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具計算效率且節省記憶體的第三代行動通訊(3GPP)渦輪碼解碼器 

 

學生：鍾文狀                                    指導教授：紀翔峰  博士 

 

 

國立交通大學電信工程學系碩士班 

 

摘       要 

 

 

目前的無線通訊系統中，資料量的傳輸需求愈來愈大，而在傳輸通道的非理

想效應影響下經常使得傳輸資料出現錯誤。為了有效降低錯誤率，第三代行動通

訊(3GPP，3GPP2…等)系統均採用了目前更正能力最強的渦輪碼。渦輪碼的硬體

實現中最大的難題在於解碼時需要大量的記憶體及大量的運算。一般渦輪碼解碼

器中所採用的節省記憶體架構(sliding window)雖可解決記憶體的問題，但同時也

會導致更多的運算量。在節省記憶體及運算量的考量下，本論文的目的是以另一

種節省記憶體的架構(halfway)實現一個和原始架構比起來可節省記憶體且不增

加任何運算量的渦輪碼解碼器。在解碼上，我們採用Max-Log-MAP algorithm使

得運算複雜度降低。在硬體上，我們使用了只包含一個Max-Log-MAP解碼器的

硬體架構。 
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Calculation Efficient and Memory Saving Turbo Decoder for 3GPP 

 

Student: Wen-Choung Chong                     Advisor: Dr. Hsiang-Feng Chi 

 

 

Department of Communication Engineering 
National Chiao Tung University 

ABSTRACT 
 

 

    Turbo codes have become one of the necessary specifications for the 

state-of-the-art communication systems. The difficulties in implementing turbo 

decoder are the vast computational complexities and the request for a lot of memories. 

The most public method for decreasing the need of memories is sliding window 

method. But using sliding window method will increase the computational 

complexities. This thesis is purposed to propose a calculation efficient and memory 

saving turbo decoder. We use another memory saving algorithm – halfway algorithm, 

in our turbo decoder. This successfully decreases the computational complexities and 

the need of memory capacity. Besides, we adopt Max-Log-MAP algorithm in our 

design in order to simplify the hardware. 
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_________________________________________ 

Chapter 1 

Introduction 

_________________________________________ 
     

In this chapter, we will introduce the basic elements of the digital communication 

system and the concept of channel coding in the beginning. Then the motivation and 

the objective of this thesis are presented. Finally we will introduce the organization of 

this thesis. 

 

1.1 Digital communication system 

The basic elements of a digital communication system are shown in Figure 1.1.  

 

 

Figure 1.1: basic elements in digital communication system 

 

The messages from the source are converted into a sequence of binary digits by 

source encoder. The process of efficiently converting the output of the source into a 

sequence of binary digits is called source encoding. Alternatively speaking, the source 

encoder compresses the data from source and result in little or no redundancy in the 
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binary representations of the data. Then the sequence of binary digits from the source 

encoder is passed to the channel encoder. On the contrary, the channel encoder is to 

introduce some controlled redundant information in the binary information sequence. 

These added redundancies can help the receiver to overcome the noise and 

interference encountered in the transmission of the signal through the channel. In 

effect, redundancy in the information sequence aids the receiver in decoding the 

information sequence correctly. The main purpose of the modulator is to map the 

binary information sequence into signal waveforms. We can choose modulator 

according to different applications and different channels. Usually we use the additive 

white Gaussian noise channel to simulate the channel block because it can provide 

precise analyses. 

At the receiving end of a digital communication system, the successive three 

blocks are used to recover the original signals from the noisy receiving sequence. The 

demodulator processes the noisy waveforms and reduces them to a sequence of 

numbers that represent estimates of the transmitted symbols. The channel decoder will 

use these numbers to reconstruct the original information sequence from knowledge 

of the channel encoder. The source decoder uncompresses the sequence from 

knowledge of the source encoder and attempts to reconstruct the original signals. 

The subject of the channel encoder and channel decoder is called channel codes 

or error control codes. In this thesis, we focus on this subject, especially the hardware 

implementation of the channel decoder. 

 

1.2 History of channel coding 

    The concept of channel coding came from the paper [1] which was published by 

Claude Shannon in 1948. Shannon’s primary result in this area is called the channel 
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capacity theorem or noisy channel coding theorem. This theorem states that there 

exist error control codes such that information can be transmitted across the channel 

at rates less than the channel capacity with arbitrarily low bit error rate. Unfortunately, 

Shannon did not show how to construct the codes which can achieve the channel 

capacity. Two categories of channel codes, block codes and convolutional codes,  

were developed and widely used in practical systems. 

    The first error correcting code was Hamming code [2], which can correct only 

one error. During the years from 1957 to1959, cyclic codes [3-5] were published in 

some reports by E. Prange. Cyclic codes led to the development of BCH codes and 

Reed-Solomon codes a few years later. In 1959 and 1960 [6-8], Bose and 

Ray-Chaudhuri and Hocquenghem discover the multiple error correcting codes which 

are later named as Bose-Chaudhuri-Hocquenghem (BCH) codes. Reed-Solomon 

codes were discovered in 1960 by Reed and Solomon [9] and they were closely 

related to BCH codes. 

    In 1955, the first convolutional forward error correction codes were discovered 

by Elias [10]. In 1961, Wozencraft and Reiffen proposed the sequential decoding 

algorithm [11, 12] and this decoding algorithm is fast but sub-optimum. In 1967, 

Viterbi proposed an optimum decoding algorithm [13] which was recognized by 

Forney [14] as maximum likelihood decoding algorithm in 1973. 

    In 1987, Ungerboeck proposed trellis coded modulation (TCM) [15, 16] which 

integrates forward error correcting codes and modulation. TCM can achieve 

significant coding gains over power and band-limited transmission media. 

    In 1993, turbo codes [17] were invented by C. Berrou, A. Glavieux and P. 

Thitimajshima. Turbo codes were a historic breakthrough because they help the 

communication systems achieve Shannon limit closer than other codes. 
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1.3 Background of Turbo codes 

Since turbo codes were proposed by C. Berrou, A. Glavieux and P. 

Thitimajshima in 1993 [17], they have been widely studied and discussed. Till now 

they are known as the best forward error correcting codes. Due to turbo codes’ 

outstanding error correcting performance and their ability to achieve the Shannon 

capacity limit by 0.7 dB [17], there are many researches on the realizations of turbo 

codes. Turbo codes outperformed all other known coding schemes. Recently turbo 

codes have been adopted in several standardized communication systems, such as the 

third-generation (3G) mobile communication standards: i.e. W-CDMA (Wideband 

Code Division Multiple Access) in the 3rd Generation Partnership Project (3GPP), 

cdma2000 in the 3rd Generation Partnership Project 2 (3GPP2), and TD-SCDMA 

(proposed by China and Japan). 

 

1.4 Motivation and Goal 

Turbo codes have become one of the necessary specifications for the 

state-of-the-art communication systems. How to efficiently realize the turbo decoder 

in the integrated circuit always cause much research attention.  

The difficulties in designing turbo decoders come from the high computational 

complexity. The challenging tasks are how to reduce the hardware cost and power 

consumption, the word-length determination in the fixed-point arithmetic, and 

cost-effective memory allocation/partition. In this thesis, we aim at implementing the 

turbo decoder of 3GPP/W-CDMA on field-programmable gate arrays (FPGAs) with 

memory saving methods. We will use Max-Log-MAP algorithm to solve the difficulty 

of the computational complexity. The ultimate goal is to propose low complexity, 

calculation efficient and memory-saving architecture. 
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1.5 Thesis Outline 

This thesis is organized into eight chapters and described as follow: 

In chapter 2, we would have an overview of entire turbo code system. In chapter 3, we 

introduce several decoding algorithms, discuss, and compare four decoding methods, 

including three memory saving schemes. In chapter 4, the 3GPP turbo encoder and 

interleaver are described. The hardware design considerations are discussed in chapter 

5. In chapter 6, we describe the hardware architecture in detail. The ASIC and FPGA 

implementation and verification processes are presented in chapter 7. The conclusion 

and the future works are presented in Chapter 8. 
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_____________________________________________________________________ 

Chapter 2 

Overview of Turbo Code System 
_____________________________________________________________________ 

 

    Turbo codes use concatenated schemes with the interleavers/de-interleavers 

placed between the constituent encoders/decoders. The standard turbo encoder 

structure uses the recursive systematic convolutional codes and parallel concatenated 

convolutional codes. In order to achieve good BER performance, we need the 

decoding algorithms which can accept soft input and produce soft outputs and can 

work iteratively. 

 

2.1 Concatenated Codes 

     Turbo codes are usually composed of several concatenated convolutional codes. 

There are two kinds of concatenated convolutional codes, one is parallel concatenated 

convolutional codes (PCCCs) and the other is serial concatenated convolutional codes 

(SCCCs). PCCCs are often constituted by two or more recursive systematic 

convolutional (RSC) encoders joined in parallel by one or more pseudo-random 

interleavers, furthermore, the encoders encode the same information bits besides the 

information bits are scrambled by the interleaver. SCCCs also use the constituent 

convolutional encoder and the interleavers as PCCCs but differ from their connection 

method. The encoders used in SCCCs are connected serially and inserted by the 

pseudo-random interleaver. Figure 2.1 shows the encoder diagram of PCCCs and 

SCCCs. 
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Figure 2.1: Turbo encoder diagrams of (a) PCCCs (b) SCCCs 

 

     The advantage of SCCCs is that: for a fixed frame size N, the slope of BER 

curve is inversely related to N2 or N3 but BER curve for PCCCs is only inversely 

related to N. Beside, SCCCs do not suffer from error floor but PCCCs do. The 

problem of error floor is caused by the poor interleaver design and truncation in the 

decoding procedure. But it was shown that both SCCCs and PCCCs could be 

designed without suffering from error floor no matter what BER requirement is [18]. 

    Although SCCCs have the merits mentioned above, we often choose PCCCs in 

turbo code due to PCCCs’ less computational complexity given the same constituent 

encoders and their better BER performance at low SNRs. Throughout the rest of this 

thesis, “turbo code” is referred to use PCCCs. 

 

2.2 Recursive Systematic Convolutional (RSC) Encoder 

    Turbo codes use two or more RSC encoders as their component encoder. 

Although the encoders need not to be the same, we often use identical encoders in 

practice due to the low complexity of decoding. The term “recursive” means the 
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encoder has a feedback loop; therefore, the output of this encoder is affected by the 

preceding output bit. And the term “systematic” means the encoder has one of its 

outputs identical to its input bit. Figure 2.2 shows the conventional convolutional 

encoder. 

 

Figure 2.2: (a) RSC encoder with constraint length =3, generator matrix G=[5,7]octal 

(b)Non-recursive non-systematic encoder with constraint length =3, generator matrix 

G=[5,7]octal 

 

It can be proved that the recursive systematic convolutional code is 

code-equivalent to the non-systematic non-recursive convolutional code [19]. That is 

the sets of the codewords that they define are the same and for any codeword of the 

recursive systematic convolutional encoder, we can find the input stream for the 

non-systematic non-recursive convolutional code such that it produces the same 

codeword, vice versa. Although their codewords are identical, they behave differently. 

It is also shown that the RSC encoder tends to produce codewords with more weights 

than the code-equivalent non-recursive encoder [20]. This behavior causes the RSC 

encoder produce fewer codewords with lower weights and makes the error correcting 

performance better. This is the main reason to use the RSC encoders as turbo codes’ 

constituent encoders. Additionally, when we use the RSC encoder as constituent 

encoder, we only need to transmit the systematic output bits from the first one encoder 
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because their systematic bits are alike except the order. Then the code rate of the 

encoder increases, bandwidth efficiency improves without degrading the performance 

since we still transmit all the information produced by the encoder. 

 

2.3 Interleavers 

     The interleavers placed between the encoders are going to make the code more 

random in order to improve the burst error correction capability and they play a key 

rule in turbo code. What affect the interleaver are how random the interleaver is and 

how big the size of the interleaver is. As the size of the interleaver grows, the 

performance of the turbo code usually becomes better. But there is a tradeoff between 

the decoding latency and the BER performance. When the interleaver is more likely 

random, the performance of the turbo code also becomes better due to this kind of 

interleaver can make the correlation of the information bits decrease more. There are 

several kinds of interleavers, e.g. column-row interleaver, helical interleaver, 

odd-even interleaver, simile interleaver, frame interleaver, pseudo-random interleaver, 

S-type interleaver…etc. As long as we use the interleaver we proposed, the 

performance of the turbo code will suffer and we need to use different kind of 

interleaver according to the system requirement.  

 

2.4 Decoders 

    Although the constituent encoders for turbo code belong to convolutional 

encoders, the decoding scheme for turbo codes is different from the pure 

convolutional decoding scheme. As mentioned above, turbo codes use the parallel 

concatenated encoding scheme. The turbo decoder would be constructed on the serial 

concatenated scheme because the performance of serial concatenated decoding 
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scheme is better than that of parallel concatenated decoding scheme. The reason is the 

serial concatenated decoder will provide some extra information (or we call extrinsic 

information in turbo codes) to another decoder as its a-prior information. In turn, the 

latter decoder will also provide extra information to the former one. Contrarily the 

parallel concatenated decoders decode the information independently. Figure 2.3 

shows the conventional turbo decoder’s diagram. 

 

Figure 2.3: Conventional turbo decoder’s diagram 

 

     Because each component decoder must provide the a-prior information to the 

other, they must have soft outputs. Since they have the soft inputs, we call them 

soft-input soft-output (SISO) decoders.  

 



 11 

______________________________________________ 

Chapter 3 

Turbo Decoding 

______________________________________________ 
 

Nowadays we have two categories of algorithms to decode turbo codes, one 

originates from Maximum a posteriori (MAP) algorithm [21] proposed by Bahl et al. 

and another is Soft-Output Viterbi algorithm (SOVA) [22] proposed by Hagenauer 

and Hoeher. 

Their evolutional histories are shown in Figure 3.1. 

 

Figure 3.1: Evolution of soft-input soft-output (SISO) decoding algorithms 

 

3.1 Decoding Algorithms 

3.1.1 Maximum-a-posteriori (MAP) Algorithm 

    The Log Likelyhood Ratios (LLRs) L( ku ) of a data bit ku  is defined to be the 

log of the ratio of the probabilities of the bit taking its two possible values: 
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( 1)( ) ln
( 1)

k
k

k

P uL u
P u

 = +
 = − 

@                      (1) 

where ( 1)kP u = ±  is the probability of the data bit ku  equals to 1± . 

    After encoding the data bit ku  and transmitting the encoding bits through the 

channel and the matched filter, we received the sequence y . Therefore we get the 

conditional LLR defined as: 

( 1 | )
( | ) ln

( 1 | )
k

k
k

P u y
L u y

P u y
 = +
  = − 

@                     (2) 

These conditional probabilities ( 1| )kP u y= ±  are the a-posteriori probabilities of the 

decoded bit ku . The goal of the MAP algorithm is to estimate the decoded bit 

sequence and provide the probabilities of the correctness of every decoded bit given 

the received sequence y  and it aims at minimizing the decoded bit error rate (BER). 

This means the MAP algorithm is correspondent with finding the a-posteriori LLR 

( | )kL u y . By using Baye’s rule and its derivation, 

( ) ( ) ( )P a b P a b P b∧ = ⋅                      (3) 

({ } ) ( { }) ( )P a b c P a b c P b c∧ ≡ ∧ ⋅                  (4) 

the a-posteriori LLR ( | )kL u y  can be rewritten as: 

( 1 )
( | ) ln

( 1 )
k

k
k

P u y
L u y

P u y
 = + ∧

=   = − ∧ 
                   (5) 

Figure 3.2 is the possible trellis for K=3 RSC code. 
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Figure 3.2: possible transitions in K=RSC code 

If the previous state 1kS s− ′=  and the present state kS s=  are known then the input 

bit ku  will be known. The transitions which occur when 1ku = +  and those which 

occur when 1ku = −  are mutual exclusive so that the probability that any one of them 

occurs is equal to the sum of their individual probabilities. Equation (5) can be written 

as: 

1
( , )

1

1
( , )

1

( )

( | ) ln
( )

k k
s s

uk
k

k k
s s

uk

P S s S s y

L u y
P S s S s y

−
′ ⇒
=+

−
′ ⇒
=−

 ′= ∧ = ∧
 
 
 ′= ∧ = ∧
 
 

∑

∑
@              (6) 

Assume the channel is memoryless and using the Bayes’ rule, we can write the 

individual probabilities 1( )k kP S s S s y− ′= ∧ = ∧  from the numerator and 

denominator as: 

1

( ) ( )

( ) ( )

( ) ( )

( ) ({ } { }) ( )

( ) ({ } ) ( )

( ) ( , ) ( )

j k k j k

j k k j k j k k

j k k j k

j k k j k j k

j k k j k

k k k

P s s y P s s y y y

P s s y y P y s s y y

P s s y y P y s

P s y P y s s y P y s

P s y P y s s P y s

s s s sα γ β

< >

< > <

< >

< < >

< >

−

′ ′∧ ∧ = ∧ ∧ ∧ ∧

′ ′= ∧ ∧ ∧ ⋅ ∧ ∧ ∧

′= ∧ ∧ ∧ ⋅

′ ′= ∧ ⋅ ∧ ∧ ⋅

′ ′= ∧ ⋅ ∧ ⋅

′ ′= ⋅ ⋅

       (7) 
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where ( )P s s y′ ∧ ∧  represents 1( )k kP S s S s y− ′= ∧ = ∧  for simplicity, and 1( )k sα − ′ , 

( )k sβ , ( , )k s sγ ′  are shown below: 

1 1( ) ( )k k j ks P S s yα − − <′ ′= = ∧                      (8) 

( ) ( )k j k ks P y S sβ >= =                          (9) 

1( , ) ({ } )k k k ks s P y S s S sγ −′ ′= ∧ = = .              (10) 

Using Bayes’ rule and the assumption that channel is memoryless, ( )k sα can be 

written as: 

1

all 

all 

all 

all 

( ) ( )

( )

( )

({ } { }) ( )

({ } ) ( )

( , ) ( )

k k j k

j k k

j k k
s

k j k j k
s

k j k
s

k
s

s P S s y
P s y y

P s s y y

P s y s y P s y

P s y s P s y

s s s

α

γ α

< +

<

<
′

< <
′

<
′

′

= = ∧

= ∧ ∧

′= ∧ ∧ ∧

′ ′= ∧ ∧ ⋅ ∧

′ ′= ∧ ⋅ ∧

′ ′= ⋅

∑

∑

∑

∑

            (11) 

Assuming the trellis has the initial state 0 0S = , the initial conditions for ( )k sα  are: 

0 0

0 0

( 0) 1
( ) 0 for all 0
S
S s s

α
α

= =

= = ≠
                 (12) 

Similar to the derivation of ( )k sα , 1( )k sβ − ′  can also be written as: 

1
all 

( ) ( ) ( , )k k k
s

s s s sβ β γ− ′ ′= ⋅∑                      (13) 

If the trellis is terminated in the all-zero state, the initial conditions for ( )k sβ  are: 

(0) 1
( ) 0 0

N

N s s
β
β

=
= ≠

                        (14) 

If the trellis is not terminated, then the initial conditions for ( )k sβ  are: 

( ) 1 for all N s sβ =                       (15) 

where N is the number of the stages in the trellis. 

Thus, once the ( , )k s sγ ′  values are known, ( )k sα and 1( )k sβ − ′ values can be 

calculated recursively. 
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Using the derivation from Bayes’ rule, ( , )k s sγ ′  can be written as: 

( , ) ({ } )

( { }) ( )

( { }) ( )

( ) ( )

k k

k

k k

k k k

s s P y s s

P y s s P s s

P y s s P u

P y x P u

γ ′ ′= ∧

′ ′= ∧ ⋅

′= ∧ ⋅

= ⋅

                 (16) 

where ku  is the input bit which would cause the transition from state 1kS s− ′=  to 

state kS s=  and kx  is the corresponding transmitted codeword. ( )kP u is the a-prior 

probability of this input bit ku . 

Assuming the channel is Gaussian and using BPSK modulation, ( , )k s sγ ′  can be 

written as: 

( ( ) / 2)
2

1

( ( ) / 2)

1

( , ) ( ) ( { })

exp( 2 )
2

exp
2

k k

k k

k k k

n
u L u b

kl kl
l

n
u L u c

kl kl
l

s s P u P y s s

EC e a x y

LC e x y

γ

σ
⋅

=

⋅

=

′ ′= ⋅ ∧

= ⋅ ⋅ ⋅ ⋅

 = ⋅ ⋅  
 

∑

∑

            (17) 

where C is the term does not depend on the sign of the bit ku  and the transmitted 

codeword kx , n  is the number of the bits in codeword kx . cL  is called channel 

reliability value and defined as: 

c 2L 4
2

bE a
σ

= ⋅                           (18) 

where bE  is the transmitted energy per bit, 2σ  is the noise variance and a  is the 

fading amplitude( 1a =  for non-fading AWGN channels). 

Finally the a-posteriori LLR ( )kL u y  in equation (6) can be rewritten as: 

1
( , )

1

1
( , )

1

( , ) ( )

( ) ln
( , ) ( )

k k k
s s

uk
k

k k k
s s

uk

s s s

L u y
s s s

α γ β

α γ β

−
′ ⇒
=+

−
′ ⇒
=−

 ′⋅ ⋅
 
 =  ′⋅ ⋅
  
 

∑

∑
               (19) 

This conditional LLR ( )kL u y  is what MAP algorithm wants to get. 
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Because the turbo codes use RSC, we can separate ( , )k s sγ ′  into two parts. One 

has relationship with the systematic bit and the other does not. When we assume the 

systematic bit is the first bit of n transmitted bits, 1k kx u= , we get: 

( ( ) / 2)

1

( ( ) / 2)

2

( ( ) / 2)

( , ) exp
2

exp exp
2 2

exp ( , )
2

k k

k k

k k

n
u L u c

k kl kl
l

n
u L u c c

k ks kl kl
l

u L u c
k ks k

Ls s C e x y

L LC e u y x y

LC e u y s s

γ

χ

⋅

=

⋅

=

⋅

 ′ = ⋅ ⋅  
 

  = ⋅ ⋅ ⋅      
  ′= ⋅ ⋅ ⋅ 
 

∑

∑         (20) 

where ( , )k s sχ ′  is the part uncorrelated with the systematic bit and it is shown 

below: 

2
( , ) exp

2

n
c

k kl kl
l

Ls s x yχ
=

 ′ =  
 

∑                     (21) 

Then we can separate the a-posteriori LLR ( )kL u y  into three parts and rewrite it as 

follows: 

( )

( )

/ 2( ( ) / 2)
1

( , )
1

( ( ) / 2)
1

( , )
1

1
( , )

1

1
( ,

( , ) ( )

( ) ln
( , ) ( )

( , ) ( )

( ) ln
( , ) ( )

c ksk

c ksk

L yL u
k k k

s s
uk

k L yL u
k k k

s s
uk

k k k
s s

uk
k c ks

k k k
s s

e e s s s

L u y
e e s s s

s s s

L u L y
s s s

α χ β

α χ β

α χ β

α χ β

++
−

′ ⇒
=+

−−
−

′ ⇒
=−

−
′ ⇒
=+

−
′

 ′⋅ ⋅ ⋅ ⋅
 
 =  ′⋅ ⋅ ⋅ ⋅  
 

′⋅ ⋅

= + +
′⋅ ⋅

∑

∑

∑

)
1

( ) ( )
uk

k c ks e kL u L y L u

⇒
=−

 
 
 
 
  
 

= + +

∑
       (22) 

where: 

1
( , )

1

1
( , )

1

( , ) ( )

( ) ln
( , ) ( )

k k k
s s

uk
e k

k k k
s s

uk

s s s

L u
s s s

α χ β

α χ β

−
′ ⇒
=+

−
′ ⇒
=−

 ′⋅ ⋅
 
 =  ′⋅ ⋅
  
 

∑

∑
                (23) 

The first term ( )kL u  is the a-prior LLR which can be derived from ( )kP u  and 
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it is usually unknown at the decoder. Because we usually assume ( 1) 0.5kP u = ± =  at 

first time, the initial conditions of ( )kL u  are all zero in the logarithm domain. But 

when we use iterative turbo decoder, each component decoder can provide the other 

one with the a-prior LLRs. 

The second term c ksL y  stands for the soft output of the channel when the input 

systematic bit ku  transmitted through the channel and received as ksy . Because the 

channel reliability value cL  is directly relative to the channel SNR, the received 

systematic bit ksy  will have a large impact on the a-posteriori LLR ( )kL u y  if the 

channel SNR is high and vice versa. 

The third term ( )e kL u  is referred to as the extrinsic LLR for the bit ku  because 

it uses the values of the branch transition probabilities ( , )k s sγ ′  for all the branches 

except for the k-th branch. Then it will be sent to the next decoder as the a-prior 

information. 

The flowchart of all the operations involved in MAP algorithm and iterative 

decoding process is shown in Figure 3.3. 
( ) 0kL u =

c klL y

( , )k s sγ ′

1( )k sα − ( )k sβ( | )kL u y

( )kL u
A-priori info.Channel Values

Evaluate

Evaluate EvaluateCalculate LLR

Calculate Le

( | )e
kL u y

c ksL y

to next decoder
 

Figure 3.3: MAP iterative decoding flow chart 
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The structure of the turbo decoder is shown in Figure 3.4. It is constituted by two 

component decoders, one interleaver and one deinterleaver and the decoders will 

work iteratively. Each component decoder has three inputs: 1. the systematic 

information 2. The parity information associated the component encoder and 3. The 

information provided by the other component decoder which was referred to as 

a-prior information.  

( | )kL u y

( | )kL u y

( )kL u

( )kL u

c ksL y

c ksL y

c klL y

c klL y
12 ( )e

kL u

21( )e
kL u

 
Figure 3.4: Structure of turbo decoder 

We describe the iterative decoding process as follow:  

Firstly the component decoder 1 takes the systematic bits in natural order and the 

parity bits transmitted by the encoder 1 as its input signals but take the a-prior 

information, which should get from component decoder 2, as 0 since the component 

decoder 2 does not take action. After finish the decoding of the decoder 1, the 

decoding result or the a-prior information should be transferred to the decoder 2 in 

interleaving order.  

Secondly the decoder 2 takes the parity bits transmitted by the encoder 2, the 

systematic bits in interleaving order and the a-prior information provided by the 

decoder 1 in interleaving order as its input signals. When the decoder 2 finishes its 
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decoding process, it also produces the a-prior information for the decoder 1 but in the 

interleaving order, then transferring the a-prior information with the aid of the 

de-interleaver to the decoder 1.  

The first iteration completes after these steps and we can repeat again besides the 

decoder 1 has the a-prior information this time. Usually after 5 to 10 times iterations, 

the decoder will output the decoding results. Because the iterative decoding process is 

similar to the cyclic feedback mechanism of the turbo engine, we name the code 

“turbo code”. 

 

3.1.2 Max-Log-MAP Algorithm 

    The Max-Log-MAP algorithm simplifies the calculations of ( )k sα , ( )k sβ  and 

( , )k s sγ ′  which are needed by MAP algorithm by transferring these calculations into 

the log arithmetic domain and using the Jacobian logarithm approximation loosely: 

ln max( )ix
iii

e x 
≈ 

 
∑                        (24) 

where max( )ii
x  is the maximum value of ix . 

    By defining ( )kA s , ( )kB s  and ( , )k s s′Γ  as the logarithm of ( )k sα , ( )k sβ  

and ( , )k s sγ ′ , we can rewrite the equations as follows: 

( )

[ ]

( )

1
all 

1
all 

1

( ) ln ( )

ln ( ) ( , )

ln exp ( ) ( , )

max ( ) ( , )

k k

k k
s

k k
s

k ks

A s s

s s s

A s s s

A s s s

α

α γ−
′

−
′

−′

 ′ ′=  
 
 ′ ′= + Γ 
 

′ ′≈ + Γ

∑

∑

@

             (25) 

( )
( )

1 1( ) ln ( )

max ( ) ( , )
k k

k ks

B s s

B s s s

β− −′ ′

′≈ + Γ

@
                  (26) 

Equation (25) is calculated in a forward recursive manner and equation (26) is 



 20 

( )
'

( ) max ( ') ( ', )k k ks
A s A s s s= + Γ calculated in a backward recursive manner but they 

are both equivalent to the recursion used in the Viterbi algorithm – for the merging 

paths the survivor is found by using additions and comparison. Then the new branch 

metric ( , )k s s′Γ  can be written as: 

( )
( ( ) / 2)

2
1

( ( ) / 2)

1

1

( , ) ln ( , )

ln exp 2
2

ln exp
2

1ˆ ( )
2 2

k k

k k

k k

n
u L u b

kl kl
l

n
u L u c

kl kl
l

n
c

k k kl kl
l

s s s s

EC e a y x

LC e y x

LC u L u y x

γ

σ
⋅

=

⋅

=

=

′ ′Γ

  = ⋅    
  

= ⋅    

= + ⋅ +

∑

∑

∑

@

          (27) 

where ˆ ln( )C C=  does not have any relationship with the data bit, ku ,or the 

codeword, kx , and so can be considered a constant and ignored.  

    From equation (19), the a-posteriori LLRs ( )kL u y  for Max-Log-MAP 

algorithm can be calculated as: 

( )

( )
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( , )

1

1
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1

1
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1

1
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1

( , )
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k k ks s
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          (28) 

The transitions from the trellis stage 1kS −  to the stage kS  are grouped into two 

groups. One contains those might happen if 1ku = +  and the other contains those 
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might happen if 1ku = − . In each group, we only want the maximum value of 

( )1( ) ( , ) ( )k k kA s s s B s− ′ ′+ Γ +  and the a-posteriori LLRs ( )kL u y  can be calculated as 

their difference.  

 

3.1.3 Log-MAP Algorithm 

It was found by Robertson et al. [23] Max-Log-MAP algorithm would result in 

worse performance than MAP algorithm when used iterative decoding due to the 

rough approximation. But the approximation can be made exact by using the Jacobian 

logarithm: 

( )1 21 2
1 2

1 2 1 2

1 2

ln( ) max( , ) ln 1

max( , ) ( )
( , )

x xx x

c

e e x x e

x x f x x
g x x

− −+ = + +

= + −

=

              (29) 

where ( )cf σ stands for a correction term and σ equals to the magnitude of the 

difference between 1x  and 2x . ( )cf σ  need not be computed for every value of σ , 

but instead can be stored in a look-up table. There are several ways to implement the 

look-up table and make the algorithm have other names such as constant-log-MAP, 

linear-log-MAP algorithms. 

σ

( )cf σ
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Figure 3.5: Various look-up table for Log-MAP 

    For binary trellises ( )kA s and 1( )kB s− ′  can be written as: 

( )

[ ]

( ) ( )( )
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1
all 

1 1

1 1
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        (30) 

 

( )
( ) ( )( )

( ) ( )( )

1 1( ) ln ( )
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( ) ( , ) ( ) ( , )

k k

k k k k
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@

         (31) 

 

Because there will be 12 2K −⋅  transitions at each stage of the trellis for binary trellis, 

there will be 12K −  transitions in each of the maximizations in equation (30) (31), 

where K is the constraint length of the convolutional code. If we want to apply the 

Jacobian logarithm to it, we need to nest the 1 2( , )g x x  operations. Then we should 

use the nesting equation shown below: 

( )( )( )( )1 3 2 1
1

ln , , , , ,i

I
x

I I
i

e g x g x g x g x x−
=

 
= 

 
∑ L L           (32) 

 

3.1.4 SNR mismatch 

    According to [24] [25], the BER performance of the Log-MAP algorithm would 

decrease if the channel’s SNR ratio estimation is not estimated correctly. As the frame 

size of Turbo code increases, the effect on BER performance would become more 

severe. Contrarily the BER performance of Max-Log-MAP will not be affected by the 

mismatched SNR. 

    The reason for BER performance affected by SNR mismatch is the non-linear 

character of Log-MAP algorithm. The difference between Max-Log-MAP algorithm 
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and Log-MAP algorithm is the correction term on the right hand side in equation (29). 

The correction term results in non-linear character of Log-MAP algorithm. When we 

calculate the branch metrics, state metrics, a-posterior LLR and extrinsic information 

iteratively, their values will be affected by the non-linear term. Since the 

approximation used by Max-Log-MAP algorithm is linear, the branch metrics, state 

metrics, a-posterior LLR and extrinsic information all will be scaled by cL  

simultaneously. Therefore, we can let cL  equal to one in the calculations. 

 

3.1.5 Conclusion 

As mentioned, there are two kinds of SISO decoding algorithms could be 

adopted in the turbo decoder. One is the family of MAP algorithms and the other is 

SOVA. Although [23] claims that the SOVA has only half the complexity of the 

Max-Log-MAP, there are other researches [26] find SOVA is more complex than 

Max-Log-MAP unless the decoder using SOVA is designed carefully. No matter how 

the decoder using SOVA is implemented, the BER performance is worse than or equal 

to (at most) the performance of Max-Log-MAP. Therefore we do not discuss about 

SOVA in this thesis. 

    The original MAP algorithm does not suit to be implemented on the hardware 

due to it needs many multiplications and exponential calculations. Therefore, the most 

popular Turbo decoding algorithms derived from MAP algorithm and have been 

adopted in the hardware implementations are Log-MAP and Max-Log-MAP 

algorithms. As we described, Max-Log-MAP algorithm is a simplified version of 

Log-MAP algorithm and the former BER performance is slight worse than the latter 

one. But according to the analyses from [26], the computational complexity of 

Log-MAP algorithm is 2 to 3 times as complex as Max-Log-MAP.  

    According to section 3.1.4, Log-MAP algorithm suffers from SNR mismatch 
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problem but Max-Log-MAP algorithm does not. Even if the channel SNR could be 

estimated correctly real time, Log-MAP algorithm still needs several lookup tables in 

the hardware implementation but Max-Log-MAP does not. In fact, the channel varies 

at any time and on-line SNR estimation is impracticable to some degree. Therefore we 

implement Max-Log-MAP algorithm on our hardware. 

 

3.2 Memory saving methodologies 

    In turbo decoding, the memory part always plays an important rule because it 

occupies most of the area of the decoder. In this chapter, we will introduce the original 

decoder structure and there kinds of saving memory decoding method, including 

preprocessing over whole block method, preprocessing over window method and 

halfway method. Finally we will compare these methods in memory capacity aspect. 

When we say memory capacity in this section, we mean those used to store the state 

metrics. 

    From equation (28) the a-posteriori LLRs ( )kL u y  are calculated as: 

( ) ( )1 1( , ) ( , )
1 1

( ) max ( ) ( , ) ( ) max ( ) ( , ) ( )k k k k k k ks s s s
u uk k

L u y A s s s B s A s s s B s− −′ ′⇒ ⇒
=+ =−

′ ′ ′ ′= + Γ + − + Γ +  

That means we must have the values of 1( )kA s− ′ , ( , )k s s′Γ  and ( )kB s  at first. As we 

know, 1( )kA s− ′  is calculated in forward recursive manner and ( )kB s  is calculated in 

backward recursive manner.  

Assume the inputs to the encoders are binary, the component encoder has 

constraint length K and the data need to be decoded have a frame length N. We do the 

backward recursion first due to be capable of making decisions in the usual order of 

the data. In order to make decisions over the whole frame, the state metrics calculated 

during the first processing (backward) must be memorized. Then the required memory 
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size for a received frame length N is 12K
rM N q−= ⋅ ⋅ , where q  is the number of 

quantization binary digits. The operations flow and the memory required are shown in 

Figure 3.6. 

We take the specification from 3GPP turbo code for example, the maximum 

frame length (Nmax) is 5114 and the constraint length (K) is 4 so that if we set the 

number of quantization bits ( q ) equal to 10, we will need about 410 Kbits. In most 

case, reducing the size of the memory is necessary. 

 

Backward flow

Forward flow

0 1 2 3 4 5 k N-2 N-1 N

 
Figure 3.6: Operations on a frame of size N 

(The rectangles with gray lines are the memories required during the processing) 

 

3.2.1 Preprocessing over Whole Block Method 

    The first method for reducing the memory size uses the concept of initialization. 

The initialization process precedes the first processing in the same order (backward). 

Choose a number L  as the length of a block and calculate the number p  by 

Np
L

 =   
 , then the forward flows and backward flows are subdivided into p  

sub-process. The operations flow and the memory required are shown in Figure 3.7. 
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( 1)p L− ⋅

 

Figure 3.7: Operations on a frame of size N for preprocessing over whole block 

(The rectangles with gray lines are the memories required during the processing of 

making decision and the black rectangles represent the memories for initialization) 

 

In the beginning, we perform the backward calculations and store the backward 

state metrics in the memories (which are indicated as black rectangles in Figure 3.7 

periodically (period=L). The stored values will serve as initialization metrics for the 

backward sub-processes. So the backward flow is carried out on successive windows 

of size L, where the starting state metrics are known. 

The capacity of the memory for initialization is ( ) 11 2K
riM p q−= − ⋅ ⋅ . The 

capacity of the memory for making decisions is 12K
rdM L q−= ⋅ ⋅  for using only one 

ACS processor. If using two ACS processors, it can be shown that the required 

memory size can decrease as ( ) 11 2K
rdM L q−= − ⋅ ⋅ . So the overall required memories 

are ( ) 11 2K
totalM L p q−= + − ⋅ ⋅  for using one ACS processor and 

( ) 12 2K
totalM L p q−= + − ⋅ ⋅  for using two ACS processors. In general, we choose 

p L N = ≈    because this choice can offer the minimal memory capacity. 
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We take the 3GPP Turbo encoder for example again and let 10q = , we get: 

5114 72p L N   = ≈ = =     

the total memory capacity is ( ) 372 72 1 2 10 11440 = 11.44 Kbits+ − ⋅ ⋅ = . This number 

is 36 times smaller than direct decoding method. 

 

3.2.2 Sliding Window Method 

    The sliding window method, proposed by [27], is based on the trellis 

convergence property of convolutional code. That is, if the Viterbi decoder started in 

unknown state, the state metrics generated initially are useless. But after a few 

constraint length (usually five to ten times constraint length), the set of the state 

metrics are as reliable as if the process had been started at the initial node. This fact 

can also apply to the backward and forward recursive calculations in turbo codes. 

Now the initialization state metrics for backward recursive calculations ( ( )kB s  or Bk ) 

do not need to wait until finishing pre-processing over almost the whole block. The 

operations flow is shown in Figure 3.8. The pre-processing length is b bits and the 

whole frame is divided into p blocks. Each block is L  bits long except the last one is 

(  mod )N L . It is apparent that the memories needed are fewer than the fore-method if 

L  is small. The total capacity of the memories required to make decisions is 

12KM L q−= ⋅ ⋅ . 
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Figure 3.8: Operation flow for sliding window method 

(The rectangles with gray lines are the memories required during making decisions) 

Generally speaking, L cK=  5 ~ 10c = , K is the constraint length, and b dL= , d ∈ Ν . 

 

    We take 3GPP Turbo code as an example and assume 5 20L K= ⋅ =  and b L=  

and 10q = . The required memory capacity is: 

12 20 8 10 1600 1.6 KbitsKM L q−= ⋅ ⋅ = ⋅ ⋅ = =  

This number is 256 times smaller than the direct decoding method. 

 

3.2.3 Halfway Method 

    Halfway method was originally proposed by [28]. In this thesis, we make some 

modifications on the original version. The original version is applied to the data frame 

which is made up of the received data of frame size N  followed by the one of these 

same data in the interleaved order. Therefore, the data frame is 2N  bits long. We 

make modifications so that this method can be applied to decode the data in natural 

order and in the interleaved order respectively. This method is kindly like the first 

method, preprocessing over the whole block method which needs to use periodic 

memorizing. Backward sub-processes are carried out successively on blocks of data 
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which is L  bits long and the metrics calculated are need to be memorized for 

making the decisions with forward sub-processes. Each backward sub-process is 

followed by a forward sub-process on the same data block. The required memories for 

calculation of the decisions are 12K
rdM L q−= ⋅ ⋅ .  

    Different from the first method, the initialization metrics for each backward 

sub-process are set in a uniform and arbitrary way. The 12K −  calculated metrics on 

the first data of the interval of size L  in each backward sub-process are needed to be 

stored. They will serve as the initialization metrics for the sub-processes starting from 

the next iteration. The memory capacity for these kind initialization metrics is 

( ) 11 2K
riM D p q−= ⋅ − ⋅ ⋅  where the first term in right hand side, D , represents the 

number of the component encoders. Usually, we use two RSC encoders in turbo code, 

that is 2D = . The overall required memories are ( )( ) 11 2K
totalM L D p q−= + ⋅ − ⋅ ⋅  for 

using only one ACS processor and ( )( ) 12 2K
totalM L D p q−= + ⋅ − ⋅ ⋅  for that with two 

processors. This method is most effective and fastest in these three memory saving 

algorithms because there are no initialization processing and processing forcing the 

convergence of the trellis needed in the operations. 

 

Figure 3.9: Operations flow for Halfway 

(The rectangles with gray lines are the memories required during making decisions 
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and the black rectangles represent the memories for next-iteration initialization) 

 

    We take 3GPP Turbo code as an example and assume 93L = , 55p =  and 

10q = , the memory capacity is  

( )( )93 2 55 1 8 10 16080 16.08 Kbits+ ⋅ − ⋅ ⋅ = =  

This number is 25 times smaller than the direct decoding method. 

 

3.2.4 Comparisons 

    The memory capacities for each method are listed in Table 3.1. Because 

preprocessing over whole block method needs an initialization process over whole 

block, its speed is slower than those who do not need initializations. The sliding 

window method also needs several initialization processes over some small windows. 

According to the length of the block ( L ) and the length of pre-processing ( b ), the 

sliding windows method may be slower or faster than the first memory saving method 

but never be faster than Halfway method. If the length of pre-processing is bigger 

than L , the overlapping calculations of backward metrics occur more times and it will 

make the decoding speed slow down. Because halfway method needs no 

initializations, it can perform as faster as the original Max-Log-MAP algorithm. 

 

Using one ACS processor Memory capacity 
Max-Log-MAP 12KN q−⋅ ⋅  

Preprocessing over whole block ( ) 11 2KL p q−+ − ⋅ ⋅  

Sliding window 12KL q−⋅ ⋅  
Halfway ( )( ) 12 2KL D p q−+ ⋅ − ⋅ ⋅  

Table 3.1: Comparisons of saving memory decoding methods 
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Assume using only one decoder with only one ACS processor. That is the 

decoder can only deal with one trellis stage at one time regardless of forward 

recursion calculations or backward recursion calculations. The following symbols will 

be used: 

N   the length of one data frame 

K   the constraint length of the convolutional encoder 

q   the number of quantization binary digits 

L   block length 

p   the number of block 

b   the length for convergence when using sliding window, b dL= , d ∈ Ν  

D   the number of the encoders 

We will use the subscript “wb” as “whole block”, the subscript “sw” as “sliding 

window”, the subscript “hw” as “halfway”, POWB as “preprocessing over whole 

block method”, SW as “sliding window method” and HW as “halfway method”. 

The comparison of the complexities bases on the same decoding algorithm but 

different memory saving method. We only need to consider only the numbers of trellis 

stages required processing. The numbers of stages required processing per half 

iteration for each method is listed below: 

POWB: ( )2 3wb wbN N L N L⋅ + − = ⋅ −  

SW: mod 0swN L =  

( )
( )

2 1 if  
 

2
sw sw

sw sw

N p b b L
N p d b b d L d N

⋅ + − ⋅ <
 ⋅ + − ⋅ = ⋅ ∈

 

HW: 2 N⋅  

The hypothesis mod 0swN L = for SW is an assumption without losing generality.  

For POWB, the advantages are that it needs fewer memories than direct 
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decoding without using any memory saving skills and it also provides the same 

performance as direct decoding. The disadvantages are the decoding latency and the 

need for many calculations to initialize the backward initialization memory. 

For SW, the advantage is that the memory capacity needed is smaller than other 

methods if let ,sw hw wbL L L< . The disadvantage is the need for initializations. If 

  and  sw wb swL L b L< ≥ , it will need more calculations of initialization than POWB. 

When swb L≥ , there will be ( ) ( )swp d b L− ⋅ −  overlapping calculations for 

initializations. 

For HW, the advantage is the lack of the initialization; therefore it needs as many 

calculations as direct decoding does. This is very helpful in using only one ACS 

processor. The simulation performance of HW in our test is equal to SW. The 

disadvantage is the memory capacity compared to other memory saving methods. 

From another aspect, decoding one bit will need to calculate m trellis stages, 

where m is: 

( )3
3 3wb wb

POWB

N L Lm
N N

⋅ −
= = − ≈  

2 2sw
SW

sw sw

L b bm
L L

⋅ +
≈ = +  

2 2HW
Nm

N
⋅

= =  

We define efficiency as follows: 

1

  '  
   and    

decode one bit s informationefficiency
number of forward backward state metrics calculated
m−

=

=

 

Theoretically, decoding one bit will require one forward state metrics calculation and 

one backward state metrics calculation. By observing the above definition, we know 

halfway method provide the same efficiency as the theoretic value and it is the most 

efficient calculation in these three memory-saving methods. Furthermore, the 
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redundant calculations will consume unnecessary power. 

The comparison curves of the BER performances of the SW and HW method are 

shown in Figure 3.10. Assume using 3GPP turbo coder, the data frame size 500N = , 

256HWL = , 24SWL = and 24b = . The word “SW-#A-#B” in Figure means the curve 

uses sliding window method with #SWL A=  and #b B= ; the word “HW-#C” 

means the curve uses halfway method with #HWL C= . 
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10
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Rate=1/3              
G=[15,13]octal        
iteration=5           
                      

 

Figure 3.10: Compare the performances of halfway and sliding window 

 

If using sliding window method with fewer than ( 1)d +  ACS processors, it will 

lead to an additional memory of 12K q− ⋅  and decrease the decoding speed. The 

problem of the slow decoding speed of sliding windows method could be solved by 

using ( 1)d +  ACS processors. However, the decoder using halfway method only 

needs an additional ACS processor, totally two ACS processors, can achieve the same 

decoding speed as the sliding window method with ( 1)d +  ACS processors.
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___________________________________________________ 

Chapter 4 

3GPP Turbo Encoder 

___________________________________________________ 

 

3GPP Turbo coder [29] uses Parallel Concatenated Convolutional Code (PCCC) 

with two 8-state constituent encoders and one internal interleaver. The code rate of 

Turbo coder is 1/3. The structure of 3GPP Turbo coder is shown in Figure 4.1. 

The requests of the encoder are as follows: 

1. The initial value of the shift registers of the constituent encoders shall be all zeros. 

2. Outputs from the Turbo coders are  

1 1 1, , ,..., , ,s p p sK pK pKx x x x x x′ ′  

where 1 2, ,...,s s sKx x x  are the systematic bits which equal to the input bits ku  to the 

Turbo encoder, and K is the number of a block of input bits, and 1 2, ,...,p p pKx x x  and 

1 2, ,...,p p pKx x x′ ′ ′  are the bits output from first and second constituent encoders, 

respectively. The bits output from Turbo code internal interleaver are denoted by 

1 2, ,..., ku u u′ ′ ′  and these bits are to be input to the second constituent encoder. 

 

4.1 Constituent Encoder 

3GPP constituent 8-state encoder and its corresponding trellis diagram are shown 

in Figure 4.1. The transfer function of the 8-state constituent code for PCCC is: 

2 3

3

1( ) 1,
1

D DG D
D D

 + +
=  + + 

, 
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Figure 4.1: Structure of rate 1/3 Turbo coder  

(dotted lines apply for trellis termination) 
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Figure 4.2: Constituent encode of 3GPP turbo encoder and its trellis 
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4.2 Trellis Termination 

    Because the first request, the initial value of the shift registers of the encoders 

shall be all zeros, both the constituent encoders need to perform trellis termination 

after encoding one block of input bits. The action of terminating the trellis is 

performed by taking the last 1K −  bits from the shift register of each encoder 

feedback to their selves after all information bits are encoded then all shift registers 

will return to zero. The switch in each constituent encoder should be switched to the 

lower position when terminating and the structure of each encoder is shown in Figure 

4.3. These encoded tail bits are padded after the encoded information bits, and the 

transmitted bits for trellis termination shall be: 

( 1) ( 1) ( 2) ( 2) ( 3) ( 3) ( 1) ( 1) ( 2) ( 2) ( 3) ( 3), , , , , , , , , , ,s K p K s K p K s K p K s K p K s K p K s K p Kx x x x x x x x x x x x+ + + + + + + + + + + +′ ′ ′ ′ ′ ′  

 

Figure 4.3: Constituent encoder for terminating the trellis 

 

4.3 Interleaver 

    The 3GPP Turbo code internal interleaver is a block interleaver consisting of a 

rectangular matrix and its size is decided by the frame size of the input bits, K. The 

original message bits input to the interleaver row by row. If the input bits are not 

enough to filling the matrix, we need to add some redundant bits to fill it. Then we 

perform intra-row permutations and inter-row permutations of the rectangular matrix. 

Finally, the bits in the matrix are read out column by column and pruning the 
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redundant bits we added before. We denote the bits input to the internal interleaver by 

1 2 3, , ,... Ku u u u , where K is the integer number of the bits and takes one value of 40 ≤  

K ≤  5114.  

 

4.3.1 Deciding the size of the rectangular matrix 

First to all, we need to decide the number of the rows and the columns of the 

rectangular matrix according the following process: 

(1) According to the equation (33), determining the number of rows of the rectangular 

matrix, R. The rows of rectangular matrix are numbered 0, 1, …, R - 1 from top to 

bottom 







=
≤≤≤≤

≤≤
=

                         e)other valuany ( if 20, 
 ))530481(or  )200160(( if 10,  

                                    )15940( if 5,

K
KK

K
R

       

 (33)

 

(2) Along with Table 4.1 and relationship shown below, we can determine the prime 

number, p, used in the intra-permutation and the number of columns of 

rectangular matrix, C. The columns of rectangular matrix are numbered 0, 1, …, C 

- 1 from left to right 

if (481 ≤  K ≤  530) then 

p = 53 and C = p. 

else 

Find minimum number p from Table 4.1 such that 

( )1+×≤ pRK , 

and determine C such that 
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1 if ( 1)
 if  ( 1)

1 if

p K R p
C p R p K R p

p R p K

− ≤ ⋅ −
= ⋅ − < ≤ ⋅
 + ⋅ ≤

 

end if 

 

p v p v p v p v p v 

7 3 47 5 101 2 157 5 223 3 

11 2 53 2 103 5 163 2 227 2 

13 2 59 2 107 2 167 5 229 6 

17 3 61 2 109 6 173 2 233 3 

19 2 67 2 113 3 179 2 239 7 

23 5 71 7 127 3 181 2 241 7 

29 2 73 5 131 2 191 19 251 6 

31 3 79 3 137 3 193 5 257 3 

37 2 83 2 139 2 197 2   

41 6 89 3 149 2 199 3   

43 3 97 5 151 6 211 2   

Table 4.1: List of prime number p and associated primitive root v 

(3)Write the input bit sequence 1 2 3, , ,... Ku u u u  into the R×C rectangular matrix row 

by row: 

1 2 3

( 1) ( 2) ( 3) 2

(( 1) 1) (( 1) 2) (( 1) 3)

C

C C C C

R C R C R C R C

y y y y
y y y y

y y y y

+ + +

− ⋅ + − ⋅ + − ⋅ + ⋅

 
 
 
 
 
  

L
L

M M M L M
L  

where k ky u=  for k = 1, 2, …, K and if R ×C > K, the dummy bits are added to the 
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tail of the input sequence such that 0 or 1ky =  for k = K + 1, K + 2, …, R×C.  

These dummy bits will be discarded when read the bits from the rectangular matrix 

after intra-row and inter-row permutations. 

 

After the R×C rectangular matrix is filled with the input and dummy bits, we perform 

the intra-row permutations and inter-row permutations in turn. 

Number of input bits K Number of rows R 
Inter-row permutation patterns     

<T(0), T(1), …, T(R - 1)> 

(40≦K≦159) 5 <4, 3, 2, 1, 0> 

(160 ≦ K ≦ 200) or 

(481≦K≦530) 
10 <9, 8, 7, 6, 5, 4, 3, 2, 1, 0> 

(2281≦ K≦ 2480) or 

(3161≦K≦3210) 
20 

<19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 16, 

13, 17, 15, 3, 1, 6, 11, 8, 10> 

K = any other value 20 
<19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 10, 8, 

13, 17, 3, 1, 16, 6, 15, 11> 

Table 4.2: Inter-row permutation patterns for Turbo code internal interleaver 

 

4.3.2 Intra-row and inter row permutations 

After the bits input to the R×C rectangular matrix, the intra-row and inter-row 

permutations for the R×C rectangular matrix are performed stepwise by using the 

following algorithm with steps (1) – (6): 

(1) Select a primitive root v from Table 4.1, which is indicated on the right side of 

the prime number p. 

(2) Construct the base sequence { }0,1, , 2
( )

j p
s j

∈ −L
 for intra-row permutation as: 
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( )( ) ( 1) mod  s j v s j p= ⋅ − , 1, 2, , ( 2)j p= −L , and s(0) = 1. 

(3) Assign q0 = 1 to be the first prime integer in the sequence { }0,1,..., 1i i R
q

∈ −
, and 

determine the prime integer iq  in the sequence { }0,1,..., 1i i R
q

∈ −
 to be a least 

prime integer such that . . ( , 1) 1ig c d q p − = , 6iq > , and 1i iq q −>  for each 

1,2, , 1i R= −L .  Here g.c.d. is greatest common divisor. 

(4) Permute the sequence { }0,1,..., 1i i R
q

∈ −
 to make the sequence { }0,1, , 1i i R

r
∈ −L

 such 

that 

( )T i ir q= , 0,1, , 1i R= −L  

where { }0,1, , 1
( )

i R
T i

∈ −L
 is the inter-row permutation pattern defined as the one 

of the four kind of patterns, which are shown in Table 4.2, depending on the 

number of input bits K. 

(5) Perform the i-th (i = 0, 1, …, R - 1) intra-row permutation as: 

if (C = p) then 

( ) ( ) ( )( )1mod −×= prjsjU ii ,   j = 0, 1, …, (p - 2), and Ui(p - 1) = 0, 

where Ui(j) is the original bit position of j-th permuted bit of i-th row. 

end if 

if (C = p + 1) then 

( ) ( ) ( )( )1mod −×= prjsjU ii ,   j = 0, 1, …, (p - 2).  Ui(p - 1) = 0, and Ui(p) = p, 

where Ui(j) is the original bit position of j-th permuted bit of i-th row, and  

if (K = R×C) then 

Exchange UR-1(p) with UR-1(0). 

end if 

end if 

if (C = p - 1) then  
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( ) ( ) ( )( ) 11mod −−×= prjsjU ii ,    j = 0, 1, …, (p - 2), 

where Ui(j) is the original bit position of j-th permuted bit of i-th row. 

end if 

(6) Perform the inter-row permutation for the rectangular matrix based on the 

pattern ( ) { }1,,1,0 −∈ Ri
iT

L
, where T(i) is the original row position of the i-th 

permuted row. 

4.3.3 Output the bits from the rectangular matrix with pruning 

After intra-row and inter-row permutations, the bits of the permuted rectangular 

matrix are denoted by 'ky : 

1 ( 1) (2 1) (( 1) 1)

2 ( 2) (2 2) (( 1) 2)

2 3

' ' ' '
' ' ' '

' ' ' '

R R C R

R R C R

R R R C R

y y y y
y y y y

y y y y

+ + − ⋅ +

+ + − ⋅ +

⋅

 
 
 
 
 
 

L
L

M M M L M
L

 

The output of the Turbo code internal interleaver is the bit sequence read out 

column by column from the intra-row and inter-row permuted R× C rectangular 

matrix starting with bit y'1 in row 0 of column 0 and ending with bit y'CR in row R - 1 

of column C - 1.  The output is pruned by deleting dummy bits that were padded to 

the input of the rectangular matrix before intra-row and inter row permutations, i.e. 

bits y'k that corresponds to bits yk with k > K are removed from the output.  The bits 

output from Turbo code internal interleaver are denoted by x'1, x'2, …, x'K, where x'1 

corresponds to the bit y'k with smallest index k after pruning, x'2 to the bit y'k with 

second smallest index k after pruning, and so on. The number of bits output from 

Turbo code internal interleaver is K and the total number of pruned bits is: R C K⋅ − . 

The interleaving flow chart after deciding R, C is shown in Figure 4.4. 
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Figure 4.4: Interleaving flow chart 
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_____________________________________________________________________ 

Chapter 5 

Design Considerations 
_____________________________________________________________________ 

 

    The 3GPP turbo encoders are constructed by two identical encoders; therefore, 

we can use only one decoder to decode the received sequence serially and iteratively. 

In this thesis, the turbo decoder uses only one decoder and only one ACS processor to 

calculate the forward and backward state metrics for low complexity. When designing 

the hardware of the decoder, we need to discuss and consider about several issues as 

follows: 

1. Decoding algorithm selection. 

2. Memory saving method selection. 

3. Decision of the block length. 

4. The analyses of fixed-point representations for calculations. 

 

5.1 Decoding algorithm selection 

Due to Max-Log-MAP algorithm’s low complexity and only minor performance 

loss comparing with Log-MAP and the poor SNR sensitivity which means we will not 

need any multiplications in decoding process, we implement our hardware by 

Max-Log-MAP algorithm. 

 

5.2 Memory saving method selection 

    Because we use only one decoder for decoding, we cannot tolerate the redundant 
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calculations for initialization processes. Since halfway method does not have the 

redundant calculations and needs fewer calculations than the other memory saving 

methods we will adopt this method to implement the hardware for saving memory 

capacity and reducing the power consumption. 

 

5.3 Decision of the block length 

    After choosing the memory saving method, we need to decide the block length. 

Although the memory depth can be set arbitrary in the format of power of 2 on FPGA, 

it is somewhat impractical in ASIC. Here we assume the minimum memory depth is 

32 then we can derive the memory capacity for the initialization memory and state 

metrics memory respectively for different block length. The results are shown in 

Table 5.1, the forth column means the original initialization memory needed. The 

second column is the actual memory depth we implement on hardware since we 

assume the smallest memory depth is 32. 

 

block length / 
 state metric 

memory depth 

initialization 
memory depth 

Total memory 
depth 

p*D           
(D=2 for 
3GPP) 

32 = 32 + 0 320 = 256 + 64 352 320 

64 = 64 + 0 160 = 128 + 32 224 160 

96 = 64 + 32 128 = 128 + 0 224 108 

128 = 128 + 0 96  = 64 + 32 224 80 

160 = 128 + 32 64  = 64 + 0 224 64 

192 = 128 + 64 64  = 64 + 0 256 54 

256 = 256 + 0 64  = 64 + 0 320 40 

288 = 256 +32 64  = 64 + 0 352 36 

Table 5.1: various memory depths  
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We simulate the decoder of different block length for three minimum memory 

requirements. The performances for various block length are shown in Figure 5.1. 

From the Figure 5.1, we can observe that the performance gets better as the block 

length increases. BER256 is better than BER128 by 1 dB and BER192 by 0.5 dB so that 

we choose 256 as the block length for the turbo decoder in order not to degrade the 

decoder’s BER performance too much. 
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Figure 5.1: Simulations for various block length 

 

5.4 Analyses of fixed-point representations for calculations 

    In the fixed-point implement of turbo decoder the word length will affect the 

performance of the decoder. Unnecessary bits would waste the memory space, 

increase the computational complexity of the hardware, consume more power and 

decrease the hardware speed. 

    The data required in Max-Log-MAP decoding process are: the received 
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sequence , ,ks kp kpy y y′ , the branch metrics ( , )k s s′Γ , the forward state metrics ( )kA s , 

the backward state metrics ( )kB s , the a-priori information ( )kL u  and the extrinsic 

information ( )e kL u , a-posterior LLR ( )kL u y . 

    First of all, we decide the number of the fractional bits of all quantities. The 

simulation results are shown in Figure 5.2. By comparing the results, it is apparent 

that the performances are poor when we set the number of the fractional bits to 1 or 2. 

But when the number of the fractional bits equals to 3, the performance gets very 

close to Max-Log-MAP in floating point. Increasing the number of the fractional bits 

to 4, the performance will not get much improvement. Therefore we will choose 3 as 

the number of the fractional bits of all quantities. 
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Figure 5.2: Simulations for various precision 

 

After deciding the precision, we consider the dynamic range of all quantities to decide 

the number of the integer bits then we could decide the fixed point representation of 
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all. We will use FP(q,f) to represent the fixed point representation, where q is the total 

number of the bits and f is the number of the fractional bits, then (q-f) is the number of 

the integer bits and that is the dynamic range. 

 

5.4.1 Received sequence , , 'ks kp kpy y y  

The received sequence mainly relates to the modulation/demodulation and 

the transmit channel. Assume the channel is AWGN non-fading and using BPSK 

modulation to transmit the encoded information and the channel’s SNR at least 

equal to 0 dB, the value of the received sequence will distribute over 7 to -7 

through the MATLAB simulations. Consequently, we need 3 bits to represent the 

integer value and 1 bit to represent the sign and totally we need 7 bits, FP(7,3) for 

the received sequence. 

 

5.4.2 Branch metrics ( , )k s s′Γ  

The branch metrics are calculated by equation (27) and we rewrite it here 

1

1ˆ( , ) ( )
2 2

n
c

k k k kl kl
l

Ls s C u L u y x
=

′Γ = + ⋅ + ∑  

As we discussed in section 3.1.4, Max-Log-MAP is SNR independent and we can 

let 1cL =  and discard the constant term Ĉ , this equation can be rewritten as: 

1

1 1( ', ) ( )
2 2

n

k k k kl kl
l

s s u L u y x
=

Γ = ⋅ + ∑
               (34)

 

where n is the number of the encoded bits and equals to 2 for 3GPP. Because it is 

relative to a-priori LLR, ( )kL u , we will decide it’s fixed point representation, 

FP(qbm,3), after deciding ( )kL u . The discuss following will assume the branch 

metrics are big enough to store a-priori LLR ( )kL u  until deciding ( )kL u . 
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5.4.3 Forward state metrics ( )kA s and Backward state metrics ( )kB s  

Because 3GPP encoder starts to encode the information from state 0S , 

ideally the forward recursive calculations has the initialization conditions as 

follows: 

0 0 0 0

0 0 0

( 0) ln( ( 0)) ln(1) 0
( ) ln( ( )) ln(0)  0j

A S S
A S s S s for s

α
α

= = = = =
 = = = = = −∞ ≠  

 

Since 3GPP encoder provides the trellis termination, the backward recursive 

calculations has the initialization conditions as follows: 

0 0 0

0 0 0

( 0) ln( ( 0)) ln(1) 0
( ) ln( ( )) ln(0)  0
N

N

B S S
B S s S s for s

α
α

= = = = =
 = = = = = −∞ ≠  

 

 In hardware design, there is no infinity value. Thus we set 0 0( 0)A S =  and 

0( 0)NB S =  equal to the maximum value that can be represented by FP(qsm ,3) 

where qsm will be decided later. And we set 0 0( )A S s= , 0( )NB S s=  0for s ≠  equal 

to zero. Generally this setting would not affect the LLR calculations except the 

maximum value is not infinity anymore because we only need to know their 

relative difference value but not their exact values. The simulation results are 

shown in Figure 5.3. According to the simulation results, we let qsm equal to 6  
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Figure 5.3: Simulations for deciding the integer bits of state metrics 

 

5.4.4 a-priori information LLR ( )kL u , extrinsic information ( )e kL u  

From equation (1) 

( 1)( ) ln
( 1)

k
k

k

P uL u
P u

 = +
 = − 

@  

we can derive ( 1)kP u = ±  as: 

( ) / 2
( ) / 2

( )( 1)
1

k
k

k

L u
L u

k L u
eP u e

e

−
±

−

 
= ± = ⋅ + 

 

and the corresponding probabilities for ( ) 11 ~ 12kL u = −  are tabulated in Table 

5.2. Thus we can see when ( ) 7kL u ≥ , ( 1) 0.999kP u = + ≥  and ( ) 8kL u ≤ − , 

( 1) 0.9996kP u = + ≥ , that is a-prior LLR for the decoded bit is highly believable. 

The simulation results for different integer bits of ( )kL u  are shown in the Figure 

5.4.  
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( )kL u  11 10 9 8 7 6 5 4 

( 1)kP u = + 0.99998 0.99995 0.99988 0.99966 0.99909 0.99753 0.99331 0.98201 

( 1)kP u = − 1.7E-05 4.5E-05 0.00012 0.00034 0.00091 0.00247 0.00669 0.01799 

( )kL u  3 2 1 0 -1 -2 -3 -4 

( 1)kP u = + 0.95257 0.8808 0.73106 0.5 0.26894 0.1192 0.04743 0.01799 

( 1)kP u = − 0.04743 0.1192 0.26894 0.5 0.73106 0.8808 0.95257 0.98201 

( )kL u  -5 -6 -7 -8 -9 -10 -11 -12 

( 1)kP u = + 0.00669 0.00247 0.00091 0.00034 0.00012 4.5E-05 1.7E-05 6.1E-06 

( 1)kP u = − 0.99331 0.99753 0.99909 0.99966 0.99988 0.99995 0.99998 0.99999 

Table 5.2: Relationship between ( )kL u  and ( )kP u  
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Figure 5.4: Simulations of various bit length of LLR 

When the number of the integer bits exceeds 4, it does not improve the 

performance significantly. Therefore we use 4 bits to represent the integer part of 

the a-prior information and 3 bits for fractional part. Since the fixed point 

representation of ( )kL u  is decided, we can decide the branch metric qsm as said 

in section 5.4.2. From the three terms on the right hand side in equation (34), their 
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integer bits are all 4 bits but they are all divided by 2, therefore we only need to 

set qsm to 5. 

The extrinsic information ( )e kL u  is used as the a-priori information for 

next decoder so that its fixed point representation is identical to the a-priori LLR, 

that is FP(7,3).  

 

5.4.5 a-posterior LLR ( )kL u y  

The equation of a-posterior LLRs ( )kL u y  is rewritten below: 

( ) ( )1 1( , ) ( , )
1 1

( ) max ( ) ( , ) ( ) max ( ) ( , ) ( )k k k k k k ks s s s
u uk k

L u y A s s s B s A s s s B s− −′ ′⇒ ⇒
=+ =−

′ ′ ′ ′≈ + Γ + − + Γ +  

Each term on the RHS is computed as the sum of two state metrics and one 

branch metric and a-posterior LLRs equal to the difference of the two terms. Thus 

we can give it one more bit than the state metrics in order to prevent the 

occurrence of overflow. Then we use FP(10,3) to represent a-posterior LLR 

( )kL u y . 

Through all the analyses, we arrange all the numbers in Table 5.3. By 

comparing to the fixed point analyses of [30], we know our design is a little bit 

conservative. Our design uses extra one fractional bit. 

 
integer bits  

(including sign bit) 
fractional bits total bits 

Received value 4 3 7 
Branch metric 5 3 8 
Forward state metric 6 3 9 
Backward state metric 6 3 9 
LLR( ku ) 7 3 10 
a-priori information 4 3 7 
extrinsic information 4 3 7 

Table 5.3: word length of our design 
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Using the word length in Table 5.3, we simulate the performance of our design and 

compare them to the performance of floating point. 
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Figure 5.5 performance of our design comparing to floating point 
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_____________________________________________________________________ 

Chapter 6 

Hardware Architecture 
_____________________________________________________________________ 

 

    In this chapter, we introduce our turbo decoder hardware architecture from the 

computational core of Max-Log-MAP decoding algorithm and discuss about all the 

units inside. The overall hardware architecture will be shown in the end of the first 

section. Then the decoding process will be presented. 

 

6.1 Hardware architecture 

The computational core of Max-Log-MAP decoder is composed of branch 

calculation unit, add-compare-select unit, a-posterior LLRs calculation unit and 

permutation units. The block diagram of the computational core is shown in Figure 

6.1. 

$
ku

 

Figure 6.1: Computation core of the turbo decoder 
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All units will be discussed in detail as follows: 

6.1.1 Branch Metrics Unit (BMU) 

The branch metrics are calculated according to equation (34): 

1

1 1( , ) ( )
2 2

n

k k k kl kl
l

s s u L u y x
=

′Γ = ⋅ + ∑  

The hardware for calculating branch metrics is shown in Figure 6.2. S0,S1,S2 in 

Figure 6.2 are relative to the sign of 1 2, ,k k ku x x , respectively. Because 1 2, ,k k ku x x  

have four combination i.e.000, 001,110,111, we need four BMUs.  

0

1
-1 >>1
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0

1
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a-priori
info

yks

ykp/y'kp

>>1

 

Figure 6.2: Branch metric unit 

 

6.1.2 Add-Compare-Select Processor (ACSP) 

The equations of forward state metrics ( )kA s and the backward state metrics 

1( )kB s− ′  are rewritten below. From the equations, we know that they are both 

calculated through adding, comparing and selecting the maximum value 

computations. The ACS processing element (ACSPE) hardware is shown in 

Figure 6.3. 
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( )1( ) max ( ) ( , )k k ks
A s A s s s−′

′ ′= + Γ  

( )1( ) max ( ) ( , )k k ks
B s B s s s− ′ ′= + Γ  

 

Figure 6.3: ACS processing element 

Since 3GPP encoder has eight states, we need to combine eight ACSPEs to form 

an ACS processor in order to calculate one stage in one clock cycle. The eight 

ACSPEs and the corresponding trellis diagram are shown in Figure 6.4 

 
Figure 6.4: Bundled ACSPEs and the corresponding trellis 
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The ACS processor uses the initial value to compute the state metrics at first time. 

Then it will calculate by the value in the register on the feedback loop recursively. 

The value in the registers would increase time after time and the overflow will happen 

soon. Thus we place hardware to subtract the minimum value of the eight state 

metrics produced every time. In order to prevent the overflow, a saturation unit is 

placed behind it. The whole ACS processor (ACSP) and the feedback loop are shown 

in Figure 6.5. 

 

Figure 6.5: ACS processor and feedback loop 

 

6.1.3 LineCchange unit and BetaChange unit 

Using only one ACS processor means we need to calculate the forward 

metrics and backward metrics by the same ACS processor successively. Observing 

Figure 6.6(a)(b), we can find the only one difference between them is the direction 

so that we can design a permutation unit to rearrange the input addresses and 

output addresses for one ACS processor to compute for the forward metrics and 

backward metrics. In Figure 6.6(c), the addresses for calculating backward metrics 

are shown in the parenthesis and the permutation rules are shown in Figure 6.6(d). 
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Figure 6.6: (a) trellis diagram for forward state metrics calculations. (b) trellis 

diagram for backward state metrics calculations. (c) trellis diagram for mapping 

backward trellis to forward trellis. (d) permutation rules 
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According to Figure 6.6(d), the permutation unit is shown in Figure 6.7(a); 

we call it “BetaChange” because it’s used to permute the address while computing 

backward metrics. We need to permute the input and output when calculating 

backward state metrics. Thus we design “LineChange” unit to perform these two 

permutations at one time and it is shown in Figure 6.7(b). 

    

Figure 6.7: (a) BetaChange hardware (b) LineChange hardware 

 

6.1.4 L0,L1 unit 

    The equation of a-posterior LLR ( )kL u y  is rewritten below: 

( ) ( )1 1( , ) ( , )
1 1

( ) max ( ) ( , ) ( ) max ( ) ( , ) ( )

1 0

k k k k k k ks s s s
u uk k

L u y A s s s B s A s s s B s

L L

− −′ ′⇒ ⇒
=+ =−

′ ′ ′ ′= + Γ + − + Γ +

= −
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where ( )1( , )
1

1 max ( ) ( , ) ( )k k ks s
uk

L A s s s B s−′ ⇒
=+

′ ′= + Γ + , ( )1( , )
1

0 max ( ) ( , ) ( )k k ks s
uk

L A s s s B s−′ ⇒
=−

′ ′= + Γ +  

 

Because there are eight paths correspondent to 1ku = ±  respectively, the 

max operations on the right-hand side means to select the maximum value from 

eight sums. We will use nesting max operations to implement. The hardware 

architecture of 1L  processor is shown in Figure 6.8. The architecture of 0L  

processor is the same with 1L . 

 

1 0 0 0 0( ) ( , ) ( )k k kA S S S B S− + Γ +

1 1 1 4 4( ) ( , ) ( )k k kA S S S B S− + Γ + 1 7 7 3 3( ) ( , ) ( )k k kA S S S B S− + Γ +
1 6 6 7 7( ) ( , ) ( )k k kA S S S B S− + Γ +

 

Figure 6.8: Nesting max operations for L1 hardware 

 

When 1, 0L L  are calculated, we can compute ( )kL u y . If ( )kL u y  is bigger than 

or equal to zero, the decoded bit is “1”.  If ( )kL u y  is smaller than to zero, the 

decoded bit is “0”. 

    6.1.5 Complete turbo decoder architecture 

The block diagram of entire turbo decoder hardware is shown in Figure 6.9. 
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Figure 6.9: The block diagram of total turbo decoder hardware 
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The solid line rectangles are computational unit or control unit and the dotted line 

rectangles are memories. The functions of all blocks are as follows: 

1. Cntl unit: Cntl unit is used to control where to write or read and when to write or 

read of all memories. We pack the interleaver/deinterleaver memory into it because 

the functions of them are to provide the addresses for mapping the normal order 

systematic bits ksy  to interleaved order systematic bits 'ksy  and the address for 

writing extrinsic LLRs. 

 

2. ys,yp,y’p memories: These memories are used to store the transmitted systematic 

bits, the parity bits corresponding to the normal order information bits, the 

interleaved systematic bits, the parity bits corresponding to the interleaved order 

information bits, respectively. Their depths all equal to HWL . 

 

3. MemExtIL, MemExt memories: These two memories are used to provide and 

store a-priori LLR and the extrinsic information. In first half iteration, the decoder 

deal with the natural order received bits, ys,yp, and MemExt provides a-priori LLRs 

and MemExtIL receives the extrinsic information produced in this half iteration. In 

the last half iteration, the decoder deal with the interleaving order received bits 

y’s,y’p, MemExILt provides a-priori LLRs now and MemExt receives the extrinsic 

information produced in this half iteration. 

 

4. MemA memory: MemA memory is used to store the backward state metrics when 

calculating backwardly and to provide the state metrics to L1, L0 processors which 

are in the computational core when the decoder calculates the forward state metrics. 

 

5. MemB: MemB memory is the initialization memory required for halfway. It stores 
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the backward state metrics periodically and provides these state metrics as the 

initialization state metrics for the corresponding backward calculations at next 

iteration. 

 

6.2 Memory requirements 

      In previous section, we list all the memories needed in the decoder hardware. 

Along with the specification decided in section 5.3 and section 5.4, we can calculate 

all the memory capacities. We arrange all the numbers in Table 6.1. 

 

    
Bit 

width 

memory capacity      
(bits)   

(depth*width*banks) 

memory 
capacity      
(bytes)   

Input memory_b  ys,yp,y'p 7 5120*7*3=107520 13440 

Input memory_d ys,yp,y'p 7 5120*7*3=107520 13440 

Initialization memory  MemB 9 64*8*9=4608 576 

Backward metrics memory MemA 9 256*8*9=18432 2304 

interleaver/deinterleaver 
ILMem 
/DIMem 

13 5114*13*2=132964 16620.5 

Extrinsic info. Memory 
MemExt 

/MemExtIL 
7 5114*7*2=71596 8949.5 

Total     442640 55330 

Total                             
(excluding input memory_b) 

    335120 41890 

Table 6.1: memory capacity 

The first column is the memory name with respect to their function and the second 

column is the corresponding name in the Figure 6.9. In the second and third row, there 
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are two sets of memories for , , 's p py y y . The first memory, input memory_b, is used as 

buffer which stores data for the next block while decoding the data in memory_d. 

When finish decoding the data in memory_d, the roles of these two memories 

exchange. Usually the data buffer (memory_b) is not counted in the decoder hardware 

due to it does not provide data to the decoder in decoding process though it is 

essential. Therefore we list the memory capacity without buffer in the last row for 

reference. 

 

6.3 Decoding Process 

    Before the decoding process starts, we need to initialize the interleaver and 

de-interleaver memory. Because generating the interleaving sequence needs many 

multiplications and divisions and look-up tables, we do not implement it in the 

hardware. Instead, we use software to calculate the interleaving sequence and input 

the sequence into the interleaver memory and de-interleaver memory before start to 

decode. So we input the interleaving sequence to the interleaver memory first. At the 

same time, we take the data input to the interleaver as the writing address and take the 

writing address of the interleaver as the input data for the deinterleaver memory. After 

initializing the interleaver/de-interleaver memories, the decoding process begins. 

Assume the received data comprising one frame of information are in the input 

memory_d, frame size = N , block length = HWL , block number / HWp N L=    . If 

HWN L≤ , this decoder works as the normal Max-Log-MAP decoder does. In order to 

explain the halfway decoding process, we further assume   where  HWN p L p= ⋅ ∈ ¥  

then we can divide one frame into block-1, block-2… block-p, denoted as 

  where 1, 2,...,isb i p∈ . Because 3GPP encoder has trellis termination, the encoded 

code has 12 tail bits corresponding to 6 trellis stages as stated in section 4.2. Hence 
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the decoder will calculate backward state metrics by these tail bits first in order to 

process regularly hereafter. When we finish computing the tail bits, the backward state 

metrics are stored to MemB as the initialization state metrics for psb .  

Now the first half iteration decoding begins. We use ,s py y  to calculate 

backward state metrics first by for isb  from 1HWi Ls ⋅ −  to ( 1) HWi Ls − where 1,2,...,i p= . 

The initialization state metrics for each block are all set to zeros at this iteration 

except the last block. The state metrics which input to ACSP are saved to MemA and 

the last calculated state metrics are stored to MemB at address ( )63 i p− +  when 

1i ≠ . Afterwards the forward state metrics are calculated for isb  from ( 1) HWi Ls −  to 

1HWi Ls ⋅ −  where 1,2,...,i p= . The state metrics which input to ACSP are sent to 0L , 1L  

units with the relative backward state metrics stored in MemA. The extrinsic 

information can be computed and saved to MemExtIL according to the relative 

interleaving address. The decoding process in second half iteration is similar to first 

half iteration but is different from: using ' , 's py y  to calculate the backward/forward 

state metrics; the last calculated state metrics of each block are stored to MemB at 

address ( )31 i p− +  when 1i ≠ ; the computed extrinsic information is saved to 

MemExt according to the relative de-interleaving address. 

When first iteration completes, MemB will have the initialization state metrics 

for backward state metrics for isb  where 1,2,...,i p= . The graphic representation of 

the halfway SISO algorithm is shown in Figure 6.10. 
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Figure 6.10: graphic representation of the halfway SISO algorithm 
 

Although we assume   where  HWN p L p= ⋅ ∈ ¥  in the decoding process 
discussed above, N would not equal to multiples of HWL  in general. The derivations 
can easily be modified to apply to the general cases.
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_________________________________________ 

Chapter 7 

Hardware implementation 

_________________________________________ 
     

With modern VLSI technology, we can design the hardware with high clock rate 

and complicated functions. There are two design abstractions: Bottom-up and 

top-down. By using the abstractions, the designer can collapse details and arrive at a 

simpler concept with which to deal.  

In the design process of integrated circuit, the layout techniques are very amateur 

so that we can use Computer-aided design (CAD) tool to help us to place and route. 

Nowadays most of the digital communication integrated circuits adopt the standard 

cell design instead of full custom design. Therefore the emphasis is put on the 

algorithms and the hardware architectures. In this thesis we also adopt the standard 

cell to design the hardware. 

 

7.1 Design and verify process 

    First we write a C program to simulate the decoding algorithm so that we can 

understand the flow of the decoding process. And we can verify the C program by 

examining a lot of data.  

    Second we plan the hardware architecture. In this thesis, we implement the 

decoder by halfway memory saving method. Thus we can achieve the 3GPP 

requirement by using only one ACS processor without high operation frequency. Then 

we develop a bit-accurate C model according to the above architecture. Because we 
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use fixed-point implementation, we could analyze the word length of the quantities by 

this bit-accurate C model. It is easier to modify the word length and the architecture in 

C code than in HDL code. If we find the specification can not satisfy our objective, 

we could redesign the architecture or change the word length easily and quickly. 

Besides, C model can help us to process HDL debugging easily.  

    Third we can proceed to RTL verification. When the functions of the RTL code 

work correctly, we can synthesize the code with synthesis tools. If the synthesis result 

could not satisfy our requirement, we need to modify the architecture and repeat the 

flow from bit-accurate C model. 

    Finally, if the synthesis result achieves the requirement, we can download the 

RTL code to FPGA develop board. Afterward we verify the hardware circuit by 

inputting a lot of data. 

    In summary, our develop and design flow is shown in Figure 7.1 

 

Figure 7.1: develop and design flow 

 

7.2 Hardware specification 

    In this section, we will describe the clock cycles for decoding one block of data 

first. Then we define the hardware input and output ports clearly. 

 

7.2.1 Clock cycles for decoding one data frame 

    The clock cycles for decoding one data frame are dependent on the frame size. 

Our hardware is pipelined into five stages. Thus the internal latency is 5 clock cycles. 
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The total required clock cycles for decoding one data frame are calculated as follows: 

( ),_ 2 2 _ 6N Iterclock cycles frame size internal_delay Iter= ⋅ ⋅ + ⋅ +      (35) 

The subscript of clock cycles “N” stands for the frame size of the data for simplicity. 

The first term in the inner parentheses “frame_size” is also the frame size of the data. 

The term “Iter” is the number of complete decoding iteration. The last term “6” is the 

clock cycles for calculating the tail bits. 

Since the frame size of 3GPP turbo code ranges from 40 to 5114, we list some 

examples as follows: 

Iteration = 5 

Frame size 40 500 1024 5114 

clock cycles 856 10056 20536 102336 

Iteration = 10 

Frame size 40 500 1024 5114 

clock cycles 1706 20106 41006 204666 

Table 7.1: decoding clock cycles for different frame size 

When frame size is small, the internal delay will affect the decoding cycles severely. 

 

7.2.2 Hardware interface 

    For convenience, we pack the decoder as a processing core and indicate the 

input/output ports in Table 7.2. When this processing core is used, we only need to 

configure the pins adequately. The I/O diagram of this processing core is shown in 

Figure 7.2. 
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Figure 7.2: Turbo deocder I/O diagram 

 

Port i/o bit width  description 

clk input 1  system clock 

reset input 1  reset the register contents 
FS input 13  configure the frame size of data 

d_in input 7  received data input 
IL_seq input 13  interleave sequence input 

Iteration input 5  configure the iteration number 
Valid output 1  indicate the decode bit valid 

Decode_bit output 1  decode bit output 

Complete output 1  
indicate finish decoding one block of 
data 

Table 7.2: I/O ports definition 

7.3 ASIC performance 

    We are interested in how many gate counts are in the turbo decoder hardware. So 

we will divide the turbo decoder into two part, one is memory part and the other is 

control and computation part. The ASIC verification flow is shown in Figures 7.3. We 

use MATLAB to generate the encoded sequence and the additive white Gaussian 

noise and write the information into test bench. We can compare the results with the 

decoding bits by bit-accurate C decoding program. If “Out_cp” outputs “1”, there 

should be something wrong in the decoder hardware.  
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    The ASIC simulation environment is as follows: 

HDL: verilog 

Compiler tool: verilog-XL 

Debug tool: Debussy 

Synthesis tool: synopsys 

Process: TSMC 0.25 mµ  

The simulation results are listed in Table 7.3. The maximum clock rate for this 

decoder is 102.56MHz. 

 

Figure 7.3: ASIC verification flow 

 

Constraint 9.75ns 10ns 12.5ns 25ns 
Clock rate 102.56MHz 100MHz 80MHz 40MHz 

Gate counts 28.7k 28.1k 24.8k 15.1k 

Table 7.3: ASIC simulation results 

Along with equation (35) in section 7.2.1, we can calculate the clock rate required for 

decoding the data. Assume required output data rate = Rd, frame size = N and iteration 

number = Iter, we can get: 
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, ,  _d
N Iter N Iter

Rrequired clock rate clock cycles
N

= ⋅  

In 3GPP, maximum Rd is 2 Mbps, thus required clock rate is: 

clock rate Iter=5 Iter=10 

N=40 42.8 85.3 

N=5114 40.02 80.04 

Table 7.4: required clock rate for decoding different frame size and iteration 

Because our hardware has maximum operation frequency 102.56 MHz, it can meet 

3GPP requirement. 

 

7.4 FPGA verification 

    We use MATLAB to generate the encoded sequence and the additive white 

Gaussian noise. We use the bit-accurate C decoder to decode the received sequence 

and write the decoding results into a file. Then we put the received information into 

ROM of the turbo decoder and compare the decoding results with those generating by 

the bit-accurate C decoder. The output bit and the comparison results are displayed in 

the seven-segment display. The FPGA verification flow is shown in Figure 7.4. 

The simulation environment is as follows: 

FPGA development board: Altera stratix II EP1S25780C5 

Simulation software: Quartus II 4.0 

HDL: verilog 

Max. clock rate = 40.2 MHz 
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Figure 7.4: FPGA verification flow 
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_____________________________________________________________________ 

Chapter 8 

Conclusion and Future works 

_________________________________________ 
     

8.1 Conclusion 

    In this thesis, we implement an efficient and memory saving 3GPP turbo decoder 

which uses the halfway method. This decoder bases on Max-Log-MAP algorithm and 

uses only one ACS processor. This successfully decreases the memory capacity which 

is the critical design problem for turbo decoders. It also discards the redundant 

calculations for initializations which are required for other decoding methods. As a 

result, using only one ACS processor in our decoder will not slow down the decoding 

speed. Furthermore, using halfway memory saving method in the decoder can 

decrease the decoding latency. By use of the computer simulation and the analyses, 

we decide the fixed point representations and the block length for halfway method in 

order to obtain a cost-effective turbo decoder. We compare the BER performance of 

halfway with the commonly-used sliding window schemes and confirm that our 

approach does not sacrifice any performance.  

 

8.2 Future works 

    Our hardware design still can be improved in 3 aspects: 

1. Decoding speed: Though our decoder hardware can satisfy the maximum 

decoding speed of 3GPP specification, 2M bits/s, by 5 iterative decoding at 40.2 

MHz operation frequency, the need for more iterations and faster decoding speed 
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will still exist in the future. Therefore we can use one more ACS processor to 

calculate forward state metrics when the original ACS processor calculates 

backward state metrics at the same time. This will boost the decoding speed by a 

little overhead and hardware requirement. 

2. Stopping criterion: we do not implement any stopping criterion on our decoder, 

thus the decoder will decode for fixed number of iterations. This results in 

consuming energy unnecessary and wasting the decoding time. 

3. Embedded interleaver/de-interleaver generator: At the moment we assume the 

interleave/de-interleaver data are stored to the memory and these will cost a lot of 

memory. If we can design the hardware for generating interleaving/de-interleaving 

sequence when needed immediately, it will decrease the memory capacity needed 

by decoder significantly. More exactly, that is 2x13x5114 = 132964 =132.9 K bits 

= 16.6125 Kbytes. 
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