
國 立 交 通 大 學

電 信 工 程 學 系 碩 士 班

碩 士 論 文

具計算效率且節省記憶體的

第三代行動通訊(3GPP)渦輪碼解碼器

Calculation Efficient and Memory Saving

Turbo Decoder for 3GPP

研究生：鍾文狀

指導教授：紀翔峰 博士

中華民國九十三年八月

研 究 生：鍾文狀 Student: Wen-Choung Chong

指導教授：紀翔峰 博士 Advisor: Dr. Hsiang-Feng Chi

國立交通大學

電信工程學系碩士班

碩士論文

A Thesis

Submitted to Deparment of Communication Engineering

College of Electrical Engineering and Computer Science

National Chiao-Tung University

for the Degree of Master

in

Communication Engineering

August 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年八月

 i

具計算效率且節省記憶體的第三代行動通訊(3GPP)渦輪碼解碼器

學生：鍾文狀 指導教授：紀翔峰 博士

國立交通大學電信工程學系碩士班

摘 要

目前的無線通訊系統中，資料量的傳輸需求愈來愈大，而在傳輸通道的非理

想效應影響下經常使得傳輸資料出現錯誤。為了有效降低錯誤率，第三代行動通

訊(3GPP，3GPP2…等)系統均採用了目前更正能力最強的渦輪碼。渦輪碼的硬體

實現中最大的難題在於解碼時需要大量的記憶體及大量的運算。一般渦輪碼解碼

器中所採用的節省記憶體架構(sliding window)雖可解決記憶體的問題，但同時也

會導致更多的運算量。在節省記憶體及運算量的考量下，本論文的目的是以另一

種節省記憶體的架構(halfway)實現一個和原始架構比起來可節省記憶體且不增

加任何運算量的渦輪碼解碼器。在解碼上，我們採用Max-Log-MAP algorithm使

得運算複雜度降低。在硬體上，我們使用了只包含一個Max-Log-MAP解碼器的

硬體架構。

 ii

Calculation Efficient and Memory Saving Turbo Decoder for 3GPP

Student: Wen-Choung Chong Advisor: Dr. Hsiang-Feng Chi

Department of Communication Engineering
National Chiao Tung University

ABSTRACT

 Turbo codes have become one of the necessary specifications for the

state-of-the-art communication systems. The difficulties in implementing turbo

decoder are the vast computational complexities and the request for a lot of memories.

The most public method for decreasing the need of memories is sliding window

method. But using sliding window method will increase the computational

complexities. This thesis is purposed to propose a calculation efficient and memory

saving turbo decoder. We use another memory saving algorithm – halfway algorithm,

in our turbo decoder. This successfully decreases the computational complexities and

the need of memory capacity. Besides, we adopt Max-Log-MAP algorithm in our

design in order to simplify the hardware.

 iii

誌 謝

 短短二年的研究生生涯即將在本論文的完成下告一段落，首先感謝指導教授

紀翔峰老師在學業及生涯規劃上的指導，在學業上，老師根據實驗室同學各人的

特質，因材施教，讓每位同學自己學得如何自己從無到有的求得知識，在生涯規

劃上，老師也盡力地提供自己過去的生活經驗並分析給我們知道。

 感謝實驗室同學賴昭宏、李昭宏、李佳勳，我們一起在老師的帶領下，把實

驗室從無到有地建立起來，而在硬體、軟體實作及論文寫作時，每個人都幫我解

決了不少問題，也提供了我很多意見。

 感謝父母親及哥哥、姊姊讓我在衣食無憂的情況下，得以認真的在實驗室裡

做研究，而哥哥有時也會在我的要求下在百忙之中來實驗室教導我們同學如何使

用儀器及 FPGA，實在是麻煩他了。

 最後要感謝的是我的女朋友，楊正豔，從大學以來陪我至今，在六年的求學

過程中，她陪在我身邊，無論在學業或生活上遇到困難，她都給予我支持、鼓勵，

因此我才能不畏艱難地考上研究所並完成論文寫作。

 iv

Content
Content ...iv
List of Figures...vi
List of Tables ... viii
Chapter 1 ...1
Introduction ...1

1.1 Digital communication system..1
1.2 History of channel coding ...2
1.3 Background of Turbo codes ..4
1.4 Motivation and Goal...4
1.5 Thesis Outline...5

Chapter 2 ...6
Overview of Turbo Code System..6

2.1 Concatenated Codes ...6
2.2 Recursive Systematic Convolutional (RSC) Encoder7
2.3 Interleavers...9
2.4 Decoders ..9

Chapter 3 ...11
Turbo Decoding ...11

3.1 Decoding Algorithms..11
3.1.1 Maximum-a-posteriori (MAP) Algorithm...11
3.1.2 Max-Log-MAP Algorithm..19
3.1.3 Log-MAP Algorithm..21
3.1.4 SNR mismatch ...22
3.1.5 Conclusion...23

3.2 Memory saving methodologies ...24
3.2.1 Preprocessing over Whole Block Method...25
3.2.2 Sliding Window Method ..27
3.2.3 Halfway Method ..28
3.2.4 Comparisons ..30

Chapter 4 ...34
3GPP Turbo Encoder..34

4.1 Constituent Encoder ...34
4.2 Trellis Termination..36

4.3.1 Deciding the size of the rectangular matrix.......................................37
4.3.2 Intra-row and inter row permutations ...39
4.3.3 Output the bits from the rectangular matrix with pruning41

 v

Chapter 5 ...43
Design Considerations..43

5.1 Decoding algorithm selection..43
5.2 Memory saving method selection..43
5.3 Decision of the block length ...44
5.4 Analyses of fixed-point representations for calculations45

5.4.1 Received sequence , , 'ks kp kpy y y ..47

5.4.2 Branch metrics (,)k s s′Γ ..47

5.4.3 Forward state metrics ()kA s and Backward state metrics ()kB s48
5.4.4 a-priori information LLR ()kL u , extrinsic information ()e kL u49

5.4.5 a-posterior LLR ()kL u y ..51

Chapter 6 ...53
Hardware Architecture ...53

6.1 Hardware architecture...53
6.1.1 Branch Metrics Unit (BMU)...54
6.1.2 Add-Compare-Select Processor (ACSP)...54
6.1.3 LineCchange unit and BetaChange unit ..56
6.1.4 L0,L1 unit ..58
6.1.5 Complete turbo decoder architecture ..59

6.2 Memory requirements...62
6.3 Decoding Process ...63

Chapter 7 ...66
Hardware implementation ..66

7.1 Design and verify process ...66
7.2 Hardware specification ...67

7.2.1 Clock cycles for decoding one data frame ..67
7.2.2 Hardware interface...68

7.3 ASIC performance ..69
7.4 FPGA verification...71

Chapter 8 ...73
Conclusion and Future works ...73

8.1 Conclusion ...73
8.2 Future works...73

References ...75

 vi

List of Figures
Figure 1.1: basic elements in digital communication system.......................................1
Figure 2.1: Turbo encoder diagrams of (a) PCCCs (b) SCCCs....................................7
Figure 2.2: (a) RSC encoder with constraint length =3, generator matrix G=[5,7]octal..8
(b)Non-recursive non-systematic encoder with constraint length =3, generator matrix
G=[5,7]octal ...8
Figure 2.3: Conventional turbo decoder’s diagram ...10
Figure 3.1: Evolution of soft-input soft-output (SISO) decoding algorithms11
Figure 3.2: possible transitions in K=RSC code..13
Figure 3.3: MAP iterative decoding flow chart ...17
Figure 3.4: Structure of turbo decoder ..18
Figure 3.5: Various look-up table for Log-MAP ...22
Figure 3.6: Operations on a frame of size N..25
Figure 3.7: Operations on a frame of size N for preprocessing over whole block26
Figure 3.8: Operation flow for sliding window method...28
Figure 3.9: Operations flow for Halfway ..29
Figure 3.10: Compare the performances of halfway and sliding window33
Figure 4.1: Structure of rate 1/3 Turbo coder ..35
Figure 4.2: Constituent encode of 3GPP turbo encoder and its trellis35
Figure 4.3: Constituent encoder for terminating the trellis ..36
Figure 4.4: Interleaving flow chart ...42
Figure 5.1: Simulations for various block length ..45
Figure 5.2: Simulations for various precision ...46
Figure 5.3: Simulations for deciding the integer bits of state metrics49
Figure 5.4: Simulations of various bit length of LLR..50
Figure 5.5 performance of our design comparing to floating point52
Figure 6.1: Computation core of the turbo decoder...53
Figure 6.2: Branch metric unit ..54
Figure 6.3: ACS processing element ...55
Figure 6.4: Bundled ACSPEs and the corresponding trellis.......................................55
Figure 6.5: ACS processor and feedback loop...56
Figure 6.6: (a) trellis diagram for forward state metrics calculations. (b) trellis
diagram for backward state metrics calculations. (c) trellis diagram for mapping
backward trellis to forward trellis. (d) permutation rules...57
Figure 6.7: (a) BetaChange hardware (b) LineChange hardware...............................58
Figure 6.8: Nesting max operations for L1 hardware ..59
Figure 6.9: The block diagram of total turbo decoder hardware60

 vii

Figure 6.10: graphic representation of the halfway SISO algorithm65
Figure 7.1: develop and design flow...67
Figure 7.2: Turbo deocder I/O diagram...69
Figure 7.3: ASIC verification flow ...70
Figure 7.4: FPGA verification flow ..72

 viii

List of Tables
Table 3.1: Comparisons of saving memory decoding methods..................................30
Table 4.1: List of prime number p and associated primitive root v38
Table 4.2: Inter-row permutation patterns for Turbo code internal interleaver39
Table 5.1: various memory depths ..44
Table 5.2: Relationship between ()kL u and ()kP u ..50
Table 5.3: word length of our design ..51
Table 6.1: memory capacity..62
Table 7.1: decoding clock cycles for different frame size..68
Table 7.2: I/O ports definition ..69
Table 7.3: ASIC simulation results ...70
Table 7.4: required clock rate for decoding different frame size and iteration............71

 1

Chapter 1

Introduction

In this chapter, we will introduce the basic elements of the digital communication

system and the concept of channel coding in the beginning. Then the motivation and

the objective of this thesis are presented. Finally we will introduce the organization of

this thesis.

1.1 Digital communication system

The basic elements of a digital communication system are shown in Figure 1.1.

Figure 1.1: basic elements in digital communication system

The messages from the source are converted into a sequence of binary digits by

source encoder. The process of efficiently converting the output of the source into a

sequence of binary digits is called source encoding. Alternatively speaking, the source

encoder compresses the data from source and result in little or no redundancy in the

 2

binary representations of the data. Then the sequence of binary digits from the source

encoder is passed to the channel encoder. On the contrary, the channel encoder is to

introduce some controlled redundant information in the binary information sequence.

These added redundancies can help the receiver to overcome the noise and

interference encountered in the transmission of the signal through the channel. In

effect, redundancy in the information sequence aids the receiver in decoding the

information sequence correctly. The main purpose of the modulator is to map the

binary information sequence into signal waveforms. We can choose modulator

according to different applications and different channels. Usually we use the additive

white Gaussian noise channel to simulate the channel block because it can provide

precise analyses.

At the receiving end of a digital communication system, the successive three

blocks are used to recover the original signals from the noisy receiving sequence. The

demodulator processes the noisy waveforms and reduces them to a sequence of

numbers that represent estimates of the transmitted symbols. The channel decoder will

use these numbers to reconstruct the original information sequence from knowledge

of the channel encoder. The source decoder uncompresses the sequence from

knowledge of the source encoder and attempts to reconstruct the original signals.

The subject of the channel encoder and channel decoder is called channel codes

or error control codes. In this thesis, we focus on this subject, especially the hardware

implementation of the channel decoder.

1.2 History of channel coding

 The concept of channel coding came from the paper [1] which was published by

Claude Shannon in 1948. Shannon’s primary result in this area is called the channel

 3

capacity theorem or noisy channel coding theorem. This theorem states that there

exist error control codes such that information can be transmitted across the channel

at rates less than the channel capacity with arbitrarily low bit error rate. Unfortunately,

Shannon did not show how to construct the codes which can achieve the channel

capacity. Two categories of channel codes, block codes and convolutional codes,

were developed and widely used in practical systems.

 The first error correcting code was Hamming code [2], which can correct only

one error. During the years from 1957 to1959, cyclic codes [3-5] were published in

some reports by E. Prange. Cyclic codes led to the development of BCH codes and

Reed-Solomon codes a few years later. In 1959 and 1960 [6-8], Bose and

Ray-Chaudhuri and Hocquenghem discover the multiple error correcting codes which

are later named as Bose-Chaudhuri-Hocquenghem (BCH) codes. Reed-Solomon

codes were discovered in 1960 by Reed and Solomon [9] and they were closely

related to BCH codes.

 In 1955, the first convolutional forward error correction codes were discovered

by Elias [10]. In 1961, Wozencraft and Reiffen proposed the sequential decoding

algorithm [11, 12] and this decoding algorithm is fast but sub-optimum. In 1967,

Viterbi proposed an optimum decoding algorithm [13] which was recognized by

Forney [14] as maximum likelihood decoding algorithm in 1973.

 In 1987, Ungerboeck proposed trellis coded modulation (TCM) [15, 16] which

integrates forward error correcting codes and modulation. TCM can achieve

significant coding gains over power and band-limited transmission media.

 In 1993, turbo codes [17] were invented by C. Berrou, A. Glavieux and P.

Thitimajshima. Turbo codes were a historic breakthrough because they help the

communication systems achieve Shannon limit closer than other codes.

 4

1.3 Background of Turbo codes

Since turbo codes were proposed by C. Berrou, A. Glavieux and P.

Thitimajshima in 1993 [17], they have been widely studied and discussed. Till now

they are known as the best forward error correcting codes. Due to turbo codes’

outstanding error correcting performance and their ability to achieve the Shannon

capacity limit by 0.7 dB [17], there are many researches on the realizations of turbo

codes. Turbo codes outperformed all other known coding schemes. Recently turbo

codes have been adopted in several standardized communication systems, such as the

third-generation (3G) mobile communication standards: i.e. W-CDMA (Wideband

Code Division Multiple Access) in the 3rd Generation Partnership Project (3GPP),

cdma2000 in the 3rd Generation Partnership Project 2 (3GPP2), and TD-SCDMA

(proposed by China and Japan).

1.4 Motivation and Goal

Turbo codes have become one of the necessary specifications for the

state-of-the-art communication systems. How to efficiently realize the turbo decoder

in the integrated circuit always cause much research attention.

The difficulties in designing turbo decoders come from the high computational

complexity. The challenging tasks are how to reduce the hardware cost and power

consumption, the word-length determination in the fixed-point arithmetic, and

cost-effective memory allocation/partition. In this thesis, we aim at implementing the

turbo decoder of 3GPP/W-CDMA on field-programmable gate arrays (FPGAs) with

memory saving methods. We will use Max-Log-MAP algorithm to solve the difficulty

of the computational complexity. The ultimate goal is to propose low complexity,

calculation efficient and memory-saving architecture.

 5

1.5 Thesis Outline

This thesis is organized into eight chapters and described as follow:

In chapter 2, we would have an overview of entire turbo code system. In chapter 3, we

introduce several decoding algorithms, discuss, and compare four decoding methods,

including three memory saving schemes. In chapter 4, the 3GPP turbo encoder and

interleaver are described. The hardware design considerations are discussed in chapter

5. In chapter 6, we describe the hardware architecture in detail. The ASIC and FPGA

implementation and verification processes are presented in chapter 7. The conclusion

and the future works are presented in Chapter 8.

 6

Chapter 2

Overview of Turbo Code System

 Turbo codes use concatenated schemes with the interleavers/de-interleavers

placed between the constituent encoders/decoders. The standard turbo encoder

structure uses the recursive systematic convolutional codes and parallel concatenated

convolutional codes. In order to achieve good BER performance, we need the

decoding algorithms which can accept soft input and produce soft outputs and can

work iteratively.

2.1 Concatenated Codes

 Turbo codes are usually composed of several concatenated convolutional codes.

There are two kinds of concatenated convolutional codes, one is parallel concatenated

convolutional codes (PCCCs) and the other is serial concatenated convolutional codes

(SCCCs). PCCCs are often constituted by two or more recursive systematic

convolutional (RSC) encoders joined in parallel by one or more pseudo-random

interleavers, furthermore, the encoders encode the same information bits besides the

information bits are scrambled by the interleaver. SCCCs also use the constituent

convolutional encoder and the interleavers as PCCCs but differ from their connection

method. The encoders used in SCCCs are connected serially and inserted by the

pseudo-random interleaver. Figure 2.1 shows the encoder diagram of PCCCs and

SCCCs.

 7

Figure 2.1: Turbo encoder diagrams of (a) PCCCs (b) SCCCs

 The advantage of SCCCs is that: for a fixed frame size N, the slope of BER

curve is inversely related to N2 or N3 but BER curve for PCCCs is only inversely

related to N. Beside, SCCCs do not suffer from error floor but PCCCs do. The

problem of error floor is caused by the poor interleaver design and truncation in the

decoding procedure. But it was shown that both SCCCs and PCCCs could be

designed without suffering from error floor no matter what BER requirement is [18].

 Although SCCCs have the merits mentioned above, we often choose PCCCs in

turbo code due to PCCCs’ less computational complexity given the same constituent

encoders and their better BER performance at low SNRs. Throughout the rest of this

thesis, “turbo code” is referred to use PCCCs.

2.2 Recursive Systematic Convolutional (RSC) Encoder

 Turbo codes use two or more RSC encoders as their component encoder.

Although the encoders need not to be the same, we often use identical encoders in

practice due to the low complexity of decoding. The term “recursive” means the

 8

encoder has a feedback loop; therefore, the output of this encoder is affected by the

preceding output bit. And the term “systematic” means the encoder has one of its

outputs identical to its input bit. Figure 2.2 shows the conventional convolutional

encoder.

Figure 2.2: (a) RSC encoder with constraint length =3, generator matrix G=[5,7]octal

(b)Non-recursive non-systematic encoder with constraint length =3, generator matrix

G=[5,7]octal

It can be proved that the recursive systematic convolutional code is

code-equivalent to the non-systematic non-recursive convolutional code [19]. That is

the sets of the codewords that they define are the same and for any codeword of the

recursive systematic convolutional encoder, we can find the input stream for the

non-systematic non-recursive convolutional code such that it produces the same

codeword, vice versa. Although their codewords are identical, they behave differently.

It is also shown that the RSC encoder tends to produce codewords with more weights

than the code-equivalent non-recursive encoder [20]. This behavior causes the RSC

encoder produce fewer codewords with lower weights and makes the error correcting

performance better. This is the main reason to use the RSC encoders as turbo codes’

constituent encoders. Additionally, when we use the RSC encoder as constituent

encoder, we only need to transmit the systematic output bits from the first one encoder

 9

because their systematic bits are alike except the order. Then the code rate of the

encoder increases, bandwidth efficiency improves without degrading the performance

since we still transmit all the information produced by the encoder.

2.3 Interleavers

 The interleavers placed between the encoders are going to make the code more

random in order to improve the burst error correction capability and they play a key

rule in turbo code. What affect the interleaver are how random the interleaver is and

how big the size of the interleaver is. As the size of the interleaver grows, the

performance of the turbo code usually becomes better. But there is a tradeoff between

the decoding latency and the BER performance. When the interleaver is more likely

random, the performance of the turbo code also becomes better due to this kind of

interleaver can make the correlation of the information bits decrease more. There are

several kinds of interleavers, e.g. column-row interleaver, helical interleaver,

odd-even interleaver, simile interleaver, frame interleaver, pseudo-random interleaver,

S-type interleaver…etc. As long as we use the interleaver we proposed, the

performance of the turbo code will suffer and we need to use different kind of

interleaver according to the system requirement.

2.4 Decoders

 Although the constituent encoders for turbo code belong to convolutional

encoders, the decoding scheme for turbo codes is different from the pure

convolutional decoding scheme. As mentioned above, turbo codes use the parallel

concatenated encoding scheme. The turbo decoder would be constructed on the serial

concatenated scheme because the performance of serial concatenated decoding

 10

scheme is better than that of parallel concatenated decoding scheme. The reason is the

serial concatenated decoder will provide some extra information (or we call extrinsic

information in turbo codes) to another decoder as its a-prior information. In turn, the

latter decoder will also provide extra information to the former one. Contrarily the

parallel concatenated decoders decode the information independently. Figure 2.3

shows the conventional turbo decoder’s diagram.

Figure 2.3: Conventional turbo decoder’s diagram

 Because each component decoder must provide the a-prior information to the

other, they must have soft outputs. Since they have the soft inputs, we call them

soft-input soft-output (SISO) decoders.

 11

__

Chapter 3

Turbo Decoding

__

Nowadays we have two categories of algorithms to decode turbo codes, one

originates from Maximum a posteriori (MAP) algorithm [21] proposed by Bahl et al.

and another is Soft-Output Viterbi algorithm (SOVA) [22] proposed by Hagenauer

and Hoeher.

Their evolutional histories are shown in Figure 3.1.

Figure 3.1: Evolution of soft-input soft-output (SISO) decoding algorithms

3.1 Decoding Algorithms

3.1.1 Maximum-a-posteriori (MAP) Algorithm

 The Log Likelyhood Ratios (LLRs) L(ku) of a data bit ku is defined to be the

log of the ratio of the probabilities of the bit taking its two possible values:

 12

(1)() ln
(1)

k
k

k

P uL u
P u

 = +
 = − 

@ (1)

where (1)kP u = ± is the probability of the data bit ku equals to 1± .

 After encoding the data bit ku and transmitting the encoding bits through the

channel and the matched filter, we received the sequence y . Therefore we get the

conditional LLR defined as:

(1 |)
(|) ln

(1 |)
k

k
k

P u y
L u y

P u y
 = +
  = − 

@ (2)

These conditional probabilities (1|)kP u y= ± are the a-posteriori probabilities of the

decoded bit ku . The goal of the MAP algorithm is to estimate the decoded bit

sequence and provide the probabilities of the correctness of every decoded bit given

the received sequence y and it aims at minimizing the decoded bit error rate (BER).

This means the MAP algorithm is correspondent with finding the a-posteriori LLR

(|)kL u y . By using Baye’s rule and its derivation,

() () ()P a b P a b P b∧ = ⋅ (3)

({ }) ({ }) ()P a b c P a b c P b c∧ ≡ ∧ ⋅ (4)

the a-posteriori LLR (|)kL u y can be rewritten as:

(1)
(|) ln

(1)
k

k
k

P u y
L u y

P u y
 = + ∧

=   = − ∧ 
 (5)

Figure 3.2 is the possible trellis for K=3 RSC code.

 13

Figure 3.2: possible transitions in K=RSC code

If the previous state 1kS s− ′= and the present state kS s= are known then the input

bit ku will be known. The transitions which occur when 1ku = + and those which

occur when 1ku = − are mutual exclusive so that the probability that any one of them

occurs is equal to the sum of their individual probabilities. Equation (5) can be written

as:

1
(,)

1

1
(,)

1

()

(|) ln
()

k k
s s

uk
k

k k
s s

uk

P S s S s y

L u y
P S s S s y

−
′ ⇒
=+

−
′ ⇒
=−

 ′= ∧ = ∧
 
 
 ′= ∧ = ∧
 
 

∑

∑
@ (6)

Assume the channel is memoryless and using the Bayes’ rule, we can write the

individual probabilities 1()k kP S s S s y− ′= ∧ = ∧ from the numerator and

denominator as:

1

() ()

() ()

() ()

() ({ } { }) ()

() ({ }) ()

() (,) ()

j k k j k

j k k j k j k k

j k k j k

j k k j k j k

j k k j k

k k k

P s s y P s s y y y

P s s y y P y s s y y

P s s y y P y s

P s y P y s s y P y s

P s y P y s s P y s

s s s sα γ β

< >

< > <

< >

< < >

< >

−

′ ′∧ ∧ = ∧ ∧ ∧ ∧

′ ′= ∧ ∧ ∧ ⋅ ∧ ∧ ∧

′= ∧ ∧ ∧ ⋅

′ ′= ∧ ⋅ ∧ ∧ ⋅

′ ′= ∧ ⋅ ∧ ⋅

′ ′= ⋅ ⋅

 (7)

 14

where ()P s s y′ ∧ ∧ represents 1()k kP S s S s y− ′= ∧ = ∧ for simplicity, and 1()k sα − ′ ,

()k sβ , (,)k s sγ ′ are shown below:

1 1() ()k k j ks P S s yα − − <′ ′= = ∧ (8)

() ()k j k ks P y S sβ >= = (9)

1(,) ({ })k k k ks s P y S s S sγ −′ ′= ∧ = = . (10)

Using Bayes’ rule and the assumption that channel is memoryless, ()k sα can be

written as:

1

all

all

all

all

() ()

()

()

({ } { }) ()

({ }) ()

(,) ()

k k j k

j k k

j k k
s

k j k j k
s

k j k
s

k
s

s P S s y
P s y y

P s s y y

P s y s y P s y

P s y s P s y

s s s

α

γ α

< +

<

<
′

< <
′

<
′

′

= = ∧

= ∧ ∧

′= ∧ ∧ ∧

′ ′= ∧ ∧ ⋅ ∧

′ ′= ∧ ⋅ ∧

′ ′= ⋅

∑

∑

∑

∑

 (11)

Assuming the trellis has the initial state 0 0S = , the initial conditions for ()k sα are:

0 0

0 0

(0) 1
() 0 for all 0
S
S s s

α
α

= =

= = ≠
 (12)

Similar to the derivation of ()k sα , 1()k sβ − ′ can also be written as:

1
all

() () (,)k k k
s

s s s sβ β γ− ′ ′= ⋅∑ (13)

If the trellis is terminated in the all-zero state, the initial conditions for ()k sβ are:

(0) 1
() 0 0

N

N s s
β
β

=
= ≠

 (14)

If the trellis is not terminated, then the initial conditions for ()k sβ are:

() 1 for all N s sβ = (15)

where N is the number of the stages in the trellis.

Thus, once the (,)k s sγ ′ values are known, ()k sα and 1()k sβ − ′ values can be

calculated recursively.

 15

Using the derivation from Bayes’ rule, (,)k s sγ ′ can be written as:

(,) ({ })

({ }) ()

({ }) ()

() ()

k k

k

k k

k k k

s s P y s s

P y s s P s s

P y s s P u

P y x P u

γ ′ ′= ∧

′ ′= ∧ ⋅

′= ∧ ⋅

= ⋅

 (16)

where ku is the input bit which would cause the transition from state 1kS s− ′= to

state kS s= and kx is the corresponding transmitted codeword. ()kP u is the a-prior

probability of this input bit ku .

Assuming the channel is Gaussian and using BPSK modulation, (,)k s sγ ′ can be

written as:

(() / 2)
2

1

(() / 2)

1

(,) () ({ })

exp(2)
2

exp
2

k k

k k

k k k

n
u L u b

kl kl
l

n
u L u c

kl kl
l

s s P u P y s s

EC e a x y

LC e x y

γ

σ
⋅

=

⋅

=

′ ′= ⋅ ∧

= ⋅ ⋅ ⋅ ⋅

 = ⋅ ⋅  
 

∑

∑

 (17)

where C is the term does not depend on the sign of the bit ku and the transmitted

codeword kx , n is the number of the bits in codeword kx . cL is called channel

reliability value and defined as:

c 2L 4
2

bE a
σ

= ⋅ (18)

where bE is the transmitted energy per bit, 2σ is the noise variance and a is the

fading amplitude(1a = for non-fading AWGN channels).

Finally the a-posteriori LLR ()kL u y in equation (6) can be rewritten as:

1
(,)

1

1
(,)

1

(,) ()

() ln
(,) ()

k k k
s s

uk
k

k k k
s s

uk

s s s

L u y
s s s

α γ β

α γ β

−
′ ⇒
=+

−
′ ⇒
=−

 ′⋅ ⋅
 
 =  ′⋅ ⋅
  
 

∑

∑
 (19)

This conditional LLR ()kL u y is what MAP algorithm wants to get.

 16

Because the turbo codes use RSC, we can separate (,)k s sγ ′ into two parts. One

has relationship with the systematic bit and the other does not. When we assume the

systematic bit is the first bit of n transmitted bits, 1k kx u= , we get:

(() / 2)

1

(() / 2)

2

(() / 2)

(,) exp
2

exp exp
2 2

exp (,)
2

k k

k k

k k

n
u L u c

k kl kl
l

n
u L u c c

k ks kl kl
l

u L u c
k ks k

Ls s C e x y

L LC e u y x y

LC e u y s s

γ

χ

⋅

=

⋅

=

⋅

 ′ = ⋅ ⋅  
 

  = ⋅ ⋅ ⋅      
  ′= ⋅ ⋅ ⋅ 
 

∑

∑ (20)

where (,)k s sχ ′ is the part uncorrelated with the systematic bit and it is shown

below:

2
(,) exp

2

n
c

k kl kl
l

Ls s x yχ
=

 ′ =  
 

∑ (21)

Then we can separate the a-posteriori LLR ()kL u y into three parts and rewrite it as

follows:

()

()

/ 2(() / 2)
1

(,)
1

(() / 2)
1

(,)
1

1
(,)

1

1
(,

(,) ()

() ln
(,) ()

(,) ()

() ln
(,) ()

c ksk

c ksk

L yL u
k k k

s s
uk

k L yL u
k k k

s s
uk

k k k
s s

uk
k c ks

k k k
s s

e e s s s

L u y
e e s s s

s s s

L u L y
s s s

α χ β

α χ β

α χ β

α χ β

++
−

′ ⇒
=+

−−
−

′ ⇒
=−

−
′ ⇒
=+

−
′

 ′⋅ ⋅ ⋅ ⋅
 
 =  ′⋅ ⋅ ⋅ ⋅  
 

′⋅ ⋅

= + +
′⋅ ⋅

∑

∑

∑

)
1

() ()
uk

k c ks e kL u L y L u

⇒
=−

 
 
 
 
  
 

= + +

∑
 (22)

where:

1
(,)

1

1
(,)

1

(,) ()

() ln
(,) ()

k k k
s s

uk
e k

k k k
s s

uk

s s s

L u
s s s

α χ β

α χ β

−
′ ⇒
=+

−
′ ⇒
=−

 ′⋅ ⋅
 
 =  ′⋅ ⋅
  
 

∑

∑
 (23)

The first term ()kL u is the a-prior LLR which can be derived from ()kP u and

 17

it is usually unknown at the decoder. Because we usually assume (1) 0.5kP u = ± = at

first time, the initial conditions of ()kL u are all zero in the logarithm domain. But

when we use iterative turbo decoder, each component decoder can provide the other

one with the a-prior LLRs.

The second term c ksL y stands for the soft output of the channel when the input

systematic bit ku transmitted through the channel and received as ksy . Because the

channel reliability value cL is directly relative to the channel SNR, the received

systematic bit ksy will have a large impact on the a-posteriori LLR ()kL u y if the

channel SNR is high and vice versa.

The third term ()e kL u is referred to as the extrinsic LLR for the bit ku because

it uses the values of the branch transition probabilities (,)k s sγ ′ for all the branches

except for the k-th branch. Then it will be sent to the next decoder as the a-prior

information.

The flowchart of all the operations involved in MAP algorithm and iterative

decoding process is shown in Figure 3.3.
() 0kL u =

c klL y

(,)k s sγ ′

1()k sα − ()k sβ(|)kL u y

()kL u
A-priori info.Channel Values

Evaluate

Evaluate EvaluateCalculate LLR

Calculate Le

(|)e
kL u y

c ksL y

to next decoder

Figure 3.3: MAP iterative decoding flow chart

 18

The structure of the turbo decoder is shown in Figure 3.4. It is constituted by two

component decoders, one interleaver and one deinterleaver and the decoders will

work iteratively. Each component decoder has three inputs: 1. the systematic

information 2. The parity information associated the component encoder and 3. The

information provided by the other component decoder which was referred to as

a-prior information.

(|)kL u y

(|)kL u y

()kL u

()kL u

c ksL y

c ksL y

c klL y

c klL y
12 ()e

kL u

21()e
kL u

Figure 3.4: Structure of turbo decoder

We describe the iterative decoding process as follow:

Firstly the component decoder 1 takes the systematic bits in natural order and the

parity bits transmitted by the encoder 1 as its input signals but take the a-prior

information, which should get from component decoder 2, as 0 since the component

decoder 2 does not take action. After finish the decoding of the decoder 1, the

decoding result or the a-prior information should be transferred to the decoder 2 in

interleaving order.

Secondly the decoder 2 takes the parity bits transmitted by the encoder 2, the

systematic bits in interleaving order and the a-prior information provided by the

decoder 1 in interleaving order as its input signals. When the decoder 2 finishes its

 19

decoding process, it also produces the a-prior information for the decoder 1 but in the

interleaving order, then transferring the a-prior information with the aid of the

de-interleaver to the decoder 1.

The first iteration completes after these steps and we can repeat again besides the

decoder 1 has the a-prior information this time. Usually after 5 to 10 times iterations,

the decoder will output the decoding results. Because the iterative decoding process is

similar to the cyclic feedback mechanism of the turbo engine, we name the code

“turbo code”.

3.1.2 Max-Log-MAP Algorithm

 The Max-Log-MAP algorithm simplifies the calculations of ()k sα , ()k sβ and

(,)k s sγ ′ which are needed by MAP algorithm by transferring these calculations into

the log arithmetic domain and using the Jacobian logarithm approximation loosely:

ln max()ix
iii

e x 
≈ 

 
∑ (24)

where max()ii
x is the maximum value of ix .

 By defining ()kA s , ()kB s and (,)k s s′Γ as the logarithm of ()k sα , ()k sβ

and (,)k s sγ ′ , we can rewrite the equations as follows:

()

[]

()

1
all

1
all

1

() ln ()

ln () (,)

ln exp () (,)

max () (,)

k k

k k
s

k k
s

k ks

A s s

s s s

A s s s

A s s s

α

α γ−
′

−
′

−′

 ′ ′=  
 
 ′ ′= + Γ 
 

′ ′≈ + Γ

∑

∑

@

 (25)

()
()

1 1() ln ()

max () (,)
k k

k ks

B s s

B s s s

β− −′ ′

′≈ + Γ

@
 (26)

Equation (25) is calculated in a forward recursive manner and equation (26) is

 20

()
'

() max (') (',)k k ks
A s A s s s= + Γ calculated in a backward recursive manner but they

are both equivalent to the recursion used in the Viterbi algorithm – for the merging

paths the survivor is found by using additions and comparison. Then the new branch

metric (,)k s s′Γ can be written as:

()
(() / 2)

2
1

(() / 2)

1

1

(,) ln (,)

ln exp 2
2

ln exp
2

1ˆ ()
2 2

k k

k k

k k

n
u L u b

kl kl
l

n
u L u c

kl kl
l

n
c

k k kl kl
l

s s s s

EC e a y x

LC e y x

LC u L u y x

γ

σ
⋅

=

⋅

=

=

′ ′Γ

  = ⋅    
  

= ⋅    

= + ⋅ +

∑

∑

∑

@

 (27)

where ˆ ln()C C= does not have any relationship with the data bit, ku ,or the

codeword, kx , and so can be considered a constant and ignored.

 From equation (19), the a-posteriori LLRs ()kL u y for Max-Log-MAP

algorithm can be calculated as:

()

()

1
(,)

1

1
(,)

1

1
(,)

1

1
(,)

1

(,)

() (,) ()

() ln
() (,) ()

exp () (,) ()

ln
exp () (,) ()

max

k k k
s s

uk
k

k k k
s s

uk

k k k
s s

uk

k k k
s s

uk

s s
uk

s s s s

L u y
s s s s

A s s s B s

A s s s B s

α γ β

α γ β

−
′ ⇒
=+

−
′ ⇒
=−

−
′ ⇒
=+

−
′ ⇒
=−

′ ⇒
=

 ′ ′⋅ ⋅
 
 =
 ′ ′⋅ ⋅
 
 
 ′ ′+ Γ +
 
 =
 ′ ′+ Γ +
 
 

≈

∑

∑

∑

∑

()

()

1
1

1(,)
1

() (,) ()

max () (,) ()

k k k

k k ks s
uk

A s s s B s

A s s s B s

−

+

−′ ⇒
=−

′ ′+ Γ +

′ ′− + Γ +

 (28)

The transitions from the trellis stage 1kS − to the stage kS are grouped into two

groups. One contains those might happen if 1ku = + and the other contains those

 21

might happen if 1ku = − . In each group, we only want the maximum value of

()1() (,) ()k k kA s s s B s− ′ ′+ Γ + and the a-posteriori LLRs ()kL u y can be calculated as

their difference.

3.1.3 Log-MAP Algorithm

It was found by Robertson et al. [23] Max-Log-MAP algorithm would result in

worse performance than MAP algorithm when used iterative decoding due to the

rough approximation. But the approximation can be made exact by using the Jacobian

logarithm:

()1 21 2
1 2

1 2 1 2

1 2

ln() max(,) ln 1

max(,) ()
(,)

x xx x

c

e e x x e

x x f x x
g x x

− −+ = + +

= + −

=

 (29)

where ()cf σ stands for a correction term and σ equals to the magnitude of the

difference between 1x and 2x . ()cf σ need not be computed for every value of σ ,

but instead can be stored in a look-up table. There are several ways to implement the

look-up table and make the algorithm have other names such as constant-log-MAP,

linear-log-MAP algorithms.

σ

()cf σ

 22

Figure 3.5: Various look-up table for Log-MAP

 For binary trellises ()kA s and 1()kB s− ′ can be written as:

()

[]

() ()()
() ()()

1
all

1 1

1 1

() ln ()

ln exp () (,)

max () (,) , () (,)

() (,) () (,)

k k

k k
s

k k k k

c k k k k

A s s

A s s s

A s s s A s s s

f A s s s A s s s

α

−
′

− −

− −

 ′ ′= + Γ 
 

′ ′ ′′ ′′≈ + Γ + Γ

′ ′ ′′ ′′+ + Γ − + Γ

∑

@

 (30)

()
() ()()

() ()()

1 1() ln ()

max () (,) , () (,)

() (,) () (,)

k k

k k k k

c k k k k

B s s

B s s s B s s s

f B s s s B s s s

β− −′ ′

′ ′′ ′ ′′≈ + Γ + Γ

′ ′′ ′ ′′+ + Γ − + Γ

@

 (31)

Because there will be 12 2K −⋅ transitions at each stage of the trellis for binary trellis,

there will be 12K − transitions in each of the maximizations in equation (30) (31),

where K is the constraint length of the convolutional code. If we want to apply the

Jacobian logarithm to it, we need to nest the 1 2(,)g x x operations. Then we should

use the nesting equation shown below:

()()()()1 3 2 1
1

ln , , , , ,i

I
x

I I
i

e g x g x g x g x x−
=

 
= 

 
∑ L L (32)

3.1.4 SNR mismatch

 According to [24] [25], the BER performance of the Log-MAP algorithm would

decrease if the channel’s SNR ratio estimation is not estimated correctly. As the frame

size of Turbo code increases, the effect on BER performance would become more

severe. Contrarily the BER performance of Max-Log-MAP will not be affected by the

mismatched SNR.

 The reason for BER performance affected by SNR mismatch is the non-linear

character of Log-MAP algorithm. The difference between Max-Log-MAP algorithm

 23

and Log-MAP algorithm is the correction term on the right hand side in equation (29).

The correction term results in non-linear character of Log-MAP algorithm. When we

calculate the branch metrics, state metrics, a-posterior LLR and extrinsic information

iteratively, their values will be affected by the non-linear term. Since the

approximation used by Max-Log-MAP algorithm is linear, the branch metrics, state

metrics, a-posterior LLR and extrinsic information all will be scaled by cL

simultaneously. Therefore, we can let cL equal to one in the calculations.

3.1.5 Conclusion

As mentioned, there are two kinds of SISO decoding algorithms could be

adopted in the turbo decoder. One is the family of MAP algorithms and the other is

SOVA. Although [23] claims that the SOVA has only half the complexity of the

Max-Log-MAP, there are other researches [26] find SOVA is more complex than

Max-Log-MAP unless the decoder using SOVA is designed carefully. No matter how

the decoder using SOVA is implemented, the BER performance is worse than or equal

to (at most) the performance of Max-Log-MAP. Therefore we do not discuss about

SOVA in this thesis.

 The original MAP algorithm does not suit to be implemented on the hardware

due to it needs many multiplications and exponential calculations. Therefore, the most

popular Turbo decoding algorithms derived from MAP algorithm and have been

adopted in the hardware implementations are Log-MAP and Max-Log-MAP

algorithms. As we described, Max-Log-MAP algorithm is a simplified version of

Log-MAP algorithm and the former BER performance is slight worse than the latter

one. But according to the analyses from [26], the computational complexity of

Log-MAP algorithm is 2 to 3 times as complex as Max-Log-MAP.

 According to section 3.1.4, Log-MAP algorithm suffers from SNR mismatch

 24

problem but Max-Log-MAP algorithm does not. Even if the channel SNR could be

estimated correctly real time, Log-MAP algorithm still needs several lookup tables in

the hardware implementation but Max-Log-MAP does not. In fact, the channel varies

at any time and on-line SNR estimation is impracticable to some degree. Therefore we

implement Max-Log-MAP algorithm on our hardware.

3.2 Memory saving methodologies

 In turbo decoding, the memory part always plays an important rule because it

occupies most of the area of the decoder. In this chapter, we will introduce the original

decoder structure and there kinds of saving memory decoding method, including

preprocessing over whole block method, preprocessing over window method and

halfway method. Finally we will compare these methods in memory capacity aspect.

When we say memory capacity in this section, we mean those used to store the state

metrics.

 From equation (28) the a-posteriori LLRs ()kL u y are calculated as:

() ()1 1(,) (,)
1 1

() max () (,) () max () (,) ()k k k k k k ks s s s
u uk k

L u y A s s s B s A s s s B s− −′ ′⇒ ⇒
=+ =−

′ ′ ′ ′= + Γ + − + Γ +

That means we must have the values of 1()kA s− ′ , (,)k s s′Γ and ()kB s at first. As we

know, 1()kA s− ′ is calculated in forward recursive manner and ()kB s is calculated in

backward recursive manner.

Assume the inputs to the encoders are binary, the component encoder has

constraint length K and the data need to be decoded have a frame length N. We do the

backward recursion first due to be capable of making decisions in the usual order of

the data. In order to make decisions over the whole frame, the state metrics calculated

during the first processing (backward) must be memorized. Then the required memory

 25

size for a received frame length N is 12K
rM N q−= ⋅ ⋅ , where q is the number of

quantization binary digits. The operations flow and the memory required are shown in

Figure 3.6.

We take the specification from 3GPP turbo code for example, the maximum

frame length (Nmax) is 5114 and the constraint length (K) is 4 so that if we set the

number of quantization bits (q) equal to 10, we will need about 410 Kbits. In most

case, reducing the size of the memory is necessary.

Backward flow

Forward flow

0 1 2 3 4 5 k N-2 N-1 N

Figure 3.6: Operations on a frame of size N

(The rectangles with gray lines are the memories required during the processing)

3.2.1 Preprocessing over Whole Block Method

 The first method for reducing the memory size uses the concept of initialization.

The initialization process precedes the first processing in the same order (backward).

Choose a number L as the length of a block and calculate the number p by

Np
L

 =   
 , then the forward flows and backward flows are subdivided into p

sub-process. The operations flow and the memory required are shown in Figure 3.7.

 26

(1)p L− ⋅

Figure 3.7: Operations on a frame of size N for preprocessing over whole block

(The rectangles with gray lines are the memories required during the processing of

making decision and the black rectangles represent the memories for initialization)

In the beginning, we perform the backward calculations and store the backward

state metrics in the memories (which are indicated as black rectangles in Figure 3.7

periodically (period=L). The stored values will serve as initialization metrics for the

backward sub-processes. So the backward flow is carried out on successive windows

of size L, where the starting state metrics are known.

The capacity of the memory for initialization is () 11 2K
riM p q−= − ⋅ ⋅ . The

capacity of the memory for making decisions is 12K
rdM L q−= ⋅ ⋅ for using only one

ACS processor. If using two ACS processors, it can be shown that the required

memory size can decrease as () 11 2K
rdM L q−= − ⋅ ⋅ . So the overall required memories

are () 11 2K
totalM L p q−= + − ⋅ ⋅ for using one ACS processor and

() 12 2K
totalM L p q−= + − ⋅ ⋅ for using two ACS processors. In general, we choose

p L N = ≈   because this choice can offer the minimal memory capacity.

 27

We take the 3GPP Turbo encoder for example again and let 10q = , we get:

5114 72p L N   = ≈ = =   

the total memory capacity is () 372 72 1 2 10 11440 = 11.44 Kbits+ − ⋅ ⋅ = . This number

is 36 times smaller than direct decoding method.

3.2.2 Sliding Window Method

 The sliding window method, proposed by [27], is based on the trellis

convergence property of convolutional code. That is, if the Viterbi decoder started in

unknown state, the state metrics generated initially are useless. But after a few

constraint length (usually five to ten times constraint length), the set of the state

metrics are as reliable as if the process had been started at the initial node. This fact

can also apply to the backward and forward recursive calculations in turbo codes.

Now the initialization state metrics for backward recursive calculations (()kB s or Bk)

do not need to wait until finishing pre-processing over almost the whole block. The

operations flow is shown in Figure 3.8. The pre-processing length is b bits and the

whole frame is divided into p blocks. Each block is L bits long except the last one is

(mod)N L . It is apparent that the memories needed are fewer than the fore-method if

L is small. The total capacity of the memories required to make decisions is

12KM L q−= ⋅ ⋅ .

 28

Figure 3.8: Operation flow for sliding window method

(The rectangles with gray lines are the memories required during making decisions)

Generally speaking, L cK= 5 ~ 10c = , K is the constraint length, and b dL= , d ∈ Ν .

 We take 3GPP Turbo code as an example and assume 5 20L K= ⋅ = and b L=

and 10q = . The required memory capacity is:

12 20 8 10 1600 1.6 KbitsKM L q−= ⋅ ⋅ = ⋅ ⋅ = =

This number is 256 times smaller than the direct decoding method.

3.2.3 Halfway Method

 Halfway method was originally proposed by [28]. In this thesis, we make some

modifications on the original version. The original version is applied to the data frame

which is made up of the received data of frame size N followed by the one of these

same data in the interleaved order. Therefore, the data frame is 2N bits long. We

make modifications so that this method can be applied to decode the data in natural

order and in the interleaved order respectively. This method is kindly like the first

method, preprocessing over the whole block method which needs to use periodic

memorizing. Backward sub-processes are carried out successively on blocks of data

 29

which is L bits long and the metrics calculated are need to be memorized for

making the decisions with forward sub-processes. Each backward sub-process is

followed by a forward sub-process on the same data block. The required memories for

calculation of the decisions are 12K
rdM L q−= ⋅ ⋅ .

 Different from the first method, the initialization metrics for each backward

sub-process are set in a uniform and arbitrary way. The 12K − calculated metrics on

the first data of the interval of size L in each backward sub-process are needed to be

stored. They will serve as the initialization metrics for the sub-processes starting from

the next iteration. The memory capacity for these kind initialization metrics is

() 11 2K
riM D p q−= ⋅ − ⋅ ⋅ where the first term in right hand side, D , represents the

number of the component encoders. Usually, we use two RSC encoders in turbo code,

that is 2D = . The overall required memories are ()() 11 2K
totalM L D p q−= + ⋅ − ⋅ ⋅ for

using only one ACS processor and ()() 12 2K
totalM L D p q−= + ⋅ − ⋅ ⋅ for that with two

processors. This method is most effective and fastest in these three memory saving

algorithms because there are no initialization processing and processing forcing the

convergence of the trellis needed in the operations.

Figure 3.9: Operations flow for Halfway

(The rectangles with gray lines are the memories required during making decisions

 30

and the black rectangles represent the memories for next-iteration initialization)

 We take 3GPP Turbo code as an example and assume 93L = , 55p = and

10q = , the memory capacity is

()()93 2 55 1 8 10 16080 16.08 Kbits+ ⋅ − ⋅ ⋅ = =

This number is 25 times smaller than the direct decoding method.

3.2.4 Comparisons

 The memory capacities for each method are listed in Table 3.1. Because

preprocessing over whole block method needs an initialization process over whole

block, its speed is slower than those who do not need initializations. The sliding

window method also needs several initialization processes over some small windows.

According to the length of the block (L) and the length of pre-processing (b), the

sliding windows method may be slower or faster than the first memory saving method

but never be faster than Halfway method. If the length of pre-processing is bigger

than L , the overlapping calculations of backward metrics occur more times and it will

make the decoding speed slow down. Because halfway method needs no

initializations, it can perform as faster as the original Max-Log-MAP algorithm.

Using one ACS processor Memory capacity
Max-Log-MAP 12KN q−⋅ ⋅

Preprocessing over whole block () 11 2KL p q−+ − ⋅ ⋅

Sliding window 12KL q−⋅ ⋅
Halfway ()() 12 2KL D p q−+ ⋅ − ⋅ ⋅

Table 3.1: Comparisons of saving memory decoding methods

 31

Assume using only one decoder with only one ACS processor. That is the

decoder can only deal with one trellis stage at one time regardless of forward

recursion calculations or backward recursion calculations. The following symbols will

be used:

N the length of one data frame

K the constraint length of the convolutional encoder

q the number of quantization binary digits

L block length

p the number of block

b the length for convergence when using sliding window, b dL= , d ∈ Ν

D the number of the encoders

We will use the subscript “wb” as “whole block”, the subscript “sw” as “sliding

window”, the subscript “hw” as “halfway”, POWB as “preprocessing over whole

block method”, SW as “sliding window method” and HW as “halfway method”.

The comparison of the complexities bases on the same decoding algorithm but

different memory saving method. We only need to consider only the numbers of trellis

stages required processing. The numbers of stages required processing per half

iteration for each method is listed below:

POWB: ()2 3wb wbN N L N L⋅ + − = ⋅ −

SW: mod 0swN L =

()
()

2 1 if

2
sw sw

sw sw

N p b b L
N p d b b d L d N

⋅ + − ⋅ <
 ⋅ + − ⋅ = ⋅ ∈

HW: 2 N⋅

The hypothesis mod 0swN L = for SW is an assumption without losing generality.

For POWB, the advantages are that it needs fewer memories than direct

 32

decoding without using any memory saving skills and it also provides the same

performance as direct decoding. The disadvantages are the decoding latency and the

need for many calculations to initialize the backward initialization memory.

For SW, the advantage is that the memory capacity needed is smaller than other

methods if let ,sw hw wbL L L< . The disadvantage is the need for initializations. If

 and sw wb swL L b L< ≥ , it will need more calculations of initialization than POWB.

When swb L≥ , there will be () ()swp d b L− ⋅ − overlapping calculations for

initializations.

For HW, the advantage is the lack of the initialization; therefore it needs as many

calculations as direct decoding does. This is very helpful in using only one ACS

processor. The simulation performance of HW in our test is equal to SW. The

disadvantage is the memory capacity compared to other memory saving methods.

From another aspect, decoding one bit will need to calculate m trellis stages,

where m is:

()3
3 3wb wb

POWB

N L Lm
N N

⋅ −
= = − ≈

2 2sw
SW

sw sw

L b bm
L L

⋅ +
≈ = +

2 2HW
Nm

N
⋅

= =

We define efficiency as follows:

1

 '
 and

decode one bit s informationefficiency
number of forward backward state metrics calculated
m−

=

=

Theoretically, decoding one bit will require one forward state metrics calculation and

one backward state metrics calculation. By observing the above definition, we know

halfway method provide the same efficiency as the theoretic value and it is the most

efficient calculation in these three memory-saving methods. Furthermore, the

 33

redundant calculations will consume unnecessary power.

The comparison curves of the BER performances of the SW and HW method are

shown in Figure 3.10. Assume using 3GPP turbo coder, the data frame size 500N = ,

256HWL = , 24SWL = and 24b = . The word “SW-#A-#B” in Figure means the curve

uses sliding window method with #SWL A= and #b B= ; the word “HW-#C”

means the curve uses halfway method with #HWL C= .

0 0.5 1 1.5

10
-4

10
-3

10
-2

10
-1

SNR(dB)

B
E

R

Compare halfway and sliding window

Floating point Max-Log-MAP
SW-24-24
HW-256

Frame size=500
Simulation Bits=5*106

Rate=1/3
G=[15,13]octal
iteration=5

Figure 3.10: Compare the performances of halfway and sliding window

If using sliding window method with fewer than (1)d + ACS processors, it will

lead to an additional memory of 12K q− ⋅ and decrease the decoding speed. The

problem of the slow decoding speed of sliding windows method could be solved by

using (1)d + ACS processors. However, the decoder using halfway method only

needs an additional ACS processor, totally two ACS processors, can achieve the same

decoding speed as the sliding window method with (1)d + ACS processors.

 34

Chapter 4

3GPP Turbo Encoder

3GPP Turbo coder [29] uses Parallel Concatenated Convolutional Code (PCCC)

with two 8-state constituent encoders and one internal interleaver. The code rate of

Turbo coder is 1/3. The structure of 3GPP Turbo coder is shown in Figure 4.1.

The requests of the encoder are as follows:

1. The initial value of the shift registers of the constituent encoders shall be all zeros.

2. Outputs from the Turbo coders are

1 1 1, , ,..., , ,s p p sK pK pKx x x x x x′ ′

where 1 2, ,...,s s sKx x x are the systematic bits which equal to the input bits ku to the

Turbo encoder, and K is the number of a block of input bits, and 1 2, ,...,p p pKx x x and

1 2, ,...,p p pKx x x′ ′ ′ are the bits output from first and second constituent encoders,

respectively. The bits output from Turbo code internal interleaver are denoted by

1 2, ,..., ku u u′ ′ ′ and these bits are to be input to the second constituent encoder.

4.1 Constituent Encoder

3GPP constituent 8-state encoder and its corresponding trellis diagram are shown

in Figure 4.1. The transfer function of the 8-state constituent code for PCCC is:

2 3

3

1() 1,
1

D DG D
D D

 + +
=  + + 

,

 35

Figure 4.1: Structure of rate 1/3 Turbo coder

(dotted lines apply for trellis termination)

D0 D1 D2

constituent encoder

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0/00
1/11

1/11

0/00

1/10

0/01

0/01

1/11

0/00

S0 S0

S1

S2

S3

S4

S5

S6

S7

S1

S2

S3

S4

S5

S6

S7

uk/xsk,xpk

S0 = 000
S1 = 001
S2 = 010
S3 = 011
S4 = 100
S5 = 101
S6 = 110
S7 = 111

register states
D0D1D2

Solid line : uk=0

Dotted line: uk=1

1/10

0/00

1/11

0/01
1/10
1/10

0/01

Figure 4.2: Constituent encode of 3GPP turbo encoder and its trellis

 36

4.2 Trellis Termination

 Because the first request, the initial value of the shift registers of the encoders

shall be all zeros, both the constituent encoders need to perform trellis termination

after encoding one block of input bits. The action of terminating the trellis is

performed by taking the last 1K − bits from the shift register of each encoder

feedback to their selves after all information bits are encoded then all shift registers

will return to zero. The switch in each constituent encoder should be switched to the

lower position when terminating and the structure of each encoder is shown in Figure

4.3. These encoded tail bits are padded after the encoded information bits, and the

transmitted bits for trellis termination shall be:

(1) (1) (2) (2) (3) (3) (1) (1) (2) (2) (3) (3), , , , , , , , , , ,s K p K s K p K s K p K s K p K s K p K s K p Kx x x x x x x x x x x x+ + + + + + + + + + + +′ ′ ′ ′ ′ ′

Figure 4.3: Constituent encoder for terminating the trellis

4.3 Interleaver

 The 3GPP Turbo code internal interleaver is a block interleaver consisting of a

rectangular matrix and its size is decided by the frame size of the input bits, K. The

original message bits input to the interleaver row by row. If the input bits are not

enough to filling the matrix, we need to add some redundant bits to fill it. Then we

perform intra-row permutations and inter-row permutations of the rectangular matrix.

Finally, the bits in the matrix are read out column by column and pruning the

 37

redundant bits we added before. We denote the bits input to the internal interleaver by

1 2 3, , ,... Ku u u u , where K is the integer number of the bits and takes one value of 40 ≤

K ≤ 5114.

4.3.1 Deciding the size of the rectangular matrix

First to all, we need to decide the number of the rows and the columns of the

rectangular matrix according the following process:

(1) According to the equation (33), determining the number of rows of the rectangular

matrix, R. The rows of rectangular matrix are numbered 0, 1, …, R - 1 from top to

bottom







=
≤≤≤≤

≤≤
=

 e)other valuany (if 20,
))530481(or)200160((if 10,

)15940(if 5,

K
KK

K
R

 (33)

(2) Along with Table 4.1 and relationship shown below, we can determine the prime

number, p, used in the intra-permutation and the number of columns of

rectangular matrix, C. The columns of rectangular matrix are numbered 0, 1, …, C

- 1 from left to right

if (481 ≤ K ≤ 530) then

p = 53 and C = p.

else

Find minimum number p from Table 4.1 such that

()1+×≤ pRK ,

and determine C such that

 38

1 if (1)
 if (1)

1 if

p K R p
C p R p K R p

p R p K

− ≤ ⋅ −
= ⋅ − < ≤ ⋅
 + ⋅ ≤

end if

p v p v p v p v p v

7 3 47 5 101 2 157 5 223 3

11 2 53 2 103 5 163 2 227 2

13 2 59 2 107 2 167 5 229 6

17 3 61 2 109 6 173 2 233 3

19 2 67 2 113 3 179 2 239 7

23 5 71 7 127 3 181 2 241 7

29 2 73 5 131 2 191 19 251 6

31 3 79 3 137 3 193 5 257 3

37 2 83 2 139 2 197 2

41 6 89 3 149 2 199 3

43 3 97 5 151 6 211 2

Table 4.1: List of prime number p and associated primitive root v

(3)Write the input bit sequence 1 2 3, , ,... Ku u u u into the R×C rectangular matrix row

by row:

1 2 3

(1) (2) (3) 2

((1) 1) ((1) 2) ((1) 3)

C

C C C C

R C R C R C R C

y y y y
y y y y

y y y y

+ + +

− ⋅ + − ⋅ + − ⋅ + ⋅

 
 
 
 
 
  

L
L

M M M L M
L

where k ky u= for k = 1, 2, …, K and if R ×C > K, the dummy bits are added to the

 39

tail of the input sequence such that 0 or 1ky = for k = K + 1, K + 2, …, R×C.

These dummy bits will be discarded when read the bits from the rectangular matrix

after intra-row and inter-row permutations.

After the R×C rectangular matrix is filled with the input and dummy bits, we perform

the intra-row permutations and inter-row permutations in turn.

Number of input bits K Number of rows R
Inter-row permutation patterns

<T(0), T(1), …, T(R - 1)>

(40≦K≦159) 5 <4, 3, 2, 1, 0>

(160 ≦ K ≦ 200) or

(481≦K≦530)
10 <9, 8, 7, 6, 5, 4, 3, 2, 1, 0>

(2281≦ K≦ 2480) or

(3161≦K≦3210)
20

<19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 16,

13, 17, 15, 3, 1, 6, 11, 8, 10>

K = any other value 20
<19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 10, 8,

13, 17, 3, 1, 16, 6, 15, 11>

Table 4.2: Inter-row permutation patterns for Turbo code internal interleaver

4.3.2 Intra-row and inter row permutations

After the bits input to the R×C rectangular matrix, the intra-row and inter-row

permutations for the R×C rectangular matrix are performed stepwise by using the

following algorithm with steps (1) – (6):

(1) Select a primitive root v from Table 4.1, which is indicated on the right side of

the prime number p.

(2) Construct the base sequence { }0,1, , 2
()

j p
s j

∈ −L
 for intra-row permutation as:

 40

()() (1) mod s j v s j p= ⋅ − , 1, 2, , (2)j p= −L , and s(0) = 1.

(3) Assign q0 = 1 to be the first prime integer in the sequence { }0,1,..., 1i i R
q

∈ −
, and

determine the prime integer iq in the sequence { }0,1,..., 1i i R
q

∈ −
 to be a least

prime integer such that . . (, 1) 1ig c d q p − = , 6iq > , and 1i iq q −> for each

1,2, , 1i R= −L . Here g.c.d. is greatest common divisor.

(4) Permute the sequence { }0,1,..., 1i i R
q

∈ −
 to make the sequence { }0,1, , 1i i R

r
∈ −L

 such

that

()T i ir q= , 0,1, , 1i R= −L

where { }0,1, , 1
()

i R
T i

∈ −L
 is the inter-row permutation pattern defined as the one

of the four kind of patterns, which are shown in Table 4.2, depending on the

number of input bits K.

(5) Perform the i-th (i = 0, 1, …, R - 1) intra-row permutation as:

if (C = p) then

() () ()()1mod −×= prjsjU ii , j = 0, 1, …, (p - 2), and Ui(p - 1) = 0,

where Ui(j) is the original bit position of j-th permuted bit of i-th row.

end if

if (C = p + 1) then

() () ()()1mod −×= prjsjU ii , j = 0, 1, …, (p - 2). Ui(p - 1) = 0, and Ui(p) = p,

where Ui(j) is the original bit position of j-th permuted bit of i-th row, and

if (K = R×C) then

Exchange UR-1(p) with UR-1(0).

end if

end if

if (C = p - 1) then

 41

() () ()() 11mod −−×= prjsjU ii , j = 0, 1, …, (p - 2),

where Ui(j) is the original bit position of j-th permuted bit of i-th row.

end if

(6) Perform the inter-row permutation for the rectangular matrix based on the

pattern () { }1,,1,0 −∈ Ri
iT

L
, where T(i) is the original row position of the i-th

permuted row.

4.3.3 Output the bits from the rectangular matrix with pruning

After intra-row and inter-row permutations, the bits of the permuted rectangular

matrix are denoted by 'ky :

1 (1) (2 1) ((1) 1)

2 (2) (2 2) ((1) 2)

2 3

' ' ' '
' ' ' '

' ' ' '

R R C R

R R C R

R R R C R

y y y y
y y y y

y y y y

+ + − ⋅ +

+ + − ⋅ +

⋅

 
 
 
 
 
 

L
L

M M M L M
L

The output of the Turbo code internal interleaver is the bit sequence read out

column by column from the intra-row and inter-row permuted R× C rectangular

matrix starting with bit y'1 in row 0 of column 0 and ending with bit y'CR in row R - 1

of column C - 1. The output is pruned by deleting dummy bits that were padded to

the input of the rectangular matrix before intra-row and inter row permutations, i.e.

bits y'k that corresponds to bits yk with k > K are removed from the output. The bits

output from Turbo code internal interleaver are denoted by x'1, x'2, …, x'K, where x'1

corresponds to the bit y'k with smallest index k after pruning, x'2 to the bit y'k with

second smallest index k after pruning, and so on. The number of bits output from

Turbo code internal interleaver is K and the total number of pruned bits is: R C K⋅ − .

The interleaving flow chart after deciding R, C is shown in Figure 4.4.

 42

Figure 4.4: Interleaving flow chart

 43

Chapter 5

Design Considerations

 The 3GPP turbo encoders are constructed by two identical encoders; therefore,

we can use only one decoder to decode the received sequence serially and iteratively.

In this thesis, the turbo decoder uses only one decoder and only one ACS processor to

calculate the forward and backward state metrics for low complexity. When designing

the hardware of the decoder, we need to discuss and consider about several issues as

follows:

1. Decoding algorithm selection.

2. Memory saving method selection.

3. Decision of the block length.

4. The analyses of fixed-point representations for calculations.

5.1 Decoding algorithm selection

Due to Max-Log-MAP algorithm’s low complexity and only minor performance

loss comparing with Log-MAP and the poor SNR sensitivity which means we will not

need any multiplications in decoding process, we implement our hardware by

Max-Log-MAP algorithm.

5.2 Memory saving method selection

 Because we use only one decoder for decoding, we cannot tolerate the redundant

 44

calculations for initialization processes. Since halfway method does not have the

redundant calculations and needs fewer calculations than the other memory saving

methods we will adopt this method to implement the hardware for saving memory

capacity and reducing the power consumption.

5.3 Decision of the block length

 After choosing the memory saving method, we need to decide the block length.

Although the memory depth can be set arbitrary in the format of power of 2 on FPGA,

it is somewhat impractical in ASIC. Here we assume the minimum memory depth is

32 then we can derive the memory capacity for the initialization memory and state

metrics memory respectively for different block length. The results are shown in

Table 5.1, the forth column means the original initialization memory needed. The

second column is the actual memory depth we implement on hardware since we

assume the smallest memory depth is 32.

block length /
 state metric

memory depth

initialization
memory depth

Total memory
depth

p*D
(D=2 for
3GPP)

32 = 32 + 0 320 = 256 + 64 352 320

64 = 64 + 0 160 = 128 + 32 224 160

96 = 64 + 32 128 = 128 + 0 224 108

128 = 128 + 0 96 = 64 + 32 224 80

160 = 128 + 32 64 = 64 + 0 224 64

192 = 128 + 64 64 = 64 + 0 256 54

256 = 256 + 0 64 = 64 + 0 320 40

288 = 256 +32 64 = 64 + 0 352 36

Table 5.1: various memory depths

 45

We simulate the decoder of different block length for three minimum memory

requirements. The performances for various block length are shown in Figure 5.1.

From the Figure 5.1, we can observe that the performance gets better as the block

length increases. BER256 is better than BER128 by 1 dB and BER192 by 0.5 dB so that

we choose 256 as the block length for the turbo decoder in order not to degrade the

decoder’s BER performance too much.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

10
-4

10
-3

10
-2

10
-1

Compare block length

SNR(dB)

B
E

R

0 0.5 1

block length = 128
block length = 160
block length = 192
block length = 256

Frame size = 500
Simulation Bits=5*106

Rate = 1/3
G=[15,13]octal
Max-Log-MAP
Halfway
iteration=5

Figure 5.1: Simulations for various block length

5.4 Analyses of fixed-point representations for calculations

 In the fixed-point implement of turbo decoder the word length will affect the

performance of the decoder. Unnecessary bits would waste the memory space,

increase the computational complexity of the hardware, consume more power and

decrease the hardware speed.

 The data required in Max-Log-MAP decoding process are: the received

 46

sequence , ,ks kp kpy y y′ , the branch metrics (,)k s s′Γ , the forward state metrics ()kA s ,

the backward state metrics ()kB s , the a-priori information ()kL u and the extrinsic

information ()e kL u , a-posterior LLR ()kL u y .

 First of all, we decide the number of the fractional bits of all quantities. The

simulation results are shown in Figure 5.2. By comparing the results, it is apparent

that the performances are poor when we set the number of the fractional bits to 1 or 2.

But when the number of the fractional bits equals to 3, the performance gets very

close to Max-Log-MAP in floating point. Increasing the number of the fractional bits

to 4, the performance will not get much improvement. Therefore we will choose 3 as

the number of the fractional bits of all quantities.

0 0.5 1 1.5

10-4

10-3

10-2

10-1

SNR(dB)

B
E

R

Compare precision bits

Uncode
Floating point Max-Log-MAP
Precision bits=1
Precision bits=2
Precision bits=3
Precision bits=4

Frame size=500
Block length=256
Simulation bits=5*106

Max-Log-MAP
Halfway
iteration = 5

Figure 5.2: Simulations for various precision

After deciding the precision, we consider the dynamic range of all quantities to decide

the number of the integer bits then we could decide the fixed point representation of

 47

all. We will use FP(q,f) to represent the fixed point representation, where q is the total

number of the bits and f is the number of the fractional bits, then (q-f) is the number of

the integer bits and that is the dynamic range.

5.4.1 Received sequence , , 'ks kp kpy y y

The received sequence mainly relates to the modulation/demodulation and

the transmit channel. Assume the channel is AWGN non-fading and using BPSK

modulation to transmit the encoded information and the channel’s SNR at least

equal to 0 dB, the value of the received sequence will distribute over 7 to -7

through the MATLAB simulations. Consequently, we need 3 bits to represent the

integer value and 1 bit to represent the sign and totally we need 7 bits, FP(7,3) for

the received sequence.

5.4.2 Branch metrics (,)k s s′Γ

The branch metrics are calculated by equation (27) and we rewrite it here

1

1ˆ(,) ()
2 2

n
c

k k k kl kl
l

Ls s C u L u y x
=

′Γ = + ⋅ + ∑

As we discussed in section 3.1.4, Max-Log-MAP is SNR independent and we can

let 1cL = and discard the constant term Ĉ , this equation can be rewritten as:

1

1 1(',) ()
2 2

n

k k k kl kl
l

s s u L u y x
=

Γ = ⋅ + ∑
 (34)

where n is the number of the encoded bits and equals to 2 for 3GPP. Because it is

relative to a-priori LLR, ()kL u , we will decide it’s fixed point representation,

FP(qbm,3), after deciding ()kL u . The discuss following will assume the branch

metrics are big enough to store a-priori LLR ()kL u until deciding ()kL u .

 48

5.4.3 Forward state metrics ()kA s and Backward state metrics ()kB s

Because 3GPP encoder starts to encode the information from state 0S ,

ideally the forward recursive calculations has the initialization conditions as

follows:

0 0 0 0

0 0 0

(0) ln((0)) ln(1) 0
() ln(()) ln(0) 0j

A S S
A S s S s for s

α
α

= = = = =
 = = = = = −∞ ≠

Since 3GPP encoder provides the trellis termination, the backward recursive

calculations has the initialization conditions as follows:

0 0 0

0 0 0

(0) ln((0)) ln(1) 0
() ln(()) ln(0) 0
N

N

B S S
B S s S s for s

α
α

= = = = =
 = = = = = −∞ ≠

 In hardware design, there is no infinity value. Thus we set 0 0(0)A S = and

0(0)NB S = equal to the maximum value that can be represented by FP(qsm ,3)

where qsm will be decided later. And we set 0 0()A S s= , 0()NB S s= 0for s ≠ equal

to zero. Generally this setting would not affect the LLR calculations except the

maximum value is not infinity anymore because we only need to know their

relative difference value but not their exact values. The simulation results are

shown in Figure 5.3. According to the simulation results, we let qsm equal to 6

 49

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

10
-4

10
-3

10
-2

10
-1

SNR(dB)

B
E

R

Compare the bit number of state metrics

Floating point
FP(7,3)
FP(8,3)
FP(9,3)/FP(10,3)

Frame size = 500
Block length = 256
Simulation bits = 5*106

Max-Log-MAP
HW-256
iteration = 5

Figure 5.3: Simulations for deciding the integer bits of state metrics

5.4.4 a-priori information LLR ()kL u , extrinsic information ()e kL u

From equation (1)

(1)() ln
(1)

k
k

k

P uL u
P u

 = +
 = − 

@

we can derive (1)kP u = ± as:

() / 2
() / 2

()(1)
1

k
k

k

L u
L u

k L u
eP u e

e

−
±

−

 
= ± = ⋅ + 

and the corresponding probabilities for () 11 ~ 12kL u = − are tabulated in Table

5.2. Thus we can see when () 7kL u ≥ , (1) 0.999kP u = + ≥ and () 8kL u ≤ − ,

(1) 0.9996kP u = + ≥ , that is a-prior LLR for the decoded bit is highly believable.

The simulation results for different integer bits of ()kL u are shown in the Figure

5.4.

 50

()kL u 11 10 9 8 7 6 5 4

(1)kP u = + 0.99998 0.99995 0.99988 0.99966 0.99909 0.99753 0.99331 0.98201

(1)kP u = − 1.7E-05 4.5E-05 0.00012 0.00034 0.00091 0.00247 0.00669 0.01799

()kL u 3 2 1 0 -1 -2 -3 -4

(1)kP u = + 0.95257 0.8808 0.73106 0.5 0.26894 0.1192 0.04743 0.01799

(1)kP u = − 0.04743 0.1192 0.26894 0.5 0.73106 0.8808 0.95257 0.98201

()kL u -5 -6 -7 -8 -9 -10 -11 -12

(1)kP u = + 0.00669 0.00247 0.00091 0.00034 0.00012 4.5E-05 1.7E-05 6.1E-06

(1)kP u = − 0.99331 0.99753 0.99909 0.99966 0.99988 0.99995 0.99998 0.99999

Table 5.2: Relationship between ()kL u and ()kP u

0.6 0.9 1.2 1.5

10
-4

10
-3

10
-2

SNR(dB)

B
E

R

Compare the number of the bits of LLR

Floating point
5 bits
6 bits
7 bits
8 bits

Frame size = 500
Block length = 256
Simulation bits = 5*106

Max-Log-MAP
HW-256
iteration = 5

Figure 5.4: Simulations of various bit length of LLR

When the number of the integer bits exceeds 4, it does not improve the

performance significantly. Therefore we use 4 bits to represent the integer part of

the a-prior information and 3 bits for fractional part. Since the fixed point

representation of ()kL u is decided, we can decide the branch metric qsm as said

in section 5.4.2. From the three terms on the right hand side in equation (34), their

 51

integer bits are all 4 bits but they are all divided by 2, therefore we only need to

set qsm to 5.

The extrinsic information ()e kL u is used as the a-priori information for

next decoder so that its fixed point representation is identical to the a-priori LLR,

that is FP(7,3).

5.4.5 a-posterior LLR ()kL u y

The equation of a-posterior LLRs ()kL u y is rewritten below:

() ()1 1(,) (,)
1 1

() max () (,) () max () (,) ()k k k k k k ks s s s
u uk k

L u y A s s s B s A s s s B s− −′ ′⇒ ⇒
=+ =−

′ ′ ′ ′≈ + Γ + − + Γ +

Each term on the RHS is computed as the sum of two state metrics and one

branch metric and a-posterior LLRs equal to the difference of the two terms. Thus

we can give it one more bit than the state metrics in order to prevent the

occurrence of overflow. Then we use FP(10,3) to represent a-posterior LLR

()kL u y .

Through all the analyses, we arrange all the numbers in Table 5.3. By

comparing to the fixed point analyses of [30], we know our design is a little bit

conservative. Our design uses extra one fractional bit.

integer bits

(including sign bit)
fractional bits total bits

Received value 4 3 7
Branch metric 5 3 8
Forward state metric 6 3 9
Backward state metric 6 3 9
LLR(ku) 7 3 10
a-priori information 4 3 7
extrinsic information 4 3 7

Table 5.3: word length of our design

 52

Using the word length in Table 5.3, we simulate the performance of our design and

compare them to the performance of floating point.

0 0.5 1 1.5

10
-5

10
-4

10-3

10
-2

10
-1

Frame size=500,HW-256
Frame size=500-FL
Frame size=1024,HW-256
Frame size=1024-FL
Frame size=5114,HW-256
Frame size=5114-FL

Simulation bits = 5*106

Max-Log-MAP
iteration = 5

Figure 5.5 performance of our design comparing to floating point

 53

Chapter 6

Hardware Architecture

 In this chapter, we introduce our turbo decoder hardware architecture from the

computational core of Max-Log-MAP decoding algorithm and discuss about all the

units inside. The overall hardware architecture will be shown in the end of the first

section. Then the decoding process will be presented.

6.1 Hardware architecture

The computational core of Max-Log-MAP decoder is composed of branch

calculation unit, add-compare-select unit, a-posterior LLRs calculation unit and

permutation units. The block diagram of the computational core is shown in Figure

6.1.

$
ku

Figure 6.1: Computation core of the turbo decoder

 54

All units will be discussed in detail as follows:

6.1.1 Branch Metrics Unit (BMU)

The branch metrics are calculated according to equation (34):

1

1 1(,) ()
2 2

n

k k k kl kl
l

s s u L u y x
=

′Γ = ⋅ + ∑

The hardware for calculating branch metrics is shown in Figure 6.2. S0,S1,S2 in

Figure 6.2 are relative to the sign of 1 2, ,k k ku x x , respectively. Because 1 2, ,k k ku x x

have four combination i.e.000, 001,110,111, we need four BMUs.

0

1
-1 >>1

0

1

-1

0

1

-1

S0

S1

S2

S0 S1 S2

BV

a-priori
info

yks

ykp/y'kp

>>1

Figure 6.2: Branch metric unit

6.1.2 Add-Compare-Select Processor (ACSP)

The equations of forward state metrics ()kA s and the backward state metrics

1()kB s− ′ are rewritten below. From the equations, we know that they are both

calculated through adding, comparing and selecting the maximum value

computations. The ACS processing element (ACSPE) hardware is shown in

Figure 6.3.

 55

()1() max () (,)k k ks
A s A s s s−′

′ ′= + Γ

()1() max () (,)k k ks
B s B s s s− ′ ′= + Γ

Figure 6.3: ACS processing element

Since 3GPP encoder has eight states, we need to combine eight ACSPEs to form

an ACS processor in order to calculate one stage in one clock cycle. The eight

ACSPEs and the corresponding trellis diagram are shown in Figure 6.4

Figure 6.4: Bundled ACSPEs and the corresponding trellis

 56

The ACS processor uses the initial value to compute the state metrics at first time.

Then it will calculate by the value in the register on the feedback loop recursively.

The value in the registers would increase time after time and the overflow will happen

soon. Thus we place hardware to subtract the minimum value of the eight state

metrics produced every time. In order to prevent the overflow, a saturation unit is

placed behind it. The whole ACS processor (ACSP) and the feedback loop are shown

in Figure 6.5.

Figure 6.5: ACS processor and feedback loop

6.1.3 LineCchange unit and BetaChange unit

Using only one ACS processor means we need to calculate the forward

metrics and backward metrics by the same ACS processor successively. Observing

Figure 6.6(a)(b), we can find the only one difference between them is the direction

so that we can design a permutation unit to rearrange the input addresses and

output addresses for one ACS processor to compute for the forward metrics and

backward metrics. In Figure 6.6(c), the addresses for calculating backward metrics

are shown in the parenthesis and the permutation rules are shown in Figure 6.6(d).

 57

0/00
1/11

1/11
0/00

1/10

0/01

0/01

1/10

0/01

1/10
1/10

0/01

1/11

1/11

0/00

0/00

S0k-1 S0k

S1k-1

S2k-1

S3k-1

S4k-1

S5k-1

S6k-1

S7k-1

S1k

S2k

S3k

S4k

S5k

S6k

S7k

0/00

1/11

1/11
0/00

1/10

0/01

0/01

1/10

0/01

1/10

1/10

0/01

1/11

1/11
0/00

0/00

S0k-1 S0k

S1k-1

S2k-1

S3k-1

S4k-1

S5k-1

S6k-1

S7k-1

S1k

S2k

S3k

S4k

S5k

S6k

S7k

0/00
1/11

1/11
0/00

1/10

0/01

0/01

1/10

0/01

1/10
1/10

0/01

1/11

1/11

0/00

0/00

S0k-1 S0k

S1k-1

S2k-1

S3k-1

S4k-1

S5k-1

S6k-1

S7k-1

S1k

S2k

S3k

S4k

S5k

S6k

S7k

(a) (b)

(S0k)

(S4k)

(S1k)

(S5k)

(S2k)

(S6k)

(S3k)

(S7k)

(S0k-1)

(S1k-1)

(S2k-1)

(S3k-1)

(S4k-1)

(S5k-1)

(S6k-1)

(S7k-1)
(c) (d)

Figure 6.6: (a) trellis diagram for forward state metrics calculations. (b) trellis

diagram for backward state metrics calculations. (c) trellis diagram for mapping

backward trellis to forward trellis. (d) permutation rules

 58

According to Figure 6.6(d), the permutation unit is shown in Figure 6.7(a);

we call it “BetaChange” because it’s used to permute the address while computing

backward metrics. We need to permute the input and output when calculating

backward state metrics. Thus we design “LineChange” unit to perform these two

permutations at one time and it is shown in Figure 6.7(b).

Figure 6.7: (a) BetaChange hardware (b) LineChange hardware

6.1.4 L0,L1 unit

 The equation of a-posterior LLR ()kL u y is rewritten below:

() ()1 1(,) (,)
1 1

() max () (,) () max () (,) ()

1 0

k k k k k k ks s s s
u uk k

L u y A s s s B s A s s s B s

L L

− −′ ′⇒ ⇒
=+ =−

′ ′ ′ ′= + Γ + − + Γ +

= −

 59

where ()1(,)
1

1 max () (,) ()k k ks s
uk

L A s s s B s−′ ⇒
=+

′ ′= + Γ + , ()1(,)
1

0 max () (,) ()k k ks s
uk

L A s s s B s−′ ⇒
=−

′ ′= + Γ +

Because there are eight paths correspondent to 1ku = ± respectively, the

max operations on the right-hand side means to select the maximum value from

eight sums. We will use nesting max operations to implement. The hardware

architecture of 1L processor is shown in Figure 6.8. The architecture of 0L

processor is the same with 1L .

1 0 0 0 0() (,) ()k k kA S S S B S− + Γ +

1 1 1 4 4() (,) ()k k kA S S S B S− + Γ + 1 7 7 3 3() (,) ()k k kA S S S B S− + Γ +
1 6 6 7 7() (,) ()k k kA S S S B S− + Γ +

Figure 6.8: Nesting max operations for L1 hardware

When 1, 0L L are calculated, we can compute ()kL u y . If ()kL u y is bigger than

or equal to zero, the decoded bit is “1”. If ()kL u y is smaller than to zero, the

decoded bit is “0”.

 6.1.5 Complete turbo decoder architecture

The block diagram of entire turbo decoder hardware is shown in Figure 6.9.

 60

yp

Core

MemA
add

data

output

wr

MemExtIL
add

data

output

wr MemExt
add

data

output

wr

MemB
add

data

output

wr

MemBadd
MemBwr

MemAadd
MemAwr

Extadd
Extwr

ExtILwr
ExtILadd

FB
iter

Decode bit

0

1
a-priori LLR

yks

ykp

FB

MemB
MemA

clk
N
reset
iter

ILmemdata

Cntl

wr
data

add
output

y'p
clk ys output

wr
data

add
output

wr
data

add

y_add
y_wr
y'_add
y'_wr

0

1

ILMemDIMem

valid

Figure 6.9: The block diagram of total turbo decoder hardware

 61

The solid line rectangles are computational unit or control unit and the dotted line

rectangles are memories. The functions of all blocks are as follows:

1. Cntl unit: Cntl unit is used to control where to write or read and when to write or

read of all memories. We pack the interleaver/deinterleaver memory into it because

the functions of them are to provide the addresses for mapping the normal order

systematic bits ksy to interleaved order systematic bits 'ksy and the address for

writing extrinsic LLRs.

2. ys,yp,y’p memories: These memories are used to store the transmitted systematic

bits, the parity bits corresponding to the normal order information bits, the

interleaved systematic bits, the parity bits corresponding to the interleaved order

information bits, respectively. Their depths all equal to HWL .

3. MemExtIL, MemExt memories: These two memories are used to provide and

store a-priori LLR and the extrinsic information. In first half iteration, the decoder

deal with the natural order received bits, ys,yp, and MemExt provides a-priori LLRs

and MemExtIL receives the extrinsic information produced in this half iteration. In

the last half iteration, the decoder deal with the interleaving order received bits

y’s,y’p, MemExILt provides a-priori LLRs now and MemExt receives the extrinsic

information produced in this half iteration.

4. MemA memory: MemA memory is used to store the backward state metrics when

calculating backwardly and to provide the state metrics to L1, L0 processors which

are in the computational core when the decoder calculates the forward state metrics.

5. MemB: MemB memory is the initialization memory required for halfway. It stores

 62

the backward state metrics periodically and provides these state metrics as the

initialization state metrics for the corresponding backward calculations at next

iteration.

6.2 Memory requirements

 In previous section, we list all the memories needed in the decoder hardware.

Along with the specification decided in section 5.3 and section 5.4, we can calculate

all the memory capacities. We arrange all the numbers in Table 6.1.

Bit

width

memory capacity
(bits)

(depth*width*banks)

memory
capacity
(bytes)

Input memory_b ys,yp,y'p 7 5120*7*3=107520 13440

Input memory_d ys,yp,y'p 7 5120*7*3=107520 13440

Initialization memory MemB 9 64*8*9=4608 576

Backward metrics memory MemA 9 256*8*9=18432 2304

interleaver/deinterleaver
ILMem
/DIMem

13 5114*13*2=132964 16620.5

Extrinsic info. Memory
MemExt

/MemExtIL
7 5114*7*2=71596 8949.5

Total 442640 55330

Total
(excluding input memory_b)

 335120 41890

Table 6.1: memory capacity

The first column is the memory name with respect to their function and the second

column is the corresponding name in the Figure 6.9. In the second and third row, there

 63

are two sets of memories for , , 's p py y y . The first memory, input memory_b, is used as

buffer which stores data for the next block while decoding the data in memory_d.

When finish decoding the data in memory_d, the roles of these two memories

exchange. Usually the data buffer (memory_b) is not counted in the decoder hardware

due to it does not provide data to the decoder in decoding process though it is

essential. Therefore we list the memory capacity without buffer in the last row for

reference.

6.3 Decoding Process

 Before the decoding process starts, we need to initialize the interleaver and

de-interleaver memory. Because generating the interleaving sequence needs many

multiplications and divisions and look-up tables, we do not implement it in the

hardware. Instead, we use software to calculate the interleaving sequence and input

the sequence into the interleaver memory and de-interleaver memory before start to

decode. So we input the interleaving sequence to the interleaver memory first. At the

same time, we take the data input to the interleaver as the writing address and take the

writing address of the interleaver as the input data for the deinterleaver memory. After

initializing the interleaver/de-interleaver memories, the decoding process begins.

Assume the received data comprising one frame of information are in the input

memory_d, frame size = N , block length = HWL , block number / HWp N L=    . If

HWN L≤ , this decoder works as the normal Max-Log-MAP decoder does. In order to

explain the halfway decoding process, we further assume where HWN p L p= ⋅ ∈ ¥

then we can divide one frame into block-1, block-2… block-p, denoted as

 where 1, 2,...,isb i p∈ . Because 3GPP encoder has trellis termination, the encoded

code has 12 tail bits corresponding to 6 trellis stages as stated in section 4.2. Hence

 64

the decoder will calculate backward state metrics by these tail bits first in order to

process regularly hereafter. When we finish computing the tail bits, the backward state

metrics are stored to MemB as the initialization state metrics for psb .

Now the first half iteration decoding begins. We use ,s py y to calculate

backward state metrics first by for isb from 1HWi Ls ⋅ − to (1) HWi Ls − where 1,2,...,i p= .

The initialization state metrics for each block are all set to zeros at this iteration

except the last block. The state metrics which input to ACSP are saved to MemA and

the last calculated state metrics are stored to MemB at address ()63 i p− + when

1i ≠ . Afterwards the forward state metrics are calculated for isb from (1) HWi Ls − to

1HWi Ls ⋅ − where 1,2,...,i p= . The state metrics which input to ACSP are sent to 0L , 1L

units with the relative backward state metrics stored in MemA. The extrinsic

information can be computed and saved to MemExtIL according to the relative

interleaving address. The decoding process in second half iteration is similar to first

half iteration but is different from: using ' , 's py y to calculate the backward/forward

state metrics; the last calculated state metrics of each block are stored to MemB at

address ()31 i p− + when 1i ≠ ; the computed extrinsic information is saved to

MemExt according to the relative de-interleaving address.

When first iteration completes, MemB will have the initialization state metrics

for backward state metrics for isb where 1,2,...,i p= . The graphic representation of

the halfway SISO algorithm is shown in Figure 6.10.

 65

po
si

tio
n

Figure 6.10: graphic representation of the halfway SISO algorithm

Although we assume where HWN p L p= ⋅ ∈ ¥ in the decoding process
discussed above, N would not equal to multiples of HWL in general. The derivations
can easily be modified to apply to the general cases.

 66

Chapter 7

Hardware implementation

With modern VLSI technology, we can design the hardware with high clock rate

and complicated functions. There are two design abstractions: Bottom-up and

top-down. By using the abstractions, the designer can collapse details and arrive at a

simpler concept with which to deal.

In the design process of integrated circuit, the layout techniques are very amateur

so that we can use Computer-aided design (CAD) tool to help us to place and route.

Nowadays most of the digital communication integrated circuits adopt the standard

cell design instead of full custom design. Therefore the emphasis is put on the

algorithms and the hardware architectures. In this thesis we also adopt the standard

cell to design the hardware.

7.1 Design and verify process

 First we write a C program to simulate the decoding algorithm so that we can

understand the flow of the decoding process. And we can verify the C program by

examining a lot of data.

 Second we plan the hardware architecture. In this thesis, we implement the

decoder by halfway memory saving method. Thus we can achieve the 3GPP

requirement by using only one ACS processor without high operation frequency. Then

we develop a bit-accurate C model according to the above architecture. Because we

 67

use fixed-point implementation, we could analyze the word length of the quantities by

this bit-accurate C model. It is easier to modify the word length and the architecture in

C code than in HDL code. If we find the specification can not satisfy our objective,

we could redesign the architecture or change the word length easily and quickly.

Besides, C model can help us to process HDL debugging easily.

 Third we can proceed to RTL verification. When the functions of the RTL code

work correctly, we can synthesize the code with synthesis tools. If the synthesis result

could not satisfy our requirement, we need to modify the architecture and repeat the

flow from bit-accurate C model.

 Finally, if the synthesis result achieves the requirement, we can download the

RTL code to FPGA develop board. Afterward we verify the hardware circuit by

inputting a lot of data.

 In summary, our develop and design flow is shown in Figure 7.1

Figure 7.1: develop and design flow

7.2 Hardware specification

 In this section, we will describe the clock cycles for decoding one block of data

first. Then we define the hardware input and output ports clearly.

7.2.1 Clock cycles for decoding one data frame

 The clock cycles for decoding one data frame are dependent on the frame size.

Our hardware is pipelined into five stages. Thus the internal latency is 5 clock cycles.

 68

The total required clock cycles for decoding one data frame are calculated as follows:

(),_ 2 2 _ 6N Iterclock cycles frame size internal_delay Iter= ⋅ ⋅ + ⋅ + (35)

The subscript of clock cycles “N” stands for the frame size of the data for simplicity.

The first term in the inner parentheses “frame_size” is also the frame size of the data.

The term “Iter” is the number of complete decoding iteration. The last term “6” is the

clock cycles for calculating the tail bits.

Since the frame size of 3GPP turbo code ranges from 40 to 5114, we list some

examples as follows:

Iteration = 5

Frame size 40 500 1024 5114

clock cycles 856 10056 20536 102336

Iteration = 10

Frame size 40 500 1024 5114

clock cycles 1706 20106 41006 204666

Table 7.1: decoding clock cycles for different frame size

When frame size is small, the internal delay will affect the decoding cycles severely.

7.2.2 Hardware interface

 For convenience, we pack the decoder as a processing core and indicate the

input/output ports in Table 7.2. When this processing core is used, we only need to

configure the pins adequately. The I/O diagram of this processing core is shown in

Figure 7.2.

 69

Figure 7.2: Turbo deocder I/O diagram

Port i/o bit width description

clk input 1 system clock

reset input 1 reset the register contents
FS input 13 configure the frame size of data

d_in input 7 received data input
IL_seq input 13 interleave sequence input

Iteration input 5 configure the iteration number
Valid output 1 indicate the decode bit valid

Decode_bit output 1 decode bit output

Complete output 1
indicate finish decoding one block of
data

Table 7.2: I/O ports definition

7.3 ASIC performance

 We are interested in how many gate counts are in the turbo decoder hardware. So

we will divide the turbo decoder into two part, one is memory part and the other is

control and computation part. The ASIC verification flow is shown in Figures 7.3. We

use MATLAB to generate the encoded sequence and the additive white Gaussian

noise and write the information into test bench. We can compare the results with the

decoding bits by bit-accurate C decoding program. If “Out_cp” outputs “1”, there

should be something wrong in the decoder hardware.

 70

 The ASIC simulation environment is as follows:

HDL: verilog

Compiler tool: verilog-XL

Debug tool: Debussy

Synthesis tool: synopsys

Process: TSMC 0.25 mµ

The simulation results are listed in Table 7.3. The maximum clock rate for this

decoder is 102.56MHz.

Figure 7.3: ASIC verification flow

Constraint 9.75ns 10ns 12.5ns 25ns
Clock rate 102.56MHz 100MHz 80MHz 40MHz

Gate counts 28.7k 28.1k 24.8k 15.1k

Table 7.3: ASIC simulation results

Along with equation (35) in section 7.2.1, we can calculate the clock rate required for

decoding the data. Assume required output data rate = Rd, frame size = N and iteration

number = Iter, we can get:

 71

, , _d
N Iter N Iter

Rrequired clock rate clock cycles
N

= ⋅

In 3GPP, maximum Rd is 2 Mbps, thus required clock rate is:

clock rate Iter=5 Iter=10

N=40 42.8 85.3

N=5114 40.02 80.04

Table 7.4: required clock rate for decoding different frame size and iteration

Because our hardware has maximum operation frequency 102.56 MHz, it can meet

3GPP requirement.

7.4 FPGA verification

 We use MATLAB to generate the encoded sequence and the additive white

Gaussian noise. We use the bit-accurate C decoder to decode the received sequence

and write the decoding results into a file. Then we put the received information into

ROM of the turbo decoder and compare the decoding results with those generating by

the bit-accurate C decoder. The output bit and the comparison results are displayed in

the seven-segment display. The FPGA verification flow is shown in Figure 7.4.

The simulation environment is as follows:

FPGA development board: Altera stratix II EP1S25780C5

Simulation software: Quartus II 4.0

HDL: verilog

Max. clock rate = 40.2 MHz

 72

Figure 7.4: FPGA verification flow

 73

Chapter 8

Conclusion and Future works

8.1 Conclusion

 In this thesis, we implement an efficient and memory saving 3GPP turbo decoder

which uses the halfway method. This decoder bases on Max-Log-MAP algorithm and

uses only one ACS processor. This successfully decreases the memory capacity which

is the critical design problem for turbo decoders. It also discards the redundant

calculations for initializations which are required for other decoding methods. As a

result, using only one ACS processor in our decoder will not slow down the decoding

speed. Furthermore, using halfway memory saving method in the decoder can

decrease the decoding latency. By use of the computer simulation and the analyses,

we decide the fixed point representations and the block length for halfway method in

order to obtain a cost-effective turbo decoder. We compare the BER performance of

halfway with the commonly-used sliding window schemes and confirm that our

approach does not sacrifice any performance.

8.2 Future works

 Our hardware design still can be improved in 3 aspects:

1. Decoding speed: Though our decoder hardware can satisfy the maximum

decoding speed of 3GPP specification, 2M bits/s, by 5 iterative decoding at 40.2

MHz operation frequency, the need for more iterations and faster decoding speed

 74

will still exist in the future. Therefore we can use one more ACS processor to

calculate forward state metrics when the original ACS processor calculates

backward state metrics at the same time. This will boost the decoding speed by a

little overhead and hardware requirement.

2. Stopping criterion: we do not implement any stopping criterion on our decoder,

thus the decoder will decode for fixed number of iterations. This results in

consuming energy unnecessary and wasting the decoding time.

3. Embedded interleaver/de-interleaver generator: At the moment we assume the

interleave/de-interleaver data are stored to the memory and these will cost a lot of

memory. If we can design the hardware for generating interleaving/de-interleaving

sequence when needed immediately, it will decrease the memory capacity needed

by decoder significantly. More exactly, that is 2x13x5114 = 132964 =132.9 K bits

= 16.6125 Kbytes.

 75

References
[1] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System

Technical Journal, pp. 379-427, 1948.

[2] R. Hamming, “Error Detecting and Error Correcting Codes,” Bell System

Technical Journal, vol. 29, pp. 147-160, 1950.

[3] E. Prange, “Cyclic Error-Correcting Codes in Two Symbols,” Air Force

Cambridge Research Center-TN-57-103, Cambridge, MA: September 1957.

[4] E. Prange, “Some Cyclic Error-Correcting Codes with Simple Decoding

Algorithms,” Air Force Cambridge Research Center-TN-57-103, Cambridge, MA:

September 1957.

[5] E. Prange, “The Use of Coset Equivalence in the Analysis and Decoding of Group

Codes,” Air Force Cambridge Research Center-TN-57-103, Cambridge, MA:

September 1957.

[6] A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres (Paris), vol. 2, pp.

147-156, September 1959.

[7] R. Bose and D. Ray-Chaudhuri, “On a Class of Error Correcting Binary Group

Codes,” Information and Control, vol. 3, pp. 68-79, March 1960.

[8] R. Bose and D. Ray-Chaudhuri, “Further Results on Error Correcting Binary

Group Codes,” Information and Control, vol. 3, pp. 279-290, September 1960.

[9] I. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,” Journal

of the Society of Industry and Applied Mathematics, vol. 8, pp. 300-304, June

1960.

[10] P. Elias, “Coding for Noisy Channels,” IRE Convention Record, pt. 4, pp. 37-47,

1955.

[11] J. Wozencraft, “Sequential Decoding for Reliable Communication,” IRE Natl.

 76

Conv. Rec., vol. 5, pt.2, pp. 11-25, 1957.

[12] J. Wozencraft and B. Reiffen, “Sequential Decoding,” Cambridge, MA, USA:

MIT Press, 1961.

[13] A. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically

Optimum Decoding Algorithm,” IEEE Transactions on Information Theory, vol.

IT-13, pp. 260-269, April 1967.

[14] G. Forney, “The Viterbi Algorithm,” Proceedings of the IEEE, vol. 61, pp.

268-278, March 1973.

[15] G. Ungerboeck, “Trellis-Coded Modulation with Redundant Signal Sets part I:

Introduction,” IEEE Communications Magazine, vol. 25, pp. 5-11, February 1987.

[16] G. Ungerboeck, “Trellis-Coded Modulation with Redundant Signal Sets part II:

State of the art,” IEEE Communications Magazine, vol. 25, pp. 12-21, February

1987.

[17] C. Berrou, A. Glavieus, and P. Thitimajshima, “Near Shannon Limit

Error-Correcting Coding and Decoding: Turbo Codes,” Proceedings of the

International Conference on Communications, (Geneva, Switzerland), pp.

1064-1070, May 1993.

[18] C. Berrou, C. Douillard, M. Jezequel, “Designing Turbo Codes for Low Error

Rates", IEE Workshop, London, UK, December 1999.

[19] David J. C. MacKay, “Information Theory, Inference and Learning Algorithms,”

Cambridge University Press, pp. 576, September 2003.

[20] Divsalar, D. and Pollara, F., “Turbo Codes for PCS Applications,” Proceedings

of International Conference on Communications, Seattle, WA., pp. 54-59, June

1995.

[21] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear

Codes for Minimising Symbol Error Rate,” IEEE Transactions on Information

 77

Theory, vol. 20, pp. 284-287, March 1974.

[22] J. Hagenauer and P. Hoher, “A Viterbi Algorithm with Soft-decision Outputs and

its applications,” IEEE Globe-com, pp. 1680-1686, 1989.

[23] P.Robertson, E. Villebrun, and P. Hoher, “A Comparison of Optimal and

Sub-Optimal MAP Decoding Algorithms Operating in the Log Domain,”

Proceedings of the International Conference on Communications, (Seattle, USA),

pp. 1009-1013, June 1995.

[24] A. Worm, P. Hoeher, and N. Wehn, “Turbo-Decoding Without SNR Estimation,”

IEEE Communications Letter, vol. 4, pp. 193-195, June 2000.

[25] T. A. Summers and S. G.Wilson, “SNR Mismatch and Online Estimation in

Turbo Decoding,” IEEE Trans. Communications., vol. 46, pp. 421–423, April

1998.

[26] Peter H-Y Wu, “On the Complexity of Turbo Decoding Algorithms,” IEEE

Vehicular Technology Conference, spring 2001.

[27] A. Viterbi, “An Intuitive Justification and Simplified Implementation of MAP

Decoder for Convolutional Codes,” IEEE Select. Areas in Communication, vol. 16,

pp. 260-264, February 1998.

[28] F. Raouafi, A. Dingninou, C. Berrou, “Saving Memory in Turbo Decoders using

the Max-Log-MAP Algorithm,” IEE Colloquium, pp. 14/1-14/4, November 1999.

[29] http://www.3gpp.org, “Multiplexing and channel coding,” TS 25.212 v 6.2.0.

[30] T. K. Blankenship, B. Classon, “Fixed-point Performance of Low-complexity

Turbo Decoding Algorithms,” IEEE Vehicular Technology Conference, spring

2001.

http://www.3gpp.org

