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Abstract

In OFDM channel estimation, 'we ustally utilize training signals. In case of a
time varying channel environment; the channel responses, estimated during
training period, can't represent‘the channel during data transmission. In such fast
fading channel, we propose the sub-symbol polynomial interpolation algorithm
that retains most significant taps algorithm to interpolate channel responses in data
position. We derives its mean square error (MSE) that includes both model and
noise errors. We verify the MSE performances of the derived results and the
simulation results by using a time varying channel, whose statistics are known.
The proposed sub-symbol polynomial interpolation that is the most effective in the
fast fading channel, compared with the existing polynomial interpolation, the

decision direct algorithm, and the linear interpolation.
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Chapter 1

Introduction

Orthogonal frequency division multiplexing (OFDM) has recently become popular
due to its desirable properties such as its robustness to intersymbol interference (ISI)
and impulse noise, its high data’rate transmission: capability with high bandwidth
efficiency, and its feasibility- inapplication: of* adaptive modulation and power
allocation across the subcarriets accordingtorthe ¢channel conditions [1]-[3]. It has
been adapted in many applications such-as-ADSL (Asymmetric Digital Subscriber
Line) [4], broadcasting Services such as European DAB (Digital Audio Broadcasting)
[5], DVB-T (Terrestrial Integrated Services Digital Broadcasting) [6] and multimedia
wireless services such as Japanese MMAC (Multimedia Mobile Access
Communication) [7].

The independence among subcarriers simplifies the design of the equalizer and
provides an easy method for data recovery. Since the channel information is required
in equalization. Channel estimation plays an important role in OFDM system design.
Channel estimation is a challenging problem in wireless communications. Because of
the mobility of the transmitter, the receiver, or the scattering objects, the channel

response can change rapidly with time.



In typical OFDM systems, some part of the transmitted signal is known. In one
approach, the transmitter periodically provides known training sequences, which can
be used for channel estimation. In a second approach, the pilot channels are provided
for channel estimation. This approach is related to the pilot tone approach [8]-[10].
The pilot channels are stronger in power than the information channels.

When there are sufficiently strong pilot channels or sufficient pilot sequence, the
channel can be tracked by filtering channel measurements obtained from the pilot
information. The filter smoothes the noisy measurements over time and works best
when the channel estimate is based on future as well as past channel measurements.
Specifically, for a given filter, channel estimation performance depends on the pilot
information, fading channel characteristics, and noise level. Pilot information, in term
of how much energy and how often it is availabley is a tradeoff between minimizing
overhead and optimizing channel estimation<performance. For example, with pilot
symbols, how often symbols must be’sent_depends-on how rapidly the channel is
changing.

In channel estimation based on training symbol for time varying channel, some
methods need information of statistics of channel [11]-[12]. Channel estimation based
on statistics of channel is more complex, but its performance is usually better,
depending on the accuracy of the Wiener filter quantities. Channel estimation based
on correlation of channel requires knowledge of the statistics of the fading process
and the statistics of the measurement noise process. The fading process statistics can
be related to parameters of a channel model, such as Doppler spread and average
channel coefficient power. Such information is usually unknown. There are many
ways to find the statistics of fading process and noise process, but they increase

system complexity. The statistics of channel also change with time. The change of



statistics of channel will cause mismatch problem [11]. The performance will be
degraded. In order to decrease complexity of channel estimation, we focus on the
channel estimation methods without using statistics of channel. One of the simplest
forms of channel estimation using pilot symbols is the linear interpolation [13]. With
linear interpolation, the channel estimate at a certain time period is a linear
combination of the two nearest channel measurements. Linear interpolation can be
viewed as applying a filter with symbol-spaced taps to the channel measurements,
which contain zeros at the unknown data symbol points. It may get worse channel
estimation in cases of high Doppler shift and long distance between training
sequence.

We use the polynomial interpolation in this thesis. Compared to the linear
interpolation with polynomial interpolation, the polynomial interpolation is more
accurate to model a time varying.channel. It‘may have higher complexity than the
linear interpolation, but it saves large Complexity than the channel estimation based
on statistics of channel. The polynomial interpolation can be done in the time domain,
in the frequency domain, and in both time and frequency domain [14]-[16]. Some
OFDM systems have many subcarriers. There will be a long symbol duration in this
system. Channel will is likely to change within one OFDM symbol. We define this
rapid change of channel as fast fading channel. The sub-symbol polynomial is
proposed for the fast fading channel. The estimation error of sub-symbol is divided
into two parts. One is noise error, caused from the noise of the system. The other is
model error, which is the difference between real channel impulse and polynomial
model. Because the model error is depends on the statistics of channel, we use a time
varying channel model in Section 3.1. The statistics of channel will be derived and

utilized to check performance of model error. Compared to an existing



time-frequency polynomial interpolation [14] with our proposed sub-symbol method,
the latter performs better for two reason. One is the time-frequency polynomial
interpolation operated on slow fading channel. It is not suitable to estimate a fast
fading channel. The other reason is that the time-frequency polynomial interpolates
channel in frequency domain. The channel changes more rapidly in the frequency
domain than in the time domain. Interpolation in the frequency domain incurs a larger
model error than interpolation in the time domain. In corporating the MST method in
[17], the sub-symbol polynomial interpolation only needs to interpolate specific delay
taps. It saves more computation than the polynomial interpolation in frequency
domain.

Chapter 2 will discuss the channel estimation methods for time invariant channel.
The frequency pilot time averaging [17] method will be introduceed first. Then the
most significant taps [17] will=be.introduced-to improve channel estimation in time
domain. Another improvement-of FPTA method, linear minimum mean square [18],
is also introduced in Chapter2. The,LMMSE method is based on statistics of channel.
In simulation results, we can find that the performance of LMMSE is close to the
performance of MST. The implementation of MST is easier than LMMSE. MST
seems a better channel estimation method than LMMSE. But MST has a problem of
selecting proper number of taps. When the numbers of selected taps are less than real
numbers of channel taps, Error floor will occur. We also derive the MSE (mean
square error) of this error floor in Chapter 2. The channel in Chapter 2 is considered
ustationary between two training symbols and equal to the channel of previous
training symbol. The channel estimation in one training symbol can be used to
recover data.

In Chapter 3, we consider the time varying channel. The channel estimation



method for time varying channel based on training symbol will be introduced. The
channel estimation in training symbol will be obtained with FPTA or MST. Then we
introduce decision directed algorithm [19], linear interpolation, and proposed
sub-symbol polynomial interpolation which is used in fast fading channel. We
derived the MSE of channel estimation for sub-symbol polynomial interpolaiton
method. Its MSE is divided into the noise error and model error. We investigate the
sensitivity of the noise error and the model error to different system parameters,
including the Doppler frequency, the training rate, the polynomial order and two
channel models. We also compare the proposed method with an existing polynomial
interpolation in Chapter 3. The simulation results are shown in Chapter 4. In Chapter

5, the conclusion is given.



Chapter2

Channel estimation in time
invariant channel

In this chapter, we will introduce several channel estimation method based on
training symbols. The channel in this chapter is time invariant. The channel can be
estimated by using training symbol. The,estimated channel can be used to recover
data because the channel is time invariant. In-Section 2.1, The OFDM configuration is
displayed. Because Cyclic Prefix is:usedinithe OFDM system, a simple one-tap
equalizer achieves data recovery easily.-Then frequency pilot time averaging (FPTA)
channel estimation method [17] and its performance are introduced in Section 2.2.
The most significant taps (MST) channel estimation method [17] which can improve
frequency time domain averaging method [17] is introduced in Section 2.3. The
missing tap problem will cause error floor in the performance of MST algorithm. The
degredation is also derived in this section. Finally, the linear minimum mean square
(LMMSE) channel estimation method [18] is introduced in Section 2.4. The LMMSE
channel estimation is also based on the FPTA method. The channel statistics and
noise process must be known in the LMMSE method. It is more complex than the

MST method.



2.1 System model
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Fig. 2.1 OFDM system block diagram; transmitter and receiver.

In typical OFDM systems as shown in Fig. 2.1, some part of the transmitted signal
is training symbol, the transmitter periodically provides known training symbol,
X[k] are called frequency domain signals. The frequency domain signals pass the
Inverse Fast Fourier Block, then we get the time domain signals x[n]. In order to
mitigate ISI effect and keep orthogonal property of sucarriers, The Cyclic Prefix (CP)
is added before time domain signal. The time domain signals with CP are transmitted
in mobile wireless environment. In the receiver side, we remove CP first. Then the
received training signals are picked for channel estimation. Suppose the pilot

tones P[k] are located in a time-frequency plane in Figure 2.1. The training symbols

are multiplexed with data symbols in all OFDM symbols at a training rate P. (ratio



of number of training symbols to number of total symbols). The number of all
subcarrier is N and k& is subcarrier index. The transmitted training signal in
discrete-time domain, excluding CP, can be expressed as

p[n] = IFFT, {P[k]} 2.1
where IFFT,{} is an N-point inverse Fast Fourier transform of an OFDM symbol

and n is the time-domain index, n =0,1,..., N —1. Suppose the wireless channel has

a discrete-time impulse response given by
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Fig. 2.2 Data grid in time-frequency plane of an OFDM signals
L-1
hln]=Y a,6n—1,] (2.2)

1=0
where a, is called delay coefficient, 7, is the discrete propagation delay, L is the

number of multipaths. In general, the delay coefficient is uncorrelated between
different propagation delay paths. This property will be utilized in LMMSE channel
estimation method later in this chapter. After passing through a multipath wireless

channel, the time domain received samples of an OFDM symbol, if appropriate cyclic



prefix guard samples are used, is given by

r[n]= p[n]® h[n]+wln] (2.3)
where ® represents N -point circular convolution, w[n] are independent and
identically distributed (iid) AWGN samples with zero mean and variance of o .

Assuming perfect synchronization, the FFT output frequency-domain subcarrier
symbols can be expressed as

R[k]1= FFT,{r{n]}

(2.4)
= H[k]P[k]+W]k]
where W[k] is Fast Fourier transform of w[n]. Then the channel frequency

response at the pilot tones can be estimated by

= R _ gy WIKL (2.5)
Plk] Plk]

Alk]
where k is the subcarrier index of pilot tones: This rough channel estimation is
called LS (least square) estimation [ L7]-“If pilet tones don’t occupy all subcarriers,

some pilots are zero in the training symbol. The channel responses at those zero tones

can be obtained by interpolation.

2.2 FPTA channel estimation

A training symbol can be regarded as several time slots, with each time slot having
a pilot. In a slow fading channel or time invariant channel assumption, the impulse
response of each time slot is identical. A method can obtain the channel response in
the time domain by averaging these time slots. This method is referred to as the

Frequency Domain Time Average (FPTA) [17] technique.



2.2.1 FPTA channel estimation algorithm

In FPTA approach, pilot tones are multiplexed with data at a pilot ratio of 1/ K in

frequency domain. The frequency domain pilot symbol can be expressed as

M-1
Plk]1=)_Adlk —mK] (2.6)

m=0
where A is the pilot amplitude, k£ =0,1,...,N—1 and M =N /K is an integer.

The corresponding time domain samples contain K identical parts and are given by

pln]=IFFT{Plk]} = i%é‘[n—mM] 2.7)

m=0
where n =0,1,...,N —1. The time domain received sample vector of a training symbol
can be given by

r=p+w (2.8)
where r=[r,r,.. re, 1 , with r, =[r[0],r[1].....n,[M —1]] ,
w =[w[0], w[1],..., w[N —1]], p' is‘cireular convolution of pilot signal and channel
impulse response and can be expressed as p'=[p,.p....Px,' 1T Wwith
p,'=[p,'[0], p, ..., p, '[M —1]]. If the maximum channel delay spread is shorter
than the length of an time domain identical part, P.'= Pj', for i,j=01---,K-1

and the corresponding parts of received samples are averaged over K parts. This
intra symbol time averaging reduce the variance of noise samples by K times. The

averaged received samples over K parts is given by

1 K-1

ravg = E Zr] = p()'+wuvg (29)
=0

where W, =[W,, (01, W, [, [M =111 with w, [i]=1/K)> " "wii+IM].

avg =0

10



{w__li]} are iid zero mean complex Gaussian random variables with variance

avg

o’ =0’ /K. The FPTA[17] time domain channel estimation can be given by

t,avg

hepraln] = (K 1 At [n] 210
=h[n]+(K/Aw,, [n], n=0L..M-1 '

The corresponding frequency response is

H,,,,[k]= FFT, {h,,,[n]}, k=0,,.,N -1 (2.11)
Pilot tones lie on several tones of an OFDM system. If we apply channel estimation
method in Eq. (2.5), we can only obtain the frequency response of pilot tones. The
rest of data tone must be obtained by interpolation. If we use FPTA channel estimation,
the channel impulse response can be obtained first and the channel frequency
response can be obtained by Fast Fourier transform of the estimated channel impulse

response. We don’t need interpolation in frequency domain.
2.2.2 Analysis of FPTA channel estimation error

We define channel estimation error in time domain as

e[n) = hypy [n]—hnl= (K / Aw, [n]. (2.12)

avg
The variance of e[n] or Mean Square Error (MSE) of channel impulse response can
be given as follows

var{e[n]} = mse{e[n]} = E{e[n]e*[n]}
K> ., K (2.13)

|2 w.avg A| 2 O-w

A
The corresponding channel estimation error in frequency domain can be obtained by

Fast Fourier transform of e[n] and can be represented as follows

11



N-1

elk]= FFT,[e[n]]= Ze[n]e—jZﬂkn/N
o ) (2.14)
= [ ] —j2mkn/ N
;e nie

The variance (MSE) of channel estimation in frequency domain can be written as

var{E[k]} = mse{E[k]} = E{E[K]E"[k]}
N 2.15)

In the next paragraph, the MST will be derived. The MSE of FPTA will compare with
MSE of MST in next paragraph, and it will be shown that MST performs better than

FPTA.

2.3 MST channel estimation

There may not be so many channel paths with significant strength in N samples
interval of an OFDM symbol. Hénce, among N *samples (taps) of channel impulse
response estimate, many samples (taps) will have little or no energy at all except
noise perturbation. Neglecting those nonsignificant channel taps in channel estimation
may introduce some performance degradation if some of the channel energy is missed,
but at the same time it will eliminate the noise perturbation from those taps. Total
noise perturbation from those neglected channel estimate taps are usually much
higher than the mulitpath energy contained in them, especially for low SNR values.
Hence, neglecting those nonsignificant channel estimate taps can improve the channel
estimation performance significantly. There are two ways to select taps [17]. One is to
select several significant taps, and the other is to select the taps which is above a

threshold. If we select the channel taps, which are less than the real numbers of the

12



channel taps, we define this situation as missing tap or under-determined condition. In
opposition to the missing taps, the selected channel taps, whose numbers are more
than the real ones, are defined as over-determined condition. The error floor will
occur in the under determined-condition. It is a serious problem in the performance of
channel estimation. In this section, we want to derive the MSE performance of

channel estimation under the condition of missing taps.
2.3.1 MST channel estimation algorithm

Training symbol of the MST approach is the same as the FPTA in Eq. (2.6) and Eq.
(2.7). It contains K impulses and distributes uniformly in N samples of time
domain. If the channel path gains remain essentiallythe same over an OFDM symbol
interval, which is usually the case since OFEDM symbol is often designed to satisfy
this in order to maintain orthogenality,ameng subcarriers, then the received samples
corresponding to time-domain pilot samples contain K repeated version of scaled
channel impulse response which are independently corrupted by AWGN. In order to
choose most significant channel taps (MST), those K parts can be averaged so that
the noise variance is reduced by K times and more reliable most significant channel
taps can be obtained. In mathematical expression, the time-domain received samples
corresponding to time-domain pilot samples can be given by

rln]=h[n]® p[n]+w[n]

K-l 2.18
:AZh[n—mM]+w[n], n=01..,N-1 @19

m=0
Then averaging the received samples over K parts, we have the noise-corrupted

scaled channel impulse response

13



mg[n]—éh[n]+wmg[ 1, n=01,..,M-1

The FPTA channel impulse response estimation is given by

A

hFPTA[n]=§rwg[n]=h[n]+gw [n], n=0,1,.,M -1 (2.19)

avg

After channel impulse response is estimated by the FPTA algorithm, the most
significant J channel delay taps are chosen for the MST channel estimation.
Suppose the time indices of the most significant J taps are n,,n,,...,n,_ ;. The MST

method is obtained by setting the other channel taps gains to zero as shown below

J—
By (0] Z el 10 —n], n=01,.,N-1 (2.20)

i=0

The corresponding frequency response estimation is directly obtained by Fast Fourier
transform of h wsrn]. How to sélect thenumber of taps J is an important problem

in MST algorithm. In next paragraph, we discuss the: selection of J by analysis of

MSE for channel estimation.
2.3.2 Analysis of MST channel estimation error

In the mean square error analysis, we consider the over determined condition in
which J is larger than total number of delay taps L. Recall Eq. (2.20), the

estimated channel impulse response by the MST can be written as

J-

hysr[n]= Z ceraln; 100 —n;]

i=0 » (2.21)
= h[n] +§Zwmg [,16[n —n,]
i=0

The estimated frequency response can be obtained as follows

14



N-1 J-1
w, [1n.10[n—n,Je 27N (2.22)

mg
n=0 =0

H . [k]1= H[k]+

o |

The MSE in frequency response is

mse(HIK1) = E(HIk]~ H 5, [k] )
. (2.23)
K o

K.
Az tave — 7 mse{H}-‘PTA}

The MSE performance gain of the MST method over FPTA method is ideally KJ /N .
The smaller J gets the better performance of MSE, but J musts larger or equal to
L. The best choice of J issetto L.
Now, we extend the analysis of MSE to under determined condition (J < L). The
estimated channel impulse response by the MST can be written as
-l
Bysr (1= hys[n, 1000 < i

=0 (2.24)
—h[n]—Zh[n]é'[n n ]+—Zwmg[n 16ln—n,]

m=J

The estimated frequency response can-be obtained as'follow

N-1 L-1

H s (k1= HIK1= 3 3 hln,, 1000 —n,, Je %"
n=0 m=J (225)

N-1 J-1

W, [1,10[n —n, Je~ 2N
A =0

n=0 1

The MSE in frequency response is

mselH g5, (K]} = E{\H[k] Ay k1)
- KJ (2.26)
Z hin,] mse{HFPTA}

m=J
where O',f[n , is the power delay profile for the n,th propagation delay path. The
error floor occurs in this case because of missing tap. The channel estimation error

caused by the noise from an additional tap in channel estimation is much less than that

caused by missing one tap of the multipaths. The choice of the number of most

15



significant taps J must be larger than the number of multipaths to prevent channel
estimation error caused by missing taps. A suitable choice [17] for J may be two
times or more of the number of multipaths. Another MST tap selection can be
implemented by selecting the channel taps whose energy is above a threshold [17].
The threshold may be set as 77 times the maximum channel tap’s energy. In the
simulation results, we can find the suitable choice of 77 depend on the operating
SNR. A suitable choice of 7 is 20dB below 1/SNR. MST improves performance of
FPTA by noise suppression. If the channel taps is small. MST algorithm gains more
noise suppression by selecting fewer taps. Comparing the outdoor mobile channel
with the indoor wireless channel, there are fewer channel taps in the outdoor mobile
channel than in the indoor mobile channel.;Therefore, the MST algorithm is suitable

for the outdoor mobile channel béter, thairthe ifidoor wireless channel.

2.4 FPTA with LMMSE channel estimation

In Section 2.3, we use MST algorithm to improve FPTA channel estimation. In this
section we will introduce another channel estimation method, based on correlation of
channel, to improve FPTA channel estimation. This channel estimation method is
called LMMSE [18]. The performance of MST with matched selection of taps,
selected numbers of taps is equal to the real number of taps, is the same as the

performance of LMMSE.

2.4.1 LMMSE channel estimation algorithm
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FPTA channel estimation method can also be improved by using linear minimum

mean square error (LMMSE) [18]. In LMMSE channel estimation, we need to know

A

the autocorrelation matrix of h,,;, and the cross correlation matrix between h,,;,

and h .ﬁFPTA = [ﬁFPTA [0],hAFPTA [1],---,ﬁFPTA[M —1]]" is the estimated impulse response
with FPTA. h=[h[0],h[1],---h[M —1]]" is the true channel impulse response. If we

define the autocorrelation matrix R, and cross correlation R, as

R, =E {hAFPTAhAII;IPTA} (2.28)

R, = E{hh"} (2.29)

We can write LMMSE channel estimation [18] as

A A

hmmse = thRﬁ_ﬁthPTA (230)
Lets us consider a wide-sense=stationary uncorrelated: scattering (WSSUS) multipath

channel with power delay profile given by O'Z at delays of i OFDM sample

intervals. Due to the uncorrelated multipaths, the correlation matrix of channel

impulse response R,, becomes a diagonal matrix with the diagonal elements given by

the power delay profile. The Eq. (2.28) can be rewritten as

- . 9, o,
hﬂlﬁ’lS(f‘ = dlag{ 2 : 2 2 1 B
ol +BISNR o} + B/ SNR
2

o A
s }hFPTA

"o2 +B/SNR

(2.31)

where SNR/f in Eq. (2.31) is replaced by o (

A|K)’2,va denotes the noise

variance in time domain and K is the number of impulses in a training symbol.

Compared to MST with LMMSE, LMMSE needs more computation on estimation of
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channel correlation and noise power. We can find the performance of MST with
matched selection of taps in simulation results is similar to the performance of
LMMSE in simulation results. MST has lower complexity than LMMSE, MST seems
to be a better choice than LMMSE. But in general, we don’t know how many taps in
the channel. In next Chapter, we consider the time varying channel. The decision
directed algorithm [19], linear interpolation [13], and polynomial interpolation [14]
will be implemented by FPTA and MST. Furthermore, in fast fading assumption,
sub-symbol polynomial interpolation is proposed. The sub-symbol polynomial

interpolation apply MST algorithm to reduce complexity and do noise suppression.
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Chapter 3

Time Varying Channel Tracking

In Chapter 2, we introduced the FPTA method and MST method for channel
estimation. They work fine in time invariant channel. In this Chapter, The serious
problem, mobile fading channel, in channel estimation will be discussed. The channel
impulse responses change in different timesslot (One OFDM symbol is divided into
several time slots) of one OFDM: 'symbol. The-estimated channel impulse response of
the training symbol is an improper channel estimation for data symbols in time
varying channel assumption. In “order-to:solve this problem, the sub-symbol
polynomial interpolation algorithm will be proposed. We suppose every delay tap of
impulse response change in every time slot and is close to a polynomial function. The
polynomial interpolation utilizes LS channel estimation in training symbol to get the
coefficients of polynomial function. Then it interpolates the channel impulse response
in data symbol. The estimation error is divided into two parts. One is noise error,
caused from the noise of the system. The other is model error, which is generated by
the difference between real channel impulse and polynomial model. Because the
model error is relative to the statistics of channel, we use a time varying channel
model in Section 3.1. The statistics of channel will be derived and utilized to check

performance of model error. Furthermore, we can mitigate noise effect of the LS
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channel estimation in training symbol by Wiener filter. It makes some improvements
for higher-order polynomials. We also compare other existing time varying channel
estimation methods in this Chapter including decision directed algorithm, linear
interpolation, and time-frequency domain polynomial interpolation. The performance

of these channel estimation method will be shown in Chapter 4.

3.1 Time varying channel model

The concept of deterministic channel modeling [20] has recently been extended [21]
to frequency-selective mobile radio channels, resulting in a new class of model
processes, called deterministic Gaussian uncortelated scattering (DGUS) model. The
DGUS model can be interpreted as the deterministic counterpart of Bello’s [22]
stochastic WSSUS model. We describe DGUS model in equivalent complex baseband.

The function of the system and statistics of the model will be introduced latter.

3.1.1 DGUS channel model

The time variant impulse response of the DGUS model is given by a sum of L

discrete delay paths, according to

Wzt =Y aud-1,) G.1)

=0

where the real-valued a, are called delay coefficients, x4, (t) are complex
deterministic Gaussian process, and 7, are discrete propagation delays. Both the
delay coefficients a, and the discrete propagation delays g, () determine the delay
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power spectral density of frequency-selective deterministic channel models. Strictly
speaking, the delay coefficient is a measure of the square root of the average delay
power, which is assigned to the |th path discrete propagation path. The channel
disturbance of the Doppler effect, caused by the relative motion between the receiver
and the transmitter, are modeled in Eqg. (3.2) by complex deterministic Gaussian
processes.
N,
(1) = Z Cni€ EnalOh) (3.2)
n=1

where 1 =01...,L-1. N, denotes the number of harmonic functions, assigned to
the Ith path, c,, is the Doppler coefficient of the nth component of the Ith

propagation path, and f , and &, are the corresponding discrete Doppler

nl
frequency and Phase. The time-varying. channel impulse response h(t,z) is
completely deterministic. Therefore, the.correlation properties of h(t,z) are derived
from time average, instead of statistical averages.” Figure 3.1 shows the structure of

the complex Gaussian random process z;(t) in the continuous-time representation.

To ensure that the simulation model which is derived below has the same striking
properties as a uncorrelated scattering (US) model, the complex deterministic
Gaussian processes must be uncorrelated for different propagation delays, i.e., the
deterministic process g, (t) and g, (t) have to be designed in such a way that they
are uncorrelated for | # A, where 1,4=01,...,L—1. This demand can be fulfilled

easily if the discrete Doppler frequencies f_, are chosen in such a way that the sets
{£ f,, }and {£ f_, } are mutually disjoint for different propagation delays. Thus, the

US condition can be expressed by

US & f,=+f,, forl=4 (3.3)
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where n=12,..,N,, m=12,..,N,,and I,4A=01,...,L-1.

3.1.1 Statistic properties of DGUS channel

In the following paragraph, we derive the correlation properties of the deterministic

Gaussian process Eq. (3.2)

Fow, (7 )—|lmE Hy (Op, (t+ 7' )dt (3.4)

can be expressed in closed form by

N, ) '

r,. (r)=>cle® ifl=4 (3.53)
n=1

(z')=0,ifl 1 (3.5b)

/4 ,

where 1,4=01,..,L-1. rg, (z}) ~is"the autocorrelation function of the

deterministic Gaussian process g (t)defined by Eq.(3.2). Next, we define the Fourier

transform of autocorrelation function of deterministic Gaussian process r, , (7')

,Ul/ll ( f ) _[ HH (T )er”fT d T
N, (3.6)

Z O(f -

n=1

The S, , (f) is called the Doppler power spectral density of the Ith propagation
path. Without the loss of generality, the area of S, (f) over all frequency is equal
to one. The Doppler coefficients c,, must satisfy the following condition

¢l =1 (3.7)

for 1=01,...,L-1. In a typical mobile system, the Doppler power spectral density
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can be expressed as

k
— f]< 1,
S, (F)=9ayf5, =1 (3.8)
0 |f| < fy,
where k is a constant which depends on the average power of the deterministic
Gaussian process g (t) , and f,, is the maximum Doppler frequency. Then
combining Eq. (3.6) and Eq. (3.8), we can get the following equation

GO S (3.9)

fIf)z,l - fn2,|
We also have to satisfy the Eq. (3.7) condition. Finally, the Doppler coefficients c,

can be obtained from the discrete Doppler frequencies f .
e (3.10)

where n=12,..,N;, 1=01..,L-1:The Doppler power spectral density S, (f)
of DGUS channel can be determined from the Doppler power spectral density for | th
propagation path.

s, (f)=>a’s,, (f) (3.12)

The average Doppler shift of the DGUS model D!‘;) is defined by the first moment

of S (f),ie

ap
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[t (f)df
[ s,.(f)df

S a[> f,,c2]

1=0 n=1

M .
D,.:

(3.12)

L-1

Sa> ]

1= n=1

The Doppler spread D'® of DGUS model is defined by the square root of the second

7

central momentof S, (f),ie,

e apt

[ s, (f)df

_ Ii(f-D(l))ZS (f)df

-

(3.13)

-1

aI2 [zl( fn,ICn,I )2]
— [1=0 n=1 _ (Dfi;))z

L-1 N,

S aty i)

1=0

3.2 The FPTA and the MST method In time

varying channel

In this section, we introduce two channel estimation methods whose don’t need
statistic of channel in the time varying channel. One is decision direct algorithm, the
other is linear interpolation. In the decision direct algorithm, the initial channel
estimation in training symbol is obtained by FPTA or MST. Then decision direct
algorithm [19] is used to track the channel in the data position. In the linear
interpolation, channel in training symbol is also estimated by FPTA or MST. Then we
do linear interpolation by two neighbor training channel which is estimated with
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FPTA or MST.

3.2.1 FPTA and MST with decision direct algorithm

The corresponding channel frequency response estimation of the FPTA method or
the MST method is N-points Fast Fourier transform of h,,,, or h,g. A simple

decision directed method will be introduced. It is called one-tap Recursive Least

Squares filter [19]. The algorithm is

Amd) = a5 4oy Bm-1.1)
X(m,k)
(3.14)
Z(m,k) = M
H(m-1,k)

where R(m,k) is the received symbol:at kth, subcarrier and mth data symbol;
X (m,k) is the estimation of-the constéllation at +k th subcarrier and m th data

symbol; béi (m,k) 1is the estimation-of the démodulated channel; Z(m,k) is the
decision variable (a noisy estimate of the constellation value X (m,k)) and « is the

update factor in the estimation of the channel. The algorithm is also shown in Figure

3.1.
R(m,k) a .
R (m,k) H(m.k)
R(m, k) »é »D i >
Z(m,k) X (m,k) D
Decision f——pm| Inversion | *
-
Inversion [ -
H(m-1,k)

Fig. 3.1 Block of One-tap Recursive Least Square filter
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The initial channel estimation can be completed by training symbol (FPTA or MST),
then update the channel by the one-tap Recursive Least Squares filter. Periodic
resending of the training symbol will reorient the estimation of the channel to the

correct position. The errors will typically occur when the signal is in a deep fade.

3.2.2 FPTA and MST with linear interpolation algorithm

Time slot
K—
|
(o]
[e]
[e]
(o]
(o]
\ [~
Training Data Data Data Training
l Average l Average
hAFPTA(Oa n) =———O=— S
: | | hFPTA(rt’ n)
| |
I I :
| | |
! ! l
Training Data Data Data Training

Fig. 3.2 lustration of linear interpolation
In FPTA or MST methods, we use the channel that is estimated by training symbol
to recover data. The mobile fading channel changes with time. The channel of training
symbol is different from the channel of data symbol. Even the channel of training
symbol can be estimated very accurately, it still can’t be used to recover data.
Fortunately, because the channel doesn’t change rapidly in short-time intervals or in

low Doppler frequency mobile environment, then we can suppose that the channel
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presents the linear change between two training signals both in the time domain and in
the frequency domain. Figure 3.2 shows the illustration of linear interpolation. First,
we estimate channel of training symbol by FPTA or MST. The estimated channels of
two adjacent training symbols can be used to make a straight line, then we can
interpolate channel of data symbols by this straight line. The linear interpolation [13]
can be carried out in two domains. One is the interpolation in the time domain, which
is achieved by the linear interpolation in delay propagation path. The other is
interpolation in the frequency domain, which is achieved by linear interpolation in

subcarriers. If We insert training symbol in every r, OFDM symbols, in the time

domain, the linear interpolation for n th propagation path in mth OFDM symbol can
be shown as

~ rL—m
hLinear(m’ n) =

ﬁFPTA (0:n) + ﬁFPTA(rt ,n) (3.15)

s

t
where n=01L---,M -1; m=212, -4 f—L-rmand ﬁFPTA(m,n) is FPTA channel

estimation for nth propagation path in-mth training symbol. In the frequency
domain, the linear interpolation for mth OFDM symbol can be shown as

. r—m - m
H inear (M, K) = tT Hepra(0,k) +T H epra (1, k), (3.16)

t t
wherek =04,---,N =1, and H,,(m,k)is kth tone of Fast Fourier transform of

FPTA channel estimation in mth OFDM symbol. The performance of the time
domain interpolation and the one of the frequency domain interpolation are the same
because frequency domain interpolation can be obtained by Fast Fourier transform of
the time domain interpolation. The difference between these two domain
interpolations is that the time domain interpolation is less complex, due to the

numbers of multipaths are much less than the tones of an OFDM symbol. There is a
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less complex way. Using MST algorithm is much more convenient than using FPTA.
The linear interpolation based on MST channel estimation can be obtained by

~ r,—m m -
hLinear(m1n|): : hMST(O’nI)+_hMST(rt1n|)’ 1=01---,J-1

f h (3.17)
I:]\Linear(mv n|) = 01 1>J

where ﬁMST (m,n,;) is MST channel estimation for n,th propagation path in mth
training symbol. And n, is delay length, corresponding to | th significant delay path

of MST algorithm; m represents time index of OFDM symbols. Besides, the noise
suppression is the advantage of the linear interpolation based on MST algorithm.
Comparing to the decision directed algorithm with the linear interpolation, the
decision directed algorithm must demodulate the decision variable to obtain the
estimation of the constellation point. In our simulation, 64 QAM modulation is used.
The estimation of the constellation 'will fails: easily- The demodulation of 64-QAM
also cost a lot of computation. The linear interpolation is a more suitable choice than
decision directed algorithm. The linear. interpolation models variation of channel as
linear change. A more general variation of channel is a polynomial model. We propose

a sub-symbol polynomial interpolation in next paragraph.

3.3 Sub-symbol polynomial interpolation

The channel variation in physical world is smooth in both the time domain and the
frequency domain. Such a smooth varying function can be approximated by
projecting to a finite set of basis functions. Moreover, since the OFDM channel
parameters are located in a time-frequency plane, it is natural to approach the channel
frequency response over a time-frequency window to a small of set polynomial basis
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functions [14]. The numbers of subcarriers are usually greater than the number of
channel delay taps. We may only approach the delay tap over a time window to a
small set of polynomial basis function in order to save computation. The number and
positions of delay taps can be selected by choosing the most significant taps selection
which is introduced in Chapter 2. Further more, in the fast fading channel, we can
obtain channel time varying information by using training symbol of FPTA.
Compared to FPTA, we don’t average the received training symbol. The channel can
be estimated in different time slot. Then we use these channel impulse responses to
make a polynomial function which is closest to channel impulse response, which
estimated by training symbol. We defined this channel estimation method as
sub-symbol polynomial interpolation. The algorithm of sub-symbol polynomial

interpolation is performed in next paragraph.

3.3.1 Sub-symbol polynomial interpolation algorithm

The form of the training symbol of the sub-symbol polynomial interpolation is
similar with that of FPTA. In the FPTA method, we assume that the channel impulse
response is unchanged in an OFDM symbol, and it can be estimated by averaging K
identical parts (time slot) of received training symbol. In the sub-symbol polynomial
interpolation, we assume that the channel impulse response change K times (time
slots) in an OFDM symbol. Averaging of training symbol is not necessary. Because
the time slot of the received training symbol preserves time varying information. Then
we can do a curve fitting to approach the channel on data location (seen in Figure

3.3).
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Time slot

.

Training Data Data Data Training

Fig. 3.3 Channel tracking by sub-symbol polynomial interpolation

In the following we will derive sub-symbol polynomial interpolation algorithm.

Now, we model | th propagation path change with time as a polynomial function.
hooy (6 1) = 8, (t)b, (1) (3.18)

where a,(t) is time vector, aq(t):[l,t,tz,--~,tq].q is the order of polynomial

function; b, (I) =[b,(1),b,(I),---,b (D" is the coefficient vector for | th propagation

path. Afterwards, we recall Eq. (2.8) and find the LS channel estimation for every

time slot of training symbol as follows

|’A]Ls =r/A= [ﬁLS @, ﬁLS (2, ﬁLS(K)]

=[h(0), h(2),--, h(K)] + W/ A (3.19)

where A is the pilot amplitude and b, (t) = [N (t,0), h.c (t1),---,h s (t, M —=1)]. The

coefficients of the polynomial function can be estimated by two neighbor training

symbols, according to the following criterion

Min 3 [ (t. 1)~ a, ()6, (0 (3.20)

q tpel
where the set # contains the time slot index of training symbol in the time
window, and ﬁLs(tP,I) is LS channel estimation of | th delay path in t, th time slot.
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window, and ﬁLS (to,1) is LS channel estimation of | th delay path in t; th time slot.
The polynomial coefficients vector can be estimated as

b, (1) = A hs (1) (3.21)
where A, is called training time matrix, every row of A  is the time vector,
corresponding to time slot index of training symbols in the time window. Aﬁq is the

pseudo inverse of A ,and

hes (1) = [N (0, 1), As L 1), -+, hig (K =1,1),
hys (Kr, D), AED (K +1,1), -+, hED (Kr + K =1, D] (3.22)
=M, h2N)T

where

h@ (1) = [N (0,1), s (LI, hs (K <8 DT

RO (1) = [h. (Kr, 1), BERCKE £4 D= oh @ (Kr + K —1, D)
r, is the inverse of training rate. We can-achieve channel interpolation of data time
slot of | th delay path using by

Mooy (to, 1) =8, (t)0,(1),  tp €D (3.23)

where the set /) contains the time slot index of data symbol in the time window. The
impulse response of t; th time slot can be constructed by

Ao (t6) = [Ny, (to D), gy (t5,2), -+, Py (t, M = DT (3.24)
Besides, we can obtain the estimated | th path impulse response at all data position
by

Roy (1) = A b, (1) (3.25)
where A, is called data time matrix; every row of A, is the time vector, which
corresponds to time slot of data symbol. There are K channel impulse responses,
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interpolated by polynomial interpolation. By averaging K interpolated channel
impulse responses [13], it is simple to present the channel impulse response of an
OFDM symbol. In the low SNR environment, the polynomial function makes a huge
error by tracking the noise perturbation. We can mitigate the noise perturbation by
using Wiener filter. The LS estimation can be improved by the Wiener filter and more

accurate coefficients of polynomial function can be found. The smoothed channel of

m th training symbol h™_(1) can be shown as follows

mmse

mmse

R (1) = Ry (Ry +-25 1) *RE()
A

A4
ot A 0 0 (3.26)
=D 0 E 0 D"h,
AK
Ay +0't2 /|A|2

where R is the autocorrelation matrix-of channel impulse response of | th
propagation path. 4 and D are the‘eigenvalue and eigenmatirx of R, . In the low

SNR environment, the channel is smoothed by Wiener filter about 10dB, better than

the LS estimation in MSE performance. After smoothing, ﬁLS(I) is replaced by
ﬁmmse(l) in Eg. (3.21) to estimate polynomial coefficients. Where
h . (D=[h% (1)7,h® ()T]" After that, the channel interpolation is smoothed by

mmse ! 7 'mmse

Wiener filter, and polynomial interpolation are obtained by
r:immse(kD’ I) = aq (kD’ I)Bmmse(l) (327)
Hmmse (kDi I) = [ﬁmmse (kD’ |), I:]\mmse (kDi |)1 T ﬁmmse (kD J I)] (328)

3.3.2 The MST algorithm for polynomial interpolation
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The MST algorithm can also be employed to reduce computation complexity and
noise perturbation in the time domain interpolation. The most significant paths can be
chosen by the FPTA channel estimation in nth training symbol. The most significant
J taps are chosen as the J largest amplitude channel taps. Let the channel tap
indexes for those most significant J propagation path be denoted by z,,z,,---,7, ;.
The selected tap indexes are utilized to nth and n-+1th training symbol. The rest
of the channel taps are setting to zero. The number of multipath reduces from M to
J . The reconstructed LS estimation can be shown as

Pasr = [Aysr (. Pgsr (2), -+, sy (K = 1)] (3.29)

where

sy () = [ysr (1.0), Ny o (6215 P o (1, M ~1)] (3:30)
and HMST (t,n) =h(t,n)o[n — 7). Therpolynomial: coefficients vector of |th path
can be estimated as

b, (1) = At ghys: (1) (3.31)
where A, is called training time matrix; every row of A, is the time vector,
corresponding to time slot index of training symbols in the time window. Ar{q is the

pseudo inverse of A, and

Rysr (1) = [ysr 01, Ay (1), -+, By (K =1,1),

. R N (3.32)
hMST (Krt’ ), hMST (Krt +1, I)v""hMST (Krt +K -1, I)]T

is the most significant selected taps of LS channel estimation vector for | th
propagation delay path. The channel interpolation of data time slot of | th

propagation path can be achieved by
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ooy (to 1) = 3 (t6)B, (1), ko € (3.33)
where the set /2 contains the time slot index of data symbol in the time window. The

impulse response of t; th time slot in the time window can be constructed by

Py (1) = [ty (t.0), Mgy 1 (t 1), Ay (1, M = D)) (3.34)
We can obtain the estimated | th path impulse response at all data position by

hooy (1) = A (1) (3.35)
where A, is called data time matrix; every row of A,  is the time vector,

corresponding to the time slot of data symbol. The Wiener filter can also be employed

here to get a better channel estimation of training symbol.

3.3.3 Analysis of channel estimation error of polynomial

interpolation

The channel estimation error at tth time slot and | th propagation path is
e(t,)=h(t,1)- ﬁpo,y (t,1) (3.36)
The MSE of e(t,l) is obtained as follows
mse (t,1) = E{e (t,De"(t, 1)}

= E{IN(t, 1) = Ay, (6 DI (81) = iy, (6 DT
=17, (0) - 2Re[a, (t) Ar (E{h " (t, )h (1)}] (3.37)

+a, (DAL R ARl (1) + - a ()AL AL, @l (t)

Oy

|A|2 q

where Ry, isthe autocorrelation matrix of h;(l), and

h. (1) =[h(0,1),h @L1),--,h (K=11),

(3.38)
h (Kr, 1), h(Kr +1,1),-, h(Kr, + K =1, T’
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the autocorrelation matrix R, = E{h, (Dh (N}. I+ ,(0) is diagonal element of
R, . The MSE are divided into two parts. The first parts are the first three terms in

Eq. (3.37). They are called model errors, coming from the difference between
polynomial model and real channel. We define the MSE of model error at tth time
slot and | th propagation path as

MSe e (8, 1) = Frr (0) — 2 Refa, (1) Ay (E{" (¢, 1)y (1)}]

1 L ToT (3.39)
+ a'q (t)AT,q I:QTT,I q aq (t)
The second part is the last term in Eq. (3.37). It is called noise error and comes from

the depredation of channel noise. We define the MSE of noise error at the tth time

slotand | th propagation path as

mse,. (t,1) = ;;I—iaq (OALA Tal () (3.40)
If we consider MSE of model ‘error-and noise error-as a function of t. Both of the
model error and the noise error increase when<the interpolated channel time slot
locates far from the training position. The averaging MSE over all data time slot is
derived in order to observe the performance of polynomial interpolation for Ith
propagation path. The averaging MSE are also divided into the model error part and

the noise error part. First of all, the averaging MSE of model error can be obtained by

MSE g () =5 3 {1 (0) ~ 2 Rela, (A £ (£ Dy (D}]

+3,(A Ry A, 3] (0} (341)

1 T
= b (0)_ERe{tr[AD,qATl,q(2RTD,I _RTT,I l,q Ag,q)]}
where d are total numbers of data time slot; Re{X} is to catch real part of X ;
tr[A] is to get the trace of the matrix A, andR.,, = E{h. (Dh (N} is the cross

correlation matrix between h.(I) and hy(l) . hy(l) is composed of | th
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propagation path at data time slot. Because the second term in Eq. (3.41) increases
with higher polynomial order, the averaging MSE decreases when the polynomial
order gets higher. The smaller training rate makes larger averaging MSE. Because the
smaller training rate has a longer time duration, it causes a larger difference between

polynomial model and real channel tap. The higher polynomial order can be used to

solve this problem. The elements of the autocorrelation matrix R, and
cross-correlation matrix R, can be obtained in Eq. (3.5a). The Eg. (3.5a) contains

the parameters of the discrete Doppler frequency. The higher Doppler frequency
makes channel change more rapidly. In the case of high Doppler frequency, we can
also use higher polynomial order to get an accurate model of time varying channel tap.
The second part of averaging MSE is te;average noise error. The averaging MSE of

model error can be obtained by

MSE (1) = gz%aq OALA' & ()

<
tr[Aqu ATJ',Q A#yq qu]

(3.42)

Utz
d|A’

The noise error is independent of channel properties (i.e., the Doppler frequency and

channel power profile). It is only relative to the training and data arrangement and the
polynomial order. The averaging MSE of noise error becomes large when polynomial
order is high. This result is opposite to the averaging MSE of model error. The model
error is independent of SNR. The noise error dominates both MSE and BER
performance in the low SNR environment. The model error dominates MSE or BER
performance in high SNR environment. And the model error will cause error floor in
MSE curve and BER curve. If the taps are selected well (i.e., Correct number of taps
and Correct delay position are used) by MST algorithm. The MSE performance of

sub-symbol polynomial interpolation over all channel taps is
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L-1
MSEpon = %z I\/ISEmodel (I) + MSEnoise(I) (343)
1=0

In the Section 4.4, we will simulate MSE performance in different parameters of the

system. We also show the simulation result and Eq. (3.43).

3.4 Polynomial interpolation of channel iIn

time-frequency domain

In this section, we introduce an existing time-frequency domain polynomial
interpolation [14]. Compared to the sub-symbol polynomial interpolation with the
time-frequency domain polynomial interpolation, the sub-symbol polynomial
interpolation is operated on fast:fading channel. Fast fading channel means that
channel changes several times: in-a symbol-duration. The time-frequency domain
polynomial interpolation is operated:on-stow-fading channel. Slow fading channel

means that channel changes once a symbol-duration.

3.4.1 Polynomial interpolation algorithm in time-frequency

domain

In the receiving end, we gain the received baseband signal of k th tone in the mth
symbol interval is obtained by
R(m,k) = H(m,k) X (m,k) +W (m, k) (3.44)

where W (m, k) =W, (m, k) + jW, (m,k) isazero mean complex Gaussian random

variable with variance & . A common practice for estimating H(m,k) is to insert
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pilot symbols at some predetermined location in the time-frequency plane (seen in

Figure 3.4). The LS channel estimation at pilot location can be estimated by

R(m,k) :H(m,k)+ W(m’k)

A _
s R = X (m. k)

(3.45)

where W(m,k)/ X (m,k) is the error term, due to presence of Gaussian noise with
variance o, / E{|X (m,k)|2}. In the time-frequency interpolation [14], we select an
operation window in the time-frequency plane first, in which N;xM, pilots are

distributed uniformly at every r

 tone and every r, symbol (see Figure 3.1).
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Fig. 3.4 Data grid in the time-frequency plane of OFDM signals

Then the receiver models the fading channel H,, as a 2D (time-frequency)
polynomial function
H,, (mk)= bym* + b,mk + b;k* + bym + bk + b, (3.46)

The frequency-domain model of the received samples implies that the ML estimates
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of the coefficients[b;,b,,---,b,] = b" are chosen to satisfy the following criterion

Min 3 [R(m,k)-a(m, k)B‘Z (3.46)

(mK)eP

where the set 7 in Eq. (3.20) contains the pilot locations in the operating window,

P = {(m, k) (3.47)

m=0,r,---, (M, =Dr,
k=0,r,---,(N, =D,

and a(m,k) =[m?,mk,k* m,k,1] is called time-frequency vector, The polynomial
coefficients for the time-frequency window can be shown as
b=Al H (348)
where A _;; is called training time-frequency matrix; every row of A_,; is the
time-frequency vector corresponding the pilot location in the time-frequency window.
A~ isthe pseudo inverse of ;A :;-The channekinterpolation of data location can
be achieved by
H oy (M, k) = a(m, k)b , - m,k € D (3.49)
where the set /) contains locations of data symbol in the time-frequency window. A

more complicated method that is capable of reducing the effect of noise is the

LMMSE method. This method based on the estimated channel autocorrelation matrix
and noise variance s estimates channel frequency response on the pilot location
which is shown as

H_ . =R,[R, +c2(XX") ] H (3.50)

mmse

where ﬁH is the channel autocorrelation function of pilot tones. X is a diagonal

matrix whose diagonal elements are the pilot amplitude. The H IS substituted

mmse

with I—AILS in Eq. (3.24). Then the coefficients vector can be obtained by
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6mmse = At{f,T |:|mmse (351)
Furthermore, the channel interpolation by Wiener filter smoothing and polynomial

interpolation are obtained by

A~

(m, k) = a(m, k)b (3.52)

~
hmmse mmse

In next paragraph, we will compare performance of sub-symbol polynomial
interpolation with performance with the time-frequency domain polynomial

interpolation.

3.4.2 The comparison between sub-symbol interpolation and

time-frequency domain interpolation

The time-frequency domain interpolation use pilot tones for channel estimation in
frequency domain. The other tones on the data location can be sent data. The
sub-symbol polynomial interpolation‘uses training symbol for channel estimation in
the time domain. It means all tones are pilot tones in an OFDM symbol. The pilot
tones of time-frequency domain interpolation are distributed more uniformly than
sub-symbol polynomial interpolation. The time-frequency polynomial interpolation
seems have better performance than sub-symbol polynomial interpolation. But the
variation of channel in the frequency domain is rapider than the variation of channel
in the time domain (seen in Figurer 3.5). We will suffer a large model error when
interpolate channel in frequency domain. In the simulation results, we will find that
the performance of sub-symbol polynomial interpolation is better than the
performance of time-frequency domain polynomial interpolation, due to rapid

variation of channel in the frequency domain. In mobile channel assumption, the
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sub-symbol polynomial interpolation assumes that channel changes several times in

an OFDM symbol. We define this assumption as fast fading channel. The

time-frequency assumes that channel does’t change in an OFDM symbol and changes

for different OFDM symbols. We define this assumption as slow fading channel. The

sub-symbol polynomial interpolation is a channel estimation method based on fast

fading channel. It is more general assumption of channel.
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Chapter 4

Computer Simulations

4.1 Simulation parameters

The channel model is evaluated by ‘computer. simulation for two multipath fading
channel models, namely TI (time| invariant) Channel-A and TI (time invariant)
Channel-B, The TI Channel-Ajs the  ATTC (Advanced Television Technology Center)
and the Grand Alliance DTV laboratory’s ensemble.E model whose channel impulse
response for the static case is given by

h[n]=06[n]+0.31625[n — 2]+ 0.19959[n —17]

4.1
+0.12966[n-36]+ 0.18[n — 75] + 0.16[n — 137] 1)

where unit delay is assumed to be the same as OFDM sample period. The TI
Channel-B is a simplified version of DVB-T channel model P, [23] and its channel

impulse response for the static case is given by

h[n]=0.24788[n]+0.12876[n — 1]+ 0.30885[n — 3]
+0.42526[n — 4]+ 0.496[n — 5]+ 0.03650[n — 7]
+0.11973[n — 8]+ 0.19486[n —12] +0.41890[n —17]
+0.31738[n — 241+ 0.20558[n — 29] + 0.18460[n — 49]

(4.2)

The time varying properties consult the DGUS channel model which is introduced in

Section 3.1. The TI Channel-A can be modified to time varying model and is
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represented as

hln,t]1= p,(t)o[n]+0.31624,(t)o[n — 2]+ 0.1995u, (1)0[n —17] 43)
+0.1296 14, (1)0[n-361+ 0.1, (1)S[n — 751 + 0.1, (1) S[n — 137] '
This time varying channel model is called TV (time varying) Channel-A. Every

complex Gaussian random process g, (f) is composed of five complex sinusoid
functions (N, =12). There are six taps and every tap is composed of five complex
sinusoid functions in the TV Channel-A. Therefore there are total thirty complex
sinusoid functions to be used in the TV Channel-A. If the Doppler frequency is

assigned to f,, the frequencies of these sinusoid functions are distributed uniformly
from O to f,. The phase of these complex sinusoid functions are uniform distribution

from O to 27 . According to modification of 'FL. Channel-A, the time varying model of
TI Channel-B also can be created, and-we call this time varying channel as TV (time
varying) Channel-B. There are twelve taps in the TV Channel-B and every tap is
composed of five complex sinusoid functions.“Total sixty complex sinusoid functions

is used in the TV Channel-B. If the Doppler shift is assigned to f,, the frequencies
of these sinusoid functions are distributed uniformly from O to f, . The phase of these

complex sinusoid functions are uniform distribution from 0 to27z . In OFDM system,
The DVB [23] system is used in this chapter, for a 8MHz channels, the number of
subcarriers N =2048 (2K mode), and guard interval ratio=1/8, the sampling rate are
10MHz and carrier modulation 64-QAM are used. The 64-QAM signal power is set to
1. In all methods, pilot tone symbol of 1.0801+ j1.0801 signal point in 64-QAM

constellations is used.
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4.2 Comparison between FPTA, MST and

LMMSE in time invariant channel

In this section, we first observe the characteristics of FPTA, MST and LMMSE.
Those characteristics are similar to the characteristics of modified methods which are
used for time varying channel. In LMMSE method, ideal correlation and SNR values
are used in order to evaluate the relative performance of MST method. Figure 4.1
shows the MSE performances of different channel estimation method and MSE of
MST with 5 taps based on Eq. (2.26) in the TI Channel-A. The method of LMMSE
has the same performance of MST with 6:taps, MST with 6 taps, which is the same as
the number of taps in Channel-A, has, approximately 18 to 22 dB MSE gain over
FPTA. MST with 5 taps shows an irreducible channel estimation floor caused by
missing some of the channel energy.=The missing energy is shown in the first term of
Eq. (2.26). In Eq. (2.26), we can find the error floor equal to missing tap energy. The
energy of weakest tap in the TI Channel-A is -20dB and is the error floor of MSE in
Figure 4.1. MST with 5 taps has a better performance than FPTA for SNR less than
20dB since for this SNR region the gain in noise suppression is greater than the loss
of channel energy missing. However, for higher SNR region where noise has smaller
impact than the channel energy missing, the error floor of channel estimation results
in a worse performance for MST with 5 taps. In Figure 4.2, the BER performances in
TI Channel-A are presented for the different channel estimation methods. Due to the
channel estimation error floor and the sensitivity of 64-QAM to channel estimation
error, MST with 5 taps case shows a BER floor while the others do not. Another most

significant selection is the threshold decision. The suitable choice of threshold
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depends on the operating SNR. The threshold is inverse proportion to multiple of
SNR. Figure 4.3 shows several multiples of inversion of SNR in MSE performance. If
the multiple is close to 1, missing taps will occur. If the multiple is too low, more
noise will be injected. A proper multiple is 0.01 which can be shown in Figure 4.3.
Figure 4.4 shows the BER performance in different multiples of inversion of SNR.
Because large number of sucarriers is used in DVB system and construction of
training symbol, most tones are set to zeros in training symbol. There are few taps in
the channel models. In the receiver side, the received training signal, convolution of
channel and training symbol adds noise, has many pure noise samples. If we ignore
several powerful samples, we will get those pure noise samples. After averaging those
pure noise samples, noise power can be estimated. Because the power of 64-QAM

signal is set to 1, the SNR can be acquired by inverse of estimated noise power.
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Fig. 4.1 Channel estimation mean square error (MSE) in TI Channel-A
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4.3 Comparison-between estimation methods

in time varying channel

In this section, performance of channel estimation method in Chapter 3 will be
shown in MSE and BER curves. The time varying channel model is represented in
Section 4.1. TV Channel-A is used in Figure 4.5. Figure 4.5 shows the BER
performance of FPTA with linear interpolation, MST with linear interpolation, FPTA
with decision direct algorithm, MST with decision direct algorithm, the
time-frequency domain polynomial interpolation and the sub-symbol polynomial
interpolation with MST algorithm. The selection of taps in MST is 6 in this simulation.

The performances of sub-symbol polynomial interpolations are better than linear
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interpolations due to smaller model error. If total numbers of pilot tones are the same,
the pilot tones distribute more uniformly than training symbol in time-frequency
domain than in sub-symbol methods. Therefore performance of time-frequency
domain polynomial interpolation seems better than sub-symbol polynomial
interpolation. Due to the variation of channel in frequency domain is rapider than the
variation of channel in time domain, the time-frequency domain polynomial
interpolation is worse than sub-symbol polynomial interpolation. Time-frequency
domain polynomial interpolation is more complex than sub-symbol polynomial
interpolation.  The decision direct algorithm may cause error propagation.
Performance of decision direct algorithm is worse than polynomial interpolations and

linear interpolation due to error propagation.
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Fig. 4.5 MSE performance with different channel estimation methods in Doppler

frequency 75Hz environment.

48



10° ¢ ‘ ‘
F —+— FPTA with LI
-~ MST with L

—k— MST with sub-symbol polynomial
—— Time—frquency polynomial

—g- FPTA with DD =0.8

—— MST with DD a=0.8

BER

i ! ! ! I I

0 5 10 15 20

5 30 35 40 45 50
(dB)

2
SNR
Fig. 4.6 BER performance with different chahmel estimation methods in Doppler
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Figure 4.7 shows the different. seléction of taps in MST combing sub-symbol
polynomial interpolation in the Doppler frequency 75Hz. The result shows that the
suitable threshold value is -20dB below inverse of SNR. MST with 5 taps also cause
error floor in sub-symbol polynomial interpolation with MST method. The error floor

in other methods comes from Doppler effects.
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Fig. 4.7 BER performance with different taps selection of Combing MST and

sub-symbol polynomial interpolation.

4.4 Properties of sub-symbol polynomial

interpolation

The MSE performance of the sub-symbol polynomial interpolation is derived in
Section 3.4. The MSE is divided into the model error and the noise error. Both of the
model error and noise error are sensitive to several parameters of the OFDM system.
In this section, we observe sensitivity of the model error and sensitivity of the noise
error in differential parameters of OFDM system. These parameters include Doppler
frequency, training rate, polynomial order and different channel statistics (TV

Channel-A and TV Channel-B). The MST algorithm combines with time domain
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polynomial interpolation, is used in the simulations of this section. When the channel
environment is TV Channel-A, we do MST with six taps, and the time domain
polynomial interpolation interpolates these six taps. MST with twelve taps is adopted
in TV Channel-B environment. Then we do the sub-symbol polynomial interpolation
for these twelve taps. In the simulation result, the performance of MSE has a little

poor compared to theory value of MSE.

4.4.1 Comparison of different Doppler frequency

In this paragraph, MSE performance of channel estimation is discussed with
different Doppler frequencies. We fix thejtraining rate with 1/8. The polynomial order
is set to two, and TV Channel-A |is-us€d." The MSE performances with different

Doppler frequencies (90Hz, 100HZz, 150Hz) are observed in Figure 4.8.
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Fig. 4.8 Channel estimation MSE with different Doppler frequencies in TV Channel-A
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Figure 4.8 is divided into two parts in order to distinguish the model error and noise
error. The first part is low SNR region. The noise error dominates MSE performance
in this region. The second part is high SNR region. The model error dominates MSE
performance in this region. The three curves overlap in low SNR region. It means that
the noise error is independent of the Doppler frequency. In high SNR region, the MSE
curves have error floor. This error floor is the model error. We can see clearly in
Figure 4.8, the higher Doppler frequency curve has the higher model error. This
problem of model error can be solved by increasing polynomial order or decreasing

training rate. We will discuss properties of these two solutions in next two paragraphs.

4.4.2 Comparison of different training rate

In this paragraph, we will show how:the'training rate affects the MSE performance
of channel estimation. The Doppler frequency:is fixed to 150Hz. Polynomial order is
set to two, and TV Channel-A is used. The MSE performances with different training

rates (1/4, 1/8) are observed in Figure 4.9.
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Fig. 4.9 Channel estimation MSE with differént training rates in TV Channel-A

Figure 4.9 is also divided into two parts.in order to distinguish the property of model
error and property of noise errof; The first part iS:low SNR region. The noise error
dominates MSE performance in this region. The second part is high SNR section. The
model error dominates MSE performance in this section. The larger training rate has
lower noise error in low SNR section. It means that the noise error increases when
training rate increases. The MSE curves have error floor, this error floor is the model
error. We can see clearly in Figure 4.9, the large training rate curve also has low

model error.

4.4.3 Comparison of different polynomial order

The polynomial order is parameter which affects MSE performance. The effect of
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polynomial order is debated in this paragraph. First we fix the training rate to 1/8, the
Doppler frequency is 200Hz, and TV Channel-A is used. The MSE performances with

different polynomial order (2, 3, 4, 5) are observed in Figure 4.12.

20

kot

—— g=5

—+- Theory =2
—O- Theory q=3
—x- Theory g=4
—*- Theory g=5

MSE (dB)

|
5 10 15 20 25 30 35 40 45 50
SNR (dB)

_50 I I I I
0

Fig. 4.10 Channel estimation MSE with different polynomial order in TV Channel-A

Figure 4.10 is also divided into two parts in order to distinguish the model error and
noise error. The first part is low SNR section. The noise error dominates MSE
performance in this section. The second part is high SNR section. The model error
dominates MSE performance in this section. The higher polynomial order curve has
the higher noise error in low SNR section. It means that the noise error increase when
polynomial order is high. In high SNR section, the MSE curves have error floor. This
error floor is the model error. We can see in Figure 4.10, the higher polynomial
order curve has lower model error. There is a tradeoff between noise error and model
error in choosing polynomial order.
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4.4.4 Comparison of different channel model

In this paragraph, the different channel model is discussed in MSE performance. We
fix the training rate as 1/4; the Doppler frequency as 100Hz and 150Hz. Polynomial
order is set to two. The MSE performances with different channel model (TV

Channel-A and TV Channel-B) are observed in Figure 4.11.

-5 T T T T T T T T T
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g TV ChanneI—B,fd=200Hz
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Fig. 4.11 Channel estimation MSE in TV Channel-A and TV Channel-B and f, =

150Hz, 200Hz.

The TV Channel-A has the same delay spread with the TV Channel-B. Figure 4.11 is
also divided into two parts in order to distinguish the model error and noise error. The

first part is low SNR region. The noise error dominates MSE performance in this
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section. The second part is high SNR region. The model error dominates MSE
performance in this region. The noise error is independent of Doppler frequency and
channel model, because these curves overlap in the low SNR region. In high SNR
region, the MSE curves have error floor. This error floor is the model error. The
model errors in the same Doppler frequency have a little difference between two
channel models. MSE performance of TV channel B is a little better than MSE
performance of TV Channel A.

We observe sensitivity of the model error and noise error in this section. Then we
find that noise error is nonsensitive totally to the channel condition. The noise error is
only sensitive to training rate and polynomial order. The model error is sensitive to all
parameters observed in this section. In the low SNR region, the noise error dominates
the MSE performance. Since the noise error is not sensitive to channel, we can say the
sub-symbol polynomial interpolation is' robust channel estimation method in the low
SNR region. But the width of low SNR-region is relative to the model error. In bad
channel condition, large Doppler frequency, the model error may be large and cause

error floor from a low SNR value.
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Chapter 5

Conclusion

Channel estimation of time varying channel is a challenge because of tracking
channel variation. We introduce severalyinterpolation techniques to track channel
variation. The FPTA or MST with decision directed algorithm is intolerable in
simulation results because of “large ‘decision—error..The linear interpolation is the
simplest way to track channel variation; but the large model error will occur in high
Doppler frequency environment and low training rate system. In high Doppler shift,
variation of channel is more like a polynomial function whose order is more than one.
Low training rate system has a long duration between two training symbol. Linear
approach of channel is not suitable for this long duration. In fast fading channel, we
propose the sub-symbol polynomial interpolation, together with the MST algorithm to
reduce the model error of linear interpolation. We analyze the MSE of sub-symbol
polynomial interpolation, and the MSE is divided into two parts. One is the noise
error, the other is the model error. For the noise error, we find that it is independent of
the Doppler frequency and other statistics of channel. The noise error depends on to

training rate and polynomial order. The performance of the noise error becomes worse
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by decreasing training rate and increasing polynomial order. The model error is
sensitive to the Doppler frequency, statistics of channel, training rate and polynomial
order. The model error becomes worse by increasing Doppler frequency, decreasing
training rate and decreasing polynomial order.

The MST algorithm can be used in sub-symbol polynomial interpolation. There are
two advantages of most significant taps selection. It reduces the computation and
suppresses noise. But the MST method has a problem of missing taps. The error floor
of MSE will appear when missing taps occurs. In the Chapter 2, we also analyze MSE
of MST method under missing taps. The results of analysis reveal that the error floor
is equal to the power of missed taps.

In the fast fading channel, we propose sub-symbol polynomial interpolation.
Because it can collect more information of “time varying channel, it has better
performance than other algorithms.which aresmentioned before. Combing with most
significant taps algorithm, the 'sub=symbol_polynomial interpolation will perform

better in noise suppression and load:of computation.
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