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For a fixed graph G, the capacity function for G, Po, is defined by P c ( H ) =  
lim,__,®[yo(H')] TM, where y6(H) is the maximum number of disjoint G's in H. In [2], Hsu 
proved that Pr2 can be viewed as a lower bound for multiplicative increasing graph functions. 
But it was not known whether Pr2 is multiplicative or not. In this paper, we prove that Pc is 
multiplicative and additive for some graphs G which include K2. Some properties of Pc are 
also discussed in this paper. 

1. Definition and introduction 

G = ( V ,  E) is called a graph if V is a finite set and E is a subset of 
{[a, b] I a :/: b, [a, b] is an unordered pair of V}. We say that V = V(G) is the 
vertex set of G, E = E(G) is the edge set of G. 

Let G = (X, E), H = (Y, F) be two graphs. The sum of G and H is the graph 
G + H = (W, B) with W = X1U Y1, B - E1U F1, where G1-" (X1, E1) ~- G, 1-11 = 
(Y~, F0--" H and X1 tq Y~ = t~; the product of G and H is the graph G x H = 
(Z, K), where Z = X × Y, the Cartesian product of X and Y, and K = {[(xl, Yl), 
(x2, Y2)] I Ix1, x2] e E and [Yl, Y2] e F}. We let G k denote G × G × - - -  x G (k 
times). A real-valued function f, defined on the set of all graphs ~0, is additive if it 
satisfies f (G +H)=f (G)+f (H)  for any G, H e  (~; f is pseudo additive if 
f (G)~O and f(H)~O, then f ( G + H ) = f ( G ) + f ( H )  for any G, H e ~ 3 ;  f is 
multiplicative if f (G x H) = f ( G )  x f(H) for any G, H e (0; f is pseudo 
multiplicative if f (G)~O and f(H)4:0, then f (G x H) = f ( G )  x f(H) for any G, 
H e ~ ;  f is increasing if f (G) <-f(H) whenever G is a subgraph of H. We use MI 
to denote the set of all multiplicative increasing graph functions and AMI to 
denote the set of all additive multiplicative increasing graph functions. The 
classification of multiplicative increasing graph functions is still unsolved. 

A graph G'  is a homomorphic image of G if there exists a homomorphism 
lp:G-- ,  G'  which is onto and for every [g~, g~] e E(G') there exists [gl, g2] e 
E(G) such that ~P(gi)= g ' ,  i = 1, 2. 

For any graph G, P(G)= iimn__,®[y(G")] vn, where y(G) is the maximum 
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number of disjoint edges in G. In [2], Hsu proved that if f is multiplicative, 
increasing and f(K2) = 2, then f ( G )  >~ P(G) for all G. Thus P can be viewed as a 
lower bound for multiplicative increasing graph functions. In this paper, we prove 
that P is indeed multiplicative and then generalize our result to get a class of 
additive multiplictive increasing graph functions. 

2. The capacity functions 

For a fixed graph G, we define the capacity function for G, Pc, from ~ to R as 
PG(H) = lim.-,®[YG(H")] ~", where yG(H) is the maximum number of disjoint G's 
in H. Obviously, PG is always increasing. 

Theorem 2.1. (1) I f  K is a subgraph of  H, then PH <~ Pr. 
(2) P ~  = PH, where k is a positive integer. 

ProoL (1) Since K is a subgraph of H, for any graph G we have yH(G) ~< yr(G).  
Then yH(G") ~< yx(G") which implies Pn <- PK. 

(2) If V ( H ) =  {xl, x 2 , . . . ,  x,,}, then the induced subgraph of { ( x l , . . . ,  xl), 
( x 2 , . . . ,  x2),.  • . ,  ( x , , , . . . ,  x,,)} in H k with each xi repeats k times is isomorphic 
to H. From (1), we have P,'~<PH. However, for any graph G we have 
G ~ D yH(G")H. Then G ~ ~_ y~(G")H k. Thus G m D_ y~(Gm~k)H k and we get 

P~(G) = lim [THt(Gm)]llm~ lim [~Hk(y~t(Grn/k)Hk)] l/m 
m--~oo  m....~oo 

= ~ [ y ~ ( G m / k ) ]  um -- lira [ yH(Gm/k) ]  ~m = P H ( G ) .  
m--.Qo m l k . - * ~  

Therefore, = PR. [] 

From Theorem 2.1, we know that if two graphs G and H satisfies H n ~_ G t ~ 

H m for some n, t, m ~ N, then PG = Pw Thus some capacity functions are equal. 
However, the next theorem tells us that the graphs with different clique number 
or chromatic number will have different capacity functions. In [6], Mycielski 
described a method for constructing a graph with to(G) = m and x (G)  = n, where 
2<-rn <~n and to(G) is the maximum clique size in G, x(G) is the chromatic 
number of graph G. 

Theorem 2.2. If (to(G), x(G)) 4= (to(H), x(H)), then PG 4= Px. 

Proof. If to(G) 6: to(H), we assume that w(G) < to(H). Since o)(K m) - -  co(K) for 
any graph K and m e N ,  we have y x ( G m ) = o  for every m. Hence PH(G)=O. On 
the other hand, for every integer m, since G is a subgraph of G m, w e  have 
yG(G m) >I 1. Hence PG(G) ~> 1. Therefore PH 4= PG. If x(G) 4: x(H),  then since 
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x ( K  m) = x(K)  for every graph K and any m e N, by the same argument as above, 
we have Pn q: P~. [] 

The statement "If  (og(G), x (G) )=(o~(H) ,  x(H)), then Pc= Pn" is not true. 
For example (o~(K2), x(K2)) = (o~(Kx,z), x(Ka,2)) = (2, 2). But Px~ ~ P~,.~. This 
can be proved in [4]. Also in [4], Hsu et al. discuss when two graphs will have 
different capacity functions. 

3. Uniform graphs 

Let G, H be graphs with V ( G ) = { x ~ , x 2 , . . . , x , , }  and V ( H ) =  
{Yl, Y2 , . . . ,Y~} .  Let D={(ax,  a2,. . . ,ao)lO<~a~<.l,  X L I a ~ = I } .  Let m be a 
positive integer and ~=(Zl ,  z 2 , . . . ,  Zm) be a vertex in H " .  We call ,~= 
(al,  a2, . . . , av) with ai = I { j l z  i = Yi, 1 <~j <~m}l/m the distribution o f& For any 
graph H, we can define a u-ary re la t ionRc(H)  on D such that ($a, ~2, • • • ,  &,) 
R6(H) with ~ ~ D if and only if either 

(i) there exists a positive integer m such that in H m we can find 
~1, ~ 2 , . . . ,  ~,. e V(H m) with the distribution of ~ to be a~ for every i and the 
induced subgraph of {~1, ~2, • • • ,  fi,,} in H m contains a subgraph isomorphic to G 
with ~i corresponding to x~ for every i, or 

(ii) there exists a sequence in R6(H) of type (i), {(~i,1, ~i,2, • • • ,  ~i,,,)}~=a such 
that lim,._,®(~i,1, ~i,2, • • - ,  ai,,.) = ( ~ ,  ~2, - • • ,  &.). Let I~(H) = {~ 
D(H) I a) (u times) is in R~(H)}. We say • ~ I~(H) is of type (i) if its 
corresponding vector in RG(H) is of type (i). 

A graph G with u vertices is called uniform if for any graph H, E~'=x ~/u  is in 
l~(n)  of type (i) whenever (ax, az, • • • ,  ~u) is in R~(H) of type (i). 

Example. K.  and C, are uniform but KI,2 is not. 

Proof. (1) Let V(K.)  = {xl, x 2 , . . . ,  x,}. For any graph H, if (~1, ~ , . . . ,  ~.) 
RK.(H) is of type (i), then there exists an integer m such that in H m we can find 
~1, f ~ 2 , . . . ,  ~.  E V ( H  m) w i t h  t h e  properties that the distribution of ~ is ~ / and  
that {~1, f ~ , .  • • ,  ~ .  } induce a subgraph which contains a subgraph isomorphic to 
K..  Now consider the n vertices in H '~,  ; 1 = ( ~ 1 , ~ 2 , . . . , ~ . ) ,  ~ z = ( ~ ,  
f 3 , . - . ,  ~ . ,  ~a), . . . .  , ;n = (~ . ,  ~TX, ~2, . . . .  , ~._X). The induced subgraph of 
{;1, Zu, . . . ,  Z.} in H "m forms a K.  and the distribution of ~ is ~7--1 ~i/n for all i. 
Hence ~Tffix ~i/n is in 16(H) of type (i). Therefore K.  is uniform. 

(2) L e t C ,  be the graph with vertices x0, x ~ , . . . ,  x . -a  such that xi is adjacent 
to xi+x (mod n). A similar proof as above for K.  shows that C. is uniform. 

(3) Let G = H = Ka.2, V(G)  = {xa, x2, x3} and E(G) = {[xx, x2], Ix2, x3]}. 
Obviously, ((1, 0, 0), (0, 1, 0), (0, 0, 1)) is in Re(G) of type (i). For every 

m, let :1  = (Yl, i, Yl,2, • • . ,  Yl,m), ~2 = (Y2,1, Y2,2 , - . - ,  Y2,m) and ~3 = 
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(Y3,1,  Y3,2, • • • , Y3 ,m)  E V ( H  m) i n d u c e  a KL2 with fii corresponding to xi. O b s e r v e  

that yx,j ~ x~ if and only if y~,j = x2. Thus I{1 l Yaa = x2}l + I{1 l Y2,j = x2}l = m. This 
fact implies that (3 x, 31, 31) is not in IG(G) of type (i). Hence K~,2 is not uniform. [] 

In fact, every vertex transitive graph is uniform. 

Theorem 3.1. I f  G is vertex transitive, then G is uniform. 

Proof. Let T ( G )  be the automorphism group for graph G with IT(G)I = k and let 
To(G)= {at[ at e T ( G )  and at(xi)=xj}.  Since G is vertex transitive, we have 
IT~j(G)l = [T~(G)I for any 1 <~i, j, k, l, ~<u, where u = IV(G)I. For any graph 
H e ~d, if (~1, ~ z , . . . ,  ~ , ) e  RG(H) of type (i) then =lm, in H m there exist u 
vertices ~1, f2 ,  • - • ,  ~,, such that the induced subgraph of them in H m contains a 
subgraph G~ which is isomorphic to G. Since G is vertex transitive, (31 is also 
vertex transitive. Let T(G1)= {ate, a t 2 , . . . ,  ~rk}. Then in H kin, there exist u 

vertices ( a t l ( f i x ) ,  a t 2 ( f i l ) ,  • • • , a t k ( f i l ) ) ,  ( a t l ( f i 2 ) ,  a t2(o~2) ,  • • • , a t k ( ~ 2 ) ) , . . . ,  

(atx(fi,), atz(fi,),.  • • ,  atk(fi,)) such that they are all of distribution E~'=I ai/u and 
the induced subgraph of them in H km contains a subgraph which is isomorphic to 
G. Thus E~'=~ ~i/u e IG(H) of type (i). Thus G is uniform. [] 

Let D = { ( a x ,  a z , . . . , a o )  lai>~O,E~=lai=l}.  Let ~':D--->R be a function 
defined by ~(~)  = I[~'=~ aF °', where ,7 = (ax, a 2 , . . . ,  ao). Note that log,, ~ is the 
entropy function. Hence the function ~ satisfies 

(1) lim ( m I lIra 
m~®\aam, a2m, . . . ,  a,,m/ = ~(~),  where aim e I Vi, 

and 

(2) ( ) ~g ~ ~ilu >~min{~(~i) li = 1, 2 , . . . ,  u}. 
i.=1 

Theorem 3.2. I f  G is a 
PG(H)= max ~(~) .  

aelc(H) 

uniform graph with V (G)  = {xa, x2, . . . , x , } ,  then 

Proof. Let V ( H ) =  {Yx, Y 2 , . . . ,  Y,,}. For any g e IG(H), there exists a sequence 
{(¢~i,X, ~ i , 2 , ' ' ' ,  t ~ i , u ) } ; = l  in RG(H) of type (i), such that 
limi._,®(~i,1, ~i,2, . . . , ~i,,) = (~, ~, . . . , ~) (u times). Since G is uniform, we have 
~=(b~,l ,  bi,2,. . . ,bi, , ,)=Y]j%~a%,j/u is in IG(H) of type (i) and limi__,=~=~. 
Thus for every i, we can find ~1, fi2, • • • ,  ~,, e V(H m) for some m e N such that ~j 
has distribution ~ V] and the induced subgaph of {~1, f i2 , . .  • ,  ~,,} in H m contains 
a subgraph isomorphic to G with f j  corres_ponding to xj. Now consider 
S(m, 7oi)= {~ e V ( H m ) [ t h e  distribution of ~ is ~i}. Then the induced subgraph 
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Hmls(m,~) is vertex transitive. Let {z = Z1, ~ ,  • • • ,  ~.,} c S(m, 7oi) be such that  its 
induced subgraph in H m contains a subgraph Az isomorphic to G with 
corresponding to x~. For every "3 e S(m, 7oi), there exists a permutation ~a, e Sin, 
the symmetric group on m letters, such that :r,~(Z)='3. Thus the induced 
subgraph of {,3 = ~r,~(Zl), ~z~(~z) , . . . ,  :L~(~Z,)} =_ S(m, oTi) contains a subgraph A~, 
isomorphic to G with ~(~7~) corresponding to xi. Thus M = Ua,~s(m,Z,)A~, form a 
spanning subgraph of H "  Is(m,~)- 

Now apply the following algorithm on M. 

Algorill!m. Find an A,~ in ~t then delete the edges of As  and the edges of all 
A,r,'s which are adjacent to A,; until E( ,~)  is empty. 

The A,~'s found in the above algorithm are surely mutually disjoint. Since any 
A,; can be adjacent to at most u ( u -  1) A~,'s with "3' :/:'3, we get at least 
IS(m, Zi)l/(u(u - 1) + 1) disjoint G 's  in ~t. Thus 

YG(Hm) ~ yG(Hm[s(m, gl)) >~ YG(J~) >~ IS(m, ~) l / (u(u  - 1) + 1) 

_ 1 (  m ) 
u 2 - u + 1 mbi,1, mbi,2, • • •, mbi,,, 

and it follows that 

P6(H) = lim [y6(H'n) l l" '  ~ > ~ ( ~ ) .  
n,i......~ o o  

Since ~ is a continuous function, we get limi...,= ~ ' ( ~ )  --  ~'(limi__,® o71) = ~(,~). 
Thus PG(H) >I ~'(~) 'Ca e IG(H). From the definition of 16(H) and D, we know 
that I6(H)  is a bounded dosed  set. So there is a g e l 6 ( H )  such that 
~(~) = max{ ~ (a )  l a e lG(H)}. Thus 

PG(H)>~ max ~(,~). (1) 
JelG(H) 

Note that in n m there are at most c(m + v - 1, m)  different distributions and 
therefore there are at most m "° different (,~1, ,~2, • • • ,  ~,,) in RG(H), where ai is 
the distribution of some vertex in H m for all i. Let d~ be a set of disjoint G ' s  in 
H m with = r c ( n " ) .  Write d / =  {[~1, ~2, • • • ,  ~,,] I ~7i corresponds to x~}. We 
can define an equivalence relation on ~ : [ ~ 1 ,  ~ 2 , . . . ,  ~-]-[~Zl,  ~Z2,. . . ,  ~Z,,] if 
and only if the distribution of f i  is the same as that of ~.i for all i. By the 
Pigeonhole principle, there exists some (,71, ~ , . . . ,  ~,) such that the set 
X =  { [ ~ 1 , ~ 2 , - . .  ,~Tu] I the distribution of ~i is ~i for all i} satisfies lY(I t> 
m - " y a ( H m ) .  Therefore m-"oYG(H ' ')  <- min{lS(m, ~i)l I i = 1, 2 , . . . ,  u}, hence 

YG(Hm)<~ max m i n { ( m " ° t S ( m , ~ i ) l ) l i = l ,  2 , . . . , u } .  
(~,1,  ~'2 . . . . .  au)eRa(H) 
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This implies 

Pc(H)  = urn [~'G(Hm)] l/m 
m--*® 

~< m a x  m i n {  lira (m"" IS(m, '~i)l)X/m I i = 1, 2, • • • ,  U} 
(41, 42 . . . . .  4u)~RG(H)  m..-*® 

max min{~(~,) l i= 1, 2 , . . . ,  u} 
(41, ~ . . . .  4u )~RG(H)  

(u ) max ~' a, lu 
(41, ~z, . . . .  4u)~RG(H) i = l  

~< m a x  ~ ' (a ) .  (2) 
4 ~ I G ( H )  

From (1) and (2) we have 

P c ( H )  = m a x  ~Vt'(~). [] 

4.  Proper t i e s  for  u n i f o r m  capacity  func t ions  

In this section, we discuss some properties for the capacity functions of uniform 

graphs. 

T h e o r e m  4.1. I f  G is uniform, then Pc is pseudo-additive, i.e., if Pc(H)=/= 0 and 
Pc(K) ~ O, then Pc (n  + K) = Pc(H) + Pc(K). 

Proof. Let V(G)= {xl, x 2 , . . . ,  x,,}. Given any two graphs H and K with 
IV(H)I=v and IV(K)I=w, since G is uniform, let P c ( H ) = g =  ~(~) with 

~ I t (H)  and Pc(K)= h = ~(~7) with ~Te It(K).  

Because G is uniform, there exists a sequence in I t(H) of type (i), {ai}~--x, 
such that lim~__,®~i = a and there exists a sequence in I t(K) of type (i), {~}~*--1, 
such that lim~__,® ~ = ~ Therefore, for every i there exists a positive integer m 
such that in H m we can find u vertices ~71, ~z, - • •,  ~7, all with distribution ~i which 
form a G. Similarly, for every i there exists a positive integer I such that in K 1 we 
can find u vertices ~1, f2,  - • •, ~u all with distribution ~ which form a G. Since g 
and h are real numbers, there exist sequences of rational numbers {gi}~l and 
{hi}i~ such that lim~__,® gi =g and limv_,® hi = h. Thus for every i we can choose 
an integer t such that p = tgd(g~ + hi) and q = thi/(gi + hi) are integers. 

Now in ( H +  K) am we can find u vertices (~1, ~ 1 , . - - ,  ~1, ~1, ~ 1 , - - . ,  ~1), 
(~ ,  ~ , .  • • ,  ~z, ~z, ~ffz, • • • ,  ~2), • • • ,  (~.,, ~7 , , , . . . ,  ~,,, ~,,, ~ , , , . . . ,  ~ , )  such that 
each ~,~ repeats pl times and each ~ repeats qm times. We can easily check that 
these u vertices form a G and all with distribution 

g----2---i~i" ((pl)m~,, (qm)l~)/(trnl)= g, + hi g, + hi '/" 
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Thus 

Hence 

( g g i h g ~ ,  hi iZOi ) 
i "~-" "i gi + h ~ I~ (H + K).  

and therefore 

Pc,(H + K)  >~ ~ h  a, ~ 

We have 

g +  hO~) =i~__~(~_fi_~a,)-e/(~+h)a' W / h 

/ g \-gl(g+h)E7=l ai/ v \gl(g+h)/ h \-hl(g+h)ET=~ bj/ w \hl(g+h) 

[ o \ --gl(g+h) I i~ \ --hl(,g+h) 
~ g ~ )  g g l ( g + h ) l g ~ h  ) h h/(g+h) 

/ 1 \--g/(g+h)--hl(g+h) 
--g/(g + h )+g/(g + h ) h--h/(g +h )+h/(g +h ) [ ~  | 

= g  \g  + h /  
= g + h .  

P c ( H  ÷ K) >t PG(H) + Pc(K).  (3) 

On the other hand, let ~= (a, 70) = (al, az, . . . , a, ,  b~, bz, . . . , b~) ~ I ( H  + K)  
be such that P ~ ( H  + K)  = ~ ( ~ .  Let  p = ~=~ a~ and q = E~'=I bi. Then p + q = 1. 
Since ~= (a, 70 )e I~(H+ K)  and G is uniform, there exists a sequence in 
I ~ ( H  + K)  of type (i), {(~, ~)}7=~, such that lim~__,**(~, ~) = (a, ~). Assume that 

E,i = (ai ,~,  ai ,2,  . . . , ai, v )  and ~ = (b~,a, bi,2, . . . , b~,,). Let  Pi = E~=I as.j for every i. 
Then 

13 IJ IJ 

lim p~ = lim ~ a~,j = ~ !im a~,j = ~,  a~ = p. 
i.---}*o i-.---}~ j =  1 j = 1 r--~ao j ffi 1 

Similarly, let qi = ~'=1 bi, j for every i, we have limi_.® qi = q. 
Since (~i, ~ ) e  I~(H + K)  of type (i), there exists an integer m such that in 

(H + K) m we can find gl, ~ , . .  • ,  ~,, such that they are all of distribution (a ,  ~)  
and they form a G. Without loss of generality, we may assume 4 =  
(z~,l, z ~ , 2 , . . . ,  z~,., z~ , .+~ , . . . ,  Zi, m) with z~,j ~ V ( H )  if and only if 1 ~<] ~ n. Let 
gi = (z~,~, z~,2, • • • ,  z~,,). Then we have u vertices ~1, g2, • • •, gu all with distribu- 
tion a~/p~. If they form a G, then ai/p~ e I t ( H ) .  Otherwise, gl, g2, . . . ,  ~u form a 
homomorphic image of G. Since P6(H)  ~ O, there exists an integer r such that in 
H" we can find u vertices ~ ,  ~ , . . . ,  ~ ,  all with distribution , /which form a G. 

Let s e N ,  then in H r+sn we can find u vertices ( ~ , ~ , g ~ , . . . ,  g~), 
(to,z, ~2, ~ ,  . . . , ~ ) ,  . . . , (~ , ,  ~,,, ~,, . . . , ~u) with each i~ repeats s times. Then 
these u vertices form a G and all with distribution 

2 +  (sZ,)/p, 
s + l  
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Since 
2+ 

lim = ~vP~, 
• - ~  s + l  

w e ' h a v e  ~i/Pi ~ I6(H). Thus ~[p ~ IG(H). Similarly, we have ~[q ~ IG(K). 
Let k = ~(~/p) and l =  ~(oT/q). Then 

!1 W 

PG(H + K)= ~(g) = I-I a;-" I-I b} -bj 
i=1 ]=1 

17 W 

= I-[ (p(ai]p))-~'("/~'rI-I (q(b//q)) -qO/q) 
i=1 j = l  

[ l - I ( / P )  ]Pq [[-I (b/q)  ]" 
v --ailp --q -b]/q 

= p - P  ai 
Li=I J L j = I  

= p -~'k'q-ql q = p-PM'(1 - p)-O-P)lO-P). 

Consider the function f (x )  = x-X/CO - X)-(1-x)t (l-x). Then f ' (x)  = 
f (x) ln(k(1-x) / ( lx) ) .  Since f ' ( x ) = 0  if and only if x = k / ( k  +l) and f ' ( x ) > 0  

when x < k / (k  + l), f ' (x)  < 0 when x > k/ (k  + l). Therefore f (x)  has a maximum 
value at x = k / (k  + l). Thus 

PG(H + K) <~ (k/(k + l))-k/(k+l)kk/(k+l)(l/(k + l))-l/(k+l)l 1/(k+l) 

= k + l <<- PG(H) + Pc,(K). (4) 

From (3) and (4), we have PG(H + K)= PG(H)+ Pc(K). Hence PC is pseudo 
additive. [] 

Corollary. Let G be a uniform graph, and PG(H) =/= O, PG(K) =/: O. Then Pc(H) = 
~(~) with ~ e I t (H)  and Pc(K) = ~ (  7~) with ~ I t (K) if and only if PG(H + K) = 
~(~), where 

(  Lm_ e (K) g) 
g= \PG(H) + PG(K) ~'' Pc(H) + PG(K) ' 

and ~ 16(H + K). 

Theorem 4.2. If  G is uniform, then PC is pseudo multiplicative, i.e., if Pc(H)4=0 
and Pc(K) ~O, then Pc(H x K)= Pc(H) x P6(K). 

Proof .  Since 

p G ( H  2) ~-- |illlrl. [ ' ~G(H2n) ]  1/n = | i r a  {[ '~G(/ ' /2n)] l /2n} 2 "-- e 2 ( n ) ,  
ylp--lb~ Iqp-.*.C0 

we have P6((H + K ) 2 )  - p2(H + K). Moreover, since P6(H) ~O and Pc(K) ~O, 
we have G ~_ H" and G c_ K s for some  r, s e N.  This implies G _~ ( H  × K)  m~x(" "). 
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Thus P6(H x K) :/: 0. From Theorem 4.1, we know PG is pseudo additive. Hence 

Pc((H + K )  2) = PG(H 2 + 2H × K + K 2) --- PG(H 2) + 2PG(H x K) + PG(K 2) 

= p2(H) + 2Pv(H x K) + p2(K). (5) 

But 
PG((H + K) 2) = p2(H + K) = [PG(H) + PG(K)] 2 

= P2(H) + 2PG(H)PG(K) + P2G(K). (6) 

Comparing (5) and (6) we obtain Po(H x K ) =  Pc(H)PG(K). Hence P6 is 
pseudo multiplicative. [] 

We have the following result Which is similar to the Corollary of Theorem 4.1. 
The proof is omitted. 

Corollary. Assume G is uniform, and P6(H) :/: O, PG(K) :/: O. Then Pc(H) = ~(~) 

with ~= (al, a2, . . . , a,) e IG(H) and PG(K) = ~(70) with 70= (bl, b2, . . . , bw) 

IG(K) if and only if P~(H x-K) = ~(g), where ge I6(H × K) and ~= 

(CI, I, CI,2,... , Cl,w, C2,1,... , C2,w;'. . . , Cv,w) with ci,i = aibi. 

Let us construct a graph KGn, k as follows. The vertices of KG,,,k are the 
n-subsets of {1, 2 , . . , ,  2n + k} and two of them are joined by an edge if and only 
if they are disjoint. These graphs are called ~ e s e r ' s  graphs. It is easy to see that 
Kneser's graph is vertex transitive, In [5], Lovfisz has proved that 

to(KGn,k)= [ 2n+ik] a n d  x(KG,,,k)= k + 2. 

Thus by Theorem 2.2, Theorem 3,I, Theorem 4.1 and Theorem 4.2, we have a 
lot of different capacity functions which are pseudo additive, pseudo multiplica- 
tive and increasing. 

S.  ary uniform gral  

We say a graph is primary if for any homomorphic image G' Of G, We have 
P0, ~<P6, i.e., G ~ (G') k .for some k e N. For exmple ,  C2k+i, Kn and Petersen 
graph are primary. 

Lemma 5.1. If G is primary and H contains a homomOrphic image G' of G, ~hen 
Pc(H) ~ O. 

Proof. Sin~ G is ~ary, we have G ~, (G')k ~_ H k for some k e N. ~us 

P6(H)*O. [] 
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By I.emma 5.1, Theorem 4.1 and Theorem 4.2, we have the following 
corollary. 

Corollary. I f  G is primary and uniform, then P6 ~ AMI.  

6. Conclusions 

For any graph H and any integer m I> 1 let H,n be the induced subgraph of H 
such that x ¢ V(Hm) if and only if X is in any m-clique of H. For any graph 
function f, we can define another graph function fm by fro(H)=f(Hm) for any 
graph H. 

Lemma 6.1. I f  f is additive (respectively, multiplicative, increasing), then fm is 
also additive (respectively, multiplicative, increasing).: 

Proof. Assume that f i s  additive. Observe thatx  ~ V((G + H)m) if and only i fx i s  
in Gm or x is in Hm. Therefore (G + H)m =Gm + Hm. Then we have 

fm(G "!" H ) " - f ( ( G  -t- H)m) = f (Gm + Hm) = f (Gm) -t-f(Hm) =fro(G) + fro(H). 

Hence fm is additive. Next assume that f is multiplicative. Since (x, y )~  V((G x 
H)m) if and only if x is in Gm and y is in Hm, we have (G x H)m = G,, x Hm. 
Then 

fm(G X H) - f ( ( G  × H)m) - f (Gm x Hm) = f (Gm)f (Hm) = fm(G)fm(H). 

Hence fm is multiplicative. Finally, if f is increasing, t hen  for any G, H ~ ~3 with 
Go_H, we have Gmc_Hm. Hence fm(G)=f(Gm)<-f(Hm)=fm(H). Thus fm is 
increasing. [] 

Note that the function defined by P(G) = fim~..®[y(G")] vm, where y(G) is the 
maximum number of disjoint edges in G is in fact Px2- In [2], Hsu discovered that 
P can be viewed as a lower bound for some multiplicative increasing graph 
functions. But it was not known whether P is mnltiplicative or not. Now we know 
K2 is primary and uniform. Hence P ~ AMI. 

The classification of the set of additive multiplicative increasing graph functions 
is still unsolved. But with Lemma 6.1, we have the following functions which are 
additive multipficative increasing: 

(1) (hx),~ defined in [2] with H connected, 
(2) 6,~ with 6 defined in [2], and 
(3) (Po)m with G primary and nniform. 

Moreover Po can be  viewed as a lower bound for additive multiplicative 
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increasing graph functions. Indeed, if f • AMI and f (G)  = Pc;(G), then we have 

Thus 

f(H) = ( f (Hm))  1/m 

( f  (yG(Hm)G))  1/m -- (,yG(Hm)f (G))  1/m 

= ( y 6 ( H m ) p c ( G ) )  1/m for any g • 

f ( H ) ~  lim ('ya(Hm)pa(G))l/m= ~ (ra(Hm)) ym-- PG(H). 
I'l,l~.~eo m . - . ~ ¢ o  

In [4], Hsu et al. have proved that if G is bipartite, then Pc is equal to one of 
Px~, P2K1, PK2 and PK~.2- Moreover, these four functions are all different. Also, it 
is proved that if Pzc~.e(H) =/: 0, then P~q,(H)= PK,(H). Actually, if G'  is a 
homomorphic image of G and H is any graph such that Pa(H)~0,  then 
P6(H) = P6,(H). In fact, we know P2KI is not in AMI. For example, P2/Q(K1 + 

K2) = 3 but P2K~(K1) + P2K~(K2) - 0 + 2. The calculation of some capacity func- 
tions will also be discussed in [3]. 

It is interesting that for some H, Yx is very difficult to calculate but the 
asymptotic behavior of it is good. In [1], it is proved that the 3-dimensional 
matching problem (3DM) is NP-hard. Let us take H = K3 as an example. Since 
the 3DM can be reduced to the calcultion of YK3, thUS finding Yx3 is NP-hard. 
However, we do know the asymptotic behavior of K3 since PK~ Can be easily 
calculated and PK3 ~ AMI. 
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