5.1.1, is measured and 

down-sampled from the real environment in our laboratory [16] and an object change 

in room makes another impulse response shown in Figure 5.1.2. Another impulse 

response is use to simulate EPC situation. Note that the echo impulse response is 

measured by Maximum Length Sequence (MLS) [16] method, the sampling rate is 

8kHz and down-sampling by a factor 66M = . Figure 5.1.3 illustrates the speech 

signal with sampling rate 8 kHz. In our simulations, we use the normalized tap 

coefficients error (misalignment) factor ( )nε  defined by the following equation to 

compare the performance of those algorithms. 

ˆ ( )
                  ( )                                                                                    (5.1)

w w n
n

w
ε

−
�  

The factor ( )nε  represents system tracking ability of AEC for room impulse response 

(RIR). The signal to noise ratio is defined as  

10                  10 log                                                                                   (5.2)y

z

p
SNR

p
�  

where yp  and zp  are the average power of the real echo signal and noise. 

 We are interested in the convergence rate of those conventional algorithms 

discussed in Chapter 2 and ONLMS algorithm discussed in Chapter 3, so we defined 

three parameters to measure it as follows: 

(1) ( )ss nε  : The steady state ( )nε  that ( ) ( 1) 0.001n nε ε− − < . 

(2) 0.4T  : The time that misalignment ( )nε  reaches 0.4 . 

(3) sT   : The time that misalignment ( )nε  reaches its steady state ( )ss nε  

We also assume both numbers of filter tap and length of RIR equal to 300. 
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Coefficients of the filter in echo canceller were initialized to zero and the adaptation 

was disabled for the first 200 samples. 

 

Figure 5.1.1 Room impulse response 
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Figure 5.1.2 Room impulse response in the same room 

 

 Figure 5.1.3 Speech signal with sampling rate 8 kHz 
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5.2 Performance comparison of convergence rate for 

different algorithms 

 There are lots of algorithms using variant step-size perform (i.e., convergence 

rate) better than using constant step-size such as VSNLMS (time-variant step-size), 

ESNLMS (tap-variant step-size) and PNLMS (time- & tap-variant step-size) which 

have been discussed in Chapter 2. In this Section, we compare their convergence rate 

under different SNR. All algorithms are tuned to achieve the same misalignment 

( ( )ss nε ) for a fair comparison. 

Figure 5.2.1 shows the convergence curve of different algorithms. At initial state, 

NLMS (dash line) has the slowest convergence rate compared to others using variant 

step-size algorithms. However, PNLMS and ESNLMS converge slower than NLMS 

after the initial state. We can check Table 5.1 that 0.4T  and sT  also indicate this 

situation. Two distinct slopes in the convergence curves of PNLMS and ESNLMS are 

readily apparent in Figure 5.2.1 as discussed in Section 3.6. ESNLMS using 

tap-variant step-size converges fast than NLMS using constant step-size at first but 

becomes the slowest at steady state. The VSNLMS using time-variant step-size 

performs better than NLMS which indeed reduced the tradeoff between misalignment 

and convergence rate. The proposed ONLMS algorithm using optimum time & tap 

variant step-size has the fastest convergence rate whether in initial or steady state. 

 The parameters settings chosen for Figure 5.2.1 and Figure 5.2.2 are as follows: 

300,  10 (Figure 5.2.1),  30 dB (Figure 5.2.2)L SNR= =

NLMS : 0.35u =  

VSNLMS : =0.99, =0.04α β  
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ESNLMS : 0.015γ =

PNLMS : 0.01,  0.01ρ δ= =

ONLMS : =0.015γ

Figure 5.2.1 Convergence curve of different algorithms under SNR 30dB=  

 

 

algorithms 

convergence 
time  

NLMS VSNLMS ESNLMS PNLMS ONLMS 

0.4T  1089 884 690 755 293 

sT  4057 3817 20000 7738 2131 

 
Table 5.1 Performance of convergence rate for different algorithms under 

SNR 30dB=  

 



 46 

 
Figure 5.2.2 Convergence curve of different algorithms SNR 10dB=  

 

algorithms 

convergence 
time  

NLMS VSNLMS ESNLMS PNLMS ONLMS 

0.4T  1220 991 706 793 334 

sT  4090 2917 20000 7114 1667 

 
Table 5.2 Performance of convergence rate for different algorithms under 

SNR 10dB=  

 

We can see that algorithms converge fast at initial state and slow at steady state 

under high SNR, and the opposite situation happened at low SNR. Besides, there is no 

significant difference between Figure 5.2.1 and Figure 5.2.2 except steady state 

misalignment which is expected for different SNR [1]. 

 Then we use speech as input signal for verification. Because the fluctuation of 
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steady state misalignment for speech signal, we redefine ( )ss nε : The average of the 

last 100 ( )nε  samples. The parameters are set the same as Figure 5.2.1 

 

algorithms 

time & 
misalignment 

NLMS VSNLMS ESNLMS PNLMS ONLMS 

0.4T  3586 3580 3522 4077 2021 

( )ss nε  0.078 0.079 0.0942 0.0927 0.0701 

 
Table 5.3 Performance of different algorithms under SNR 30dB=  

 

 

algorithms 

time & 
misalignment 

NLMS VSNLMS ESNLMS PNLMS ONLMS 

0.4T  3863 3927 3794 5916 3543 

( )ss nε  0.2672 0.2868 0.2443 0.2868 0.2394 

 
Table 5.4 Performance of different algorithms under SNR 10dB=  

 

 From Table 5.3 and Table 5.4, ONLMS algorithm indeed has fast convergence 

rate than other algorithm using speech input. 

 

5.3 ONLMS algorithm 

 We have shown thus far that the use of step-size adjustment improves the 

convergence rate of the NLMS algorithm. In this Section, we will focus on the 

proposed algorithms using optimum-time & tap-variant step-size.  

 The algorithm proposed by Slock using time-variant step-size by Eq.(3.1) which 
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assumes 0 1 1( ) ( ) , , ( )Lg n g n g n−= = =� . We drop this assumption to obtain time- & 

tap-variant step-size, and compare these two algorithms to see the influence of using 

this assumption. 

 

 
Figure 5.3.1 Comparison of Slock’s algorithm and ONLMS under high SNR 

 

step-size     
adjustment 
 

convergence 
time 

NLMS Slock Simplified 
ONLMS 

practical  
ONLMS ONLMS 

0.4T  1257 658 502 467 294 

sT  5201 3756 3667 3667 2971 

 
Table 5.5 Performance of using different step-size adjustment underSNR 30dB=  

 

Figure 5.3.1 illustrates the convergence rate of ONLMS, practical ONLMS and 
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Slock algorithm under SNR 30dB= , and Figure 5.3.2 illustrates SNR 10dB= . As 

we discussed in Section 3.6, the ( )ig n  for 0, 1i L= −�  of Slock’s algorithm will 

not be identical, but it use identical step-size for all taps. This is the reason that 

Slock’s algorithm converges slower than ONLMS shown in Figure 5.3.1 and Figure 

5.3.2. The practical ONLMS algorithm which uses exponential decay model to 

simulate real RIR has similar performance to ONLMS algorithm even in low SNR. 

 

Figure 5.3.2 Comparison of Slock’s algorithm and ONLMS under low SNR 

 

step-size     
adjustment 
 

convergence 
time 

NLMS Slock Simplified 
ONLMS 

practical  
ONLMS ONLMS 

0.4T  1735 779 576 526 323 

sT  4995 3666 4995 2905 1968 

Table 5.6 Performance of using different step-size adjustment under 10SNR dB=  
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 From the simulation above, ONLMS indeed increases the converge rate. But it 

also increases the computational load. We use the simplified version of ONLMS 

which uses piecewise time-variant and tap-variant step-size discussed in Section 3.5.  

 

Figure 5.3.3 Convergence curves using piecewise time-variant and tap-variant 

step-size 

 

Figure 5.3.3 illustrates three different choices of tap-variant step-size which is based 

on the discussion in Section 3.6. The left and right dash line indicate 0n  and 1n , 

respectively. Three different curves have distinct slopes at different adaptation state. 

We choose the fastest part of them, respectively, which results in piecewise 

time-variant and tap-variant step-size. The combined curve performs better than 

NLMS but not as good as the original ONLMS. 
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5.4 Tap coefficient error variance 

The convergence gain energy is composed of tap coefficient error variance 

( )ig n  in Eq.(3.25). The variation of ( )ig n  decides the convergence rate that we 

have discussed in Section 3.6. In this Section, we use computer simulation to verify 

the discussion. 

Since the RIR is exponentially decay, we define first 1/3 echo path of RIR as 

“large taps” and last 2/3 echo path as “small taps”. The sum of large taps’ ( )ig n  

represented as large ( )G n  and sum of small taps’ represented as small ( )G n .  

Figure 5.4.1 and Figure 5.4.2 illustrate ESNLMS and PNLMS algorithm’s sums 

of tap coefficient error variance, respectively. From Figure 5.2.1, ESNLMS and 

PNLMS convergence start to slow than NLMS at about 2000n = . This is because 

large ( )G n  starts to become small than small ( )G n  as we discussed in Section 3.6. We 

can verify this phenomenon in Figure 5.4.1 and Figure 5.4.2. 
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Figure 5.4.1 large ( )G n  and small ( )G n  for ESNLMS  

 
Figure 5.4.2 large ( )G n  and small ( )G n  for PNLMS 
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Figure 5.4.3 illustrates ( )ig n  for ONLMS algorithm ( )ig n  with 

10,  70,  170,  270i =  representing of large and small taps. After the initial state, 

10 70 170 270( ) ( ) ( ) ( ),   g n g n g n g n n= = = ∀ , which means these taps use same step-size. 

Hence, convergence is still fast after the initial state. 

 

Figure 5.4.3 ( )ig n  for ONLMS algorithm where 10,  70,  170,  270i =  

 

5.5 Nonlinear distortion 

 AEC in microphones or video conferencing systems rely on the assumption of a 

linear echo path. However, low-cost audio equipment or constrains of communication 

systems cause nonlinear distortion, which limit the ERLE achievable by linear 

adaptation schemes. This means that an annoying nonlinearly distorted echo 

(“ nonlinear echo”) will be transmitted back to the far-end subscriber. In this Section, 
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we use saturation as nonlinear distortion on loudspeaker signals and find out the effect 

upon ONLMS algorithm. White Gaussian noise with zero means and unity variance is 

used as far-end signals. 

A commonly used function for modeling saturation is a sigmoid function (Figure 

5.5.1 for 1,  2 and 5α = ) defined as follow: 

2
                  ( ) ( 1)                                                                      (5.3) 

1 exp( )
f x

x
β

α
= −

− −
  

Figure 5.5.2 exhibits how nonlinear distortion effect ERLE under different SNR. 

Line with circle mark represents no distortion on loudspeaker signals. Compare to this 

line, others has lower ERLE due to nonlinear effect. The ERLE descend with 

increasing Hence, an annoying nonlinearly distorted echo transmitted back to the 

far-end user. 

 

 
Figure 5.5.1 Sigmoid function 
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Figure 5.5.2 Different  effect on ERLE under different SNR. 

 

5.6 The correct probability of system decision using different 

thresholds 

 We have discussed the architecture to distinguish DT and EPC in Section 4.2 and 

analyzed it in Section 4.3. We also defined “needed time (simple) for correct 

decision” as random variable K The correct probability decision is given in 

Eq.(4.10). 

 Figure 5.6.1 illustrates p.d.f. of K 50,  200TN = under DT situation. The 

K is an exponential distribution random variable which factor is inverse 

proportionate to TN . Right side of the dash line indicates the probability of error 
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decision. The curve of 50TN =  all lie on left side of the dash line which means 

using smaller TN  enhances system decision ability under DT situation. Larger TN  

makes p.d.f. curve more flat (i.e., smaller λ ) and shift toward right side which 

increase the error probability.  

Figure 5.6.2 illustrates the correct decision probability using different TN  under 

DT and EPC, respectively. In Figure 5.6.2, we set 300dn = , 40sn = , 30SNR dB= . 

Circle mark line represents decision correct probability when DT happens, and 

asterisk mark represents EPC happens. As shown in Figure 5.6.2, we have high 

correct decision probability when using low TN  under DT which is the same 

conclusion as Figure 5.6.1. 

 

 
Figure 5.6.1 Probability density function of k 50 and 200TN =  under DT. 
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Figure 5.6.2 The correct probability of system decision using different TN . 

 

The cross point between these two lines means system under DT and EPC case 

will have the same correct decision probability, and TN  is close to 2
dn . The cross 

point will be smaller with low SNR. 

 

 

5.7 Average ERLE using different threshold 

The average ERLE is defined in Eq.(4.11). Small TN  increases the error 

probability of system decision under EPC which results in smaller ERLE. For DT, 

large TN  increases the error probability which results in smaller ERLE as shown in 

Figure 5.7.1. 
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Figure 5.7.1 The average ERLE using different TN  

 

5.8 AEC with DTD 

We use the ONLMS algorithm for AEC proposed in Chapter 3 combined with 

the DTD discussed in Chapter 4 for implementation a complete system. 

Figure 5.8.1-5.8.3 illustrate misalignment under DT and EPC using WGN as 

input signal with 50,  150,  250TN =  respectively. The parameters settings chosen 

for the Section are as follows: 
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 300

 50,  150 ,  250

 SNR 30 

 DT : 30000 ~ 34000

 EPC :  70000
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C

n

N

dB

n

n
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⋅ =

⋅ =

⋅ =

⋅ =

 

Figure 5.8.1 shows that system make correct decision under DT but error 

decision under EPC with 50TN = (too small). Under EPC, small TN  makes system 

decide that abrupt change is caused by DT and stop the adaptation. 

When using 150 ( 2)T dN n= , system can have correct decision under both DT 

and EPC shown in Figure 5.8.2. When using 250TN = (too large), system makes 

correct decision under EPC but error decision under DT shown in Figure 5.8.3. The 

filter coefficients diverge at DT period due to system make error decision. 

 

Figure 5.8.1 Misalignment under DT and EPC with 50TN =  
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Figure 5.8.2 Misalignment under DT and EPC with 150TN =  

 

Figure 5.8.3 Misalignment under DT and EPC with 250TN =  
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Figure 5.8.4 Misalignment under DT and EPC using speech with 150TN =  

 

. 
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Chapter 6  

Conclusions 

 

 An acoustic echo canceller can overcome the acoustic feedback that interferes 

with teleconferencing and hands free telecommunication. The most often used 

algorithms for AEC are LMS or NLMS due to its simplicity. However, these 

algorithms have slow convergence rates due to their constant step-size. Instead, other 

algorithms ([2], [3], [6]) use variant step-size to increase the convergence rate.  

In Chapter 2 and Chapter 3, we introduced these algorithms and derived ONLMS 

using time- & tap-variant step-size that provides the minimum MSE at each iteration 

step which has the fastest convergence rate. The RIR exponential decay model is used 

to implement ONLMS algorithm in Section 3.4. In order to reduce its computation 

load, we proposed a simplified piecewise step-size ONLMS algorithm in Section 3.5. 

 We analyze a simple DTD scheme which can distinguish DT or EPC when an 

abrupt change in Chapter 4 and use a probability model to explain the relation 

between threshold factor TN  and correct decision probability. 

 Computer simulations shown in Chapter 5 demonstrate that (i) ONLMS 
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converges fastest than other algorithms whether in initial or steady state, (ii) practical 

and simplified ONLMS, (iii) sum of tap coefficient error variance for large and small 

taps of ESNLMS and PNLMS algorithms, (iv) nonlinear effects on the ERLE of 

ONLMS, (v) average ERLE with different decision thresholds TN . 

The future work can be: (i) compare ONLMS with another class of algorithm 

such as RLS, (ii) the selection of parameters 0n  and 1n  for the simplified piecewise 

step-size ONLMS algorithm, (iii) convergence condition of ONLMS algorithm, (iv) 

analytical formula for correct decision probability. 
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Appendix 

Gaussian Assumption 
 

 In this appendix, we are trying to simplify the third term in Eq.(3.9) which is 

showing below using Gaussian assumption.  

                 =  [ ( ) ( ) ( ) ( )]                                                                    (1)T TE x n x n x n x nB A

where A  represents the symmetric matrix ( ) ( )Tv n v n . 

The Gaussian assumption: If 1 2 3 4, , ,z z z z  are real zero-mean, Gaussian random 

variables then 

1 2 3 4 1 2 3 4 1 3 2 4 1 4 2 3                 [ ] [ ] [ ] [ ] [ ] [ ] [ ]                  (2)E z z z z E z z E z z E z z E z z E z z E z z= + +

Using subscripts to denote the components of the vectors ( )x n  and ( )v n , where the 

dependency upon ( )n  is momentarily suppressed, we compute the  thkl  term in 

Eq.(1): 

1 1 1 1

0 0 0 0

4

( ) [ ][ ( ) ( )

                                              ( ) ( ) ( ) ( )]

                                          [ ] [

L L L L

kl k p pq q l pq k p q l
p q p q

k q p l k l p q

kl x

b E x x a x x E a E x x E x x

E x x E x x E x x E x x

E a Eσ

− − − −

= = = =

= =

+ +

= +

�� ��

1
4 4

0

] [ ] ( )                     (3)
L

lk x pp x
p

a k l E aσ δ σ
−

=

+ − �
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where 2 2[ ]x kE xσ = . Note that kx  and pqa  are assumed to be independent, and 

( )p qE x x  is zero for p q≠  since ( )x n  is WGN. We can obtain the matrix form of 

Eq.(3) : 

4                  [2 ( ) ( ( )) ]                                                             (4)x v vn trace nσ= + ⋅B R R I  
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