CONTENT

中文摘要	I
英文摘要	
誌謝	
CONTENT	V
TABLE LIST	
FIGURE LIST	Γ2
CHAPTER 1	INTRODUCTION
CHAPTER 2	SEMI-SOLID METAL FORMING11
2.1	What is Semi-Solid Metal Forming (SSMF)11
2.2	Procedures of conventional SSMFs
2.3	Applications of SSMF
CHAPTER 3	A NOVEL CONCEPT OF SEMI-SOLID FORMING OF
	HYPEREUTECTIC AL-SI-X BY POWDER THIXOCASTING
3.1	Motivation
3.2	Hypereutectic Al-Si-X alloys
3.3	What is Powder Thixocasting
3.4	Prior Arts of Metal Forming that Combining PM and SSMF
3.5	Powder Thixocasting vs. Powder Forging
CHAPTER 4	ASSESSMENT OF NET-SHAPE FORMING OF AL-25SI-2.5CU-1MG
	ALLOY BY POWDER THIXOCASTING

4.1 Motivation	9
4.2 Experimental40	0
4.2.1 Preparation of Al-Si-Cu-Mg powder40	0
4.2.2 Procedures of Powder Thixocasting	2
4.2.3 Examinations of Material Properties	1
4.3 Results and Discussions	3
4.3.1 How to Prepare the Powder Preforms Efficiently	3
4.3.2 Liquidizing Behaviors of the Powder during Heating to	
Semi-Solid State	8
4.3.3 Kinetics of Si Grain Growth in Semi-solid State62	2
4.3.4 How to Eliminate Oxide Films and Pore Defects	0
4.4 Demo Part Fabrication	9
4.5 Conclusions	3
CHAPTER 5 MICROSTRUCTURES AND STRENGTH OF POWDER_THIXOCAST AL 25SL 2 SCUL1MG AND AL 20SL 5EE	
ALLOYS	5
5.1 Motivation85	5
5.2 Experimental85	5
5.2.1 Materials preparation85	5
5.2.2 T6 Heat treatment	9
5.2.3 Properties examination	9
5.3 Results and Discussions	0
5.3.1 Microstructure	0
5.3.2 Tensile properties and microhardness	9

	5.3.3 Compression strength at elevated temperature	05
5.4	Conclusions10	08
CHAPTER 6	DRY SLIDING WEAR BEHAVIORS OF POWDER-THIXOCAST	
	AL-25SI-2.5CU-1MG AND AL-20SI-5FE ALLOYS10	09
6.1	Motivation10	09
6.2	Introduction of metal wear10	09
	6.2.1 Types of metal wear10	09
	6.2.2 Surface damages in sliding wear1	11
	6.2.3 Some theories about sliding wear of metals1	12
6.3	Experimental1	19
	6.3.1 Materials	19
	6.3.2 Sliding wear tests	20
6.4	Results12	22
	6.4.1 Wear rate and coefficient of friction	22
	6.4.2 Surface roughness of discs and pins after wearing	27
	6.4.2 Worn surfaces and subsurface of Al-Si-X sliding pins	29
	6.4.2 Wear debris from the Al-Si-X/ steel sliding wear system14	40
	6.3.3 Bulk surface sliding temperature	42
6.5	Discussions14	43
	6.5.1 Wear behaviors at low loading conditions (region I)14	43
	6.5.2 Wear behaviors at high loading conditions (regions II/III)14	46
	6.5.3 Estimation of the flash sliding-surface-temperature	51
	6.5.4 A proposed mechanism for wear behaviors of the Al-Si-Cu-M	g
Alle	bys1	53

6.6	Conclusions	156
CHAPTER 7	GENERAL CONCLUSIONS	158
CHAPTER 8	FUTURE WORKS	
REFERENCE	ES	164
PUBLICATIC	DN LIST	175
作者介紹		177

TABLE LIST

Table 2.1	Metal forming processes and their major problems22
Table 4.1	Chemical compositions of the hypereutectic alloy powder 40
Table 4.2	Particle size distributions of the three fractions of the gas atomized Al-Si
	powder41
Table 4.3	The relative densities (%) of the green powder compacts consolidated at
	different temperatures and with different sizes of powders55
Table 4.4	Possible reactions during solidification of the Al-25Si2Cu1Mg alloy 60
Table 4.5	Grain sizes of primary Si particle (µm)65
Table 4.6	Densities of powder-thixocast Al-25Si-2.5Cu-1Mg specimens72
Table 4.7	Ultimate tensile strengths (MPa) of the Al-25Si-2.5Cu-1Mg-0.5Mn·······73
Table 5.1	Chemical compositions of the Al-Si-X alloys86
Table 5.2	Possible reactions during solidification of Al-20Si-5Fe alloy88
Table 5.3	Tensile properties and hardness of the Al-Si-X alloys (PT=powder
	thixocasting; IT=ingot thixocasting)100
Table 6.1	Surface roughness values (Ra, μ m) measured on the worn pins and discs after
	seizure 127

FIGURE LIST

Figure 2.2	Schematic diagrams of dendritic grains 12
Figure 2.3	Concentration and temperature fields of dendrite
Figure 2.4	Schematic evolution of solidified crystal with vigorous agitation
Figure 2.5	Model of grain boundary fragmentation mechanism15
Figure 2.6	Semi-solid state aluminum alloy with non-dendritic solid grains16
Figure 2.7	Methods of producing non-dendritic materials for SSMF
Figure 2.8	Schematic flow of a semi-solid metal slurry under a shear stress
Figure 2.9	Typical flow viscosity curves
Figure 2.10	Plastically deforming a semi-solid metal slurry 19
Figure 2.11	Flow front of a fully liquid and a semisolid slurry
Figure 2.12	Hot tear cracks exist at the corner of a squeeze casting part (right) in
	magnesium alloy (AZ91) 22
Figure 2.13	Liquid fraction vs. temperature for some aluminum alloys
Figure 2.14	Eutectic binary phase diagram, showing mushy zone temperature in (S+L)
	(solid and liquid and the comparison between rheo- and thixo- semisolid
	processes
Figure 2.15	Cooling curves of metals in various shaping processes, showing the
	comparison between rheo- and thixo- semisolid processes
Figure 2.16	Procedures of conventional thixocasting
Figure 2.17	Procedures of New Rheo-Casting (NRC) process (UBA, Japan)27
Figure 2.18	Schematic diagram of Thixomolding ® apparatus invented by Dow
	Chemical
Figure 2.19	Schematic diagram of the srew-barrel injection system of a rheomolding
	machine invented by Cornell Research Fundation
Figure 2.20	Applications of SSMF
Figure 3.1	Binary phase diagram of Al-Si alloy
Figure 3.2	Schematic diagram of the powder thixocasting process

Figure 3.3	Schematic diagram of COMPASS (Consolidation of Mixed Powders as
	Synthetic Slurry)
Figure 3.4	Schematic diagram of SSPD (Semi-Solid Powder Densification) process. 36
Figure 3.5	Schematic drawing of powder forging process
Figure 4.1	(a) SEM morphology and (b) optical microstructure of the gas-atomized
	hypereutectic Al-Si powder
Figure 4.2	Schematic diagram of the powder thixocasting process
Figure 4.3	Schematic diagram of the apparatus layout for thixocasting process
Figure 4.4	Temperature increasing curve of the Al-Si powder during preheating up to
	500°C
Figure 4.5	Oil-hydraulic pressing machine used for powder consolidation and
	squeeze casting 45
Figure 4.6	Semi-solid feedstock heating station with five induction coils
Figure 4.7	A suitable power-time heating program used in heating the powder
	performs into semi-solid state
Figure 4.8	Melt beads formed on a semi-solid powder preform
Figure 4.9	Thixocasting machine with clamping force of 5,000 kN 49
Figure 4.10	Injection system comprising a sleeve and a plunge 49
Figure 4.11	(a) Schematic diagram and (b) dimensions of the mold cavity for powder
	thixocasting 50
Figure 4.12	Photo of a powder thixocast specimen
Figure 4.13	(a) Locations and (b) dimensions of the tensile specimens 52
Figure 4.14	Photograph of the high-temperature consolidated powder preforms 54
Figure 4.15	Optical microstructures of the green powder compact
Figure 4.16	Differential thermal analyses (DTA) scan of the hypereutectic
	Al-25Si-2.5Cu-1Mg powder
Figure 4.17	The Al-Si-Cu isothermal phase diagram at 560°C [36]
Figure 4.18	Optical microstructures of the as-atomized Al-25Si-2.5Cu-1Mg- 0.5Mn

	powders ······ 63
Figure 4.19	Optical microstructures of the as-atomized Al-25Si-2.5Cu-1Mg- 0.5Mn
	powders after isothermally heat-treatment at (a) 500 $^{\circ}$ C, (b) 550 $^{\circ}$ C, and (c)
	600 °C, for 1 hour
Figure 4.20	Evolution of the average Si grain sizes (d) as a function of isothermal-heat
	treatment temperatures and time intervals in the
	Al-25Si-2.5Cu-1Mg-0.5Mn powders······ 67
Figure 4.21	Si grain growth versus the inverse of isothermal heat-treatment
	temperatures
Figure 4.22	Schematic diagrams of diffusion paths for Si grain growth
Figure 4.23	Pull-out of powder particles observed on a tensile fractograph of a
	powder-thixocast specimen73
Figure 4.24	Optical micrographs of the powder thixocast sample 74
Figure 4.25	Optical micrographs of the powder thixocast sample75
Figure 4.26	Plastic deformation at semisolid state of a powder preform78
Figure 4.27	Extrusion methods, (a) conventional extrusion, (b) double shear extrusion
	[99]80
Figure 4.28	(a) Equal channel angular extrusion, (b) simulation by finite element,
	<i>φ</i> =45 [100] ······ 80
Figure 4.27	A powder-thixocast compressor Al-25Si-2.5Cu-1Mg scroll
Figure 5.1	A typical DTA scan spectrum of Al-20Si-5Fe powder
Figure 5.2	(continued)93
Figure 5.2	Typical optical micrographs of Al-25Si-2.5Cu-1Mg alloy94
Figure 5.3	Typical optical micrographs of Al-20Si-5Fe alloy95
Figure 5.4	Optical microstructures of as-prepared conventional Al-Si alloys
Figure 5.5	Optical microstructures of T6-treated conventional Al-Si alloys
Figure 5.6	Typical stress-strain curves of Al-25Si-Cu-Mg (PT) 101
Figure 5.7	Tensile fractographs of the powder-thixocast specimens 104

Figure 5.8 C	Compressive stress-strain curves of as-prepared Al-Si-X alloys 107
Figure 5.9 C	Compressive strength of the as-prepared Al-Si alloys varied with temperature.
Figure 6.1	Schematic depiction of a wearing system 110
Figure 6.2	Classification of wear processes 110
Figure 6.3	Schematic description of the four main wear mechanisms111
Figure 6.4	Mechanisms of wear during sliding contact 112
Figure 6.5	Schematic diagrams show Archard's adhere wearing model 113
Figure 6.6	A schematic view of the metal being removed under a circular wear track in
	pin-on-disk type wear tests 115
Figure 6.7	The process of wear particles formation by the shear deformation of the
	voids
Figure 6.8	An idealized model for the seizure mechanism 117
Figure 6.9	Schematic four types of second phase during sliding wear 118
Figure 6.10	Typical wearing curves show different wearing stage
Figure 6.11	Schematic illustration of pin-on-disk friction testing apparatus 121
Figure 6.12	Wear rates varied with load for the (a) as-prepared and (b) T- treated
	Al-Si-X alloys. The three regions denoted by I, II, and III are shown for
	Al-25SiCuMg (PT) alloy 123
Figure 6.13	Coefficients of friction varied with sliding time for as-prepared (a)
	Al-25SiCuMg (PT) and (b) LM13 alloys125
Figure 6.14	Coefficients of friction varied with load for (a) as-prepared and (b)
	T6-treated Al-Si-X alloys 126
Figure 6.15	Photographs of the disc after sliding wear tests 128
Figure 6.16	Surface roughness curves of discs (a) before wearing, (b) after sliding with
	Al-25SiCuMg (PT), (c) Al-25SiCuMg (IT), and (d) LM13 T6-treated
	alloys 128
Figure 6.17	XRD on the worn surfaces of as-prepared Al-25SiCuMg (PT)129
Figure 6.18	XRD analyses obtained on the worn surface of the Al-20Si-5Fe (PT) alloy

	(a) before wear and (b) 116N130
Figure 6.19	A typical worn surface of Al-Si-X pin after sliding at low loads
Figure 6.20	A typical worn surface of Al-Si-X pin after sliding at high loads134
Figure 6.21	A cross-section of a Al-SiCuMg(PT) surface worn at high loads136
Figure 6.22	OM micrographs of the cross-sections of the worn surfaces 138
Figure 6.23	OM micrographs of the cross-sections of the worn surfaces 139
Figure 6.24	A typical SEM micrographs of wear debris from Al-25SiCuMg (PT)/steel
	wearing system ····· 141
Figure 6.25	Variation with load of sliding surface temperature for the as prepared
	Al-Si-Cu-Mg alloys
Figure 6.26	Schematic diagrams of the cross sections perpendicular to the sliding
	surfaces at low loads145
Figure 6.27	Schematic diagrams of the cross section perpendicular to the surface
	sliding under heavy load for the hypereutectic Al-Si alloys148
Figure 6.28	Fragmentation process of Si particles by shearing deformation
Figure 6.29	Schematic plots of wear rate as a function of sliding load for
	powder-thixocast and conventional alloys