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Abstract 

In this paper, an on-line signature verification scheme based on split-and-merge matching mechanism is proposed. Each 
word in the signature is specified with static and dynamic features: a sequence of (x, y) coordinates and a sequence of 
(x, y) velocities. We employ the split-and-merge matching mechanism for each input sequence of coordinates or velocities 
with the corresponding sequence of the reference template. Alignment and refinement are exploited in the matching to justify 
the data skew problem. The accumulated coordinate and velocity distances are compared with corresponding verification 
thresholds to determine the genuineness of the input signature. Algorithms to compute reference templates and verification 
thresholds are also proposed. The performed simulation results support the effectiveness of this signature verification 
scheme. 
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1. Introduct ion 

Signatures are the most popular validation tools 
for documents or commercial transactions. Signa- 
tures can be verified either on-line or off-line. Off- 
line verification determines the genuineness of the 
signature through examining the overall shapes of 
the signatures. On the other hand, on-line verifica- 
tion can also capture the dynamics of the signatures, 
such as the variation of the coordinates, to make 
decision. Hence, forged signatures are more likely to 
be detected through on-line approaches. 

Imitating either overall shape or dynamics of a 
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signature is achievable, but to achieve both is diffi- 
cult. The imitator is not likely to construct a similar 
overall shape of  a signature without showing his 
hesitation in the waveform of the writing velocity. 
Therefore, signature verification systems adopting 
both overall shapes and dynamics of the signatures 
to judge their genuineness are more reliable. 

So far, signatures are usually verified through 
visual examination. Neither "off- l ine"  checking on 
already signed signatures nor "on- l ine"  examining 
on signatures being signed is an easy task for human 
beings. Human eyes are not able to capture the 
dynamic characteristics of  the signatures, and the 
signatures are verified through their overall shapes 
only. Thus, human eyes can only verify signatures 
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roughly. Using computer-based approaches for signa- 
ture verification appears to be the possible solution 
for better verification precision. 

Recently, many methods (Plamondon, 1989) have 
been developed for computer-based signature verifi- 
cation, especially for on-line signature verification. 
Among these methods, several criteria are considered 
for building signature verification systems. The crite- 
ria include: static or dynamic features, matching 
scheme and thresholding. Static features, such as 
coordinates of sample points, as well as dynamic 
features, including writing velocities and accelera- 
tion, are useful characteristics for on-line signature 
verification. Matching schemes are responsible for 
calculating the similarity or distance between two 
signatures. Thresholding is to choose appropriate 
thresholds for reference templates such that the input 
signatures whose distances from the reference tem- 
plates are less than the thresholds are regarded as 
genuine signatures. 

Most researches of signature verification select 
trajectory-based (or time domain) features for mea- 
suring the similarity or distance of the signatures 
(Wu et al., 1994; Chen et al., 1991; Yasuhara et al., 
1977; Lew, 1983; Herbst et al., 1977; Congedo et al., 
1994; Suen et al., 1993). In addition, polar coordi- 
nates (Wu et al., 1995), which can be derived from 
(x, y) coordinates, of the trajectory can also be used 
to feature the signatures. Fig. 1 shows a Chinese 
signature of three words. The x and y coordinates of 
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Fig. 1. A Chinese signature of three words and their x 
coordinates. 
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the sample points in each word are also demon- 
strated in this figure. Trajectory-based features, such 
as coordinates or velocities, are the basic characteris- 
tics of the sample points. In fact, the overall shape of 
a signature word can be specified with a sequence of 
(x, y) coordinates of all sample points, while the 
dynamics of the signature word can be the sequence 
of (x, y) velocities of all sample points. Thus, 
matching two signatures is to match their corre- 
sponding sequences of coordinates or velocities. 

With respect to the reference sequences, the input 
sequences may be skewed or of different length. 
Hence, in order to match input signatures with the 
reference templates, the most important task is to 
align the input sequences of the input patterns with 
the reference sequences. We have proposed a split- 
and-merge algorithm for spatial/temporal pattern 
matching (Wu et al., 1996). First, the input pattern is 
refined to remove the non-uniform compression or 
spreading among its sub-patterns. Refinement can be 
recursive such that each sub-pattern is refined by 
removing the non-uniform compression or spreading 
among its sub-sub-patterns. It is guided to minimize 
the distance between input pattern and the reference 
template. After the input pattern is refined, we apply 
interpolation skills to the refined input pattern and 
the reference template to make them of the same 
length. Finally, we have one-to-one correspondences 
between the sample points of the refined input pat- 
tern and the sample points of the reference template. 
The distance between input pattern and the reference 
template can thus be computed by summing up the 
distances between corresponding input and reference 
sample points. 

In this paper, we propose an on-line signature 
verification scheme based on split-and-merge match- 
ing mechanism. Signature words are represented as 
sequences of (x, y) coordinates and (x, y) veloci- 
ties representing static and dynamic features. In 
matching the input signature words with the refer- 
ence signature words, each input sequence is split 
into two sub-sequences and each input sub-sequence 
is matched with its corresponding reference sub-se- 
quence. Recursively, for matching an input sub-se- 
quence with a reference sub-sequence, the input 
sub-sequence is split into two sub-subsequences and 
each input sub-subsequence is matched with its cor- 
responding reference sub-subsequence. The depth of 
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split-and-merge could be pre-set. We could also 
control the depth of split-and-merge by setting the 
threshold of some parameter measurement, such as 
the percentage of the reduction of matching distance. 
The split-and-merge matching process continues if 
the measurement is smaller (or larger) than the 
threshold. For simplicity, we pre-set the depth of 
split-and-merge in this paper. The final refined input 
sequence could be obtained through merging its 
sub-sequences after they are refined. Finally, we can 
compute the distance between the reference sequence 
and the refined input sequence. By packing the 
matching result of the signature words, we could 
obtain the overall coordinate distance and velocity 
distance between the input signature and the refer- 
ence template. The genuineness of the input signa- 
ture is determined by comparing these two distances 
with their corresponding verification thresholds. If 
both of them are smaller than the verification thresh- 
olds, then the input signature is genuine; otherwise, 
it is forged. 

2. Signature specification 

As we mentioned above, signatures can be charac- 
terized by their overall shapes and dynamics. The 
overall shapes of signatures can be specified with 
sequences of (x, y) coordinate pairs of the writing 
trajectory, while the dynamics of the signatures can 
be represented by sequences of (x, y) velocity pairs. 
Coordinates are all we have from the data capture 
device, i.e. the digitizer. Velocities, which are ap- 
proximately derived from coordinates, are less accu- 
rate than coordinates although they can reflect the 
change of coordinates. Accelerations, which are ap- 
proximately derived from velocities, are even less 
accurate than velocities although they can reflect the 
change of the change of coordinates. Therefore, we 
select only coordinates and velocities to feature the 
signatures. 

A signature could be regarded as consisting of 
several words, depending on the skills used for 
signature segmentation. The easiest way is to regard 
the whole signature as a big word no matter how the 
signature is signed. Another convenient approach is 
to restrict the users to write signature words in 
different locations on the tablet to avoid segmenta- 

tion problem. Each word in the signature is described 
by a sequence of coordinates and a sequence of 
velocities. Thus, for a signature of M words, 2M 
sequences are used to specify it. 

If words of a signature are allowed to be con- 
nected, then the connected words will be treated as 
an entire entity. No segmentation is required. A 
single unconnected word is also an entity. Therefore, 
if the number of entities of the input signature is 
different from that of the reference signature, we 
determine that the input signature is a forgery and 
omit the matching process. An entity of connected 
words in the input signature is matched with its 
corresponding entity in the reference signature using 
the same split-and-merge process as the matching of 
an unconnected single word does. 

Usually, we use a digitizer to capture the coordi- 
nates of the on-line signatures. Hence, the overall 
shape of a signature is directly provided by the 
digitizer. The sequence of velocities of each signa- 
ture word needs to be derived through the following 
formulas: 

= "'A-S~-t t=~+, 
(Xi+, ~ X i ~ 

Ui+ l ~ ( t i + l _ t i )  (1) 

and 

Ay (Y i+ l -Y i )  
- ~ (2)  

Vi+ l A t  t:,,+, (ti+ 1 - t i )  ' 

where (X i+  1, Y i+l )  are the x- and y-coordinates at 
sampling time ti+ i and (U/+ 1, Vi+ i) are the derived 
x- and y-velocities. 

3. Split-and-merge matching mechanism 

Spatial/temporal pattems can be represented as 
sequences of outcomes from observation. The term 
"outcomes from observation" could be (x, y) coor- 
dinates for on-line handwritings, spectral magnitudes 
for speech signals and pixels for images. With re- 
spect to the reference sequences, the input sequences 
may be skewed or of different length. Hence, in 
order to match input patterns with the reference 
templates, the most important task is to align the 
spatial/temporal sequences of the input patterns with 
the spatial/temporal sequences of the reference tem- 
plates. 
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Fig. 2. Two handwritten patterns for illustrating skews. 

Fig. 2 shows an example of non-uniform com- 
pression or spreading of input line segments Q1Q2, 
Q2 Q3 and Q3 Q5 relative to reference line segments 
P1 P3, P3 P4 and P4 Ps, respectively. Though the cor- 
respondence between Ql Q2 and P1 P3 and the corre- 
spondence between Q3Q5 and PaP5 are not uniform 
in length, i.e. Q1Q2< P1P3 but Q3Qs> PnPs, these 
two correspondences seem reasonable. Therefore, 
successful alignments of Q1 Q2 to Pl P3 and Q3Q5 to 
P4 P5 are critical in matching the input pattern with 
the reference pattern. 

We use Fig. 3 as a simplified example to illustrate 
the resolution of the alignment problem. The refer- 
ence sequence R of symbolic outcomes 1, 2, 3, 4 
and 5 in Fig. 3(a) consists of five sub-sequences: 
sub-sequences R~, R2, R3, R 4 and R 5 of outcomes 
1111, 2222, 3333, 4444 and 5555, respectively. On 
the other hand, the input sequence S, shown in Fig. 
3(b), consists of five sub-sequences: sub-sequences 
S~, S 2, S 3, S 4 and S 5 of outcomes 1, 22, 333, 44 and 
55, respectively. In the alignment of these two se- 
quences, it is reasonable to relate Rj, R 2, R3, R 4 
and R 5 to S 1, S z, S 3, S 4 and S 5, respectively. In 
matching input sequence S with the reference se- 

(a) 11112222333344445555 

(b) 1223334455 

(c) 111222333444555 

(d) 11112222333344445555 

Fig. 3. An example of aligning two sequences: (a) the original 
reference sequence, (b) the original input sequence, (c) the refined 
input sequence, (d) the enlarged version of the refined input 
sequence. 

quence R, we find that S 1 is relatively compressed, 
while S 3 is relatively spread because 

IS~l IS2l ]S41 1551 IS3l _ _ <  . . . .  < _ _  
IRlr IR21 IR41 IRsI  IR31' 

where I Si] and [ Ril means the respective length of 
S i and R i. If we spread $1 by 2 outcomes and spread 
each of S 2, S 4 and S 5 by 1 outcome, we could make 

Is, I Is21 1841 Is51 Is31 
IR, I IR21 IR4I IRsI  FR3] 

We thus obtain the refined input sequence S as 
shown in Fig. 3(c). 

The above steps illustrate the process of removing 
non-uniform compression or spreading among sub- 
sequences of the input sequence with respect to the 
reference sequence. By now, there still remains the 
problem that the lengths of the reference sequence 
and the refined input sequence are not the same. To 
make one-to-one alignment of outcomes successful, 
we may enlarge the smaller of the reference se- 
quence and the refined input sequence to make them 
of the same length. This is achievable by outcome 
duplication for symbolic outcomes or interpolation 
for numeric outcomes. We thus obtain the enlarged 
version of the refined input sequence as shown in 
Fig. 3(d). The exact match of the reference sequence 
with the enlarged input sequence implies that the 
input pattern belongs to the same category as the 
reference pattern. Due to the relatively faster writing 
speed at some portions of the signing, the sequence 
representing the signature may be compressed at 
these portions. Sequence refinement is to have the 
compressed portions of the sequence enlarged. 

The above example is a simplified application of 
the split-and-merge matching algorithm. Four steps 
can be concluded from the above example: 

Step l Split input and reference sequences into sub- 
sequences. 

Step 2 The input sub-sequences are refined by re- 
moving non-uniform compression or spread- 
ing among sub-sequences. 

Step 3 Obtain the refined input sequence by merg- 
ing its refined sub-sequences. 

Step 4 Enlarge the shorter of the refined input se- 
quence and the reference sequence such that 



Q.-Z. Wu et al. / Pattern Recognition Letters 18 (1997) 665-673 669 

their lengths are equal. Compute the similar- 
ity or the distance between two sequences. 

Splitting a sequence into sub-sequences could be 
straightforward for a sequence of symbolic out- 
comes. But, for the sequences of numeric outcomes, 
such as the spectral magnitudes of the speech signal, 
this is not the case. Therefore, it is difficult to relate 
a reference sub-sequence to an input sub-sequence. 
Step 1 for splitting a sequence into sub-sequences 
needs to be enhanced. The sub-steps for enhanced 
Step 1 is listed as follows: 

Step 1.I For the reference sequence, split it at the 
middle of the sequence to produce two 
sub-sequences of equal length. As for the 
input sequence, split it into two sub-se- 
quences such that the refined input se- 
quence, which is obtained from merging its 
sub-sequences after they are refined, best 
matches the reference sequence. 

Step 1.2 Recursively apply the split-and-merge algo- 
rithm for matching the first input sub-se- 
quence with the first reference sub-se- 
quence and matching the second input sub- 
sequence with the second reference sub-se- 
quence. 

The split-and-merge matching is achieved through 
these steps. The pseudo codes for split-and-merge 
matching is shown in Fig. 4 and the details can be 
found in (Wu et al., 1996). Unlike conventional 
matching algorithms, such as dynamic programming 
(Furui, 1989), which piecewisely advance the match- 
ing to accumulate the matching results, this algo- 

Match(Z, J, dcpth) //Z: the reference sequence, J: the input sequence. 
//depth: the splitting depth 

if depth>0 
Find the splitting point bp to split sequence J into two sub-sequences. 
J0=J[ 1 ..bp]; JyJ[bp+l ..length(J)]; 
Zo=Z[ 1 ..length(Z)/2]; Z, =Z[length(Z)/2+ 1 ..length(Z)]; 
Match(Z0, J0, depth- I ); 
Match(Z, J,  depth-l); 
Enlarge the smaller sequence of J, and J, 
J is the concatenation of Jo and J l. 

end i f  
Enlarge the smaller sequence of  Z and 3. 
Compute the Euclidean distance between Z and J. 
return distance; 

Fig. 4. The recursive pseudo codes for split-and-merge matching. 
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Fig. 5. The existing search range for each iteration. 

rithm, which recursively splits patterns into sub-pat- 
terns, is a top-down approach. 

Step 1.1 searches the optimal point to split the 
input sequence into two sub-sequences. In order to 
enhance the search speed, we need to iteratively 
prune away some sample points which are unlikely 
to be the optimal splitting point. Fig. 5 shows the 
tree structure of the variations of the existing search 
ranges and the pruned ranges. In searching the opti- 
mal point to split the input sequence of N sample 
points into two sub-sequences, we first select the 
candidates of the optimal point as follows: 
Candidate 1: the (N/4) th  sample point of the se- 

quence. 
Candidate 2: the (N/2) th  sample point of the se- 

quence. 
Candidate 3: the (3N/4)th sample point of the se- 

quence. 
We define that two sequences best match with each 
other if they yield the highest similarity or the lowest 
distance. The words "best  match" in distance is to 
choose the matching style which leads to minimum 
distance. Assume D 1, D 2 and D 3 are the distances 
of matching based on splitting the input sequence at 
the (N/4)th,  the (N/2) th  and the (3N/4)th sample 
points of the sequence. Then min(D 1, D 2, O 3) is the 
distance that best matches the input sequence with 
the reference sequence. 

If the refined input sequence that can be obtained 
from splitting at the first candidate best matches with 
the reference sequence, then report the matching 
result or continue to search the splitting point be- 
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tween the f i r s t  and the (N/2) th  sample point of the 
input sequence. If the refined input sequence ob- 
tained from splitting at the second candidate best 
matches with the reference sequence, then report the 
matching result or continue to search the splitting 
point between the (N/4) th  and the (3N/4)th sample 
point of the input sequence. If the refined input 
sequence obtained from splitting at the third candi- 
date best matches with the reference sequence, then 
report the matching result or continue to search the 
splitting point between the (N/2) th  and the Nth 
sample point of the input sequence. This is an itera- 
tire search scheme. Each iteration prunes away one 
half of the sample points in the existing search range. 

Each call of the split-and-merge algorithm breaks 
a spatial/temporal sequence into two sub-sequences. 
Therefore, recursive calls on this algorithm for d e p t h  

times will break a sequence into 2 aepth sub-se- 
quences. The deeper the recursive call is, the more 
refined the input sequence is. We have to take 
computation time into consideration when the recur- 
sion is deep. Usually, the depth of the recursive call 
is pre-set. 

In (Wu et al., 1996), the similarity between two 
sequences, whose lengths are adjusted through inter- 
polation, is obtained by Pearson correlation formula 
(Flannery et al., 1988; Vald'es, 1993). In this paper, 
we use the following formula to measure the dis- 
tance such that the computation time is reduced. 
Assume that patterns V and W are constructed by 
sequences of samples V o, V~ . . . . .  V s_  j and samples 
W o ,  W 1 . . . . .  W s_  ~ with each sample being a vector 
V i  : ( u i  0 ' u i  I . . . . .  Ut ~ - I ) a n d  W i = 

(w g, w~ . . . . .  wi r ~), respectively. S is the number of 
samples. T is the dimension of V i and W i, 0 <~ i <~ 

S -  1. Then the distance between V and W is 

S - I T  1 

D i s t a n c e ( V , W ) =  g g 
i = 0  j = 0  

(3) 

where v ~ and w J are the respective mean values of 
{ v / J 0 ~ < i ~ < S - 1 } a n d { w / J 0 ~ < i ~ < S -  1}. 

In this paper, each word of the signature is repre- 
sented as sequences of sample points. In matching 
the input signature words with the reference signa- 
ture words, each input sequence is split into two 
sub-sequences and each input sub-sequence is 

matched with its corresponding reference sub-se- 
quence. We recursively call the split-and-merge al- 
gorithm until the pre-set recursive depth is met. Then 
the refined input sequence is obtained through merg- 
ing its sub-sequences after they are refined. Finally, 
the distance between the reference sequence and the 
refined input sequence can be computed. As we 
mentioned in the previous section, each signature 
word is specified with a sequence of coordinates and 
a sequence of velocities. The matching results of the 
coordinate sequences of all words are summed up as 
the coordinate distance between the reference tem- 
plate and the input signature. The matching results of 
the velocity sequences of all words are summed up 
as the velocity distance between the reference tem- 
plate and the input signature. 

4. Reference template and verification threshold 

The reference templates and the verification 
thresholds of registered persons must be computed 
before the verification system can determine the 
genuineness of the input signature. Though the sim- 
plest method for obtaining the reference template is 
to choose one of the training signatures as the refer- 
ence template, but this approach is risky because the 
chosen one may not be able to accurately stand for 
the usual signing style. For each registered person, 
we choose three training signatures to generate the 
reference template. One of these training signatures 
is chosen as the initial reference template. Our train- 
ing facility then matches these three training signa- 
tures with the initial reference template and we 
receive the refined training signatures as return. We 
then average these three refined signatures as the 
new reference template. Again, we could match the 
three original training signatures with the reference 
template and revise the reference template. The ref- 
erence template could further be revised for a pre-set 
number of iterations. Each reference template is 
represented as coordinate sequences as well as veloc- 
ity sequences for signature words. Fig. 6 shows the 
examples of training signature words and the gener- 
ated reference template. 

We use another 7 training signatures for comput- 
ing the verification thresholds. The coordinate dis- 
tance and the velocity distance are acquired by 
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(a) (b) 

(a) genuine signatures (b) Ibrged signatures 

(d) 

Fig. 6. Examples of lxaining signature words (a), (b) and (c) and 
the generated reference template (d). 

Fig. 7. Examples of genuine and forged signatures of the simula- 
tion. 

matching these 7 signatures with the reference tem- 
plate. Listed in the following are the formulas for the 
computation of verification thresholds: 

T c = min(mean{Ci l1 < i ~< 7} 

+ 3.0 * standard_ derivation{Ci I 1 ~< i ~< 7}, 

1 .1*max{Ci l l  ~< i~< 7}) 

and 

T v = min(mean{Vi r l ~< i ~< 7} 

+ 3 . 0 .  standard_ derivation{V~ I1 ~< i ~< 7), 

1.1 * max{Vi I1 ~< i ~< 7}), 

where 
To: the threshold of coordinate distance, 
Ci: the coordinate distance between the ith training 

signature and the reference template, 
Tv: the threshold of velocity distance, 
Vi: the velocity distance between the ith training 

signature and the reference template. 

An input signature is verified as a genuine one if 
both of its coordinate and velocity distance from the 
reference template are less than the respective coor- 
dinate and velocity threshold; otherwise, it is a 
forgery. 

5. Simulation 

We collect genuine signatures from 10 registered 
persons and forged signatures from 4 imitators for 
simulation. Each signature contains three words. Fig. 
7 shows the examples of  genuine and forged signa- 
tures in the simulation. Each registered person signs 
h i s /he r  signatures for 30 times, ten of which are 
used to acquire the reference template and the verifi- 
cation threshold and 20 of which are used for the 
testing. Totally, there are 2 0 . 1 0  = 200 genuine sig- 
natures of  all registered persons for system testing. 

• f a l s e  r e j e c t i o n  O.2 
- - O - - f a l  . . . . . .  pt . . . .  ! 

\ / ~ - - i -  - - m i x e d  i 0.15 ~ , ~  ~ 
"" "\x 

0.1 . . . . . .  ~ - . . .  

0.05 x\ _ [] _ _ 
. . . . .  -13 . . . . . . . . .  0 

o 
0 1 2 3 4 

Splitting depth 

Fig. 8. Error rates of all registered persons for different splitting depth. 
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Fig. 9. The error rates of each registered person with splitting depth = 1. 
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The genuine signatures of all registered persons are 
shown to the imitators when they imitate. The imita- 
tors totally forge 246 signatures. 

False rejection rate is defined to be the rate that 
the genuine signatures are classified as forgeries. 
False acceptance rate is the rate that the forgeries are 
classified as genuine ones. The mixed error rate is 
defined to be the ratio of the number of mis-verified 
genuine and forged signatures over the total number 
of genuine and forged signatures. Thus, if false 
rejection and false acceptance rates are A / 2 0 0  and 
B/246, then the mixed error rate should be (A + 
B) / (200  + 246). 

Fig. 8 depicts the false rejection, false acceptance 
and mixed error rates of  all registered persons with 
different splitting depth. It demonstrates that this 
verification scheme can verify signatures with high 
accuracy. Among these three types of error rates, 
false acceptance rate is the most important because 
the false acceptance of the forged signatures may 
cause fatal losses. There is a big decline in false 
acceptance rate from depth = 0 to depth = 1, which 
results from the fact that the refined training signa- 
tures can provide stricter verification thresholds and 
more accurate reference templates such that the forg- 
eries are less likely to be accepted. As the splitting 
depth increases, the verification thresholds decrease 
and the input genuine and forged signatures are more 
refined such that the distance between the input 
signature, forged or genuine, and the reference tem- 
plate decreases. Under such circumstances, the false 
rejection and false acceptance rates are not guaran- 
teed to decrease as the splitting depth increases. This 

explains why the false rejection and the false accep- 
tance rates do not decline as we raise the splitting 
depth from 1 to 2 or from 2 to 3. Setting the splitting 
depth to 1 seems optimal in this simulation. 

Fig. 9 shows these three types of  error rates for 
each registered person when splitting depth is 1. 
Many signatures are verified with zero false rejection 
and /o r  zero false acceptance. However, as the writ- 
ing behaviors of  some persons are not stable, a 
genuine signature written at time instance tl may 
differ greatly from that written at time instance t 2 
with or without intention. Therefore, the error rates 
are more or less time-dependent. Other factors to 
affect the quality of signatures include the writing 
tablet and the mood of the writer. Most of the errors 
occur because signing on the tablet is not so smooth 
as signing on the paper. Under such circumstances, 
some genuine signatures may look like forgeries and 
some forgeries may look like genuine signatures. 

6.  C o n c l u s i o n s  

In this paper, an on-line signature verification 
scheme based on split-and-merge matching algo- 
rithm is proposed. Both the overall shapes and the 
dynamics of the signatures are considered for the 
determination of genuineness of the signatures. A 
mechanism for generating the reference templates 
and the verification thresholds is developed such that 
the generated templates and thresholds can be as 
representative as possible. The input signature is 
regarded as a genuine one if both of its coordinate 
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and velocity distance from the reference template are 
less than the respective coordinate and velocity 
threshold; otherwise, it is a forgery. From the simula- 
tion on 10 registered persons, it is demonstrated that 
86.5% of the genuine signatures can be successfully 
verified and 97.2% of the forgeries can be pointed 
out when splitting depth is 1. 

Although the term "signature" is generally known 
in western countries to refer to a name handwritten 
in an alphabetic script, there is no doubt that this 
term could also refer to handwritten names in charac- 
ter form, such as Chinese characters. We use Chi- 
nese signatures, which are often written in character- 
by-character form, for simulation. In fact, this work 
can be easily adapted to other types of  signatures. 
For many languages, word connection is usually the 
case. In the simulation of  this paper, the split-and- 
merge process is for a single word or an entity. If the 
words of a signature are allowed to be connected, 
then the connected words will be treated as an entire 
entity. Since the connected words are treated as an 
entity, the split-and-merge process still works. 
Therefore, the proposed method works for a signa- 
ture consisting of connecting letters or characters, as 
often seen in Latin languages. 
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