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Abstract. Acoustic second-harmonic generation is studied in non-degenerate piezoelectric 
semiconductors, such as n-type InSb, with a uniform DC magnetic field B directed along the 
acoustic wave. The effect of electron scattering in solids has been taken into consideration, 
so the electron relaxation time cannot be neglected. Coupling mechanisms for the electron- 
phonon interaction are taken into account in this investigation through both deformation 
potential and piezoelectric couplings. It is found that the second-harmonic generation due 
to the piezoelectric coupling appears to be comparable with that due to the deformation 
potential coupling only in the approximate range of frequencies w = 6 x lolo- 

4 x 10” rad s-’. Outside this range of frequencies, the deformation potential coupling 
becomes more significant than the piezoelectric coupling for the second-harmonic gener- 
ation in semiconductors. 

1. Introduction 

The non-linear properties of semiconductors can be used to generate second harmonics 
in the microwave region. These non-linear properties are of interest in the sense of using 
them to generate higher harmonics of high-frequency signals (Chatterjee and Das 1983). 
In high-mobility semiconductors such as n-type InSb, the application of a strong magnetic 
field can crucially alter the behaviour of the electron-phonon interaction due to the 
non-parabolicity of the energy bands. Experimental results have indicated that the 
piezoelectric scattering is predominantly responsible for the electron energy relaxation 
and that the deformation potential scattering appears to play no significant role in the 
electron energy relaxation (Lifshitz et aZ1966, Whalen and Westgate 1972). From the 
phenomenological theory, Spector (1974) showed that in intrinsic semiconductors and 
semimetals the harmonic generation due to the deformation potential coupling can 
become comparable with that arising from the piezoelectric coupling in a typical piezo- 
electric semiconductor. Hansen (1981) proposed a correct form of the velocity operator 
from the Hamiltonian operator to show that the Hall effect cannot be influenced by non- 
parabolicity in the limit of vanishing scattering. However, when the acoustic wave is 
propagating parallel to a DC magnetic field and when the electron scattering in solids is 
not neglected, the non-parabolicity of the energy bands leads of an enhancement of the 
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magneto-acoustic absorption (Sutherland and Spector 1978). In this paper we investigate 
the acoustic second-harmonic generation in non-degenerate piezoelectric semicon- 
ductors such as n-type InSb by taking into account the effect of an electron relaxation 
time due to the scattering in semiconductors at low temperatures when the acoustic wave 
propagates longitudinally. The energy band structure of electrons is assumed to be non- 
parabolic. The effect of scattering cannot be neglected in real crystals, since there are 
sufficient imperfections to provide plenty of scattering even at low temperatures. The 
electron-phonon interaction in semiconductors is assumed to arise from both deform- 
ation potential and piezoelectric couplings in which self-consistent fields are produced 
accompanying acoustic waves. We use the Heisenberg equation of motion to correct the 
effect of the non-parabolic band structure of semiconductors. 

In 8 2 we present the theoretical development of our problem for a non-parabolic 
band structure in the presence of a DC magnetic field B by introducing an electron 
relaxation time. In § 3 the numerical analysis for n-type InSb is given together with a 
brief discussion. 

2. Theoretical development 

The Hamiltonian Ho for an electron of the non-parabolic-band model in a uniform DC 
magnetic field B directed along the z axis can be written in the form (Wu and Spector 
1972) 

where m* is the effective mass of electrons at the minimum of the conduction band and 
E, is the energy gap between the conduction and valence bands. In equation (1) we have 
used the Landau gauge for the vector potentialAo = (0, Bx, 0 ) .  The eigen-functions and 
eigenvalues for equation (1) can be expressed as (Wu and Spector 1972) 

vk,, = exp(ik,y + ik,z)@,,[x - (hc/eB)k,] ( 2 )  

and 

respectively, where k, and k,  are the y and z components of the electron wave-vector 
k, @,,(x) is the harmonic oscillator wavefunction and w, = lelB/m*c is the cyclotron 
frequency of electrons. E,  is the energy of the system defined by Hovk, = Ek,,Ykn. 

The interaction of electrons with acoustic waves can be taken into account via the 
vector potential A,  = Aloexp(iq r - iwt), which arises from the self-consistent fields 
accompanying acoustic waves. Up to second order in Al  the Hamiltonian for an electron 
in the presence of the DC magnetic field and self-consistent fields can be written as 

H = H o  + H ,  + H ,  (4) 

where Ho is the unperturbed Hamiltonian of electrons, and H1 and H2 are perturbed 
Hamiltonians of the first and second orders, respectively. Using the Heisenberg equation 
of motion, these perturbed Hamiltonians can be expressed as 

H1 = -(e/2c)(u-Al + A l * u )  ( 5 )  
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a F  a F  l j ) ]  
aF aF 
aPi aPi aPj aPj 

x (Al i  - + - A l i ) ( A l j  - + - A  

respectively, where 

H t )  and Hi’ are the right and left Hamiltonian operators such that Ht)Yh = Ekn\Vkn 

and Y ZInt HL1) = Evn, Y if,,, , respectively. Since the different quantum states can produce 
different eigenvalues, the right and left Hamiltonian operators cause an important non- 
linear effect to occur in the electron-phonon interaction, due to the non-parabolicity of 
energy bands in semiconductors. 

The density matrix p can be expressed up to second order in the amplitude of acoustic 
waves: 

U = (l/ih)[r, H,] = (aF/ap)/[l + ( H t )  + H:))/E,].  (7) 

P = Po + P1 + P2 (8) 
where po is independent of time, p 1  varies as exp(-iwt) and p2 varies as exp( -2iot) .  
The quantum Liouville equation including the effect of scattering in solids can be 
expressed as (Sutherland and Spector 1978) 

a P / a t  + (ih)[H? PI = - ( P  - P o Y t  (9) 
where t i s  the electron relaxation time due to the scattering in solids. The current density 
J can be obtained from (Spector 1966) 

J = Tr(p . lop) = 2 (k’n’/pIkn)(knlJ,,/k’n‘) 

Jop = -(e/2)[(u + U’), q r  - roll+ 

(10) 
kk’,nn’ 

where 

(11) 
with the velocity operator U ’  = (l/ih)[r, (HI + H 2 ) ]  due to the electron-phonon inter- 
action. The explicit expression for this velocity operator U ’  can be obtained from 
equations ( 5 )  and (6) as in the method we used in our previous work (Wu and Spector 
1972). Using the gauge where the scalar potential is zero, the relation between the 
electric field and the vector potential is given by 

E = ( io/c)A, .  (12) 

J~ = + t ~ j k  E]  E k  (13a) 

From equations (2)-(12), one may obtain the current density in the form 

for the piezoelectric coupling, and 

for the deformation potential coupling (Spector 1974), where aij is the linear conductivity 
tensor, t u k  is the non-linear conductivity tensor, Ei is the induced self-consistent field, 
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S ,  is the strain tensor and Vij is the deformation potential tensor of the electrons. In the 
present case we are interested in the acoustic wave propagating parallel to the DC 
magnetic field B ,  so the only components of conductivity tensors that play an important 
role in second-harmonic generation will be those of U,, and tzzz (Wu and Spector 1972). 
These tensors can be expressed as 

and 

X 

X 

X 

where 

G(k,  k 24,  k 4 ;  n) = C f k + Z q , r ~ [ ~ k + q , n  - E k n  - f i (w + i t- ' )]  

- f k + q , n  [ E k + 2 q , n  - - h(2@ + it-')] + f k n [ E k + 2 q , n  

- Ek+q,n - h ( o  -t it-')]} [ E k + 2 q , n  - E h  - h(20 + it-')]-' 

[ E k + Z q , n  - E k + q , n  - f i (w + 
x [Ek+q,n  - Ekn - h ( o  + it-')]-' (16) 

(17) 

@,,, = (1 + Ekn/Eg + Ektn , /Eg) - ' .  (18) 

d d 2 g , / a t 2  = aT,/ax, (19) 

5 = 2 (no  exp[in(q * r - wt>l 

ekn = (1 + 2Ek , /Eg) - '  

and 

The basic equation of motion for an elastic continuum is (Wu and Spector 1972) 

where 

n 

is the displacement of acoustic waves, d is the density of material and T,, is the stress 
tensor. When acoustic waves interact with electrons via the deformation potential and 
piezoelectric couplings, the stress-strain relation is given by (Johri and Spector 1977) 

= Ci,klSkl - n V i ~  - P i j k E k  (20) 



Second-harmonic generation in semiconductors 1531 

where Cjjk, is the elastic tensor, Pi,k is the piezoelectric tensor and n is the electron charge 
density. From the equation of continuity, the charge density n and the electric current 
density J should satisfy 

V - ~ + a n / a t = O .  (21) 
In a piezoelectric material, the electric displacement induced by applying a strain can be 
expressed by (Spector 1966) 

D, = EqEj + 4 n p i j k S j k  (22) 

where E~ is the dielectric tensor. Since the off-diagonal components of E~ are zero except 
for in triclinic and monoclinic crystal structures (Cady 1964), we take .zjj to have only 
diagonal components in the present case. The dielectric tensor in this expression arises 
solely from the lattice contribution to the dielectric tensor, and therefore it is a scalar 
quantity E .  

Let the plane-wave solutions for the electromagnetic field and displacement up to 
second-harmonic generation be of the following forms: 

E = Elo exp[i(q - r - wt) ]  + exp[2i(q - r - ut)] 

f = f l o  exp[i(q - r - or)] + f2,, exp[2i(q - r - ut)]. 

(23) 

(24) 

Then, from equations (13a), (13b), (19)-(24), and Maxwell's equations for a non- 
magnetic medium, 

V X E = -(l/c)dH/at 

v x H = (4n/c)J + (l/c)aD/at 

(25)  

(26) 

and 

one can obtain the longitudinal amplitude of displacement in a longitudinal magnetic 
field for q 11 [ 11 11 as 

(27) 
q2 v z z  t z z ,  (4,@,E:zo 

4leI(2az, (2q, 2w) - 0 2 2  ( 4 , 4 >  
E 8 3  = 

due to the deformation potential coupling, and 

due to the piezoelectric coupling. The simple expressions obtained in equations (27) and 
(28) are approximated by using the fact that the sound velocity U, is quite small compared 
withthevelocityoflightc. Thatis,sometermscontainingafactorof ( u , / ~ ) ~  = 1.7 x 10-lo 
or higher order can be neglected in our calculations. In here, V,, is the deformation 
potential and PI4 is the piezoelectric constant. 

The acoustic intensity P, is defined by (Tell 1964) 

P ,  = 4dld&,o/atI2u, = tdn2w2)&,012u, (29) 
with 

152012 = 1m2 + l & 1 2  
Therefore, the acoustic intensity in the second-harmonic generation due to the longi- 
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3. Numerical analysis and discussion 

As a numerical example we consider the propagation of acoustic waves travelling to a 
DC magnetic field B in n-type InSb for a simple case with a constant relaxation time due 
to the scattering in semiconductors. The relevant values of physical parameters for this 
material are (Nil1 and McWhorter 1966, Wu and Spector 1972, Sutherland and Spector 
1978) no = 1.75 x 1014 ~ m - ~ ,  m* = 0.013mo (mo is the mass of free electron), E = 18, 
Pl4 = 1.8 x lo4 esu cm-2, E, = 0.2 eV, V,, = 4.5 eV, d = 5.8 g ~ m - ~ ,  t = s and 
U ,  = 4 x lo5 cm s-’. The ratio of the acoustic intensity in the second harmonic to the 
square of the intensity in the fundamental as a function of frequency at T = 4.2 K and 
B = 50 kG for combining both deformation potential and piezoelectric couplings is 
shown in figure 1. It is found that the acoustic intensity of the second harmonic decreases 

w (10” rod s-’l 

Figure 1. The ratio of the acoustic intensity in the 
second harmonic to the square of the acoustic 
intensity in the fundamental as a function of fre- 
quencyinn-typeInSbatT= 4.2KandB = 50 kG 
for combining both deformation potential and 
piezoelectric couplings. The dotted curve indi- 
cates numerical results for piezeoelectric coupling 
alone. 

L I 

B (kG1 

Figure 2. The ratio of the acoustic intensity in the 
second harmonic to the square of the acoustic 
intensity in the fundamental as a function of DC 
magnetic field in n-type InSb at w = 10” rad s-l 

for combining both deformation potential and 
piezoelectric couplings. T = (A) 4.2, (B) 10 and 
(C) T =  19.7K. The dotted curve indicates 
numerical results for piezoeletric coupling alone 
at T = 19.7 K. 
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rapidly with frequency when frequencies are below 5 x 10" rad s-'. After passing the 
minimum point around w = 6 X 10" rad s-l, the acoustic intensity of the second har- 
monicincreases slowly with frequency. It can be seen that there are some local maximum 
points in the neighbourhood of frequencies w = 10"-2 X 10l1 rad s-'. When the fre- 
quency is in the range w = 6 x lO'O-4 x 10" rad s-l, the electron-phonon interaction 
of the piezoelectric coupling becomes comparable with that of the deformation potential 
coupling as shown by the dotted curve. Thus these peaks arise from the self-consistent 
field induced by the piezoelectric coupling. We plot the ratio of the acoustic intensity in 
the second harmonic to the square of the intensity in the fundamental as a function of 
the magnetic field at w = 10" rad s-l for combining both deformation potential and 
piezoelectric couplings in figure 2. We can see that at very low temperatures the acoustic 
intensity of the second harmonic changes monotonically with the magnetic field. 
However, when the temperature increases, there is a maximum due to the piezoelectric 
coupling. From our numerical results presented here, we predict that the deformation 
potential coupling will become more significant than the piezoelectric coupling when we 
take into account the relaxation time of scattering in solids for the quantum mechanical 
treatment. However, the electron-phonon interaction of piezoelectriccoupling becomes 
significant when the frequency lies in the microwave region. 

Acknowledgment 

We wish to acknowledge the partial financial support from the National Science Council 
of China in Taiwan. 

References 

Cady W G 1964 Piezoelectricity vol 1 (New York: Dover) p 162 
Chatterjee A and Das P 1983 Solid State Electron. 26 227-31 
Hansen 0 P 1981 J .  Phys. C: Solid State Phys. 14 5501-4 
Johri G and Spector H N 1977 Phys. Reu. B 15 4955-67 
Lifshitz T M, Oleinikov A Ya and Shulman A Ya 1966 Phys. Status Solidi 14 511-6 
Nil1 K W and McWhorter A L 1966 J .  Phys. Soc. Japan Suppl. 21 755-9 
Spector H N 1966 Solid State Phys. 19 291-361 (New York: Academic) 
_. 1974 Appl .  Phys. 4 135-40 
Sutherland F R and Spector H N 1978 Phys. Reu.  B 17 2728-32,2733-9 
Tell B 1964 Phys. Rev .  136 A712-5 
Whalen J J and Westgate C R 1972 J .  App l .  Phys. 43 1965-75 
Wu C C and Spector H N 1972 J .  Appl .  Phys. 43 2937-44 


