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利用子符號多項式內插實現 OFDM

通道估計 

                  

 

學生:吳柏學           指導教授:謝世福 

 

國立交通大學電信工程學系碩士班 

 

摘要 

 

    在 OFDM 系統的通道估計上，通常藉由訓練訊號 (Training signal)的輔助來找

出通道響應。但考慮到通道的時變性，使用訓練訊號求得的通道響應，並不能代

表資料訊號(Data signal)的通道狀況。在快速衰減的通道下，我們提出子符號多

項式內插方法配合最強路徑選取(most significant taps)演算法來內插出資料訊號

的通道響應。在子符號多項式內插上，將均方誤差分成模型誤差跟雜訊誤差，討

論不同系統參數包括都卜勒頻率，訓練率(Training rate)和多項式階數。我們會

使用一個已知統計特性的通道模型檢查推導出來的誤差與模擬誤差是否配合。最

後拿子符號內插法比較其他現有的多項式內插方法，直接判斷演算法(Decision 

direct algorithm)與線性內插方法，子訊號內插法方法會有最好的表現。 
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OFDM Channel Estimation Based on 
Sub-Symbol Polynomial Interpolation  

 
Student: B. X. Wu              Advisor: S. F. Hsieh 

Department of Communication Engineering  

National Chiao Tung University 

 

Abstract 

  
  In OFDM channel estimation, we usually utilize training signals. In case of a 

time varying channel environment, the channel responses, estimated during 

training period, can't represent the channel during data transmission. In such fast 

fading channel, we propose the sub-symbol polynomial interpolation algorithm 

that retains most significant taps algorithm to interpolate channel responses in data 

position. We derives its mean square error (MSE) that includes both model and 

noise errors. We verify the MSE performances of the derived results and the 

simulation results by using a time varying channel, whose statistics are known. 

The proposed sub-symbol polynomial interpolation that is the most effective in the 

fast fading channel, compared with the existing polynomial interpolation, the 

decision direct algorithm, and the linear interpolation. 
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Chapter 1 
 
Introduction 
 
 
  Orthogonal frequency division multiplexing (OFDM) has recently become popular 

due to its desirable properties such as its robustness to intersymbol interference (ISI) 

and impulse noise, its high data rate transmission capability with high bandwidth 

efficiency, and its feasibility in application of adaptive modulation and power 

allocation across the subcarriers according to the channel conditions [1]-[3]. It has 

been adapted in many applications such as ADSL (Asymmetric Digital Subscriber 

Line) [4], broadcasting Services such as European DAB (Digital Audio Broadcasting) 

[5], DVB-T (Terrestrial Integrated Services Digital Broadcasting) [6] and multimedia 

wireless services such as Japanese MMAC (Multimedia Mobile Access 

Communication) [7]. 

  The independence among subcarriers simplifies the design of the equalizer and 

provides an easy method for data recovery. Since the channel information is required 

in equalization. Channel estimation plays an important role in OFDM system design. 

Channel estimation is a challenging problem in wireless communications. Because of 

the mobility of the transmitter, the receiver, or the scattering objects, the channel 

response can change rapidly with time. 
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  In typical OFDM systems, some part of the transmitted signal is known. In one 

approach, the transmitter periodically provides known training sequences, which can 

be used for channel estimation. In a second approach, the pilot channels are provided 

for channel estimation. This approach is related to the pilot tone approach [8]-[10]. 

The pilot channels are stronger in power than the information channels. 

  When there are sufficiently strong pilot channels or sufficient pilot sequence, the 

channel can be tracked by filtering channel measurements obtained from the pilot 

information. The filter smoothes the noisy measurements over time and works best 

when the channel estimate is based on future as well as past channel measurements. 

Specifically, for a given filter, channel estimation performance depends on the pilot 

information, fading channel characteristics, and noise level. Pilot information, in term 

of how much energy and how often it is available, is a tradeoff between minimizing 

overhead and optimizing channel estimation performance. For example, with pilot 

symbols, how often symbols must be sent depends on how rapidly the channel is 

changing.  

  In channel estimation based on training symbol for time varying channel, some 

methods need information of statistics of channel [11]-[12]. Channel estimation based 

on statistics of channel is more complex, but its performance is usually better, 

depending on the accuracy of the Wiener filter quantities. Channel estimation based 

on correlation of channel requires knowledge of the statistics of the fading process 

and the statistics of the measurement noise process. The fading process statistics can 

be related to parameters of a channel model, such as Doppler spread and average 

channel coefficient power. Such information is usually unknown. There are many 

ways to find the statistics of fading process and noise process, but they increase 

system complexity. The statistics of channel also change with time. The change of 
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statistics of channel will cause mismatch problem [11]. The performance will be 

degraded. In order to decrease complexity of channel estimation, we focus on the 

channel estimation methods without using statistics of channel.  One of the simplest 

forms of channel estimation using pilot symbols is the linear interpolation [13]. With 

linear interpolation, the channel estimate at a certain time period is a linear 

combination of the two nearest channel measurements. Linear interpolation can be 

viewed as applying a filter with symbol-spaced taps to the channel measurements, 

which contain zeros at the unknown data symbol points. It may get worse channel 

estimation in cases of high Doppler shift and long distance between training 

sequence.  

  We use the polynomial interpolation in this thesis. Compared to the linear 

interpolation with polynomial interpolation, the polynomial interpolation is more 

accurate to model a time varying channel. It may have higher complexity than the 

linear interpolation, but it saves large complexity than the channel estimation based 

on statistics of channel. The polynomial interpolation can be done in the time domain, 

in the frequency domain, and in both time and frequency domain [14]-[16]. Some 

OFDM systems have many subcarriers. There will be a long symbol duration in this 

system. Channel will is likely to change within one OFDM symbol. We define this 

rapid change of channel as fast fading channel. The sub-symbol polynomial is 

proposed for the fast fading channel. The estimation error of sub-symbol is divided 

into two parts. One is noise error, caused from the noise of the system. The other is 

model error, which is the difference between real channel impulse and polynomial 

model. Because the model error is depends on the statistics of channel, we use a time 

varying channel model in Section 3.1. The statistics of channel will be derived and 

utilized to check performance of model error. Compared to an existing  
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time-frequency polynomial interpolation [14] with our proposed sub-symbol method, 

the latter performs better for two reason. One is the time-frequency polynomial 

interpolation operated on slow fading channel. It is not suitable to estimate a fast 

fading channel. The other reason is that the time-frequency polynomial interpolates 

channel in frequency domain. The channel changes more rapidly in the frequency 

domain than in the time domain. Interpolation in the frequency domain incurs a larger 

model error than interpolation in the time domain. In corporating the MST method in 

[17], the sub-symbol polynomial interpolation only needs to interpolate specific delay 

taps. It saves more computation than the polynomial interpolation in frequency 

domain.  

  Chapter 2 will discuss the channel estimation methods for time invariant channel. 

The frequency pilot time averaging [17] method will be introduceed first. Then the 

most significant taps [17] will be introduced to improve channel estimation in time 

domain. Another improvement of FPTA method, linear minimum mean square [18], 

is also introduced in Chapter2. The LMMSE method is based on statistics of channel. 

In simulation results, we can find that the performance of LMMSE is close to the 

performance of MST. The implementation of MST is easier than LMMSE. MST 

seems a better channel estimation method than LMMSE. But MST has a problem of 

selecting proper number of taps. When the numbers of selected taps are less than real 

numbers of channel taps, Error floor will occur. We also derive the MSE (mean 

square error) of this error floor in Chapter 2. The channel in Chapter 2 is considered 

ustationary between two training symbols and equal to the channel of previous 

training symbol. The channel estimation in one training symbol can be used to 

recover data. 

 In Chapter 3, we consider the time varying channel. The channel estimation 
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method for time varying channel based on training symbol will be introduced. The 

channel estimation in training symbol will be obtained with FPTA or MST. Then we 

introduce decision directed algorithm [19], linear interpolation, and proposed 

sub-symbol polynomial interpolation which is used in fast fading channel. We 

derived the MSE of channel estimation for sub-symbol polynomial interpolaiton 

method. Its MSE is divided into the noise error and model error. We investigate the 

sensitivity of the noise error and the model error to different system parameters, 

including the Doppler frequency, the training rate, the polynomial order and two 

channel models. We also compare the proposed method with an existing polynomial 

interpolation in Chapter 3. The simulation results are shown in Chapter 4. In Chapter 

5, the conclusion is given. 
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Chapter2 
 
Channel estimation in time 
invariant channel 
 
  In this chapter, we will introduce several channel estimation method based on 

training symbols. The channel in this chapter is time invariant. The channel can be 

estimated by using training symbol. The estimated channel can be used to recover 

data because the channel is time invariant. In Section 2.1, The OFDM configuration is   

displayed. Because Cyclic Prefix is used in the OFDM system, a simple one-tap 

equalizer achieves data recovery easily. Then frequency pilot time averaging (FPTA) 

channel estimation method [17] and its performance are introduced in Section 2.2. 

The most significant taps (MST) channel estimation method [17] which can improve 

frequency time domain averaging method [17] is introduced in Section 2.3. The 

missing tap problem will cause error floor in the performance of MST algorithm. The 

degredation is also derived in this section. Finally, the linear minimum mean square 

(LMMSE) channel estimation method [18] is introduced in Section 2.4. The LMMSE 

channel estimation is also based on the FPTA method. The channel statistics and 

noise process must be known in the LMMSE method. It is more complex than the 

MST method. 
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2.1 System model 

[n]p~

[n]d
~ [k]D~

[k]D̂

][ˆ kH
r[n]

 
Fig. 2.1 OFDM system block diagram, transmitter and receiver. 

  
  In typical OFDM systems as shown in Fig. 2.1, some part of the transmitted signal 

is training symbol, the transmitter periodically provides known training symbol, 

][kX  are called frequency domain signals. The frequency domain signals pass the 

Inverse Fast Fourier Block, then we get the time domain signals ][nx . In order to 

mitigate ISI effect and keep orthogonal property of sucarriers, The Cyclic Prefix (CP) 

is added before time domain signal. The time domain signals with CP are transmitted 

in mobile wireless environment. In the receiver side, we remove CP first. Then the 

received training signals are picked for channel estimation. Suppose the pilot 

tones ][kP  are located in a time-frequency plane in Figure 2.1. The training symbols 

are multiplexed with data symbols in all OFDM symbols at a training rate rP  (ratio 
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of number of training symbols to number of total symbols). The number of all 

subcarrier is N and k is subcarrier index. The transmitted training signal in 

discrete-time domain, excluding CP, can be expressed as  

{ [ ]}Np[n] IFFT P k=                                         (2.1) 

where {}NIFFT  is an N-point inverse Fast Fourier transform of an OFDM symbol 

and n  is the time-domain index, 1,...,1,0 −= Nn . Suppose the wireless channel has 

a discrete-time impulse response given by  

 Fig. 2.2 Data grid in time-frequency plane of an OFDM signals 

 

�
−

=

−=
1

0

][][
L

l
ll nanh τδ                                         (2.2) 

where la  is called delay coefficient, lτ  is the discrete propagation delay, L  is the 

number of multipaths. In general, the delay coefficient is uncorrelated between 

different propagation delay paths. This property will be utilized in LMMSE channel 

estimation method later in this chapter. After passing through a multipath wireless 

channel, the time domain received samples of an OFDM symbol, if appropriate cyclic 
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prefix guard samples are used, is given by  

[ ] [ ] [ ] [ ]r n p n h n w n= ⊗ +                                      (2.3)  

where ⊗  represents N -point circular convolution, ][nw  are independent and 

identically distributed (iid) AWGN samples with zero mean and variance of 2
wσ . 

Assuming perfect synchronization, the FFT output frequency-domain subcarrier 

symbols can be expressed as  

[ ] { [ ]}

        [ ] [ ] [ ]
NR k FFT r n

H k P k W k

=
= +

                                     (2.4) 

where ][kW  is Fast Fourier transform of ][nw . Then the channel frequency 

response at the pilot tones can be estimated by  

][
][

][
][
][

][ˆ
kP
kW

kH
kP
kR

kH +==                                   (2.5) 

where k  is the subcarrier index of pilot tones. This rough channel estimation is 

called LS (least square) estimation [17]. If pilot tones don’t occupy all subcarriers, 

some pilots are zero in the training symbol. The channel responses at those zero tones 

can be obtained by interpolation.  

 

2.2 FPTA channel estimation 

 
  A training symbol can be regarded as several time slots, with each time slot having 

a pilot. In a slow fading channel or time invariant channel assumption, the impulse 

response of each time slot is identical. A method can obtain the channel response in 

the time domain by averaging these time slots. This method is referred to as the 

Frequency Domain Time Average (FPTA) [17] technique. 
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2.2.1 FPTA channel estimation algorithm 

 

  In FPTA approach, pilot tones are multiplexed with data at a pilot ratio of K/1 in 

frequency domain. The frequency domain pilot symbol can be expressed as  

�
−

=

−=
1

0

][][
M

m

mKkAkP δ                                       (2.6) 

where A  is the pilot amplitude, 1,...,1,0 −= Nk  and KNM /=  is an integer. 

The corresponding time domain samples contain K  identical parts and are given by 

�
−

=

−==
1

0

][]}[{][
K

m

mMn
K
A

kPIFFTnp δ                          (2.7) 

where 1,...,1,0 −= Nn . The time domain received sample vector of a training symbol 

can be given by 

        wpr += '                                                  (2.8) 

where ][ 110  ,... ,, K −= rrrr , with ]]1[],...,1[],0[[ −= Mrrr iiiir , 

]]1[],...,1[],0[[ −= Nwwww , 'p  is circular convolution of pilot signal and channel 

impulse response and can be expressed as 0 1 1[ ', ',..., ']K −='p p p p  with 

' [ '[0], '[1],..., '[ 1]]i i i ip p p M= −p . If the maximum channel delay spread is shorter 

than the length of an time domain identical part, '' ji PP = , for  1,,1,0, −= Kji �  

and the corresponding parts of received samples are averaged over K  parts. This 

intra symbol time averaging reduce the variance of noise samples by K  times. The 

averaged received samples over K  parts is given by 

         avg

K

l
lavg K

wprr +== �
−

=

'
1

0

1

0

                                    (2.9) 

where ]]1[],...,1[],0[[ −= Mwww avgavgavgavgw  with 
1

0
[ ] (1/ ) [ ]

K

avg l
w i K w i lM

−

=
= +� . 
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{ ][iwavg } are iid zero mean complex Gaussian random variables with variance 

Ktavgt /22
, σσ = . The FPTA [17] time domain channel estimation can be given by  

        
1,...,1,0        , ][)/(][              

][)/(][ˆ

−=+=

=

MnnwAKnh

nrAKnh

avg

avgFPTA              (2.10) 

The corresponding frequency response is 

        1,...,1,0   ]},[{][ˆ −== NknhFFTkH FPTANFPTA                    (2.11) 

Pilot tones lie on several tones of an OFDM system. If we apply channel estimation 

method in Eq. (2.5), we can only obtain the frequency response of pilot tones. The 

rest of data tone must be obtained by interpolation. If we use FPTA channel estimation, 

the channel impulse response can be obtained first and the channel frequency 

response can be obtained by Fast Fourier transform of the estimated channel impulse 

response. We don’t need interpolation in frequency domain. 

 

2.2.2 Analysis of FPTA channel estimation error  

 

We define channel estimation error in time domain as  

ˆ[ ] [ ] [ ] ( / ) [ ]FPTA avge n h n h n K A w n= − = .                          (2.12)   

The variance of [ ]e n  or Mean Square Error (MSE) of channel impulse response can 

be given as follows 

 2
2

2
,2

2

*

                 

]}[][{]}[{]}[var{

wavgw
A

K

A

K

neneEnemsene

σσ ==

==
                         (2.13) 

The corresponding channel estimation error in frequency domain can be obtained by 

Fast Fourier transform of [ ]e n  and can be represented as follows 
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�

�

−

=

−

−

=

−

=

==

1

0

/2

1

0

/2

][                           

][]][[][

M

n

Nknj

N

n

Nknj
N

ene

eneneFFTke

π

π

                   (2.14)       

The variance (MSE) of channel estimation in frequency domain can be written as 

        2
2

*

                 

]}[][{]}[{]}[var{

w
A

N

kEkEEkEmsekE

σ=

==
                       (2.15) 

In the next paragraph, the MST will be derived. The MSE of FPTA will compare with 

MSE of MST in next paragraph, and it will be shown that MST performs better than 

FPTA. 

 

2.3 MST channel estimation 
  

 There may not be so many channel paths with significant strength in N  samples 

interval of an OFDM symbol. Hence, among N  samples (taps) of channel impulse 

response estimate, many samples (taps) will have little or no energy at all except 

noise perturbation. Neglecting those nonsignificant channel taps in channel estimation 

may introduce some performance degradation if some of the channel energy is missed, 

but at the same time it will eliminate the noise perturbation from those taps. Total 

noise perturbation from those neglected channel estimate taps are usually much 

higher than the mulitpath energy contained in them, especially for low SNR values. 

Hence, neglecting those nonsignificant channel estimate taps can improve the channel 

estimation performance significantly. There are two ways to select taps [17]. One is to 

select several significant taps, and the other is to select the taps which is above a 

threshold. If we select the channel taps, which are less than the real numbers of the 
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channel taps, we define this situation as missing tap or under-determined condition. In 

opposition to the missing taps, the selected channel taps, whose numbers are more 

than the real ones, are defined as over-determined condition. The error floor will 

occur in the under determined-condition. It is a serious problem in the performance of 

channel estimation. In this section, we want to derive the MSE performance of 

channel estimation under the condition of missing taps. 

 

2.3.1 MST channel estimation algorithm 

 

   Training symbol of the MST approach is the same as the FPTA in Eq. (2.6) and Eq. 

(2.7). It contains K  impulses and distributes uniformly in N  samples of time 

domain. If the channel path gains remain essentially the same over an OFDM symbol 

interval, which is usually the case since OFDM symbol is often designed to satisfy 

this in order to maintain orthogonality among subcarriers, then the received samples 

corresponding to time-domain pilot samples contain K  repeated version of scaled 

channel impulse response which are independently corrupted by AWGN. In order to 

choose most significant channel taps (MST), those K  parts can be averaged so that 

the noise variance is reduced by K  times and more reliable most significant channel 

taps can be obtained. In mathematical expression, the time-domain received samples 

corresponding to time-domain pilot samples can be given by  

�
−

=

−=+−=

+⊗=
1

0

1,...,1,0     ],[][       

][][][][
K

m

NnnwmMnh
K
A

nwnpnhnr
                (2.18) 

Then averaging the received samples over K  parts, we have the noise-corrupted 

scaled channel impulse response 
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        1,...,1,0    ],[][][ −=+= Mnnwnh
K
A

nr avgavg  

The FPTA channel impulse response estimation is given by 

        1,...,1,0   ],[][][][ˆ −=+== Mnnw
A
K

nhnr
A
K

nh avgavgFPTA           (2.19) 

After channel impulse response is estimated by the FPTA algorithm, the most 

significant J  channel delay taps are chosen for the MST channel estimation. 

Suppose the time indices of the most significant J  taps are 110 ,...,, −Jnnn . The MST 

method is obtained by setting the other channel taps gains to zero as shown below 

        1,...,1,0    ],[][ˆ][ˆ
1

0

−=−=�
−

=

Nnnnnhnh i

J

i
iFPTAMST δ                 (2.20) 

The corresponding frequency response estimation is directly obtained by Fast Fourier 

transform of ][ˆ nhMST . How to select the number of taps J  is an important problem 

in MST algorithm. In next paragraph, we discuss the selection of J  by analysis of 

MSE for channel estimation. 

 

2.3.2 Analysis of MST channel estimation error  

 

  In the mean square error analysis, we consider the over determined condition in 

which J  is larger than total number of delay taps L . Recall Eq. (2.20), the 

estimated channel impulse response by the MST can be written as 

        
][][][            

][][ˆ][ˆ

1

0

1

0

i

J

i
iavg

i

J

i
iFPTAMST

nnnw
A
K

nh

nnnhnh

−+=

−=

�

�

−

=

−

=

δ

δ
                         (2.21) 

The estimated frequency response can be obtained as follows 
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        Nknj
i

J

i
iavg

N

n
MST ennnw

A
K

kHkH /2
1

0

1

0

][][][][ˆ πδ −
−

=

−

=

−+= ��              (2.22) 

The MSE in frequency response is        

}{                   

}][ˆ][{]}[{

2
,2

2

2

FPTAavgt

MST

Hmse
N
KJ

J
A
K

kHkHEkHmse

==

−=

σ
                     (2.23)    

The MSE performance gain of the MST method over FPTA method is ideally NKJ / . 

The smaller J  gets the better performance of MSE, but J  musts larger or equal to 

L . The best choice of J  is set to L . 

 Now, we extend the analysis of MSE to under determined condition ( LJ < ). The 

estimated channel impulse response by the MST can be written as 
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The estimated frequency response can be obtained as follow 
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The MSE in frequency response is  
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where 2
][ mnhσ  is the power delay profile for the mn th propagation delay path. The 

error floor occurs in this case because of missing tap. The channel estimation error 

caused by the noise from an additional tap in channel estimation is much less than that 

caused by missing one tap of the multipaths. The choice of the number of most 
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significant taps J  must be larger than the number of multipaths to prevent channel 

estimation error caused by missing taps. A suitable choice [17] for J  may be two 

times or more of the number of multipaths. Another MST tap selection can be 

implemented by selecting the channel taps whose energy is above a threshold [17]. 

The threshold may be set as η  times the maximum channel tap’s energy. In the 

simulation results, we can find the suitable choice of η  depend on the operating 

SNR. A suitable choice of η  is 20dB below 1/SNR. MST improves performance of 

FPTA by noise suppression. If the channel taps is small. MST algorithm gains more 

noise suppression by selecting fewer taps. Comparing the outdoor mobile channel  

with the indoor wireless channel, there are fewer channel taps in the outdoor mobile 

channel than in the indoor mobile channel. Therefore, the MST algorithm is suitable 

for the outdoor mobile channel beter than the indoor wireless channel.  

 

2.4 FPTA with LMMSE channel estimation  

 
  In Section 2.3, we use MST algorithm to improve FPTA channel estimation. In this 

section we will introduce another channel estimation method, based on correlation of 

channel, to improve FPTA channel estimation. This channel estimation method is 

called LMMSE [18]. The performance of MST with matched selection of taps, 

selected numbers of taps is equal to the real number of taps, is the same as the 

performance of LMMSE. 

 

  

2.4.1 LMMSE channel estimation algorithm 
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  FPTA channel estimation method can also be improved by using linear minimum 

mean square error (LMMSE) [18]. In LMMSE channel estimation, we need to know 

the autocorrelation matrix of FPTAĥ  and the cross correlation matrix between FPTAĥ  

and h . T
FPTAFPTAFPTAFPTA Mhhh ]]1[ˆ,],1[ˆ],0[ˆ[ˆ −= �h  is the estimated impulse response 

with FPTA. TMhhh ]]1[],1[],0[[ −= �h  is the true channel impulse response. If we 

define the autocorrelation matrix 
hh ˆˆR  and cross correlation hhR  as 

}ˆˆ{ˆˆ
H
FPTAFPTAhh

E hhR =                                        (2.28) 

}{ H
hh E hhR =                                             (2.29) 

We can write LMMSE channel estimation [18] as 

        FPTAhhhhmmse hRRh ˆˆ 1
ˆˆ

−=                                         (2.30) 

Lets us consider a wide-sense stationary uncorrelated scattering (WSSUS) multipath 

channel with power delay profile given by 2
ihσ  at delays of i  OFDM sample 

intervals. Due to the uncorrelated multipaths, the correlation matrix of channel 

impulse response hhR  becomes a diagonal matrix with the diagonal elements given by 

the power delay profile. The Eq. (2.28) can be rewritten as 
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where β/SNR  in Eq. (2.31) is replaced by 22 )( −KAwσ , 2
wσ  denotes the noise 

variance in time domain and K  is the number of impulses in a training symbol. 

Compared to MST with LMMSE, LMMSE needs more computation on estimation of 
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channel correlation and noise power. We can find the performance of MST with 

matched selection of taps in simulation results is similar to the performance of 

LMMSE in simulation results. MST has lower complexity than LMMSE, MST seems 

to be a better choice than LMMSE. But in general, we don’t know how many taps in 

the channel. In next Chapter, we consider the time varying channel. The decision 

directed algorithm [19], linear interpolation [13], and polynomial interpolation [14] 

will be implemented by FPTA and MST. Furthermore, in fast fading assumption, 

sub-symbol polynomial interpolation is proposed. The sub-symbol polynomial 

interpolation apply MST algorithm to reduce complexity and do noise suppression.   
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Chapter 3 
 
Time Varying Channel Tracking 
 
 

In Chapter 2, we introduced the FPTA method and MST method for channel 

estimation. They work fine in time invariant channel. In this Chapter, The serious 

problem, mobile fading channel, in channel estimation will be discussed. The channel 

impulse responses change in different time slot (One OFDM symbol is divided into 

several time slots) of one OFDM symbol. The estimated channel impulse response of   

the training symbol is an improper channel estimation for data symbols in time 

varying channel assumption. In order to solve this problem, the sub-symbol 

polynomial interpolation algorithm will be proposed. We suppose every delay tap of 

impulse response change in every time slot and is close to a polynomial function. The 

polynomial interpolation utilizes LS channel estimation in training symbol to get the 

coefficients of polynomial function. Then it interpolates the channel impulse response 

in data symbol. The estimation error is divided into two parts. One is noise error, 

caused from the noise of the system. The other is model error, which is generated by 

the difference between real channel impulse and polynomial model. Because the 

model error is relative to the statistics of channel, we use a time varying channel 

model in Section 3.1. The statistics of channel will be derived and utilized to check 

performance of model error.  Furthermore, we can mitigate noise effect of the LS 
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channel estimation in training symbol by Wiener filter. It makes some improvements 

for higher-order polynomials. We also compare other existing time varying channel 

estimation methods in this Chapter including decision directed algorithm, linear 

interpolation, and time-frequency domain polynomial interpolation. The performance 

of these channel estimation method will be shown in Chapter 4.  

 

3.1 Time varying channel model 

 

  The concept of deterministic channel modeling [20] has recently been extended [21] 

to frequency-selective mobile radio channels, resulting in a new class of model 

processes, called deterministic Gaussian uncorrelated scattering (DGUS) model. The 

DGUS model can be interpreted as the deterministic counterpart of Bello’s [22] 

stochastic WSSUS model. We describe DGUS model in equivalent complex baseband. 

The function of the system and statistics of the model will be introduced latter. 

 

3.1.1 DGUS channel model 

 

  The time variant impulse response of the DGUS model is given by a sum of L  

discrete delay paths, according to  

�
−

=

−=
1

0

)()(),(
L

l
lll tath ττδµτ                                   (3.1) 

where the real-valued la  are called delay coefficients, )(tlµ  are complex 

deterministic Gaussian process, and lτ  are discrete propagation delays. Both the 

delay coefficients la  and the discrete propagation delays )(tlµ  determine the delay 
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power spectral density of frequency–selective deterministic channel models. Strictly 

speaking, the delay coefficient is a measure of the square root of the average delay 

power, which is assigned to the l th path discrete propagation path. The channel 

disturbance of the Doppler effect, caused by the relative motion between the receiver 

and the transmitter, are modeled in Eq. (3.2) by complex deterministic Gaussian 

processes. 

      ∑
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tfj
lnl ect

1
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,,)( θπµ                                 (3.2) 

where 1,...,1,0 −= Ll . lN  denotes the number of harmonic functions, assigned to 

the l th path, lnc ,  is the Doppler coefficient of the n th component of the l th 

propagation path, and lnf ,  and ln,θ  are the corresponding discrete Doppler 

frequency and Phase. The time-varying channel impulse response ),( τth  is 

completely deterministic. Therefore, the correlation properties of ),( τth  are derived 

from time average, instead of statistical averages. Figure 3.1 shows the structure of 

the complex Gaussian random process )(tlµ  in the continuous-time representation. 

To ensure that the simulation model which is derived below has the same striking 

properties as a uncorrelated scattering (US) model, the complex deterministic 

Gaussian processes must be uncorrelated for different propagation delays, i.e., the 

deterministic process )(tlµ  and )(tλµ  have to be designed in such a way that they 

are uncorrelated for λ≠l , where 1,...,1,0, −= Ll λ . This demand can be fulfilled 

easily if the discrete Doppler frequencies lnf ,  are chosen in such a way that the sets 

{ lnf ,± } and { λ,mf± } are mutually disjoint for different propagation delays. Thus, the 

US condition can be expressed by 

λλ ≠±≠⇔ lff mln for        ,,US                                 (3.3) 
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where lNn ,...,2,1= , λNm ,...,2,1= , and 1,...,1,0, −= Ll λ .  

 

3.1.1 Statistic properties of DGUS channel 

 

  In the following paragraph, we derive the correlation properties of the deterministic 

Gaussian process Eq. (3.2) 
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can be expressed in closed form by  
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where 1,...,1,0, −= Ll λ . )'(τ
λµµl

r  is the autocorrelation function of the 

deterministic Gaussian process )(tlµ defined by Eq.(3.2). Next, we define the Fourier 

transform of autocorrelation function of deterministic Gaussian process )'(τµµ ll
r   
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The )( fS
l λµµ  is called the Doppler power spectral density of the l th propagation 

path. Without the loss of generality, the area of )( fS
l λµµ  over all frequency is equal 

to one. The Doppler coefficients lnc ,  must satisfy the following condition 

        1
1

2
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=
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lnc                                                  (3.7)    

for 1,...,1,0 −= Ll . In a typical mobile system, the Doppler power spectral density 
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can be expressed as 
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where k  is a constant which depends on the average power of the deterministic 

Gaussian process )(tlµ , and lDf ,  is the maximum Doppler frequency. Then 

combining Eq. (3.6) and Eq. (3.8), we can get the following equation 
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We also have to satisfy the Eq. (3.7) condition. Finally, the Doppler coefficients lnc ,  

can be obtained from the discrete Doppler frequencies lnf , . 
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where lNn ,...,2,1= , 1,...,1,0 −= Ll .The Doppler power spectral density )( fSµµ  

of DGUS channel can be determined from the Doppler power spectral density for l th 

propagation path. 
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The average Doppler shift of the DGUS model )1(
µµD  is defined by the first moment 

of )( fSµµ , i.e,  
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The Doppler spread )2(
µµD  of DGUS model is defined by the square root of the second 

central moment of )( fSµµ , i.e., 
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3.2 The FPTA and the MST method in time 

varying channel 

   

In this section, we introduce two channel estimation methods whose don’t need 

statistic of channel in the time varying channel. One is decision direct algorithm, the 

other is linear interpolation. In the decision direct algorithm, the initial channel 

estimation in training symbol is obtained by FPTA or MST. Then decision direct 

algorithm [19] is used to track the channel in the data position. In the linear 

interpolation, channel in training symbol is also estimated by FPTA or MST. Then we 

do linear interpolation by two neighbor training channel which is estimated with 
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FPTA or MST.  

 

3.2.1 FPTA and MST with decision direct algorithm 

 

The corresponding channel frequency response estimation of the FPTA method or 

the MST method is N-points Fast Fourier transform of FPTAĥ  or MSTĥ . A simple 

decision directed method will be introduced. It is called one-tap Recursive Least 

Squares filter [19]. The algorithm is 
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where ),( kmR  is the received symbol at k th subcarrier and m th data symbol; 

),(ˆ kmX  is the estimation of the constellation at k th subcarrier and m th data 

symbol; ),(ˆ kmH  is the estimation of the demodulated channel; ),( kmZ  is the 

decision variable (a noisy estimate of the constellation value ),( kmX ) and α  is the 

update factor in the estimation of the channel. The algorithm is also shown in Figure 

3.1. 

α

α−1

),(ˆ kmZ ),(ˆ kmX

),(ˆ
),(

kmX
kmR

),( kmR
),(ˆ kmH

),1(ˆ kmH −
Fig. 3.1 Block of One-tap Recursive Least Square filter 
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The initial channel estimation can be completed by training symbol (FPTA or MST), 

then update the channel by the one-tap Recursive Least Squares filter. Periodic 

resending of the training symbol will reorient the estimation of the channel to the 

correct position. The errors will typically occur when the signal is in a deep fade.   

 

3.2.2 FPTA and MST with linear interpolation algorithm 

),(ˆ nrh tFPTA

),0(ˆ nhFPTA

Fig. 3.2 Illustration of linear interpolation 

  In FPTA or MST methods, we use the channel that is estimated by training symbol 

to recover data. The mobile fading channel changes with time. The channel of training 

symbol is different from the channel of data symbol. Even the channel of training 

symbol can be estimated very accurately, it still can’t be used to recover data. 

Fortunately, because the channel doesn’t change rapidly in short-time intervals or in 

low Doppler frequency mobile environment, then we can suppose that the channel 



 27

presents the linear change between two training signals both in the time domain and in 

the frequency domain. Figure 3.2 shows the illustration of linear interpolation. First, 

we estimate channel of training symbol by FPTA or MST. The estimated channels of 

two adjacent training symbols can be used to make a straight line, then we can 

interpolate channel of data symbols by this straight line. The linear interpolation [13] 

can be carried out in two domains. One is the interpolation in the time domain, which 

is achieved by the linear interpolation in delay propagation path. The other is 

interpolation in the frequency domain, which is achieved by linear interpolation in 

subcarriers.  If We insert training symbol in every tr  OFDM symbols, in the time 

domain, the linear interpolation for n th propagation path in m th OFDM symbol can 

be shown as  

),(ˆ),0(ˆ),(ˆ nrh
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=                   (3.15) 

where 1,,1,0   −= Mn L ; 1,,2,1 −= trm L  , and ),(ˆ nmhFPTA  is FPTA channel 

estimation for n th propagation path in m th training symbol. In the frequency 

domain, the linear interpolation for m th OFDM symbol can be shown as  

            ),,(ˆ),0(ˆ),(ˆ krH
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where 1,,1,0 −= Nk L , and ),(ˆ kmH FPTA is k th tone of Fast Fourier transform of 

FPTA channel estimation in m th OFDM symbol. The performance of the time 

domain interpolation and the one of the frequency domain interpolation are the same 

because frequency domain interpolation can be obtained by Fast Fourier transform of 

the time domain interpolation. The difference between these two domain 

interpolations is that the time domain interpolation is less complex, due to the 

numbers of multipaths are much less than the tones of an OFDM symbol. There is a 
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less complex way. Using MST algorithm is much more convenient than using FPTA. 

The linear interpolation based on MST channel estimation can be obtained by 
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where ),(ˆ
lMST nmh  is MST channel estimation for ln th propagation path in m th 

training symbol. And ln  is delay length, corresponding to l th significant delay path 

of MST algorithm; m  represents time index of OFDM symbols. Besides, the noise 

suppression is the advantage of the linear interpolation based on MST algorithm. 

Comparing to the decision directed algorithm with the linear interpolation, the 

decision directed algorithm must demodulate the decision variable to obtain the 

estimation of the constellation point. In our simulation, 64 QAM modulation is used. 

The estimation of the constellation will fails easily. The demodulation of 64-QAM 

also cost a lot of computation. The linear interpolation is a more suitable choice than 

decision directed algorithm. The linear interpolation models variation of channel as 

linear change. A more general variation of channel is a polynomial model. We propose 

a sub-symbol polynomial interpolation in next paragraph. 

              

3.3  Sub-symbol polynomial interpolation  

 

The channel variation in physical world is smooth in both the time domain and the 

frequency domain. Such a smooth varying function can be approximated by 

projecting to a finite set of basis functions. Moreover, since the OFDM channel 

parameters are located in a time-frequency plane, it is natural to approach the channel 

frequency response over a time-frequency window to a small of set polynomial basis 
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functions [14]. The numbers of subcarriers are usually greater than the number of 

channel delay taps. We may only approach the delay tap over a time window to a 

small set of polynomial basis function in order to save computation. The number and 

positions of delay taps can be selected by choosing the most significant taps selection 

which is introduced in Chapter 2. Further more, in the fast fading channel, we can 

obtain channel time varying information by using training symbol of FPTA. 

Compared to FPTA, we don’t average the received training symbol. The channel can 

be estimated in different time slot. Then we use these channel impulse responses to 

make a polynomial function which is closest to channel impulse response, which 

estimated by training symbol. We defined this channel estimation method as 

sub-symbol polynomial interpolation. The algorithm of sub-symbol polynomial 

interpolation is performed in next paragraph. 

 

3.3.1 Sub-symbol polynomial interpolation algorithm  

 

The form of the training symbol of the sub-symbol polynomial interpolation is 

similar with that of FPTA. In the FPTA method, we assume that the channel impulse 

response is unchanged in an OFDM symbol, and it can be estimated by averaging K  

identical parts (time slot) of received training symbol. In the sub-symbol polynomial 

interpolation, we assume that the channel impulse response change K  times (time 

slots) in an OFDM symbol. Averaging of training symbol is not necessary. Because 

the time slot of the received training symbol preserves time varying information. Then 

we can do a curve fitting to approach the channel on data location (seen in Figure 

3.3). 
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Fig. 3.3 Channel tracking by sub-symbol polynomial interpolation  

 

 In the following we will derive sub-symbol polynomial interpolation algorithm. 

Now, we model l th propagation path change with time as a polynomial function.  

)()(),( ltlth qqpoly ba=                                       (3.18) 

where )(tqa  is time vector, ],,,,1[)( 2 q
q tttt L=a . q  is the order of polynomial 

function; T
qq lblblbl )](,),(),([)( 10 L=b  is the coefficient vector for l th propagation 

path. Afterwards, we recall Eq. (2.8) and find the LS channel estimation for every 

time slot of training symbol as follows 
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where A  is the pilot amplitude and )]1,(ˆ,),1,(ˆ),0,(ˆ[)(ˆ −= Mthththt LSLSLSLS Lh . The 

coefficients of the polynomial function can be estimated by two neighbor training 

symbols, according to the following criterion 
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where the set P  contains the time slot index of training symbol in the time 

window, and ),(ˆ lth PLS  is LS channel estimation of l th delay path in Pt th time slot.  
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window, and ),(ˆ lth PLS  is LS channel estimation of l th delay path in Pt th time slot.  

The polynomial coefficients vector can be estimated as  

 )(~)(ˆ
, ll LSqTq hAb ⊥=                                           (3.21) 

where qT ,A  is called training time matrix, every row of qT ,A  is the time vector, 

corresponding to time slot index of training symbols in the time window. ⊥
qT ,A  is the 

pseudo inverse of qT ,A ,and   
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where  
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tr  is the inverse of training rate. We can achieve channel interpolation of data time 

slot of l th delay path using by  

      D∈= DqDqDpoly tltlth      ),(ˆ)(),(ˆ ba                               (3.23) 

where the set D  contains the time slot index of data symbol in the time window. The 

impulse response of Dt th time slot can be constructed by 

T
DpolyDpolyDpolyDpoly Mthththt )]1,(ˆ,),2,(ˆ),1,(ˆ[)(ˆ −= Lh             (3.24)  

Besides, we can obtain the estimated l th path impulse response at all data position  

by 

       )(ˆ)(ˆ
, ll qqDpoly bAh =                                          (3.25) 

where qD ,A  is called data time matrix; every row of qD ,A  is the time vector, which 

corresponds to time slot of data symbol. There are K  channel impulse responses,   
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interpolated by polynomial interpolation. By averaging K  interpolated channel 

impulse responses [13], it is simple to present the channel impulse response of an 

OFDM symbol. In the low SNR environment, the polynomial function makes a huge 

error by tracking the noise perturbation. We can mitigate the noise perturbation by 

using Wiener filter. The LS estimation can be improved by the Wiener filter and more 

accurate coefficients of polynomial function can be found. The smoothed channel of 

m th training symbol )(ˆ )( lm
mmseh  can be shown as follows 
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where R  is the autocorrelation matrix of channel impulse response of l th 

propagation path. iλ  and D  are the eigenvalue and eigenmatirx of llR . In the low 

SNR environment, the channel is smoothed by Wiener filter about 10dB, better than 

the LS estimation in MSE performance. After smoothing, )(~ lLSh  is replaced by 

)(~ lmmseh  in Eq. (3.21) to estimate polynomial coefficients. Where 

TT
mmse

T
mmsemmse lll ])(~,)(~[)(~ )2()1( hhh =  After that, the channel interpolation is smoothed by 

Wiener filter, and polynomial interpolation are obtained by  

    )(ˆ),(),(ˆ llklkh mmseDqDmmse ba=                                (3.27) 

  )],(ˆ,),,(ˆ),,(ˆ[),(ˆ lkhlkhlkhlk DmmseDmmseDmmseDmmse L=h            (3.28) 

 

3.3.2  The MST algorithm for polynomial interpolation 
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      The MST algorithm can also be employed to reduce computation complexity and 

noise perturbation in the time domain interpolation. The most significant paths can be 

chosen by the FPTA channel estimation in n th training symbol. The most significant 

J  taps are chosen as the J  largest amplitude channel taps. Let the channel tap 

indexes for those most significant J  propagation path be denoted by 110 ,,, −Jτττ L . 

The selected tap indexes are utilized to n th and 1+n th training symbol.  The rest 

of the channel taps are setting to zero. The number of multipath reduces from M  to 

J . The reconstructed LS estimation can be shown as  

)]1(ˆ,),2(ˆ),1(ˆ[ˆ −= KMSTMSTMSTMST hhhh L                        (3.29) 

where  

        )]1,(,),1,(),0,([)(ˆ
1,1, −= − Mthththt MMSTMSTMSTMST Lh               (3.30) 

and ][),(),(ˆ
iLSMST nnthnth τδ −= . The polynomial coefficients vector of l th path 

can be estimated as  

    )(~)(ˆ
, ll MSTqTq hAb ⊥=                                          (3.31)  

where qT ,A  is called training time matrix; every row of qT ,A  is the time vector, 

corresponding to time slot index of training symbols in the time window. ⊥
qT ,A  is the 

pseudo inverse of qT ,A , and   

       
T

tMSTtMSTtMST

MSTMSTMSTMST

lKKrhlKrhlKrh

lKhlhlhl

)],1(ˆ,),,1(ˆ),,(ˆ                   

),,1(ˆ,),,1(ˆ),,0(ˆ[)(~

−++

−=

L

Lh
      (3.32) 

is the most significant selected taps of LS channel estimation vector for l th 

propagation delay path. The channel interpolation of data time slot of l th 

propagation path can be achieved by  
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       D∈= DqDqDpoly kltlth      ),(ˆ)(),(ˆ ba                              (3.33) 

where the set D  contains the time slot index of data symbol in the time window. The 

impulse response of Dt th time slot in the time window can be constructed by 

       T
DpolyDpolyDpolyDpoly Mthththt )]1,(ˆ,),1,(ˆ),0,(ˆ[)(ˆ

1, −= Lh              (3.34) 

We can obtain the estimated l th path impulse response at all data position by 

       )(ˆ)(ˆ
, ll qDpoly bAh =                                           (3.35) 

where qD ,A  is called data time matrix; every row of qD ,A  is the time vector, 

corresponding to the time slot of data symbol. The Wiener filter can also be employed 

here to get a better channel estimation of training symbol.  

 

3.3.3 Analysis of channel estimation error of polynomial 

interpolation 

 

The channel estimation error at t th time slot and l th propagation path is  

      ),(ˆ),(),( lthlthlte poly−=                                     (3.36)  

The MSE of ),( lte  is obtained as follows  
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where lTT ,R  is the autocorrelation matrix of )(lTh , and  

        
T
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           (3.38) 
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the autocorrelation matrix )}()({, llE H
TTlTT hhR = . )0(,lTTr  is diagonal element of 

lTT ,R . The MSE are divided into two parts. The first parts are the first three terms in 

Eq. (3.37). They are called model errors, coming from the difference between 

polynomial model and real channel. We define the MSE of model error at t th time 

slot and l th propagation path as  

        
)()(                        

)}](),({)(Re[2)0(),(

,,,

*
,,mod

tt

llthEtrltmse
T
q

T
qTlTTqTq

TqTqlTTel

aARAa

hAa
⊥⊥

⊥

+

−=
           (3.39) 

The second part is the last term in Eq. (3.37). It is called noise error and comes from 

the depredation of channel noise. We define the MSE of noise error at the t th time 

slot and l th propagation path as 

        )()(),( ,,2

2

tt
A

ltmse T
q

T
qTqTq

t
noise aAAa ⊥⊥=

σ                          (3.40) 

If we consider MSE of model error and noise error as a function of t . Both of the 

model error and the noise error increase when the interpolated channel time slot 

locates far from the training position. The averaging MSE over all data time slot is 

derived in order to observe the performance of polynomial interpolation for l th 

propagation path. The averaging MSE are also divided into the model error part and 

the noise error part. First of all, the averaging MSE of model error can be obtained by  
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       (3.41) 

where d  are total numbers of data time slot; }Re{X  is to catch real part of X ; 

][Atr  is to get the trace of the matrix A , and )}()({, llE H
DTlTD hhR =  is the cross 

correlation matrix between )(lTh  and )(lDh . )(lDh  is composed of l th 
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propagation path at data time slot. Because the second term in Eq. (3.41) increases 

with higher polynomial order, the averaging MSE decreases when the polynomial 

order gets higher. The smaller training rate makes larger averaging MSE. Because the 

smaller training rate has a longer time duration, it causes a larger difference between 

polynomial model and real channel tap. The higher polynomial order can be used to 

solve this problem. The elements of the autocorrelation matrix lTT ,R  and 

cross-correlation matrix lTD,R  can be obtained in Eq. (3.5a). The Eq. (3.5a) contains 

the parameters of the discrete Doppler frequency. The higher Doppler frequency 

makes channel change more rapidly. In the case of high Doppler frequency, we can 

also use higher polynomial order to get an accurate model of time varying channel tap. 

The second part of averaging MSE is to average noise error. The averaging MSE of 

model error can be obtained by 
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                 (3.42) 

The noise error is independent of channel properties (i.e., the Doppler frequency and 

channel power profile). It is only relative to the training and data arrangement and the 

polynomial order. The averaging MSE of noise error becomes large when polynomial 

order is high. This result is opposite to the averaging MSE of model error. The model 

error is independent of SNR. The noise error dominates both MSE and BER 

performance in the low SNR environment. The model error dominates MSE or BER 

performance in high SNR environment. And the model error will cause error floor in 

MSE curve and BER curve. If the taps are selected well (i.e., Correct number of taps 

and Correct delay position are used) by MST algorithm. The MSE performance of 

sub-symbol polynomial interpolation over all channel taps is 
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In the Section 4.4, we will simulate MSE performance in different parameters of the 

system. We also show the simulation result and Eq. (3.43). 

  

3.4 Polynomial interpolation of channel in 

time-frequency domain 

     In this section, we introduce an existing time-frequency domain polynomial 

interpolation [14]. Compared to the sub-symbol polynomial interpolation with the 

time-frequency domain polynomial interpolation, the sub-symbol polynomial 

interpolation is operated on fast fading channel. Fast fading channel means that 

channel changes several times in a symbol duration. The time-frequency domain 

polynomial interpolation is operated on slow fading channel. Slow fading channel 

means that channel changes once a symbol duration. 

 

3.4.1 Polynomial interpolation algorithm in time-frequency 

domain 

 

     In the receiving end, we gain the received baseband signal of k th tone in the m th 

symbol interval is obtained by  

        ),(),(),(),( kmWkmXkmHkmR +=                           (3.44) 

where ),(),(),( kmjWkmWkmW QI +=  is a zero mean complex Gaussian random  

variable with variance 2
Wσ . A common practice for estimating ),( kmH  is to insert 
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pilot symbols at some predetermined location in the time-frequency plane (seen in 

Figure 3.4). The LS channel estimation at pilot location can be estimated by 

        
),(
),(

),(
),(
),(

),(ˆ
kmX
kmW

kmH
kmX
kmR

kmH LS +==                      (3.45) 

where ),(/),( kmXkmW  is the error term, due to presence of Gaussian noise with 

variance }),({/ 22 kmXEWσ . In the time-frequency interpolation [14], we select an 

operation window in the time-frequency plane first, in which 00 MN ×  pilots are 

distributed uniformly at every fr  tone and every tr  symbol (see Figure 3.1). 

 

fr

tr

Fig. 3.4 Data grid in the time-frequency plane of OFDM signals 

 

Then the receiver models the fading channel mkH  as a 2D (time-frequency) 

polynomial function 

        012
2

34
2

5),( bkbmbkbmkbmbkmH poly +++++=                 (3.46) 

The frequency-domain model of the received samples implies that the ML estimates 
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of the coefficients Tbbb b≡],,,[ 045 L are chosen to satisfy the following criterion 
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                               (3.46) 

where the set P  in  Eq. (3.20) contains the pilot locations in the operating window,  
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and ]1,,,,,[),( 22 kmkmkmkm =a  is called time-frequency vector, The polynomial 

coefficients for the time-frequency window can be shown as  

    LSTft HAb ˆˆ
,

⊥
−=                                             (3.48) 

where Tft ,−A  is called training time-frequency matrix; every row of Tft ,−A  is the 

time-frequency vector corresponding the pilot location in the time-frequency window. 

⊥
− Tft ,A  is the pseudo inverse of Tft ,−A . The channel interpolation of data location can 

be achieved by  

       D∈= kmkmkmH poly ,     ,ˆ),(),(ˆ ba                             (3.49) 

where the set D  contains locations of data symbol in the time-frequency window. A 

more complicated method that is capable of reducing the effect of noise is the 

LMMSE method. This method based on the estimated channel autocorrelation matrix 

and noise variance 2
fσ  estimates channel frequency response on the pilot location 

which is shown as  

        LS
H

fHHmmse HXXRRH ˆ])(~[~ˆ 112 −−+= σ                          (3.50) 

where HR~  is the channel autocorrelation function of pilot tones. X  is a diagonal 

matrix whose diagonal elements are the pilot amplitude. The mmseĤ   is substituted 

with LSĤ in Eq. (3.24). Then the coefficients vector can be obtained by 
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        mmseTftmmse HAb ˆˆ
,

⊥
−=                                         (3.51) 

Furthermore, the channel interpolation by Wiener filter smoothing and polynomial 

interpolation are obtained by  

        mmsemmse kmkmh ba ˆ),(),(ˆ =                                   (3.52)  

In next paragraph, we will compare performance of sub-symbol polynomial 

interpolation with performance with the time-frequency domain polynomial 

interpolation. 

 

3.4.2 The comparison between sub-symbol interpolation and 

time-frequency domain interpolation 

 

The time-frequency domain interpolation use pilot tones for channel estimation in 

frequency domain. The other tones on the data location can be sent data. The 

sub-symbol polynomial interpolation uses training symbol for channel estimation in 

the time domain. It means all tones are pilot tones in an OFDM symbol. The pilot 

tones of time-frequency domain interpolation are distributed more uniformly than 

sub-symbol polynomial interpolation. The time-frequency polynomial interpolation 

seems have better performance than sub-symbol polynomial interpolation. But the 

variation of channel in the frequency domain is rapider than the variation of channel 

in the time domain (seen in Figurer 3.5). We will suffer a large model error when 

interpolate channel in frequency domain. In the simulation results, we will find that 

the performance of sub-symbol polynomial interpolation is better than the 

performance of time-frequency domain polynomial interpolation, due to rapid 

variation of channel in the frequency domain. In mobile channel assumption, the 
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sub-symbol polynomial interpolation assumes that channel changes several times in 

an OFDM symbol. We define this assumption as fast fading channel. The 

time-frequency assumes that channel does’t change in an OFDM symbol and changes 

for different OFDM symbols. We define this assumption as slow fading channel. The 

sub-symbol polynomial interpolation is a channel estimation method based on fast 

fading channel. It is more general assumption of channel.  
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Fig. 3.5 Channel responses distribute in time-frequency plane. 
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Chapter 4 
 
Computer Simulations 
 
4.1 Simulation parameters 

   

  The channel model is evaluated by computer simulation for two multipath fading 

channel models, namely TI (time invariant) Channel-A and TI (time invariant) 

Channel-B, The TI Channel-A is the ATTC (Advanced Television Technology Center) 

and the Grand Alliance DTV laboratory’s ensemble E model whose channel impulse 

response for the static case is given by  

        
]137[1.0]75[10]36[12960           

]17[1995.0]2[3162.0][][
−+−++

−+−+=
nn.n-.

nnnnh

δδδ
δδδ

              (4.1) 

where unit delay is assumed to be the same as OFDM sample period. The TI 

Channel-B is a simplified version of DVB-T channel model 1P  [23] and its channel 

impulse response for the static case is given by  

        

]49[1846.0]29[2055.0]24[317.0          
]17[4189.0]12[1948.0]8[1197.0          

]7[0365.0]5[49.0]4[4252.0          
]3[3088.0]1[1287.0][2478.0][

−+−+−+
−+−+−+

−+−+−+
−+−+=

nnn

nnn

nnn

nnnnh

δδδ
δδδ

δδδ
δδδ

        (4.2) 

The time varying properties consult the DGUS channel model which is introduced in 

Section 3.1. The TI Channel-A can be modified to time varying model and is 
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represented as 

        
]137[)(1.0]75[)(10]36[)(12960           

]17[)(1995.0]2[)(3162.0][)(],[

543

210

−+−++
−+−+=
ntnt.n-t.

ntntnttnh

δµδµδµ
δµδµδµ

  (4.3) 

This time varying channel model is called TV (time varying) Channel-A. Every 

complex Gaussian random process )(tlµ  is composed of five complex sinusoid 

functions ( 12=lN ). There are six taps and every tap is composed of five complex 

sinusoid functions in the TV Channel-A. Therefore there are total thirty complex 

sinusoid functions to be used in the TV Channel-A. If the Doppler frequency is 

assigned to df , the frequencies of these sinusoid functions are distributed uniformly 

from 0 to df . The phase of these complex sinusoid functions are uniform distribution  

from 0 to π2 . According to modification of TI Channel-A, the time varying model of 

TI Channel-B also can be created, and we call this time varying channel as TV (time 

varying) Channel-B. There are twelve taps in the TV Channel-B and every tap is 

composed of five complex sinusoid functions. Total sixty complex sinusoid functions 

is used in the TV Channel-B. If the Doppler shift is assigned to df , the frequencies 

of these sinusoid functions are distributed uniformly from 0 to df . The phase of these 

complex sinusoid functions are uniform distribution from 0 to π2 . In OFDM system, 

The DVB [23] system is used in this chapter, for a 8MHz channels, the number of 

subcarriers 2048=N  (2K mode), and guard interval ratio=1/8, the sampling rate are 

10MHz and carrier modulation 64-QAM are used. The 64-QAM signal power is set to 

1. In all methods, pilot tone symbol of 0801.10801.1 j+  signal point in 64-QAM 

constellations is used.  
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4.2 Comparison between FPTA, MST and 

LMMSE in time invariant channel 

   

In this section, we first observe the characteristics of FPTA, MST and LMMSE. 

Those characteristics are similar to the characteristics of modified methods which are 

used for time varying channel. In LMMSE method, ideal correlation and SNR values 

are used in order to evaluate the relative performance of MST method. Figure 4.1 

shows the MSE performances of different channel estimation method and MSE of 

MST with 5 taps based on Eq. (2.26) in the TI Channel-A. The method of LMMSE 

has the same performance of MST with 6 taps. MST with 6 taps, which is the same as 

the number of taps in Channel-A, has approximately 18 to 22 dB MSE gain over 

FPTA. MST with 5 taps shows an irreducible channel estimation floor caused by 

missing some of the channel energy. The missing energy is shown in the first term of 

Eq. (2.26). In Eq. (2.26), we can find the error floor equal to missing tap energy. The 

energy of weakest tap in the TI Channel-A is -20dB and is the error floor of MSE in 

Figure 4.1. MST with 5 taps has a better performance than FPTA for SNR less than 

20dB since for this SNR region the gain in noise suppression is greater than the loss 

of channel energy missing. However, for higher SNR region where noise has smaller 

impact than the channel energy missing, the error floor of channel estimation results 

in a worse performance for MST with 5 taps. In Figure 4.2, the BER performances in 

TI Channel-A are presented for the different channel estimation methods. Due to the 

channel estimation error floor and the sensitivity of 64-QAM to channel estimation 

error, MST with 5 taps case shows a BER floor while the others do not. Another most 

significant selection is the threshold decision. The suitable choice of threshold 
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depends on the operating SNR. The threshold is inverse proportion to multiple of 

SNR. Figure 4.3 shows several multiples of inversion of SNR in MSE performance. If 

the multiple is close to 1, missing taps will occur. If the multiple is too low, more 

noise will be injected. A proper multiple is 0.01 which can be shown in Figure 4.3. 

Figure 4.4 shows the BER performance in different multiples of inversion of SNR. 

Because large number of sucarriers is used in DVB system and construction of 

training symbol, most tones are set to zeros in training symbol. There are few taps in 

the channel models. In the receiver side, the received training signal, convolution of 

channel and training symbol adds noise, has many pure noise samples. If we ignore 

several powerful samples, we will get those pure noise samples. After averaging those 

pure noise samples, noise power can be estimated. Because the power of 64-QAM 

signal is set to 1, the SNR can be acquired by inverse of estimated noise power.   
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Fig. 4.1 Channel estimation mean square error (MSE) in TI Channel-A 
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Fig. 4.2 BER performance with different channel estimation methods in TI 

Channel-A. 
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Fig. 4.3 Channel estimation MSE performance with different threshold selections in 

TI Channel-A 
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Fig. 4.4 BER performance with different threshold selections in TI Channel-A 

 

4.3  Comparison between estimation methods 

in time varying channel 

 

 In this section, performance of channel estimation method in Chapter 3 will be 

shown in MSE and BER curves. The time varying channel model is represented in 

Section 4.1. TV Channel-A is used in Figure 4.5. Figure 4.5 shows the BER 

performance of FPTA with linear interpolation, MST with linear interpolation, FPTA 

with decision direct algorithm, MST with decision direct algorithm, the 

time-frequency domain polynomial interpolation and the sub-symbol polynomial 

interpolation with MST algorithm. The selection of taps in MST is 6 in this simulation. 

The performances of sub-symbol polynomial interpolations are better than linear 
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interpolations due to smaller model error. If total numbers of pilot tones are the same, 

the pilot tones distribute more uniformly than training symbol in time-frequency 

domain than in sub-symbol methods. Therefore performance of time-frequency 

domain polynomial interpolation seems better than sub-symbol polynomial 

interpolation. Due to the variation of channel in frequency domain is rapider than the 

variation of channel in time domain, the time-frequency domain polynomial 

interpolation is worse than sub-symbol polynomial interpolation. Time-frequency 

domain polynomial interpolation is more complex than sub-symbol polynomial 

interpolation.  The decision direct algorithm may cause error propagation.  

Performance of decision direct algorithm is worse than polynomial interpolations and 

linear interpolation due to error propagation.     
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Fig. 4.5 MSE performance with different channel estimation methods in Doppler 

frequency 75Hz environment. 
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Fig. 4.6 BER performance with different channel estimation methods in Doppler 

frequency 75Hz environment. 

 

Figure 4.7 shows the different selection of taps in MST combing sub-symbol 

polynomial interpolation in the Doppler frequency 75Hz. The result shows that the 

suitable threshold value is -20dB below inverse of SNR. MST with 5 taps also cause 

error floor in sub-symbol polynomial interpolation with MST method. The error floor 

in other methods comes from Doppler effects. 
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Fig. 4.7 BER performance with different taps selection of Combing MST and 

sub-symbol polynomial interpolation. 

 

4.4 Properties of sub-symbol polynomial 

interpolation 

  

   The MSE performance of the sub-symbol polynomial interpolation is derived in 

Section 3.4. The MSE is divided into the model error and the noise error. Both of the 

model error and noise error are sensitive to several parameters of the OFDM system. 

In this section, we observe sensitivity of the model error and sensitivity of the noise 

error in differential parameters of OFDM system. These parameters include Doppler 

frequency, training rate, polynomial order and different channel statistics (TV 

Channel-A and TV Channel-B). The MST algorithm combines with time domain 
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polynomial interpolation, is used in the simulations of this section. When the channel 

environment is TV Channel-A, we do MST with six taps, and the time domain 

polynomial interpolation interpolates these six taps. MST with twelve taps is adopted 

in TV Channel-B environment. Then we do the sub-symbol polynomial interpolation 

for these twelve taps. In the simulation result, the performance of MSE has a little 

poor compared to theory value of MSE.  

 

4.4.1  Comparison of different Doppler frequency 

   

   In this paragraph, MSE performance of channel estimation is discussed with 

different Doppler frequencies. We fix the training rate with 1/8. The polynomial order 

is set to two, and TV Channel-A is used. The MSE performances with different 

Doppler frequencies (90Hz, 100Hz, 150Hz) are observed in Figure 4.8. 
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Fig. 4.8 Channel estimation MSE with different Doppler frequencies in TV Channel-A 
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Figure 4.8 is divided into two parts in order to distinguish the model error and noise 

error. The first part is low SNR region. The noise error dominates MSE performance 

in this region. The second part is high SNR region. The model error dominates MSE 

performance in this region. The three curves overlap in low SNR region. It means that 

the noise error is independent of the Doppler frequency. In high SNR region, the MSE 

curves have error floor. This error floor is the model error. We can see clearly in 

Figure 4.8, the higher Doppler frequency curve has the higher model error. This 

problem of model error can be solved by increasing polynomial order or decreasing 

training rate. We will discuss properties of these two solutions in next two paragraphs. 

 

4.4.2  Comparison of different training rate 

 

  In this paragraph, we will show how the training rate affects the MSE performance 

of channel estimation. The Doppler frequency is fixed to 150Hz. Polynomial order is 

set to two, and TV Channel-A is used. The MSE performances with different training 

rates (1/4, 1/8) are observed in Figure 4.9.  
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Fig. 4.9 Channel estimation MSE with different training rates in TV Channel-A 

 

Figure 4.9 is also divided into two parts in order to distinguish the property of model 

error and property of noise error. The first part is low SNR region. The noise error 

dominates MSE performance in this region. The second part is high SNR section. The 

model error dominates MSE performance in this section. The larger training rate has 

lower noise error in low SNR section. It means that the noise error increases when 

training rate increases. The MSE curves have error floor, this error floor is the model 

error. We can see clearly in Figure 4.9, the large training rate curve also has low 

model error. 

 

4.4.3  Comparison of different polynomial order 

 

   The polynomial order is parameter which affects MSE performance. The effect of 
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polynomial order is debated in this paragraph. First we fix the training rate to 1/8, the 

Doppler frequency is 200Hz, and TV Channel-A is used. The MSE performances with 

different polynomial order (2, 3, 4, 5) are observed in Figure 4.12.  
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Fig. 4.10 Channel estimation MSE with different polynomial order in TV Channel-A 

 

Figure 4.10 is also divided into two parts in order to distinguish the model error and 

noise error. The first part is low SNR section. The noise error dominates MSE 

performance in this section. The second part is high SNR section. The model error 

dominates MSE performance in this section. The higher polynomial order curve has 

the higher noise error in low SNR section. It means that the noise error increase when 

polynomial order is high. In high SNR section, the MSE curves have error floor. This 

error floor is the model error. We can see in Figure 4.10, the higher polynomial   

order curve has lower model error. There is a tradeoff between noise error and model 

error in choosing polynomial order. 
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4.4.4  Comparison of different channel model 

 

In this paragraph, the different channel model is discussed in MSE performance. We 

fix the training rate as 1/4; the Doppler frequency as 100Hz and 150Hz. Polynomial 

order is set to two. The MSE performances with different channel model (TV 

Channel-A and TV Channel-B) are observed in Figure 4.11. 
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Fig. 4.11 Channel estimation MSE in TV Channel-A and TV Channel-B and df = 

150Hz, 200Hz. 

 

The TV Channel-A has the same delay spread with the TV Channel-B. Figure 4.11 is 

also divided into two parts in order to distinguish the model error and noise error. The 

first part is low SNR region. The noise error dominates MSE performance in this 
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section. The second part is high SNR region. The model error dominates MSE 

performance in this region. The noise error is independent of Doppler frequency and 

channel model, because these curves overlap in the low SNR region. In high SNR 

region, the MSE curves have error floor. This error floor is the model error. The 

model errors in the same Doppler frequency have a little difference between two 

channel models. MSE performance of TV channel B is a little better than MSE 

performance of TV Channel A. 

  We observe sensitivity of the model error and noise error in this section. Then we 

find that noise error is nonsensitive totally to the channel condition. The noise error is 

only sensitive to training rate and polynomial order. The model error is sensitive to all 

parameters observed in this section. In the low SNR region, the noise error dominates 

the MSE performance. Since the noise error is not sensitive to channel, we can say the 

sub-symbol polynomial interpolation is robust channel estimation method in the low 

SNR region. But the width of low SNR region is relative to the model error. In bad 

channel condition, large Doppler frequency, the model error may be large and cause 

error floor from a low SNR value.  
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Chapter 5 
 
Conclusion 
 
 

  Channel estimation of time varying channel is a challenge because of tracking 

channel variation. We introduce several interpolation techniques to track channel 

variation. The FPTA or MST with decision directed algorithm is intolerable in 

simulation results because of large decision error. The linear interpolation is the 

simplest way to track channel variation, but the large model error will occur in high 

Doppler frequency environment and low training rate system. In high Doppler shift, 

variation of channel is more like a polynomial function whose order is more than one. 

Low training rate system has a long duration between two training symbol. Linear 

approach of channel is not suitable for this long duration. In fast fading channel, we 

propose the sub-symbol polynomial interpolation, together with the MST algorithm to 

reduce the model error of linear interpolation. We analyze the MSE of sub-symbol 

polynomial interpolation, and the MSE is divided into two parts. One is the noise 

error, the other is the model error. For the noise error, we find that it is independent of 

the Doppler frequency and other statistics of channel. The noise error depends on to 

training rate and polynomial order. The performance of the noise error becomes worse 
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by decreasing training rate and increasing polynomial order. The model error is 

sensitive to the Doppler frequency, statistics of channel, training rate and polynomial 

order.  The model error becomes worse by increasing Doppler frequency, decreasing 

training rate and decreasing polynomial order. 

 The MST algorithm can be used in sub-symbol polynomial interpolation. There are 

two advantages of most significant taps selection. It reduces the computation and 

suppresses noise. But the MST method has a problem of missing taps. The error floor 

of MSE will appear when missing taps occurs. In the Chapter 2, we also analyze MSE 

of MST method under missing taps. The results of analysis reveal that the error floor 

is equal to the power of missed taps. 

 In the fast fading channel, we propose sub-symbol polynomial interpolation. 

Because it can collect more information of time varying channel, it has better 

performance than other algorithms which are mentioned before. Combing with most 

significant taps algorithm, the sub-symbol polynomial interpolation will perform 

better in noise suppression and load of computation. 
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