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ABSTRACT

Turbo codes have become one of the mnecessary specifications for the
state-of-the-art communication: systems. - The difficulties in implementing turbo
decoder are the vast computational complexities and the request for a lot of memories.
The most public method for decreasing ‘the need of memories is sliding window
method. But using sliding window method will increase the computational
complexities. This thesis is purposed to propose a calculation efficient and memory
saving turbo decoder. We use another memory saving algorithm — halfway algorithm,
in our turbo decoder. This successfully decreases the computational complexities and
the need of memory capacity. Besides, we adopt Max-Log-MAP algorithm in our

design in order to simplify the hardware.

ii



% #

EES EARE G A RETRAEIGT RS TE - BT AR g s
BB AR ER LA R E R EFRATRI NS L 4

FFOFIMER REREp e F@oivp ¢ KA G RETR 2 ER

2™

13 XfFL 24 R RED B d EEHRTATEN P o
EHTRZFFHERZ S ZRZE 380 AP - A2 FOR AT 7
REMETFFE A2k 0 AH W BHT TR G BIEp & B A RFA R

R R IR AN S AU

B2 M2 BR HYRA L2 GREBPERT > FURE N TR TR
WA FRS EARDERT AP AP HRIHEAPE TR @

*REE FPGA» 7 AR B e
RSB R S At i S 8L LB kAT S A R H
WAL o A PR mis B KA LB g BIFI L e YRS A aE R

Tt A A R A BREREER Y P T EREL R S R 0T o

il



Content

[00) 11731 | PP PPPRPPPRRRR v
LSt Of FIGUIS ..ttt ettt ettt e e e et e e e ebb e e e e esnaaeeeenssaaeeeanes vi
LSt OF TADIES ...t et viii
(O] F:1 o 11<) ol T USRS P PRSPPI 1
INETOAUCLION ..ttt et e et e et e et e e st e e eaaeeens 1
1.1 Digital communication SYStEM........cccuvvrreeriuriieeeririieeeeiiieeeeenieeeeeenreeeeeenens 1

1.2 History of channel coding.............cooeviiiiiiiiiiiiiiniiieeeeieee e 2

1.3 Background of Turbo codes ...........coeeviiieeiiiiiiieiiiieeeeiieee e 4

1.4 Motivation and GOal............cooviiiiiiiiiiiiiieeiiieeeeee e e 4

1.5 ThesisS OULINE. ....cccuueiiiiiieiiiee ettt e e 5
CRAPLET 2 ..ottt ettt ettt e e et e e e ettt e e e e tbaaeeeetbbaeeeenssbaeeeesrbaeeeennnees 6
Overview of Turbo Code SYStEIM........ccciiuiiiiiiiiiiieeeiiiee e e erre e e 6
2.1 Concatenated COAES ........eeiruiiiiriiiiiiie ettt 6

2.2 Recursive Systematic Convolutional (RSC) Encoder............cccceeevriiieeennnnne. 7

2.3 INterleavers .....ccuveeveeeeeeeee syt B BB ettt 9

2.4 DECOTERTS .nveeeiieeeiieee e dtdiee e gumcmese e <o 8ade e eeeeaeteeennteeenneeennneeennseeennseeesnneees 9
Chapter 3 .....coovvvvveeevecneeeeee i S R 11
TUIDO DECOAING ....veieiniiiiiieei et vsesse sbhesaaaneeeiseesambeeeeeeneseeeeesssaeeeesnssseeseenssseeasanes 11
3.1 Decoding Algorithms.. ... il il et 11
3.1.1 Maximum-a-postetiori (MAP) Algorithm..............cccoevviiiiiiiinnnn... 11

3.1.2 Max-Log-MAP Algorithm...........ccccoiiiiiiiee e 19

3.1.3 Log-MAP AIZOTIthM .....ccooiiiiiiiiiiiiieeiiee e 21

3.1.4 SNR mMiSMALCH ....eiiiiiiiiiieiiiiiie et 22

3. 1.5 CONCIUSION ....eeeiiiie et 23

3.2 Memory saving methodologies ...........eeeeeriiiiieiiiiiieeeieee e 24
3.2.1 Preprocessing over Whole Block Method............ccccvveieeniiiiiennnnnenn. 25

3.2.2 Sliding Window Method ...........ccccoviiiiiiiiiiiniiiieceee e 27

3.2.3 Halfway Method ........cvvvieiiiiiiieeiiiieeeee e 28

3.2.4 COMPATISONS .....vveeeeiiiieeeeeiiieeeeeireeeeestreeeeessreeeeessnseeeeenssseeeesnssseeens 30

CRAPLET 4 ...ttt e e e et e e e e et a e e e e e tbeeeeeetbaeeeeetbaeeeeenbaeeaeanes 34
3GPP Turbo ENCOAET......ccouuiiiiiiieiiiie ettt 34
4.1 Constituent ENCOAET .......ccuuviiiiiiiiiieeeiiie et e et e e 34

4.2 Trellis TermiNation.........ccccuueeeeriiieeeeeiiieeeeeeieeeeeereeeeeeraeeeeenrreeeeensnsaeaeenns 36
4.3.1 Deciding the size of the rectangular matriX...........c.cecevvveeerenieeeennnnen. 37

4.3.2 Intra-row and inter row permutations ............ceccvveeeerrrreeeennreeeeennnnnes 39

4.3.3 Output the bits from the rectangular matrix with pruning ................. 41

v



CRAPLET 5 ..ot e ettt e e et e e e e et a e e e e etbbeeeeensbaeeeeesraeeeeenbaeeaeane 43

Design ConSIAETAtIONS. .......ceeeriiiiiieeeiiiiieeeeeiitieeeeesitteeeeesereeeeeesisraeeesesssreeeesessnsreeeeas 43
5.1 Decoding algorithm Selection...........c.ueeeeeiiiiiieiiiiiiie e 43

5.2 Memory saving method Selection............ccccvviieeiiiieeeiiiiiiee e 43

5.3 Decision of the block length ............ccccoeeviiiiiiiiiiiiiiie e, 44

5.4 Analyses of fixed-point representations for calculations...............cccceenneee. 45
5.4.1 Received sequence ykq,ykp,y'kp .................................................. 47

5.4.2 Branch metrics T, (8',8) wooiviiiieceeeeeeeeeeeeeeeeeeeees 47

5.4.3 Forward state metrics 4, (s) and Backward state metrics B, (s) .......... 48

5.4.4 a-priori information LLR L(u, ), extrinsic informationZ, () ........... 49

5.4.5 a-posterior LLR L(u, |Z) ................................................................ 51

CRAPLET 6 ..ot e ettt e e et e e e e et a e e e e eabeeeeeensbaeeeeessaaeeeessaeeaennes 53
Hardware ATCRILECTULE ......c.uiiiiiiiiiiie e e 53
6.1 Hardware architeCture........., sl l i oo neeeeeeiieeeeeiieeeeeieeeeeerreee e e 53
6.1.1 Branch Metrics Uniit (BMU ).v. oot e eeeniiieeeeiiiieeeeiieee e 54

6.1.2 Add-Compare-Select Processor (ACSP)........cccvevevviiieeeiiiiieeeieen. 54

6.1.3 LineCchange unit and BetaChange unit.................cccccoeeevvieeeennnenn.. 56

6.1.4 LO,LT Unit........ it Tl i et 58

6.1.5 Complete turbo decoder architectlre .............cceeeeeriiieeeenniieeeeineen. 59

6.2 MEMOTY TEQUITEINENLS. ... .eeeeeeirirreeeririeeeeerireeeesnrereeeensrreeeeenrseeesensseeessnsnees 62

6.3 DECOAING PTOCESS ...eeeieiiiiiiieeiiiieeeeiiiee e et e e e et e e e e rae e e e erae e e e eenreeeeenenes 63
CRAPLET 7 oottt e ettt e e ettt e e e e e tbaeeeestbaeeeeesbaaeeeessaeeeeessbaeaeanes 66
Hardware implementation ..............ccviieeiiiiiieeniiiieeeeiiieeeeeireee e e e e eareeeeeraeeeeenes 66
7.1 Design and VEIify PrOCESS ......cuuvvieeriiiiieeeiiiieeeeiiireeeesieeeeeenaeeeeeenreeeseenes 66

7.2 Hardware SPeCifiCation ...........cueeeerruiieeeriiiieeeeiiieeeeeieeeeeenaeeeeeenaeeeeenenees 67
7.2.1 Clock cycles for decoding one data frame ............cccceveeeerniireeennneenn. 67

7.2.2 Hardware Interface...........coocvvieeeiiiiieeeiiiieeeesiieee et e 68

7.3 ASIC PErfOrmMAanCE .......ccuvvveeeeiiiieeeeiiiee e ettt e e ettt e e e e e e e e raeeeeeenreeeeeneneas 69

7.4 FPGA VETrTfICAtION. ....cceiiiiiiiieiiiiieeeeiiieeeeiie e e e et e e e et e e e eiraeeeeeenaeeeeeneneas 71
CRAPLET 8 ..ottt e ettt e e et e e e et b e e e e etbbeeeeesbaeeeeessaaeeeesbaaeaeanes 73
Conclusion and FUture WOorkS............oooeiiiiiiiiiiiiiiiieeiicc e 73
8.1 CONCIUSION .ttt ettt et sbe e saeeeeas 73

8.2 FULUIE WOTKS....eeiiiiiiiiiiieiiiee ettt 73
RETETEICES ..ottt 75



List of Figures

Figure 1.1: basic elements in digital communication SYStem.............cceevvvrreernrereeenns 1
Figure 2.1: Turbo encoder diagrams of (a) PCCCs (b) SCCCs......ccvvveeviriiieenirieeaens 7
Figure 2.2: (a) RSC encoder with constraint length =3, generator matrix G=[5,7]octal..8

(b)Non-recursive non-systematic encoder with constraint length =3, generator matrix

G5, 7] 00tal +++vveemveemeenmtente ettt ettt ettt ettt ettt ettt 8
Figure 2.3: Conventional turbo decoder’s diagram ...........ccccceeeviiieniiiieniiieeniieeennnen. 10
Figure 3.1: Evolution of soft-input soft-output (SISO) decoding algorithms ............. 11
Figure 3.2: possible transitions in K=RSC code..........ccoccueiiiiiiiniiiniiiiiieieee, 13
Figure 3.3: MAP iterative decoding flow chart ...........ccocceeiiiiiiiiiiniiiieeeee, 17
Figure 3.4: Structure of turbo decoder ............ooviiiiiiiiiiiiiiiice e, 18
Figure 3.5: Various look-up table for Log-MAP .......ccccoeiviiiiiiiiiiiiieeeiiee e 22
Figure 3.6: Operations on a frame of $1ze€ N..........ccocoeiiiiiiiiiiiiniiececeeeen 25
Figure 3.7: Operations on a frame of size N for preprocessing over whole block ......26
Figure 3.8: Operation flow for sliding window method............ccccccooviiiniiininnnnnen. 28
Figure 3.9: Operations flow for Halfwaymiiiia . oeeeeeiiiiiiieeceeeceee, 29
Figure 3.10: Compare the performances of halfway.and sliding window .................. 33
Figure 4.1: Structure of rate 1/3 Turbo COder.. .cuiie . aiieeeeeeeeieeeiieerieeeeiee e 35
Figure 4.2: Constituent encode of 3GPP turbo encoder and its trellis...............c....... 35
Figure 4.3: Constituent encoder for terminating the trellis ............ccocoeeviieenieennnen. 36
Figure 4.4: Interleaving flow chart's i .. .oooeifinit i, 42
Figure 5.1: Simulations for various block'length ..............ccoooiiiiii, 45
Figure 5.2: Simulations for various precision ............eeevveeerieeenieeenieeeniee e 46
Figure 5.3: Simulations for deciding the integer bits of state metrics ........................ 49
Figure 5.4: Simulations of various bit length of LLR.........ccccciiiiiiiiiiiniiiiiceee, 50
Figure 5.5 performance of our design comparing to floating point...............cccuveeeennn. 52
Figure 6.1: Computation core of the turbo decoder...........ccoccueeeviiiiniiiiniieenieeen, 53
Figure 6.2: Branch metric UNit...........ccoviuiiiiiiiiiiiiieiieeeiee e 54
Figure 6.3: ACS processing €lement............eeeeriuiiiieiriiiieeeniiieeeeriiieeeesiieeeeennveeeeenes 55
Figure 6.4: Bundled ACSPEs and the corresponding trellis............cccceeeevvniiereennnnen. 55
Figure 6.5: ACS processor and feedback 100p..........cceeeviiiiiiiiiiiiiniiiceecee, 56

Figure 6.6: (a) trellis diagram for forward state metrics calculations. (b) trellis

diagram for backward state metrics calculations. (c) trellis diagram for mapping

backward trellis to forward trellis. (d) permutation rules............cccoccvvveeevriiieeennnnnnn.. 57
Figure 6.7: (a) BetaChange hardware (b) LineChange hardware...........c.cccccocueeenneee. 58
Figure 6.8: Nesting max operations for L1 hardware ............c.cooooiiiiiiiniieinieennnen. 59
Figure 6.9: The block diagram of total turbo decoder hardware ..............c.cccecueeennee. 60

vi



Figure 6.10: graphic representation of the halfway SISO algorithm.................c........ 65

Figure 7.1: develop and design floW ........cc.oeiieiiiiiieiiiiiiieeiiee e e 67
Figure 7.2: Turbo deocder I/O diagram............cocceeeriiiiiniiiiniieeniieeee e 69
Figure 7.3: ASIC verification fIOw ..........ccoooieiiiiiiiiiiiiie e 70
Figure 7.4: FPGA verification fIow ..........ccocveiiiiiiiiiiiiiieeeee e 72

vil



Table 3.1:
Table 4.1:
Table 4.2:
Table 5.1:
Table 5.2:
Table 5.3:
Table 6.1:
Table 7.1:
Table 7.2:
Table 7.3:
Table 7.4:

List of Tables

Comparisons of saving memory decoding methods..............cceeevvvveeennnne. 30
List of prime number p and associated primitive root v..........ccceeeevveeennnne 38
Inter-row permutation patterns for Turbo code internal interleaver ........... 39
various memory dePths ........ccccviiiiiiiiiiiiiiiiiiie e 44
Relationship between L(u,) and P(u,) .ccccooveeroreenieniiiniienieeieenieeee. 50
word length of our design .........cc.eevieiiiiiiiiiiiieeee e 51
MNEMOTY CAPACIEY . .vvereenirieeeeeirieeeeritieeeestraeeeesereeeeessesaeesennseeesensseeesensnees 62
decoding clock cycles for different frame Size..........cccceeevviiieeeiniiieeennnnee, 68
I/O ports defiNItioN .......cueeeieeiiiiieeeiiiee et e raee e 69
ASIC simulation reSUILS .........coouiiiiiiiiiiiieiiee e 70
required clock rate for decoding different frame size and iteration............ 71

viii



Chapter 1

Introduction

In this chapter, we will introduce the basic elements of the digital communication
system and the concept of channel coding in the beginning. Then the motivation and
the objective of this thesis are presented. Finally we will introduce the organization of

this thesis.

1.1 Digital communication system

The basic elements of a digital communication system are shown in Figure 1.1.

Source Source Channel Modulator
encoder encoder
Channel
Source Channel
Qutput decoder decoder Demodulator

Figure 1.1: basic elements in digital communication system

The messages from the source are converted into a sequence of binary digits by
source encoder. The process of efficiently converting the output of the source into a
sequence of binary digits is called source encoding. Alternatively speaking, the source

encoder compresses the data from source and result in little or no redundancy in the

1



binary representations of the data. Then the sequence of binary digits from the source
encoder is passed to the channel encoder. On the contrary, the channel encoder is to
introduce some controlled redundant information in the binary information sequence.
These added redundancies can help the receiver to overcome the noise and
interference encountered in the transmission of the signal through the channel. In
effect, redundancy in the information sequence aids the receiver in decoding the
information sequence correctly. The main purpose of the modulator is to map the
binary information sequence into signal waveforms. We can choose modulator
according to different applications and different channels. Usually we use the additive
white Gaussian noise channel to simulate the channel block because it can provide
precise analyses.

At the receiving end of a digital communication system, the successive three
blocks are used to recover the original signals-from the noisy receiving sequence. The
demodulator processes the noisy waveforms.-and reduces them to a sequence of
numbers that represent estimates of the transmitted symbols. The channel decoder will
use these numbers to reconstruct the original information sequence from knowledge
of the channel encoder. The source decoder uncompresses the sequence from
knowledge of the source encoder and attempts to reconstruct the original signals.

The subject of the channel encoder and channel decoder is called channel codes
or error control codes. In this thesis, we focus on this subject, especially the hardware

implementation of the channel decoder.

1.2 History of channel coding

The concept of channel coding came from the paper [1] which was published by

Claude Shannon in 1948. Shannon’s primary result in this area is called the channel



capacity theorem or noisy channel coding theorem. This theorem states that there
exist error control codes such that information can be transmitted across the channel
at rates less than the channel capacity with arbitrarily low bit error rate. Unfortunately,
Shannon did not show how to construct the codes which can achieve the channel
capacity. Two categories of channel codes, block codes and convolutional codes,
were developed and widely used in practical systems.

The first error correcting code was Hamming code [2], which can correct only
one error. During the years from 1957 t01959, cyclic codes [3-5] were published in
some reports by E. Prange. Cyclic codes led to the development of BCH codes and
Reed-Solomon codes a few years later. In 1959 and 1960 [6-8], Bose and
Ray-Chaudhuri and Hocquenghem discover the multiple error correcting codes which
are later named as Bose-Chaudhuri-Hocquenghem (BCH) codes. Reed-Solomon
codes were discovered in 1960 by' Reed and Solomon [9] and they were closely
related to BCH codes.

In 1955, the first convolutional forward error correction codes were discovered
by Elias [10]. In 1961, Wozencraft and Reiffen proposed the sequential decoding
algorithm [11, 12] and this decoding algorithm is fast but sub-optimum. In 1967,
Viterbi proposed an optimum decoding algorithm [13] which was recognized by
Forney [14] as maximum likelihood decoding algorithm in 1973.

In 1987, Ungerboeck proposed trellis coded modulation (TCM) [15, 16] which
integrates forward error correcting codes and modulation. TCM can achieve
significant coding gains over power and band-limited transmission media.

In 1993, turbo codes [17] were invented by C. Berrou, A. Glavieux and P.
Thitimajshima. Turbo codes were a historic breakthrough because they help the

communication systems achieve Shannon limit closer than other codes.



1.3 Background of Turbo codes

Since turbo codes were proposed by C. Berrou, A. Glavieux and P.
Thitimajshima in 1993 [17], they have been widely studied and discussed. Till now
they are known as the best forward error correcting codes. Due to turbo codes’
outstanding error correcting performance and their ability to achieve the Shannon
capacity limit by 0.7 dB [17], there are many researches on the realizations of turbo
codes. Turbo codes outperformed all other known coding schemes. Recently turbo
codes have been adopted in several standardized communication systems, such as the
third-generation (3G) mobile communication standards: i.e. W-CDMA (Wideband
Code Division Multiple Access) in the 3rd Generation Partnership Project (3GPP),
cdma2000 in the 3rd Generation Partnership Project 2 (3GPP2), and TD-SCDMA

(proposed by China and Japan).

1.4 Motivation and Goal

Turbo codes have become one of the necessary specifications for the
state-of-the-art communication systems. How to efficiently realize the turbo decoder
in the integrated circuit always cause much research attention.

The difficulties in designing turbo decoders come from the high computational
complexity. The challenging tasks are how to reduce the hardware cost and power
consumption, the word-length determination in the fixed-point arithmetic, and
cost-effective memory allocation/partition. In this thesis, we aim at implementing the
turbo decoder of 3GPP/W-CDMA on field-programmable gate arrays (FPGAs) with
memory saving methods. We will use Max-Log-MAP algorithm to solve the difficulty
of the computational complexity. The ultimate goal is to propose low complexity,

calculation efficient and memory-saving architecture.



1.5 Thesis Outline

This thesis is organized into eight chapters and described as follow:
In chapter 2, we would have an overview of entire turbo code system. In chapter 3, we
introduce several decoding algorithms, discuss, and compare four decoding methods,
including three memory saving schemes. In chapter 4, the 3GPP turbo encoder and
interleaver are described. The hardware design considerations are discussed in chapter
5. In chapter 6, we describe the hardware architecture in detail. The ASIC and FPGA
implementation and verification processes are presented in chapter 7. The conclusion

and the future works are presented in Chapter 8.



Chapter 2

Overview of Turbo Code System

Turbo codes use concatenated schemes with the interleavers/de-interleavers
placed between the constituent encoders/decoders. The standard turbo encoder
structure uses the recursive systematic convolutional codes and parallel concatenated
convolutional codes. In order to achieve good BER performance, we need the
decoding algorithms which can accept soft input and produce soft outputs and can

work iteratively.

2.1 Concatenated Codes

Turbo codes are usually composed of several concatenated convolutional codes.
There are two kinds of concatenated convolutional codes, one is parallel concatenated
convolutional codes (PCCCs) and the other is serial concatenated convolutional codes
(SCCCs). PCCCs are often constituted by two or more recursive systematic
convolutional (RSC) encoders joined in parallel by one or more pseudo-random
interleavers, furthermore, the encoders encode the same information bits besides the
information bits are scrambled by the interleaver. SCCCs also use the constituent
convolutional encoder and the interleavers as PCCCs but differ from their connection
method. The encoders used in SCCCs are connected serially and inserted by the
pseudo-random interleaver. Figure 2.1 shows the encoder diagram of PCCCs and

SCCCs.



(a)

Uk Xs,k Xs,k
l Encoder 1

Interleaver
Xp,k
s X's
\— Encoder 2 /

Puncturing part

(b)

Us— Encoder 1 —— Interleaver — Encoder 2 — X«

Figure 2.1: Turbo encoder diagrams of (a) PCCCs (b) SCCCs

The advantage of SCCCs is that: for a fixed frame size N, the slope of BER
curve is inversely related to N* of'N° but BER ‘curve for PCCCs is only inversely
related to N. Beside, SCCCs «do, not suffer+from error floor but PCCCs do. The
problem of error floor is caused by the poor-interleaver design and truncation in the
decoding procedure. But it was ‘shown that both SCCCs and PCCCs could be
designed without suffering from error floor no matter what BER requirement is [18].

Although SCCCs have the merits mentioned above, we often choose PCCCs in
turbo code due to PCCCs’ less computational complexity given the same constituent
encoders and their better BER performance at low SNRs. Throughout the rest of this

thesis, “turbo code” is referred to use PCCCs.

2.2 Recursive Systematic Convolutional (RSC) Encoder

Turbo codes use two or more RSC encoders as their component encoder.
Although the encoders need not to be the same, we often use identical encoders in

practice due to the low complexity of decoding. The term “recursive” means the



encoder has a feedback loop; therefore, the output of this encoder is affected by the
preceding output bit. And the term “systematic” means the encoder has one of its
outputs identical to its input bit. Figure 2.2 shows the conventional convolutional

encoder.

U Xis (b)

T X0
W)

Us D D
& & JL
X1
D £

+ Xk,p

—

Figure 2.2: (a) RSC encoder with constraint length =3, generator matrix G=[5,7]octal
(b)Non-recursive non-systematic encodet with constraint length =3, generator matrix

G:[537]octa1

It can be proved that “the ~recursive systematic convolutional code is
code-equivalent to the non-systematic non-recursive convolutional code [19]. That is
the sets of the codewords that they define are the same and for any codeword of the
recursive systematic convolutional encoder, we can find the input stream for the
non-systematic non-recursive convolutional code such that it produces the same
codeword, vice versa. Although their codewords are identical, they behave differently.
It is also shown that the RSC encoder tends to produce codewords with more weights
than the code-equivalent non-recursive encoder [20]. This behavior causes the RSC
encoder produce fewer codewords with lower weights and makes the error correcting
performance better. This is the main reason to use the RSC encoders as turbo codes’
constituent encoders. Additionally, when we use the RSC encoder as constituent

encoder, we only need to transmit the systematic output bits from the first one encoder



because their systematic bits are alike except the order. Then the code rate of the
encoder increases, bandwidth efficiency improves without degrading the performance

since we still transmit all the information produced by the encoder.

2.3 Interleavers

The interleavers placed between the encoders are going to make the code more
random in order to improve the burst error correction capability and they play a key
rule in turbo code. What affect the interleaver are how random the interleaver is and
how big the size of the interleaver is. As the size of the interleaver grows, the
performance of the turbo code usually becomes better. But there is a tradeoff between
the decoding latency and the BER performance. When the interleaver is more likely
random, the performance of the. turbo code also becomes better due to this kind of
interleaver can make the correlation of the mformation bits decrease more. There are
several kinds of interleavers,” e.g. .column-row - interleaver, helical interleaver,
odd-even interleaver, simile interleaver, frame interleaver, pseudo-random interleaver,
S-type interleaver...etc. As long as we use the interleaver we proposed, the
performance of the turbo code will suffer and we need to use different kind of

interleaver according to the system requirement.

2.4 Decoders

Although the constituent encoders for turbo code belong to convolutional
encoders, the decoding scheme for turbo codes is different from the pure
convolutional decoding scheme. As mentioned above, turbo codes use the parallel
concatenated encoding scheme. The turbo decoder would be constructed on the serial

concatenated scheme because the performance of serial concatenated decoding



scheme is better than that of parallel concatenated decoding scheme. The reason is the
serial concatenated decoder will provide some extra information (or we call extrinsic
information in turbo codes) to another decoder as its a-prior information. In turn, the
latter decoder will also provide extra information to the former one. Contrarily the
parallel concatenated decoders decode the information independently. Figure 2.3
shows the conventional turbo decoder’s diagram.

Feedback loop / a-prior information

L a-prior information/systematic bit in interleaved order
Systematic :
v bi Component \ Component _ S

1t ) Interleaver — — Deinterleaver V- . .
Parity bit | ——|  Decoder ] Decoder 2 Decoding bit
Parity bit_2 F

Figure 2.3: Conventional turbo decoder’s diagram

Because each component-decoder must provide the a-prior information to the

other, they must have soft outputs.:Since-they have the soft inputs, we call them

soft-input soft-output (SISO) decoders:

10



Chapter 3
Turbo Decoding

Nowadays we have two categories of algorithms to decode turbo codes, one
originates from Maximum a posteriori (MAP) algorithm [21] proposed by Bahl et al.
and another is Soft-Output Viterbi algorithm (SOVA) [22] proposed by Hagenauer
and Hoeher.

Their evolutional histories are shown in Figure 3.1.

Convolutional code
decoding algorithm

/

Viterbi algorithm MAP algorithm
1967 1974
SOVA Max-Log-MAP algorithm
1989 1994
Improved SOVA Log-MA11;9a51gor1thm

Figure 3.1: Evolution of soft-input soft-output (SISO) decoding algorithms

3.1 Decoding Algorithms

3.1.1 Maximum-a-posteriori (MAP) Algorithm

The Log Likelyhood Ratios (LLRs) L(u,) of a data bit u, is defined to be the

log of the ratio of the probabilities of the bit taking its two possible values:

11



(1)

L(u)2 h{—P (1 = “)]

P(u, =-1)

where P(u, =+1) is the probability of the data bit u, equalsto =*I.

After encoding the data bit u, and transmitting the encoding bits through the

channel and the matched filter, we received the sequencey . Therefore we get the

conditional LLR defined as:

)

L(u, | y) 2 lni—P(“" =+ |Z)]

P(u, =-1| Y )
These conditional probabilities P(u, =x1[y) are the a-posteriori probabilities of the

decoded bit u,. The goal of the MAP algorithm is to estimate the decoded bit

sequence and provide the probabilities' of the correctness of every decoded bit given

the received sequence y and it-aims at mmimizing the decoded bit error rate (BER).

This means the MAP algorithm is cortespondent with finding the a-posteriori LLR
L(u, | y) . By using Baye’s rule and its derivation,

Planb)= P(a|b) - P(b) 3)

P({a n b}|c) = P(a |{b INIE P(b|c) 4)

the a-posteriori LLR L(u, [ y) can be rewritten as:

)

L, |Z):1n£P(uk =+1/\Z)]

P(u, =-1ny)

Figure 3.2 is the possible trellis for K=3 RSC code.
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Figure 3.2: possible transitions in K=RSC code
If the previous state S, , =s’ and the present state S, =s are known then the input
bit u, will be known. The transitions which occur when u, =+1 and those which
occur when u, =—1 are mutual exclusive so thatthe probability that any one of them
occurs is equal to the sum of their individual probabilities. Equation (5) can be written

as:

Z P i=s'AS =srY)

(s',8)=>
uk:+1

z P(S, =5s'AS,=sAY)

(s',8)=>
uszl

L, |y)=1n (6)

Assume the channel is memoryless and using the Bayes’ rule, we can write the

individual ~probabilities ~ P(S, , =s'AS, =sAy) from the numerator and

denominator as:

P(S'ASAY)=P(S"ASAY, 4 AV AY i)

=P(s'As AYia /\Zk)'P(ZPk s'AS AV /\Zk)
s)

= P(s' A y,)- PUye AsHis' A 0 ) - POy
= P(s’ Ay Py, /\s}|s’)-P(Zj>k s)
=a,,(s)7,(s",8)- B (s)

13
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where P(s'AsAy) represents P(S,, =s"AS, =sny) for simplicity, and a, ,(s"),
B.(s), v.(s',s) are shown below:

o, (s)=P(S, =5~ Z_/<k) (8)

ﬁk(s) = P(Xj>k

S, =5) 9)

yk(slvs):P({Zk/\Sk :S}|Sk—l =5'). (10)
Using Bayes’ rule and the assumption that channel is memoryless, o, (s)can be

written as:

a,(s)=P(S, =s /\Zj<k+1)
=PEAY A2
= ZP(S' ANSAY i A V)

all s’

= > PUsapdlisn .y, 1) P(s' Ay, ) (1

all s’

> P A B8P Ay )

= D205, 5)-a(s")

all 5"

Assuming the trellis has the initial state.S, = 0 the imitial conditions for «, (s) are:

a,(S,=0) = 1

(12)
0,(Sy=s) = 0 foralls=#0
Similar to the derivation ofa, (s), B, ,(s’) can also be written as:
ﬁkfl(S,)ZZﬁk(S)'}/k(S,,S) (13)
all s
If the trellis is terminated in the all-zero state, the initial conditions for f3,(s) are:
0)=1
B(0) i
By(s)=0 s#0
If the trellis is not terminated, then the initial conditions for f3,(s) are:
By(s)=1 foralls (15)

where N is the number of the stages in the trellis.
Thus, once the y,(s’,s) values are known, a,(s) and P, (s") values can be

calculated recursively.
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Using the derivation from Bayes’ rule, y, (s’,s) can be written as:

y,(5's5) = P({y, Ast]s)
=P(y, [{s" As})- P(s|s")
= Py [is' ns})-Pluy)
= P(y, |x)- P(u,)

(16)

where u, is the input bit which would cause the transition from state S, , =s" to
state S, =s and x, is the corresponding transmitted codeword. P(u,)is the a-prior
probability of this input bit «, .

Assuming the channel is Gaussian and using BPSK modulation, y,(s’,s) can be

written as:

Vi(s'ss) = P(uk)'P(Zk |{S, AS})

Up-L(U E C
=Cee i Anexp(c " 2a 3 xuyy) (17)
I=1

L n
Bf

where C is the term does not depend on.the'sign'of the bit u, and the transmitted
codeword x,, n is the number of the bits'in codeword x,. L, is called channel
reliability value and defined as:

P
¢ 207

-4q (18)

where E, is the transmitted energy per bit, ¢’ is the noise variance and a is the
fading amplitude(a =1 for non-fading AWGN channels).

Finally the a-posteriori LLR L(u, | ») in equation (6) can be rewritten as:

z Oy Ve (S',S) ) ﬁk (S)

(s',8)=>
uk:+1

z o7, (s',8) - Bi(s)

(s',8)=>
uy =—1

L(u, | »)=In (19)

This conditional LLR L(u, | ») is what MAP algorithm wants to get.
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Because the turbo codes use RSC, we can separatey, (s',s) into two parts. One

has relationship with the systematic bit and the other does not. When we assume the

systematic bit is the first bit of » transmitted bits, x,, =u, , we get:

’ Uy -L(uy, Lc -
yk(sys)zc_e(kL(;L)/Z)_eXp TZxklykl]
=1

up-L(u Lc LC Y
= C-e"™ ) exp TMkJ’ky]'eXp [72%)@1] (20)
=2

L
=C- e(uk-L(uk)/Z) -exp 7cukykY ] Xy (S’,S)

where y,(s’,s) is the part uncorrelated with the systematic bit and it is shown

below:
! Lc -
2 (8',8) =exp TZXMJ’M (21)
=2
Then we can separate the a-posteriort LLR L (i, ‘ ») into three parts and rewrite it as

follows:

z Ky S UL %) . X (s',8) B, (s)

(s',8)=>
up =+1

z Oy LT 'e(iLcka) 2 (5,8) B (5)

(s',8)=>
uszl

L(uk‘z)zln

z Gy X (s’ﬂs)'ﬁk (S)

(s',5)=>
uk:+1

z Gy X (s’ﬂs)'ﬁk (S)

(s',8)=>
uy =—1

=L(u,)+Ly,+L,(u,)

=L(u,)+L,y,+In

(22)

where:

z Oy Xk (S',S) ) ﬁk (S)

(s',8)=>
uk:+1

z o X (858) B (s)

(s',8)=>
uy =—1

Le(uk) = ln

(23)

The first term L(u, ) is the a-prior LLR which can be derived from P(x,) and
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it is usually unknown at the decoder. Because we usually assume P(u, =+1)=0.5 at
first time, the initial conditions of L(u,) are all zero in the logarithm domain. But
when we use iterative turbo decoder, each component decoder can provide the other

one with the a-prior LLRs.

The second term L_y, stands for the soft output of the channel when the input
systematic bit u, transmitted through the channel and received as y, . Because the

channel reliability value L, is directly relative to the channel SNR, the received
systematic bit y, will have a large impact on the a-posteriori LLR L(u, ‘ y) if the

channel SNR is high and vice versa.

The third term L, (u,) is referred to as the extrinsic LLR for the bitu, because
it uses the values of the branch transition probabilities y,(s',s) for all the branches
except for the k-th branch. Then it will'be'sent to the next decoder as the a-prior
information.

The flowchart of all the operations-involved-in MAP algorithm and iterative

decoding process is shown in Figure 3.3.

First time, set L(1, ) =0

f From previous

Channel Values A-priori info. |, decoder

Ly, L(uk)

I I
vy

Evaluate

ACIN))

l

Evaluate Calculate LLR Evaluate

a,,(s) L(w, |y) B.(s)

l

L.y, Calculate Le
L(uy | »)

! to next decoder

Figure 3.3: MAP iterative decoding flow chart
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The structure of the turbo decoder is shown in Figure 3.4. It is constituted by two
component decoders, one interleaver and one deinterleaver and the decoders will
work iteratively. Each component decoder has three inputs: 1. the systematic
information 2. The parity information associated the component encoder and 3. The
information provided by the other component decoder which was referred to as

a-prior information.

Systernatic L Vi
c S —_ e
Soft Component [L(4 [ ) /) D LIZ(uk) e
Channel Pyl I Decoder 1 N nterleaver
Inputs Y ,_
L (u,)
Interleaver
Parity2 LC Vie
gy o= Ly (uy)
C];):clggzrer;t 4 7@ L De-Interleaver —
Lcykl = =

L (u,)
Figure 3.4: Structure of turbo decoder
We describe the iterative decoding process as follow:

Firstly the component decoder 1 takes the systematic bits in natural order and the
parity bits transmitted by the encoder 1 as its input signals but take the a-prior
information, which should get from component decoder 2, as 0 since the component
decoder 2 does not take action. After finish the decoding of the decoder 1, the
decoding result or the a-prior information should be transferred to the decoder 2 in
interleaving order.

Secondly the decoder 2 takes the parity bits transmitted by the encoder 2, the
systematic bits in interleaving order and the a-prior information provided by the

decoder 1 in interleaving order as its input signals. When the decoder 2 finishes its
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decoding process, it also produces the a-prior information for the decoder 1 but in the
interleaving order, then transferring the a-prior information with the aid of the
de-interleaver to the decoder 1.

The first iteration completes after these steps and we can repeat again besides the
decoder 1 has the a-prior information this time. Usually after 5 to 10 times iterations,
the decoder will output the decoding results. Because the iterative decoding process is
similar to the cyclic feedback mechanism of the turbo engine, we name the code

“turbo code”.

3.1.2 Max-Log-MAP Algorithm

The Max-Log-MAP algorithm simplifies the calculations ofe, (s), B,(s) and
7,(s',s) which are needed by MAP algorithm by.transferring these calculations into

the log arithmetic domain and using the Jacobian logarithm approximation loosely:
ln(Zex’j ~max () (24)
where max(x;) is the maximum value of " x; .

By defining 4,(s), B,(s) and T, (s',s) as the logarithm ofa,(s), pB,(s)

andy, (s',s), we can rewrite the equations as follows:
A,(s) =In (o (s))

=In (zakl (s’)yk (s’, S)]

all s’

(25)
= IH(ZGXp [Akfl(s’) + Fk(s’,s)]]
~ max (Akfl (s")+T, (s, S))
B, (s = ln(ﬁk—l(s’)) (26)

~max (B, (s)+ I (s',9))

Equation (25) is calculated in a forward recursive manner and equation (26) is

19



A, (s)=max (A4, (s)+T,(s',s))calculated in a backward recursive manner but they

are both equivalent to the recursion used in the Viterbi algorithm — for the merging
paths the survivor is found by using additions and comparison. Then the new branch

metric I, (s,s) can be written as:
[.(s',s)2In(y,(s,5))

E n
=In (C el D) exp {—”2 2az VX D
20 =1

\ 27)
=In (C St expy {% VX D

=1

~ 1 L &
:C"'_“k'L(“k)"'_CZJ’kzxkl
2 25

where C =In(C) does not have any relationship with the data bit, u, ,or the

codeword, x, , and so can be considered a constant-and ignored.

From equation (19), the a-posteriori LLRs L(uk| y) for Max-Log-MAP

algorithm can be calculated as:

D () 7,(89) Bi(s)

(s',5)=>
uk:+1

D () 7,(89) Bi(s)

(s',5)=>
uszl

D exp(A4,,(s)+T(s',8)+ B,(5))
(s',8)=>

u=+1 (28)
D exp(A4,,(s)+T(s,8)+ B,(5))

(s',8)=>
u==1

~ max (A (s)+ T (s",8) + B,(5))
sty

_(s' gi (Ak—l(s,) + Fk(S',S) + Bk(s))
=1

L(u, |Z) =In

=In

The transitions from the trellis stage S, , to the stage S, are grouped into two

groups. One contains those might happen if u#, =+1 and the other contains those
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might happen if u, =—1. In each group, we only want the maximum value of
(A4, (s"N+T,(s",5)+B, (s)) and the a-posteriori LLRs L(u, | y) can be calculated as

their difference.

3.1.3 Log-MAP Algorithm

It was found by Robertson et al. [23] Max-Log-MAP algorithm would result in
worse performance than MAP algorithm when used iterative decoding due to the
rough approximation. But the approximation can be made exact by using the Jacobian

logarithm:

In(e™ +¢®) = max(x,,x,) + ln(l + ef‘x‘ﬂ")

X, = X,)) (29)

=max(x,,x,) + fc(

=g(x,x,)
where f, (o) stands for a corréction term and ‘o €quals to the magnitude of the
difference between x, and x,. f (e) need not be-computed for every value of o,
but instead can be stored in a look-up table. There are several ways to implement the
look-up table and make the algorithm have other names such as constant-log-MAP,

linear-log-MAP algorithms.

07 T T T T

log-MAP
. —log
0.6 B
AN
N .
0l /— Linear-log-MAP 1
N
N\

04+ -

f.(o) \

031 N\ |

§ - constant-log-MAP

01F -
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Figure 3.5: Various look-up table for Log-MAP

For binary trellises 4, (s)and B, ,(s") can be written as:
4,(s)=1n (o (5))

= h{z exp[4,_,(s)+T, (s’,s)]j

all s’

~max ((4,_(s)+T,(s",5)).(4,_,(s")+T(s".9)))
£ (|(A D+ (59)) — (A )+ T, (5"9))])

(30)

B, (s)EIn ([}H (s’))
~max ((B,(9)+T,(s',5)),(B,(s) + T (s',5")) (31)
1 (|(Bo) T (5',9) = (B, (s + T (%5

Because there will be 2.2 transitions at €ach stage of the trellis for binary trellis,
there will be 2% transitions in each of the maximizations in equation (30) (31),
where K is the constraint length of the convolutional code. If we want to apply the

Jacobian logarithm to it, we need to nest the g(x;,x,) operations. Then we should

use the nesting equation shown below:

IH(ZQXi] :g(xng(xmv’"vg(xsvg(xzvxl)»’") (32)

3.1.4 SNR mismatch

According to [24] [25], the BER performance of the Log-MAP algorithm would
decrease if the channel’s SNR ratio estimation is not estimated correctly. As the frame
size of Turbo code increases, the effect on BER performance would become more
severe. Contrarily the BER performance of Max-Log-MAP will not be affected by the
mismatched SNR.

The reason for BER performance affected by SNR mismatch is the non-linear

character of Log-MAP algorithm. The difference between Max-Log-MAP algorithm
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and Log-MAP algorithm is the correction term on the right hand side in equation (29).
The correction term results in non-linear character of Log-MAP algorithm. When we
calculate the branch metrics, state metrics, a-posterior LLR and extrinsic information
iteratively, their values will be affected by the non-linear term. Since the
approximation used by Max-Log-MAP algorithm is linear, the branch metrics, state
metrics, a-posterior LLR and extrinsic information all will be scaled by L,

simultaneously. Therefore, we can let L, equal to one in the calculations.

3.1.5 Conclusion

As mentioned, there are two kinds of SISO decoding algorithms could be
adopted in the turbo decoder. One is the family of MAP algorithms and the other is
SOVA. Although [23] claims that the SOVA has only half the complexity of the
Max-Log-MAP, there are other researches [26] find SOVA is more complex than
Max-Log-MAP unless the decoder using SOVA. is designed carefully. No matter how
the decoder using SOVA is implemented, the BER performance is worse than or equal
to (at most) the performance of Max-Log-MAP. Therefore we do not discuss about
SOVA in this thesis.

The original MAP algorithm does not suit to be implemented on the hardware
due to it needs many multiplications and exponential calculations. Therefore, the most
popular Turbo decoding algorithms derived from MAP algorithm and have been
adopted in the hardware implementations are Log-MAP and Max-Log-MAP
algorithms. As we described, Max-Log-MAP algorithm is a simplified version of
Log-MAP algorithm and the former BER performance is slight worse than the latter
one. But according to the analyses from [26], the computational complexity of
Log-MAP algorithm is 2 to 3 times as complex as Max-Log-MAP.

According to section 3.1.4, Log-MAP algorithm suffers from SNR mismatch
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problem but Max-Log-MAP algorithm does not. Even if the channel SNR could be
estimated correctly real time, Log-MAP algorithm still needs several lookup tables in
the hardware implementation but Max-Log-MAP does not. In fact, the channel varies
at any time and on-line SNR estimation is impracticable to some degree. Therefore we

implement Max-Log-MAP algorithm on our hardware.

3.2 Memory saving methodologies

In turbo decoding, the memory part always plays an important rule because it
occupies most of the area of the decoder. In this chapter, we will introduce the original
decoder structure and there kinds of saving memory decoding method, including
preprocessing over whole block method, preprocessing over window method and
halfway method. Finally we will ¢omparethese.methods in memory capacity aspect.
When we say memory capacity: in‘this section, we mean those used to store the state

metrics.
From equation (28) the a-posteriori LLRS L(u, | y) are calculated as:

L(u, |Z) = E}}%’;(Akq (S’)+Fk (s, s)+ B, (S)) _&gi(Ak—l (S’)+Fk (s, s)+ B, (S))

“k:+1 uszl

That means we must have the values of 4, (s"), T',(s',s) and B,(s) at first. As we
know, A4, ,(s") is calculated in forward recursive manner and B, (s) is calculated in
backward recursive manner.

Assume the inputs to the encoders are binary, the component encoder has
constraint length K and the data need to be decoded have a frame length N. We do the
backward recursion first due to be capable of making decisions in the usual order of
the data. In order to make decisions over the whole frame, the state metrics calculated

during the first processing (backward) must be memorized. Then the required memory
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size for a received frame length N is M, =N-2"".q, where ¢ is the number of

quantization binary digits. The operations flow and the memory required are shown in
Figure 3.6.

We take the specification from 3GPP turbo code for example, the maximum
frame length (Nmax) is 5114 and the constraint length (K) is 4 so that if we set the

number of quantization bits (¢ ) equal to 10, we will need about 410 Kbits. In most

case, reducing the size of the memory is necessary.

Backward flow

Forward flow

Figure 3.6: Operationson a frame of size N

(The rectangles with gray lines are the memories required during the processing)

3.2.1 Preprocessing over Whole Block Method
The first method for reducing the memory size uses the concept of initialization.
The initialization process precedes the first processing in the same order (backward).

Choose a number L as the length of a block and calculate the number p by
p:[%J , then the forward flows and backward flows are subdivided into p

sub-process. The operations flow and the memory required are shown in Figure 3.7.
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Figure 3.7: Operations on a frame of size N for preprocessing over whole block
(The rectangles with gray lines are the memories required during the processing of

making decision and the black rectangles represent the memories for initialization)

In the beginning, we performithe backward calculations and store the backward
state metrics in the memories (which are indicated as black rectangles in Figure 3.7
periodically (period=L). The stored values-will.serve as initialization metrics for the
backward sub-processes. So the backward flow is carried out on successive windows

of size L, where the starting state metrics are known.
The capacity of the memory for initialization is M, =(p—1)-2""-q. The
capacity of the memory for making decisions is M,, =L-2*"-¢ for using only one

ACS processor. If using two ACS processors, it can be shown that the required

memory size can decrease as M, =(L—1)-2""-¢. So the overall required memories

are M,,=(L+p-1)-2".q  for using one ACS processor and

total —

M, =(L+p-2)-2"-q for using two ACS processors. In general, we choose

total —

p=L~= {\/ﬁ —l because this choice can offer the minimal memory capacity.
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We take the 3GPP Turbo encoder for example again and letg =10, we get:
p=L=[IN|=[\5114]|=72
the total memory capacity is (72+72—-1)-2*-10=11440 = 11.44 Kbits . This number

is 36 times smaller than direct decoding method.

3.2.2 Sliding Window Method

The sliding window method, proposed by [27], is based on the trellis
convergence property of convolutional code. That is, if the Viterbi decoder started in
unknown state, the state metrics generated initially are useless. But after a few
constraint length (usually five to ten times constraint length), the set of the state
metrics are as reliable as if the process had been started at the initial node. This fact
can also apply to the backward and forward recursive calculations in turbo codes.
Now the initialization state metrics for backward recursive calculations ( B, (s) or By)
do not need to wait until finishing pre-processing-over almost the whole block. The
operations flow is shown in Figure 3.8. The pre-processing length is b bits and the
whole frame is divided into p blocks. Each block is L bits long except the last one is
(N mod L). It is apparent that the memories needed are fewer than the fore-method if

L is small. The total capacity of the memories required to make decisions is

M=L-2""gq.

27



0 L L 3L 4L kL (P-2L (-DL N

F1
B2

R —

B3

B

B4

F4 ——>

«——— Bp
Fp—m

Figure 3.8: Operation flow for sliding window method

(The rectangles with gray lines are the memories required during making decisions)

Generally speaking, L =cK ¢=5~10, K is the constraint length, and b=dL,d e N.

We take 3GPP Turbo code as an examplé.and.assume L =5-K =20 and b=L
and ¢ =10. The required memory capacity. 1s:
M =L-2""-4=20-8-10=1600 = 1.6 Kbits

This number is 256 times smaller than the direct decoding method.

3.2.3 Halfway Method

Halfway method was originally proposed by [28]. In this thesis, we make some
modifications on the original version. The original version is applied to the data frame
which is made up of the received data of frame size N followed by the one of these
same data in the interleaved order. Therefore, the data frame is 2N bits long. We
make modifications so that this method can be applied to decode the data in natural
order and in the interleaved order respectively. This method is kindly like the first
method, preprocessing over the whole block method which needs to use periodic

memorizing. Backward sub-processes are carried out successively on blocks of data
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which is L bits long and the metrics calculated are need to be memorized for
making the decisions with forward sub-processes. Each backward sub-process is

followed by a forward sub-process on the same data block. The required memories for
calculation of the decisions are M,, =L-2"-¢.

Different from the first method, the initialization metrics for each backward
sub-process are set in a uniform and arbitrary way. The 2*"' calculated metrics on
the first data of the interval of size L in each backward sub-process are needed to be
stored. They will serve as the initialization metrics for the sub-processes starting from

the next iteration. The memory capacity for these kind initialization metrics is

M, =D-(p-1)-2%".q where the first term in right hand side, D, represents the

number of the component encoders. Usually, we use two RSC encoders in turbo code,

that is D =2. The overall required memories are M —(L+D-(p—l))-2K"-q for

total —

using only one ACS processor. and ‘M —(L+D'(p—2))-2K*1 .q for that with two

total =7

processors. This method is most effective and fastest in these three memory saving
algorithms because there are no initialization processing and processing forcing the

convergence of the trellis needed in the operations.

0 L 2L 3L 4L kL @2L (DL N

5! {l B4

4 ——

—

Fp=——
Figure 3.9: Operations flow for Halfway

(The rectangles with gray lines are the memories required during making decisions
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and the black rectangles represent the memories for next-iteration initialization)

We take 3GPP Turbo code as an example and assume L=93,p=55 and

q =10, the memory capacity is
(93+2-(55-1))-8-10 =16080 = 16.08 Kbits

This number is 25 times smaller than the direct decoding method.

3.2.4 Comparisons

The memory capacities for each method are listed in Table 3.1. Because
preprocessing over whole block method needs an initialization process over whole
block, its speed is slower than those'who do:not need initializations. The sliding
window method also needs several initialization:processes over some small windows.
According to the length of the“block (ZL7)-and the length of pre-processing (5 ), the
sliding windows method may be slower or faster than the first memory saving method
but never be faster than Halfway method. If the length of pre-processing is bigger
than L , the overlapping calculations of backward metrics occur more times and it will
make the decoding speed slow down. Because halfway method needs no

initializations, it can perform as faster as the original Max-Log-MAP algorithm.

Using one ACS processor Memory capacity
Max-Log-MAP N-25".¢q

Preprocessing over whole block

(L+p—l)-2K’l-q

Sliding window L-2%".q

Halfway (L+D-(p—2))-2K71-q

Table 3.1: Comparisons of saving memory decoding methods
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Assume using only one decoder with only one ACS processor. That is the
decoder can only deal with one trellis stage at one time regardless of forward
recursion calculations or backward recursion calculations. The following symbols will
be used:

N  the length of one data frame

K  the constraint length of the convolutional encoder

g the number of quantization binary digits

L Dblock length

p the number of block

b the length for convergence when using sliding window, b=dL,d e N

D  the number of the encoders
We will use the subscript “wb” .as “whole block”, the subscript “sw” as “sliding
window”, the subscript “hw” as ‘halfway”’,-POWB as “preprocessing over whole
block method”, SW as “sliding window method” and HW as “halfway method”.

The comparison of the compleXities bases on the same decoding algorithm but
different memory saving method. We only need to consider only the numbers of trellis
stages required processing. The numbers of stages required processing per half
iteration for each method is listed below:

POWB: 2-N+(N-L,)=3-N-L,

SW: NmodL,, =0

2-N+(p,~1)b if b<L,
2-N+(p,,—d)-b b=d-L, deN

HW: 2-N
The hypothesis N mod L, =0 for SW is an assumption without losing generality.

For POWB, the advantages are that it needs fewer memories than direct
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decoding without using any memory saving skills and it also provides the same
performance as direct decoding. The disadvantages are the decoding latency and the
need for many calculations to initialize the backward initialization memory.

For SW, the advantage is that the memory capacity needed is smaller than other
methods if letL <L, L, . The disadvantage is the need for initializations. If

L,<L, and b>L_, it will need more calculations of initialization than POWB.
When b>L  , there will be (p-d)-(b—L,) overlapping calculations for

initializations.

For HW, the advantage is the lack of the initialization; therefore it needs as many
calculations as direct decoding does. This is very helpful in using only one ACS
processor. The simulation performance of HW in our test is equal to SW. The
disadvantage is the memory capagéity,compared:to other memory saving methods.

From another aspect, decoding one bit will need to calculate m trellis stages,

where m is:
(3-N-L,) L

m =~ W/ _3_ w3

POWB N N
o 2-L, +b P b

SW LSW LSW

2-N

My :Tzz

We define efficiency as follows:

decode one bit's information

efficiency = -
number of forward and backward state metrics calculated

-1
=m

Theoretically, decoding one bit will require one forward state metrics calculation and
one backward state metrics calculation. By observing the above definition, we know
halfway method provide the same efficiency as the theoretic value and it is the most

efficient calculation in these three memory-saving methods. Furthermore, the
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redundant calculations will consume unnecessary power.

The comparison curves of the BER performances of the SW and HW method are
shown in Figure 3.10. Assume using 3GPP turbo coder, the data frame size N =500,
L, =256, Ly, =24and b=24.The word “SW-#A-#B” in Figure means the curve
uses sliding window method with Ly, =#4 and b=#B; the word “HW-#C”

means the curve uses halfway method with L, =#C .

Compare halfway and sliding window

T T
\ Frame size=500
w0 T Simulation Bits=5*108 i
. TS Rate=1/3
T G=[15,13]octal
T iteration=5
s = Iitera
NN
Ny
N
107 N i
S
\\\\
N
x “
w \\
m .
N
N\
1071 N\ il
A\
N
—  Floating point Max-Log-MAP N \
- SW-24-24 )
— HwW-256 NN
ANN
10*) NN A
\ N
AN S
[ [ N
0 0.5 1 15

SNR(dB)

Figure 3.10: Compare the performances of halfway and sliding window

If using sliding window method with fewer than (d +1) ACS processors, it will
lead to an additional memory of 2. and decrease the decoding speed. The

problem of the slow decoding speed of sliding windows method could be solved by

using (d+1) ACS processors. However, the decoder using halfway method only

needs an additional ACS processor, totally two ACS processors, can achieve the same

decoding speed as the sliding window method with (d +1) ACS processors.
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Chapter 4
3GPP Turbo Encoder

3GPP Turbo coder [29] uses Parallel Concatenated Convolutional Code (PCCC)
with two 8-state constituent encoders and one internal interleaver. The code rate of
Turbo coder is 1/3. The structure of 3GPP Turbo coder is shown in Figure 4.1.

The requests of the encoder are as follows:
1. The initial value of the shift registers of the constituent encoders shall be all zeros.

2. Outputs from the Turbo coders’are

!

!
%, » Hogy Xoo> Xpk s X i

s12 77 p12 ¥ ploe 2 VK pK"x

where X,;,X.,,..., X are the systematic bits which equal to the input bits u, to the

Turbo encoder, and K is the number of a block of input bits, and X

pp-xpza"'a-xp[( and

! ! !

19X 25X are the bits output from first and second constituent encoders,

X

respectively. The bits output from Turbo code internal interleaver are denoted by

u/,u;,...,u, and these bits are to be input to the second constituent encoder.

4.1 Constituent Encoder

3GPP constituent 8-state encoder and its corresponding trellis diagram are shown

in Figure 4.1. The transfer function of the 8-state constituent code for PCCC is:

G(D){l 1+D2+D3}

1+D+D* |’
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Figure 4.1: Strueture ofrate.1/3 Turbo coder
(dotted lines apply for trellis termination)
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Figure 4.2: Constituent encode of 3GPP turbo encoder and its trellis
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4.2 Trellis Termination

Because the first request, the initial value of the shift registers of the encoders
shall be all zeros, both the constituent encoders need to perform trellis termination
after encoding one block of input bits. The action of terminating the trellis is
performed by taking the last K —1 bits from the shift register of each encoder
feedback to their selves after all information bits are encoded then all shift registers
will return to zero. The switch in each constituent encoder should be switched to the
lower position when terminating and the structure of each encoder is shown in Figure
4.3. These encoded tail bits are padded after the encoded information bits, and the

transmitted bits for trellis termination shall be:

14 14 14 14 14 14
Xs(k1y2 Xp(k1ys Xsk+2)2 Xp(k2) 2 s 43) X Msaest) > Xp (i 41) > Xs(k+2) s X p(+2) s Xs(x43)2 X p(k+3)

— »|D0 DllﬁDz%
A

A -
>

Figure 4.3: Constituent encoder for terminating the trellis

4.3 Interleaver

The 3GPP Turbo code internal interleaver is a block interleaver consisting of a
rectangular matrix and its size is decided by the frame size of the input bits, K. The
original message bits input to the interleaver row by row. If the input bits are not
enough to filling the matrix, we need to add some redundant bits to fill it. Then we
perform intra-row permutations and inter-row permutations of the rectangular matrix.

Finally, the bits in the matrix are read out column by column and pruning the
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redundant bits we added before. We denote the bits input to the internal interleaver by
u,,u,,u,,..u, , where K is the integer number of the bits and takes one value 0f 40 <

K < 5114.

4.3.1 Deciding the size of the rectangular matrix
First to all, we need to decide the number of the rows and the columns of the
rectangular matrix according the following process:
(1) According to the equation (33), determining the number of rows of the rectangular
matrix, R. The rows of rectangular matrix are numbered 0, 1, ..., R - 1 from top to

bottom

5,1f (40 <K1<159)
R =< 10,if((160 < K < 200)0r (481< K <530)) (33)
204f (K= any-other.value)

(2) Along with Table 4.1 and relationship-shown below, we can determine the prime
number, p, used in the intra-permutation” and the number of columns of
rectangular matrix, C. The columns of rectangular matrix are numbered 0, 1, ..., C

- 1 from left to right
if (481 < K < 530) then

p=>53and C=p.
else

Find minimum number p from Table 4.1 such that

K <Rx(p+1),

and determine C such that
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p—1if K<R-(p-1
C=<p if R-(p—-1)<K<ZR-p
p+1if R-p<K

end if

p v p v p v p v p v

7 3 47 5 | 101 | 2 | 157 | 5 | 223 | 3

11 2 53 2 [ 103| &5 | 163 | 2 | 227 | 2

13 2 59 2 | 107 | 2 | 167 | 5 | 229 | 6

17 3 61 2 |109| 6 173 | 2 | 233 | 3

19 2 67 2 | M3 | 3 179 | 2 | 239 | 7

23 5 71 75012713 6181 2 | 241 | 7

29 2 73 51311 2 1"191| 19 | 251 | 6

31 3 79 3 [137 -8 |193| 5 | 257 | 3

37 2 83 2 ["M139 .2 | 197 | 2

41 6 89 3 [ 149 2 | 199 | 3

43 3 97 5 [ 151 6 | 211 | 2

Table 4.1: List of prime number p and associated primitive root v

(3)Write the input bit sequence u,,U,,Us,...u; into the Rx C rectangular matrix row

by row:
M V) V3 Ve
Ycsn Yic+2) Yic3) o Yae
Yr-ncy Y@wrnery Yawrnesy 0 Vre

where y, =u, fork=1,2, ..., Kand if RxC>K, the dummy bits are added to the
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tail of the input sequence such that y, =0orl for k=K + 1, K+ 2, ..., RxC.

These dummy bits will be discarded when read the bits from the rectangular matrix

after intra-row and inter-row permutations.

After the Rx C rectangular matrix is filled with the input and dummy bits, we perform

the intra-row permutations and inter-row permutations in turn.

Inter-row  permutation  patterns|
Number of input bits K [Number of rows R
<T(0), T(1), ..., TR - 1)>

(40=K=159) 5 <4,3,2,1,0>

(160 = K = 200) oy
10 <9,8,7,6,5,4,3,2,1,0>

(481 =K=530)

(2281 = K = 2480) or <19; 9, 14,4, 0, 2, 5, 7, 12, 18, 16,
20

(3161 =K=3210) 13,:17;15,3, 1,6, 11, 8, 10>

<19,9,14,4,0,2,5,7,12, 18, 10, 8,
K = any other value 20

13,17, 3,1, 16,6, 15, 11>

Table 4.2: Inter-row permutation patterns for Turbo code internal interleaver

4.3.2 Intra-row and inter row permutations
After the bits input to the Rx C rectangular matrix, the intra-row and inter-row
permutations for the Rx C rectangular matrix are performed stepwise by using the
following algorithm with steps (1) — (6):
(1) Select a primitive root v from Table 4.1, which is indicated on the right side of

the prime number p.

(2) Construct the base sequence (s( j)> for intra-row permutation as:

Jje{0,1,---,p—2}
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s(j)=(v-s(j-1))mod p, j=12,---,(p—2),and s(0)=1.

(3) Assign go = 1 to be the first prime integer in the sequence <%> , and

i€{0,1,...,R-1}

determine the prime integer g, in the sequence (ql.>l,e{01 ry to be a least

prime integer such that g.cd(q,p—-1)=1, ¢,>6, and g, >gq,, for each

i=1,2,---,R—1. Here g.c.d. is greatest common divisor.

to make the sequence <’/}>ie{01-~-R—l} such

(4) Permute the sequence (g,)

i€{0,1,...,R-1}
that

Foy = ;> 1=0,1-,R~1

where (T (i)> is the inter-row permutation pattern defined as the one

ie{0,1,+-,R-1}
of the four kind of patterns,*which are shown in Table 4.2, depending on the
number of input bits K.

(5) Perform the i-th (i=0, 1, ..., Ri=1)intra-row permutation as:

if (C = p) then
U,(j)=s((jxr)mod(p-1)), j=0,1,...,(p-2),and U(p - 1) =0,

where Uy(j) is the original bit position of j-th permuted bit of i-th row.
end if
if (C=p + 1) then
U,())=s((jxr)mod(p-1), j=0,1, ..., (p-2). Ufp-1)=0,and Up) = p,
where Uj(j) is the original bit position of j-th permuted bit of i-th row, and
if (K= RxC) then
Exchange Ug.i(p) with Ug-1(0).
end if
end if
if (C=p - 1) then
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U,(j)=s((jxr )mod(p-1))-1, j=0,1,...,(p-2),
where Uy(j) is the original bit position of j-th permuted bit of i-th row.

end if

(6) Perform the inter-row permutation for the rectangular matrix based on the

pattern <T(i)>l,€{01_“m}, where 7(i) is the original row position of the i-th

permuted row.
4.3.3 Output the bits from the rectangular matrix with pruning
After intra-row and inter-row permutations, the bits of the permuted rectangular

matrix are denoted by y', :

1 1 1 1

Yi Y@y Yeray 0 YVc-nyren
1 1 1 1

Yo Ywey YVoeray 7YV c-yre2)
' f ' '

Yr XYoar Y3r Yocr

The output of the Turbo code internal mterleaver'is the bit sequence read out
column by column from the intra‘tow and inter-row permuted Rx C rectangular
matrix starting with bit ', in row 0 of column 0 and ending with bit y'cg inrow R - 1
of column C - 1. The output is pruned by deleting dummy bits that were padded to
the input of the rectangular matrix before intra-row and inter row permutations, i.e.
bits )", that corresponds to bits y, with £ > K are removed from the output. The bits
output from Turbo code internal interleaver are denoted by x';, x%, ..., x'x, where x';
corresponds to the bit y', with smallest index k after pruning, x'; to the bit y'; with
second smallest index k after pruning, and so on. The number of bits output from
Turbo code internal interleaver is K and the total number of pruned bits is: R-C - K .

The interleaving flow chart after deciding R, C is shown in Figure 4.4.
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Figure 4.4: Interleaving flow chart




Chapter 5

Design Considerations

The 3GPP turbo encoders are constructed by two identical encoders; therefore,
we can use only one decoder to decode the received sequence serially and iteratively.
In this thesis, the turbo decoder uses only one decoder and only one ACS processor to
calculate the forward and backward state metrics for low complexity. When designing
the hardware of the decoder, we need to discuss and consider about several issues as
follows:

1. Decoding algorithm selection.
2. Memory saving method selection.
3. Decision of the block length.

4. The analyses of fixed-point representations for calculations.

5.1 Decoding algorithm selection

Due to Max-Log-MAP algorithm’s low complexity and only minor performance
loss comparing with Log-MAP and the poor SNR sensitivity which means we will not
need any multiplications in decoding process, we implement our hardware by

Max-Log-MAP algorithm.

5.2 Memory saving method selection

Because we use only one decoder for decoding, we cannot tolerate the redundant

43



calculations for initialization processes. Since halfway method does not have the
redundant calculations and needs fewer calculations than the other memory saving
methods we will adopt this method to implement the hardware for saving memory

capacity and reducing the power consumption.

5.3 Decision of the block length

After choosing the memory saving method, we need to decide the block length.
Although the memory depth can be set arbitrary in the format of power of 2 on FPGA,
it is somewhat impractical in ASIC. Here we assume the minimum memory depth is
32 then we can derive the memory capacity for the initialization memory and state
metrics memory respectively for different block length. The results are shown in
Table 5.1, the forth column means, theroriginal initialization memory needed. The
second column is the actual memory depth we implement on hardware since we

assume the smallest memory depth is-32.

block length / L p*D
) initialization | Total memory
state metric (D=2 for
memory depth depth

memory depth 3GPP)
32=32+0 320 =256 + 64 352 320
64 =64+0 160 =128 + 32 224 160
06 =64 + 32 128=128+0 224 108
128=128+0 96 =64+32 224 80
160 =128 + 32 64 =64+0 224 64
192 =128 + 64 64 =64+0 256 54
256 =256 +0 64 =64+0 320 40
288 =256 +32 64 =64+0 352 36

Table 5.1: various memory depths
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We simulate the decoder of different block length for three minimum memory
requirements. The performances for various block length are shown in Figure 5.1.
From the Figure 5.1, we can observe that the performance gets better as the block
length increases. BER;s¢ is better than BER23by 1 dB and BER 9, by 0.5 dB so that
we choose 256 as the block length for the turbo decoder in order not to degrade the

decoder’s BER performance too much.

Compare block length
T

10 ¢ T T T T T

Frame size = 500
Simulation Bits=5*10°

Rate = 1/3
G=[15,13]octal
107 Max-Log-MAP |
F \\ Halfway .
F ™~ iteration=5
he
L
m
10°1 -
—— block length = 128
—— block length = 160
—— block length = 192
—— block length = 256
107

C [ [ [ [ [ [ [ [ ]
06 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
SNR(dB)

Figure 5.1: Simulations for various block length

5.4 Analyses of fixed-point representations for calculations

In the fixed-point implement of turbo decoder the word length will affect the
performance of the decoder. Unnecessary bits would waste the memory space,
increase the computational complexity of the hardware, consume more power and
decrease the hardware speed.

The data required in Max-Log-MAP decoding process are: the received
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sequence y,., V,,, V;,» the branch metrics T, (s',s), the forward state metrics 4, (s),
the backward state metrics B, (s), the a-priori information L(u,) and the extrinsic
information L, (u,), a-posterior LLR L(uk| V).

First of all, we decide the number of the fractional bits of all quantities. The
simulation results are shown in Figure 5.2. By comparing the results, it is apparent
that the performances are poor when we set the number of the fractional bits to 1 or 2.
But when the number of the fractional bits equals to 3, the performance gets very
close to Max-Log-MAP in floating point. Increasing the number of the fractional bits
to 4, the performance will not get much improvement. Therefore we will choose 3 as

the number of the fractional bits of all quantities.

Compareiprecision bits

Frame size=500 X S~
Block length=256 AN I
10°F Simulation bits=5*10° X b
[ Max-Log-MAP ’
Halfway
iteration = 5

BER

-3 — Uncode
—— Floating point Max-Log-MAP
—— Precision bits=1
- - Precision bits=2
—— Precision bits=3
Precision bits=4

SNR(dB)

Figure 5.2: Simulations for various precision

After deciding the precision, we consider the dynamic range of all quantities to decide

the number of the integer bits then we could decide the fixed point representation of
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all. We will use FP(q,f) to represent the fixed point representation, where ¢ is the total
number of the bits and f'is the number of the fractional bits, then (g-f) is the number of

the integer bits and that is the dynamic range.

5.4.1 Received sequence VYV, y'kp

The received sequence mainly relates to the modulation/demodulation and
the transmit channel. Assume the channel is AWGN non-fading and using BPSK
modulation to transmit the encoded information and the channel’s SNR at least
equal to 0 dB, the value of the received sequence will distribute over 7 to -7
through the MATLAB simulations. Consequently, we need 3 bits to represent the
integer value and 1 bit to represent the sign and totally we need 7 bits, FP(7,3) for

the received sequence.

5.4.2 Branch metrics I, (s%s)
The branch metrics are calculated by equation (27) and we rewrite it here
;oA L
[(sh,s)=C+—uy, 'L(uk)+_zyklxkl
2 25
As we discussed in section 3.1.4, Max-Log-MAP is SNR independent and we can

let Z =1 and discard the constant term C, this equation can be rewritten as:
Co 1

L(shs)=—u 'L(“k)+_ZJ’k1xk1

2 25 (34)

where 7n is the number of the encoded bits and equals to 2 for 3GPP. Because it is

relative to a-priori LLR, L(x,), we will decide it’s fixed point representation,

FP(qpm 3), after deciding L(u,). The discuss following will assume the branch

metrics are big enough to store a-priori LLR L(u, ) until deciding L(u,).
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5.4.3 Forward state metrics 4 (s) and Backward state metrics B, (s)

Because 3GPP encoder starts to encode the information from state S,
ideally the forward recursive calculations has the initialization conditions as

follows:

4,(S, =0)=1In(e, (S, =0)) =In(1) =0
4,(Sy =s)=In(c,(S; =5))=In(0) =—0  for s#0

Since 3GPP encoder provides the trellis termination, the backward recursive

calculations has the initialization conditions as follows:

B, (S, =0)=In(c, (S, =0)) =In(1)=0
B, (S, =5)=In(o,(S, =5)) =In(0) =—0  for s #0

In hardware design, there is no infinity valde. Thus we set A4,(S, =0) and
B, (S, =0) equal to the maximum value:-that ¢an be represented by FP(qsn ,3)
where g, will be decided later. Andwe'set 4,(S, =s),B, (S, =s) for s #0 equal
to zero. Generally this setting would not affect the LLR calculations except the
maximum value is not infinity anymore because we only need to know their
relative difference value but not their exact values. The simulation results are

shown in Figure 5.3. According to the simulation results, we let g, equal to 6
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Compare the bit number of state metrics
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Figure 5.3: Simulations for deciding the integer bits of state metrics

5.4.4 a-priori information LLRZ(z, ), extrinsic information  (u,)

From equation (1)

L(u,)2 h{—P (= “)]

P(u, =-1)

we can derive P(u, ==xl) as:

e—L(uk)/Z
_ _ +L(uy)/2
P(u, ==x1)= ol cem

and the corresponding probabilities for L(u,)=11~—-12 are tabulated in Table
5.2. Thus we can see when L(u,)>7, P(u, =+1)20.999 and L(u,)<-8,
P(u, =+1)2>0.9996, that is a-prior LLR for the decoded bit is highly believable.
The simulation results for different integer bits of L(u,) are shown in the Figure

5.4.
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L(u,) 11 10 9 8 7 6 5 4

P(u, =+1)10.999980.99995|0.99988 | 0.99966 | 0.99909 | 0.99753 |0.99331 |0.98201

P(u, =-1)|1.7E-05 | 4.5E-05|0.00012|0.00034 | 0.00091 |0.00247 | 0.00669 [ 0.01799

L(u;) 3 2 1 0 -1 2 -3 -4

P(u, =+1)[0.95257| 0.8808 |0.73106| 0.5 |0.26894| 0.1192 |0.04743|0.01799

P(u, =—1)|0.04743| 0.1192 |0.26894| 0.5 |0.73106| 0.8808 [0.95257(0.98201
L(u,) -5 -6 -7 -8 -9 -10 -11 -12

P(u, =+1){0.00669 | 0.00247|0.00091 | 0.00034 | 0.00012 | 4.5E-05 | 1.7E-05 | 6.1E-06

P(u, =-1)[0.99331]0.997530.99909 | 0.99966 | 0.99988 |0.99995 | 0.99998 | 0.99999

Table 5.2: Relationship between L(u,) and P(u,)

Compare the number of the bits of LLR
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Figure 5.4: Simulations of various bit length of LLR
When the number of the integer bits exceeds 4, it does not improve the
performance significantly. Therefore we use 4 bits to represent the integer part of
the a-prior information and 3 bits for fractional part. Since the fixed point
representation of L(u,) is decided, we can decide the branch metric g, as said

in section 5.4.2. From the three terms on the right hand side in equation (34), their
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integer bits are all 4 bits but they are all divided by 2, therefore we only need to
set ggm t0 5.

The extrinsic information L, (u,) is used as the a-priori information for

next decoder so that its fixed point representation is identical to the a-priori LLR,

that is FP(7,3).

5.4.5 a-posterior LLR L(y, | )

The equation of a-posterior LLRs L(u, | y) s rewritten below:

L(u, |Z) ~ ggi(Ak—l (s +T(s",8)+ B, (S)) _(Sn}gi(Ak—l (s +T(s",5)+ B, (S))

=+ =1
Each term on the RHS is computed as the sum of two state metrics and one
branch metric and a-posterior LLRs equal to the difference of the two terms. Thus
we can give it one more=bit than the.state metrics in order to prevent the

occurrence of overflow. Then we'use-FP(10,3) to represent a-posterior LLR
L, |y).
Through all the analyses, we arrange all the numbers in Table 5.3. By

comparing to the fixed point analyses of [30], we know our design is a little bit

conservative. Our design uses extra one fractional bit.

integer bits : : :
: i i .| fractional bits | total bits
(including sign bit)

Received value 4 3 7
Branch metric 5 3 8
Forward state metric 6 3 9
Backward state metric 6 3 9
LLR(u,) 7 3 10
a-priori information 4 3

extrinsic information 4 3

Table 5.3: word length of our design
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Using the word length in Table 5.3, we simulate the performance of our design and

compare them to the performance of floating point.

—— Frame size=500,HW-256
—— Frame size=500-FL
—— Frame size=1024,HW-256
—— Frame size=1024-FL
—— Frame size=5114,HW-256

Frame size=5114-FL

Simulation bits = 5*10°8
Max-Log-MAP
iteration= 5

0.5

Figure 5.5 performance of our design comparing to floating point
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Chapter 6

Hardware Architecture

In this chapter, we introduce our turbo decoder hardware architecture from the
computational core of Max-Log-MAP decoding algorithm and discuss about all the
units inside. The overall hardware architecture will be shown in the end of the first

section. Then the decoding process will be presented.

6.1 Hardware architecture

The computational core of Max-Log-MAP decoder is composed of branch
calculation unit, add-compare-select -unit,—a-posterior LLRs calculation unit and
permutation units. The block diagtam-of the computational core is shown in Figure

6.1.

a-priori info+y,

A-priori
info

Yis —

ACSP

Vo' Vo =

Limit
MemB/BufA/ 1
inicondition Eegl
0 FB B
initial Ll |l Reg

|
MemB/ |LineChange BetaChange
BufA

MemA Way

FB T
MemA

Figure 6.1: Computation core of the turbo decoder
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All units will be discussed in detail as follows:

6.1.1 Branch Metrics Unit (BMU)

The branch metrics are calculated according to equation (34):
;o1 1L
L(shs)=—u, 'L(“k)+_ZJ’k1xk1
2 23
The hardware for calculating branch metrics is shown in Figure 6.2. S0,S1,S2 in
Figure 6.2 are relative to the sign of u,,X,,,X,,, respectively. Because u,,X,,,X;,

have four combination 1..000, 001,110,111, we need four BMUs.

a-priori
info

yks

Yie!Y'ss

Figure 6.2: Branch metric unit

6.1.2 Add-Compare-Select Processor (ACSP)

The equations of forward state metrics 4, (s) and the backward state metrics
B, ,(s") are rewritten below. From the equations, we know that they are both
calculated through adding, comparing and selecting the maximum value
computations. The ACS processing element (ACSPE) hardware is shown in

Figure 6.3.
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A (s)=max (4,_,(s)+T,(s,5))

B, (s") =max (B, (s)+T(s',5))

r- - 7 1
Fvaluel : @ :

| N Max I Result_1
Fvalue2

| % :
Bvalue0 | |
Bvaluel — |

| Min  ——F—>Smaller
Bvalue2 — |
Bvalue3 : :

/D)

: @ Max : Result_0

| f_p |

| L |

- - _

Figure 6.3: ACS processing element
Since 3GPP encoder has eight states, we need to combine eight ACSPEs to form
an ACS processor in order to- calculate one stage- in one clock cycle. The eight

ACSPEs and the corresponding trellis diagram-are shown in Figure 6.4

Previous state Current state
metrics v metrics SO 0/00 — _s SO
Soxe1 s ACSPE | —— S, W11 e
BVI11
Sk svos] ACSPE | —— 5,
BV10Q
Sy =vor]l ACSPE | —— 8,
S3)k_1— g¥?1 ACSPE E— S3,k
BVO
S4,k-1 svio] ACSPE | —— S4)k
s B4 ACSPE | —— s
5k-1 BVOT 5k
s BVIL ACSPE | —— S
6k1 BV0 6k
BVO
Sox 5] ACSPE | —— S,
Branch | [BVassign
assign T 4|\
BV00 | BV10
BV01 BVI11

Figure 6.4: Bundled ACSPEs and the corresponding trellis
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The ACS processor uses the initial value to compute the state metrics at first time.
Then it will calculate by the value in the register on the feedback loop recursively.
The value in the registers would increase time after time and the overflow will happen
soon. Thus we place hardware to subtract the minimum value of the eight state
metrics produced every time. In order to prevent the overflow, a saturation unit is
placed behind it. The whole ACS processor (ACSP) and the feedback loop are shown

in Figure 6.5.

ACSP

BV
revious ACSPE ) current
p e Submin Sat u }
state metrics X 8 state metrics

branch assign

M
Reg
Initial

condition cll\k

Figure 6.5: ACS processor and feedback loop

6.1.3 LineCchange unit and BetaChange unit
Using only one ACS processor means we need to calculate the forward
metrics and backward metrics by the same ACS processor successively. Observing
Figure 6.6(a)(b), we can find the only one difference between them is the direction
so that we can design a permutation unit to rearrange the input addresses and
output addresses for one ACS processor to compute for the forward metrics and
backward metrics. In Figure 6.6(c), the addresses for calculating backward metrics

are shown in the parenthesis and the permutation rules are shown in Figure 6.6(d).
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(S0,)

(S4,)

(S1))

(S5,)

(S2,)

(S6,)

(S3))

(57,)

Figure 6.6: (a) trellis diagram for forward state metrics calculations. (b) trellis
diagram for backward state metrics calculations. (c) trellis diagram for mapping

backward trellis to forward trellis. (d) permutation rules
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According to Figure 6.6(d), the permutation unit is shown in Figure 6.7(a);
we call it “BetaChange” because it’s used to permute the address while computing
backward metrics. We need to permute the input and output when calculating
backward state metrics. Thus we design “LineChange” unit to perform these two

permutations at one time and it is shown in Figure 6.7(b).

FB FB
- T T T T T ] - === 7
Lo — —ouo 10 | — Ouo
‘ F | | FB ‘
L1 | 0 ;1 | L1 | 0] |
\ . QOutl : . | Outl
| |
\ FB | : FB }
| |
; . | Out2 : | ‘ Out2
| B | | KB
| |
: | 1.3 | 0] |
k3 ‘ \Ti‘—'—>0ut3 : | | Out3
| |
\ [ | \
| - | E B
14 | 0 I 14 | 0 \
\ . Out4 : . | Out4
| |
| Bl : FB }
| [
15 1 0 [ 1.5 f 0 \
| \F\—y—@uw | . l—y—>Out5
| | | |
| B | FB |
0 0
| | | |
L7 ; : Out7 L7 : ; Out7
o D@ o G

Figure 6.7: (a) BetaChange hardware (b) LineChange hardware

6.1.4 LO,L1 unit

The equation of a-posterior LLR L (u, ‘ Y) s rewritten below:
L(u, ‘Z) = (ryngp:(> (Ak—l (s"+I,(s",s)+B, (s)) - (ryngp:(> (A,ﬁ1 (s"+I,(s",s)+B, (s))

uk:+l uk:—l

=L1-L10
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where L1 = max (4,_,(s")+ T, (s",8)+ B,(s)), L0O=max (A4,_,(s)+T(s",9)+B,(s))
o w07

Because there are eight paths correspondent to wu, =+1 respectively, the

max operations on the right-hand side means to select the maximum value from

eight sums. We will use nesting max operations to implement. The hardware

architecture of L1 processor is shown in Figure 6.8. The architecture of L0

processor is the same with L1.

A (S)+ T (S5580) + B, (Sy) A, (S)+T,(S,,S,)+ B, (S,)
A, ($)+ T (S,,8)+ B,(S,) A4, (57)+T(S5,85) + B.(S;)
Max Max Max Max
| |
1 J
Max
L

Figure 6.8: Nesting max‘operations for L1 hardware

When L1,L0 are calculated, we can compute L(u, ‘ y). If L(u, ‘ y) s bigger than

or equal to zero, the decoded bit is “1”. If L(u, ‘ ») is smaller than to zero, the

decoded bit is “0”.

6.1.5 Complete turbo decoder architecture

The block diagram of entire turbo decoder hardware is shown in Figure 6.9.
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Figure 6.9: The block diagram of total turbo decoder hardware
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The solid line rectangles are computational unit or control unit and the dotted line

rectangles are memories. The functions of all blocks are as follows:

1. Cntl unit: Cntl unit is used to control where to write or read and when to write or
read of all memories. We pack the interleaver/deinterleaver memory into it because
the functions of them are to provide the addresses for mapping the normal order
systematic bits y, to interleaved order systematic bitsy', and the address for

writing extrinsic LLRs.

2. ¥s¥p,yY’p memories: These memories are used to store the transmitted systematic
bits, the parity bits corresponding to the normal order information bits, the
interleaved systematic bits, the parity bits corresponding to the interleaved order

information bits, respectively. Their depths allequal to L, .

3. MemExtIL, MemExt memories; These-two memories are used to provide and
store a-priori LLR and the extrinsic information. In first half iteration, the decoder
deal with the natural order received bits, ys,y,, and MemExt provides a-priori LLRs
and MemEXxtIL receives the extrinsic information produced in this half iteration. In
the last half iteration, the decoder deal with the interleaving order received bits
y’'sY p» MemEXILt provides a-priori LLRs now and MemExt receives the extrinsic

information produced in this half iteration.

4. MemA memory: MemA memory is used to store the backward state metrics when
calculating backwardly and to provide the state metrics to L1, LO processors which

are in the computational core when the decoder calculates the forward state metrics.

5. MemB: MemB memory is the initialization memory required for halfway. It stores
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the backward state metrics periodically and provides these state metrics as the

initialization state metrics for the corresponding backward calculations at next

iteration.

6.2 Memory requirements

In previous section, we list all the memories needed in the decoder hardware.
Along with the specification decided in section 5.3 and section 5.4, we can calculate

all the memory capacities. We arrange all the numbers in Table 6.1.

. memory capacity memory
i
. (bits) capacity
width ,
(depth*width*banks) | (bytes)
Input memory b VS, V'D 7 5120*7*3=107520 13440
Input memory d VS, YP5Y'P. 7 5120%7*3=107520 13440
Initialization memory MemB 9 64*8*9=4608 576
Backward metrics memory | MemA 9 256*8*9=18432 2304
. ) ILMem
interleaver/deinterleaver 13 | 5114*13*2=132964 | 16620.5
/DIMem
D MemExt
Extrinsic info. Memory 7 5114*7%2=71596 8949.5
/MemExtIL
Total 442640 55330
Total
o 335120 41890
(excluding input memory_b)

Table 6.1: memory capacity

The first column is the memory name with respect to their function and the second

column is the corresponding name in the Figure 6.9. In the second and third row, there
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are two sets of memories fory,,y,,y"', . The first memory, input memory b, is used as

buffer which stores data for the next block while decoding the data in memory d.
When finish decoding the data in memory d, the roles of these two memories
exchange. Usually the data buffer (memory_b) is not counted in the decoder hardware
due to it does not provide data to the decoder in decoding process though it is
essential. Therefore we list the memory capacity without buffer in the last row for

reference.

6.3 Decoding Process

Before the decoding process starts, we need to initialize the interleaver and
de-interleaver memory. Because generating the interleaving sequence needs many
multiplications and divisions and look-up: tables, we do not implement it in the
hardware. Instead, we use software to calculate the interleaving sequence and input
the sequence into the interleaver’memory and de-interleaver memory before start to
decode. So we input the interleaving sequence to the interleaver memory first. At the
same time, we take the data input to the interleaver as the writing address and take the
writing address of the interleaver as the input data for the deinterleaver memory. After
initializing the interleaver/de-interleaver memories, the decoding process begins.

Assume the received data comprising one frame of information are in the input
memory_d, frame size =N, block length =L, , block number p=[N/L,, |. If
N<L,,, this decoder works as the normal Max-Log-MAP decoder does. In order to
explain the halfway decoding process, we further assume N =p-L,, where peN

then we can divide one frame into block-1, block-2... block-p, denoted as

sb, whereiel,2,...,p. Because 3GPP encoder has trellis termination, the encoded

code has 12 tail bits corresponding to 6 trellis stages as stated in section 4.2. Hence
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the decoder will calculate backward state metrics by these tail bits first in order to

process regularly hereafter. When we finish computing the tail bits, the backward state

metrics are stored to MemB as the initialization state metrics forsb, .
Now the first half iteration decoding begins. We use y,y, to calculate

backward state metrics first by for sb, from s, , to s,,, where i=12,.,p.

The initialization state metrics for each block are all set to zeros at this iteration

except the last block. The state metrics which input to ACSP are saved to MemA and

the last calculated state metrics are stored to MemB at address (63—i+ p) when
i#1. Afterwards the forward state metrics are calculated for sb, from s,,, = to

Sityy 1 where i=1,2,..., p. The state metrics which input to ACSP are sent to L0, L1

units with the relative backward. 'state metrics, stored in MemA. The extrinsic
information can be computed -and isaved-to-MemExtIL according to the relative

interleaving address. The decoding process.insecond half iteration is similar to first

half iteration but is different from: using y',y' to calculate the backward/forward
state metrics; the last calculated state metrics of each block are stored to MemB at
address (31—i+ p) when i#1; the computed extrinsic information is saved to

MemExt according to the relative de-interleaving address.

When first iteration completes, MemB will have the initialization state metrics

for backward state metrics for sb, where i=1,2,..., p. The graphic representation of

the halfway SISO algorithm is shown in Figure 6.10.
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Figure 6.10: graphic representation of the halfway SISO algorithm

Although we assume N =p-L,, where pe N in the decoding process
discussed above, N would not equal to multiples of L,, in general The derivations

can easily be modified to apply to the general cases.
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Chapter 7

Hardware implementation

With modern VLSI technology, we can design the hardware with high clock rate
and complicated functions. There are two design abstractions: Bottom-up and
top-down. By using the abstractions, the designer can collapse details and arrive at a
simpler concept with which to deal.

In the design process of integrated circuit, the layout techniques are very amateur
so that we can use Computer-aided design (CAD) tool to help us to place and route.
Nowadays most of the digital communication integrated circuits adopt the standard
cell design instead of full custom ~design.-‘Fherefore the emphasis is put on the
algorithms and the hardware architectures. In this thesis we also adopt the standard

cell to design the hardware.

7.1 Design and verify process

First we write a C program to simulate the decoding algorithm so that we can
understand the flow of the decoding process. And we can verify the C program by
examining a lot of data.

Second we plan the hardware architecture. In this thesis, we implement the
decoder by halfway memory saving method. Thus we can achieve the 3GPP
requirement by using only one ACS processor without high operation frequency. Then

we develop a bit-accurate C model according to the above architecture. Because we
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use fixed-point implementation, we could analyze the word length of the quantities by
this bit-accurate C model. It is easier to modify the word length and the architecture in
C code than in HDL code. If we find the specification can not satisfy our objective,
we could redesign the architecture or change the word length easily and quickly.
Besides, C model can help us to process HDL debugging easily.

Third we can proceed to RTL verification. When the functions of the RTL code
work correctly, we can synthesize the code with synthesis tools. If the synthesis result
could not satisfy our requirement, we need to modify the architecture and repeat the
flow from bit-accurate C model.

Finally, if the synthesis result achieves the requirement, we can download the
RTL code to FPGA develop board. Afterward we verify the hardware circuit by

inputting a lot of data.

In summary, our develop and design flowis shown in Figure 7.1

bit-accurate
C model

algorithm
C model

RTL code

Fault to achieve
the requirement

Figure 7.1: develop and design flow

7.2 Hardware specification

In this section, we will describe the clock cycles for decoding one block of data

first. Then we define the hardware input and output ports clearly.

7.2.1 Clock cycles for decoding one data frame
The clock cycles for decoding one data frame are dependent on the frame size.

Our hardware is pipelined into five stages. Thus the internal latency is 5 clock cycles.
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The total required clock cycles for decoding one data frame are calculated as follows:

clock _cycles . =2- (2 - frame _size + internal_delay) -dter +6 (35)

The subscript of clock cycles “N” stands for the frame size of the data for simplicity.
The first term in the inner parentheses “frame_size” is also the frame size of the data.
The term “Iter” is the number of complete decoding iteration. The last term “6” is the
clock cycles for calculating the tail bits.

Since the frame size of 3GPP turbo code ranges from 40 to 5114, we list some

examples as follows:

Iteration = 5
Frame size 40 500 1024 5114
clock cycles 856 10056 | 20536 102336
Iteration = 10
Frame size 40 500 1024 5114
clock cycles 1706 120106, {41006 | 204666

Table 7.1: decoding clock.cycles for different frame size

When frame size is small, the internal delay willaffect the decoding cycles severely.

7.2.2 Hardware interface

For convenience, we pack the decoder as a processing core and indicate the
input/output ports in Table 7.2. When this processing core is used, we only need to
configure the pins adequately. The I/O diagram of this processing core is shown in

Figure 7.2.
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clk —
reset —— — Valid
FS ——
N Turbo decoder — Complete
in ——)
IL seq — — Decode bit
Iteration ——
Figure 7.2: Turbo deocder I/O diagram
Port /o  |bit width description
clk input 1 system clock
reset input 1 reset the register contents
FS input 13 configure the frame size of data
d in input 7 received data input
IL seq input 13 interléave sequence input
Iteration | input S configure the iteration number
Valid output 1 indicate the decode bit valid
Decode bit| output 1 decode bit output
indicate finish decoding one block of|
Complete | output 1
data
Table 7.2: 1/O ports definition
7.3 ASIC performance

We are interested in how many gate counts are in the turbo decoder hardware. So
we will divide the turbo decoder into two part, one is memory part and the other is
control and computation part. The ASIC verification flow is shown in Figures 7.3. We
use MATLAB to generate the encoded sequence and the additive white Gaussian
noise and write the information into test bench. We can compare the results with the

decoding bits by bit-accurate C decoding program. If “Out cp” outputs “1”, there

should be something wrong in the decoder hardware.
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The ASIC simulation environment is as follows:
HDL.: verilog
Compiler tool: verilog-XL
Debug tool: Debussy
Synthesis tool: synopsys
Process: TSMC 0.25 um
The simulation results are listed in Table 7.3. The maximum clock rate for this

decoder is 102.56MHz.

MATLAB |
- 1

AWGN |
Turbo decoder

Complete

encoder bench Turbo Decoder
without memory

Out_bit

I
I
l
Turbo : Test
I
I
I
I
I
I

r _l— l — = Compare — Qut_cp

Bit-accurate
C program

Figure 7.3: ASIC verification flow

Constraint 9.75ns 10ns 12.5ns 25ns
Clock rate |102.56MHz 100MHz | 80MHz | 40MHz
Gate counts| 28.7k 28.1k 24 .8k 15.1k

Table 7.3: ASIC simulation results

Along with equation (35) in section 7.2.1, we can calculate the clock rate required for
decoding the data. Assume required output data rate = R, frame size = N and iteration

number = [fer, we can get:
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. R
required clock rate, ,,, = Wd -clock _cycles, ,,,

In 3GPP, maximum R, is 2 Mbps, thus required clock rate is:

clock rate Tter=5 Tter=10
N=40 42.8 85.3
N=5114 40.02 80.04

Table 7.4: required clock rate for decoding different frame size and iteration

Because our hardware has maximum operation frequency 102.56 MHz, it can meet

3GPP requirement.

7.4 FPGA verification

We use MATLAB to generate:the encoded sequence and the additive white
Gaussian noise. We use the bitfaccurate € .decoderto decode the received sequence
and write the decoding results into a file; Then we put the received information into
ROM of the turbo decoder and compare the decoding results with those generating by
the bit-accurate C decoder. The output bit and the comparison results are displayed in
the seven-segment display. The FPGA verification flow is shown in Figure 7.4.

The simulation environment is as follows:

FPGA development board: Altera stratix II EP1S25780C5
Simulation software: Quartus II 4.0

HDL.: verilog

Max. clock rate = 40.2 MHz

71



randsrc

MATLAB ¢———

Turbo
Encoder

AWGN

Rx info

Turbo Decoder

Complete

1l

compare

Out bit

Seven segment
display 2

Bit-accurate
C Decoder

Figure 7.4: FPGA verification flow
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Chapter 8

Conclusion and Future works

8.1 Conclusion

In this thesis, we implement an efficient and memory saving 3GPP turbo decoder
which uses the halfway method. This decoder bases on Max-Log-MAP algorithm and
uses only one ACS processor. This successfully decreases the memory capacity which
is the critical design problem for turbo decoders. It also discards the redundant
calculations for initializations which are required.for other decoding methods. As a
result, using only one ACS proeessor in out decoder will not slow down the decoding
speed. Furthermore, using halfway. memory saving method in the decoder can
decrease the decoding latency. By use of the computer simulation and the analyses,
we decide the fixed point representations and the block length for halfway method in
order to obtain a cost-effective turbo decoder. We compare the BER performance of
halfway with the commonly-used sliding window schemes and confirm that our

approach does not sacrifice any performance.

8.2 Future works

Our hardware design still can be improved in 3 aspects:
1. Decoding speed: Though our decoder hardware can satisfy the maximum
decoding speed of 3GPP specification, 2M bits/s, by 5 iterative decoding at 40.2

MHz operation frequency, the need for more iterations and faster decoding speed
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will still exist in the future. Therefore we can use one more ACS processor to
calculate forward state metrics when the original ACS processor calculates
backward state metrics at the same time. This will boost the decoding speed by a
little overhead and hardware requirement.

Stopping criterion: we do not implement any stopping criterion on our decoder,
thus the decoder will decode for fixed number of iterations. This results in
consuming energy unnecessary and wasting the decoding time.

Embedded interleaver/de-interleaver generator: At the moment we assume the
interleave/de-interleaver data are stored to the memory and these will cost a lot of
memory. If we can design the hardware for generating interleaving/de-interleaving
sequence when needed immediately, it will decrease the memory capacity needed
by decoder significantly. More exactly, thati§2x13x5114 = 132964 =132.9 K bits

=16.6125 Kbytes.
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