

國 立 交 通 大 學

資訊學院 資訊學程

碩碩碩碩 士士士士 論論論論 文文文文

嵌入式裝置的原始碼層級耗電分析工具

Source-Level Energy Profiling Tool for Embedded Devices

研 究 生：張 藝 馨

指導教授：曹 孝 櫟 教授

中中中中 華華華華 民民民民 國國國國 一一一一 0000 一一一一 年年年年 一一一一 月月月月

i

嵌入式裝置的原始碼層級耗電分析工具

Source-Level Energy Profiling Tool for Embedded Devices

研 究 生：張 藝 馨 Student：Yi-Hsin Chang

指導教授：曹 孝 櫟 Advisor：Shiao-Li Tsao

國 立 交 通 大 學

資訊學院 資訊學程

碩 士 論 文

A Thesis

Submitted to College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in

Computer Science

January 2012

Hsinchu, Taiwan, Republic of China

中華民國 一一一一 0000 一一一一 年 一一一一 月

ii

嵌入式裝置的原始碼層級耗電分析工具

研 究 生：張 藝 馨 Student：Yi-Hsin Chang

指導教授：曹 孝 櫟 Advisor：Shiao-Li Tsao

國 立 交 通 大 學 資訊學院 資訊學程碩士班

摘要

耗能對於行動裝置來說，一直是個很重要的議題。在有限的電池容量下，如何有效

的利用硬體資源以達到省電及效能的要求，並完成工作目標，是軟體開發者重要的議題。

在這篇論文中，我們開發及設計了一個耗能量測分析工具。這個工具可以提供軟體開發

者在行程層級，函式層級及原始碼層級的耗能分析報告，藉以作為軟體開發者評估其所

設計軟體品質的依據，並設計出符合省電及效能的軟體。耗能量測分析工具可以分為，

取得行程及函式執行的時間、擷取系統耗能數據、及關聯系統執行時間和耗能數據並提

供分析報告等三個部分。我們利用了動態的原始碼插入技術，改善了過往研究在取得行

程及函數執行時間時的缺點，提供了一個具有彈性及容易使用的耗能分析工具。我們的

工具包括了一個圖型使用者介面，讓程式開發者能動態的新增及刪除想要量測的函數，

並且不需要重新編譯原始碼及重開機。實驗結果顯示，利用動態的原始碼插入技術，我

們的耗能量測分析工具可以提供正確的行程層級，函式層級及原始碼層級的耗能分析報

告。

iii

Source-Level Energy Profiling Tool for Embedded Devices

Student: Yi-Hsin Chang Advisor: Dr. Shiao-Li Tsao

Degree Program of Computer Science
National Chiao Tung University

Abstract

Energy is always a critical resource in battery-driven devices. How hardware

components are controlled and used by the applications and system software can

significantly affect system’s energy consumption. In this thesis, we propose a

measurement based energy profiling tool to assist software designer to determine

different software design choices. The measurement based tool records target device’s

power samples and system activities simultaneously, and correlating them together to

generate device’s energy consumption report. Previous researches use statistical

sampling or manual instrument method to record device’s system activities which may

increase system overhead and lack of flexibility. We adopt dynamic source instrument

technique and provide a GUI front-end tool to profile on the native (non-Java) part of

Android system. The fine-grained process-level, function-level and code block-level

performance and energy profiling reports are provided. The experiment results show

the correctness of proposed profiling tool with low instrument overhead (0.02

milliseconds per function calls).

iv

Acknowledgement

感謝指導教授曹孝櫟博士於論文及學業上的指導，使我在研究所生涯中，對於嵌入式系

統及資訊科學的專業知識能有正確的觀念及深入的瞭解，遇到問題時能有獨力解決的能

力。對於論文的悉心指導及建議，使我得以順利完成論文，在此致上最深的謝意。於口

試期間承蒙梁文耀博士及賴槿峰博士對於學生論文的詳加審查，並提供許多寶貴的意見，

在此致上由衷之感謝。

感謝建臻、宇宸、文信、小強及實驗室成員們提供許多寶貴的經驗及建議，在遇到問題

時的討論及經驗交流，讓我能順利克服難關。最後，我要感謝我的太太美玲，在我離開

職場，專心於論文的這段時間，默默的支持我，鼓勵我，讓我無後顧之憂，順利的完成

我的心願。僅以本文，感謝所有支持我，關心我的家人及朋友們，祝大家都有個美滿及

幸福的人生。

v

Table of Contents

Abstract ... III

Acknowledgement .. IV

Table Of Contents .. V

List Of Figures .. VI

List Of Tables ... VII

1. Introduction .. 1

2. Related Work .. 4

3. Design and Implementation of Energy Profiling Tool ... 7

 3.1 Methodology ... 8

 3.2 System Architecture .. 11

 3.3 Recording System Activities .. 12

 3.3.1 Dynamic Source Instrument .. 13

 3.3.2 Correlating Energy to Source Code ... 15

 3.3.3 Recording CPU System Activities ... 16

 3.3.4 Recording WNIC System Activities .. 17

 3.4 Power Measurements .. 18

 3.5 Correlating Energy with System Activities .. 19

4. Experiment Overview ... 20

 4.1 Experiment Environment .. 20

 4.2 Cases study and Results .. 21

5. Conclusion .. 26

6. References .. 27

vi

List of Figures

Figure 1 Processes share hardware resources ... 7

Figure 2 function level and code block-level energy consumption concepts 9

Figure 3 Correlating power samples with system activities 10

Figure 4 System Architecture .. 12

Figure 5 Dynamic instrument concepts .. 13

Figure 6 Reducing dynamic instrument overhead .. 14

Figure 7 Function-level dynamic instrument concepts .. 15

Figure 8 lines of code and instruction addrress mapping 16

Figure 9 per-process stacks to record system activities to kernel buffer 17

Figure 10 Measurement Equipments .. 21

Figure 11 Power consumption of different instruction types 21

Figure 12 Power consumption of turning on/off LED .. 22

Figure 13 Energy consumption of enabling/disabling CPU IDLE feature 22

Figure 14 Energy consumption of target device with various scenarios 23

Figure 15 Energy consumption of FTP Client with different file size 24

Figure 16 Dynamic source instrument overhead .. 25

vii

List of Tables

Table 1: Kprobes and Uprobes API .. 14

Table 2: Specification of experiment equipments ... 20

Table 3: Energy consumption of FTP Client .. 24

1

Chapter 1

Introduction

Hand held devices including smart phones and Tablet PCs have become more and more popular

in recent years. These devices provide better user experience to access the Internet. Several

complex applications, which are used only on PCs, have been developed and run on hand held

devices. Although there have been many improvements in low power hardware design and

battery life, energy is still a critical resource for these battery-driven devices [1]. The less

energy your device consumes, the longer it can be used without being recharged.

Previous research on energy consumption mainly focuses on hardware. However, energy

consumption depends on not only the hardware but also how hardware is controlled and used

by the software [5]. There are significant opportunities exist for system energy optimization at

application and system software [6]. Operating-system and application developers need to

estimate how the different scheduling algorithm and software design choices affects the

system’s energy consumption [6] [10]. An application designer may reduce mobile device’s

display quality when battery is low [29] and transmit/receive the E-mail when Wi-Fi

transmission with higher data rate [31]. Using energy optimized library, the application can

achieve the same functionality but consuming less energy [6]. All these design choices need a

tool that can provide fine-grained energy profiling report. Software designer can analysis

system’s runtime energy consumption to identify energy-critical bottlenecks and determine the

best design choice.

There are two commonly approaches for energy profiling tools, simulation and measurement [2]

[30] [31]. Simulation and modeling based approaches can provide energy profiling information

2

in transistor level, architecture level, and instruction level. The lower level model can produce

more accurate energy consumption report but consumes more time. In [12], the executable

binary code is fed into cycle-accurate energy simulator to calculate the execute time and energy

consumption of all system components including CPU, cache, bus, and memory, and provide

function level energy consumption report to the software designer. Simulation and modeling

based approaches are useful when hardware device is not available in early design stage, while

measurement based approach can provide accurate energy consumption report by connecting

external measurement device to data-acquisition card (DAQ) or multi-meter to target device’s

measurement points. Depending on the type and number of measurement points provided by

the target device, power samples for different hardware components such as CPU, memory and

I/O can be retrieved simultaneously. The power samples are correlated with system activities

together to obtain accurate energy consumption report.

Today’s embedded devices consist of several networking I/O components such as 3G, WLAN,

and Bluetooth, these I/O components consume significant amount of energy compared with

energy consumed by the CPU. The applications and system software running on these devices

are getting more and more complicated and it is not a trivial task to analyze energy

consumption of these devices. To ease the complexity of analyzing and reducing device’s

energy consumption, the profiling tool requires the abilities to determine how the energy is

used by application and system software on CPU and I/O components. Fine-grained energy

consumption report from process-level to code block-level assists system and software

developers to understand the energy behavior of the system and optimize them for better

performance and lower energy consumption.

In this thesis, we propose a direct measurement based energy profiling tool and profiles energy

consumption of native parts of Android system running on a TI OMAP3/Beagle board platform

3

[35]. The profiling tool provides system’s energy consumption report for both CPU and I/O

components in process-level, function-level, and code block-level. Using a set of existing

techniques, system’s energy consumption can be correlated with the source code. The software

designer does not require the static instrumentation or modification of source code in traditional

way, making it possible for software designer to debug and optimize software repeatedly. A

user friendly GUI fronted-end is provided to help software designer control and select

interested functions and code blocks for specific application. The system activities and power

samples are correlated together to generate fine-grained energy consumption report from

process-level to code block-level. Software developer can see inside their application’s energy

characteristics and determine the effects of program code and flow on energy consumption in

real time.

The rest of the thesis is organized as below: Section 2 reviews related work. Section 3 describes

the design and implementation of energy profiling tool. Section 4 presents our profiling results.

Section 5 presents conclusions and future work.

4

Chapter 2

Related Work

There are several similar energy profiling tools. As mentioned in the previous section, these

tools can be categorized into two main groups: simulation and modeling based [12] [15] [17]

[32], and measurement-based tools. Measurement-based tools can be further categorized into

measurement-based estimation [13] [14] [16] and direct measurement based [1] [2] [4] [16] [31]

tools.

For measurement-based estimation tools, the most widely used concept is to associate

instructions running on the processor with their corresponding energy. Tiwari et al. [13] [14]

propose to measure the base energy consumption of each instruction, and inter-instruction

energy, and other energy consumption due to stall and cache misses. An improved

measurement method is provided in [16] to measure instruction-level energy consumption in

ARM7TDMI. The influences on energy-sensitive factors such as opcode, register number and

fetch address are provided. These results are useful guideline for high-level energy reduction

mechanism. The memory models are integrated to instruction-level simulator and a

cycle-accurate simulation model is provided in [15]. The cycle-accurate simulation engine is

then extended in [12] to correlate the source code to instructions, making it easier to evaluate

energy efficiency of interested source code.

PowerScope [1] uses the digital multi-meter to trigger the profiling computer to collects

program counter and process ID, while data collection computer records power samples

simultaneously. The program counter, process ID, and power samples are correlated by energy

analyzer together to generate procedure level energy profile. The overhead to obtain the system

5

activities may vary depending on the interval of external trigger generated by multi-meter.

Software designer can’t select interested application and focus on the procedures within

specific application using PowerScope. Xian et al. [2] use a direct measurement based method

and propose a time synchronization method to accurately assign the power samples to the

system activities. The power consumption of CPU and several hardware components (I/O) are

measured simultaneously and the component-wise energy-assignment method is proposed to

raise the accuracy of software's energy consumption. The system activities are only in process

level, making it difficult to debug process’s energy consumption hotspots. PowerPack[4] is also

a direct measurement based profiling tool. It provides a set of APIs for profiled applications to

inform control thread that start or stop of interest code regions are hit, how to map power

profile with source code. The application designer should insert these APIs to the profiled

application manually, making it time consuming and can not apply to complicated applications

easily.

Performance monitor techniques can be divided into two main categories: instrumentation and

statistical sampling [23]. The Oprofile [34] is a statistical sampling profiling Tool for Linux

systems, capable of profiling all running code at low overhead. The program counter and other

runtime information are collected when certain interrupt event happened. PowerScope also

adopts the same technique to collect system activities. Tracepoints [20], Kernel Probes

(Kprobes) [22], Process Trace (Ptrace) and User-space Probes (Uprobes) [25] are

instrumentation techniques. Tracepoints is hooking mechanisms providing static

instrumentation in Linux kernel’s critical locations and can be enabled at runtime (dynamically)

with very small footprint when disabled. The Tracepoints is sufficient to record time critical

system events such as schedule context switch and receive/transmit network packets. Kprobes

is a simple, lightweight kernel instrumentation mechanism and can insert/remove probes into a

running kernel dynamically. The performance information can be collected in user-defined

6

handler when a probe point is hit. While Kprobes is used for kernel instrumentation, Ptrace and

Uprobes are provided for user-space applications instrumentation. Ptrace provides a set of

system call for debugging user-space applications. The GNU Project Debugger (GDB) is the

most widely used application debugger in Linux. GDB uses Ptrace system call to observe and

control the execution of traced process, and examine and change its binary image and registers.

The drawback of using Ptrace is performance, which is influenced by its high context-switch

overheads between tracer and traced application. Uprobes is also a dynamic instrumentation

mechanism for user-space application in Linux. The detail implementation is not final and it is

not accepted in Linux community until developing this energy profiling tool. But Uprobes

significantly improves the performance overhead of Ptrace because of inherent from the

Kprobes approach.

In this thesis, we adopt the Kprobes mechanism to record system activities dynamically in

function-level and code block-level. The Uprobes patch listed in [27] is used to assist us to

develop Uprobes mechanism and support dynamic source instrument in user-space application.

Chapter 3

Design and Implementation of

Tool

The processes share hardware resource, and operation of

The typical energy consumption behavior of embedded system is shown i

thesis, we design a measurement

• GUI front-end tool + profiling on the native (non

• Dynamic source instrument

• Coupling source code to energy consumption

• Fine-grained performance and energy profiling reports

• Mapping energy consumption of I/O devices to corresponding software functions

• Accurate measurement results

Figure 1 Process

7

Design and Implementation of Energy Profiling

The processes share hardware resource, and operation of hardware resource consumes energy

The typical energy consumption behavior of embedded system is shown i

a measurement-based energy profiling tool which can

end tool + profiling on the native (non-Java) part of Android system

Dynamic source instrument

Coupling source code to energy consumption

grained performance and energy profiling reports

energy consumption of I/O devices to corresponding software functions

Accurate measurement results with low overhead

Figure 1 Processes share hardware resources

Energy Profiling

hardware resource consumes energy.

The typical energy consumption behavior of embedded system is shown in Figure 1. In this

 provide

va) part of Android system

energy consumption of I/O devices to corresponding software functions

8

3.1. Methodology

The main idea of measuring system’s energy consumption can be separated into three parts,

1. Recording System Activities, a process is a running instance of a program stored in the

memory, the system activities are the usage instance of a hardware component by a process.

Recording the running time slices for each process in the system can help to obtain process

level’s energy consumption. To have fine-grained energy consumption report, the running

time slices for each function within process and running time slices for each block within

function are necessary. The penalty is the performance and storage overhead when using

static instrument method. Fortunately, dynamic source instrument technique can be used to

insert or remove interested probes dynamically and reduce the instrument overhead. Figure

2 represents a piece of application source code. From process-level energy consumption

report, we found that this application consumes a lot of energy. We would like to find the

energy hot spot of this application. To do this, we separate the main function into three

source code blocks, and measure the energy consumes by these three blocks. We found that

block2 consumes more energy than block1 and block3 in first run. Therefore, we focus on

energy consumption of block2 and found that sort function consumes most of energy. We

can concentrate on optimizing performance and energy consumption of sort function.

2. Measuring system’s power sample, using external measurement device (DAQ) and connect

it to specific measurement points in the device. DAQ can record average loop current and

voltage of each hardware component for a given duration. The accuracy of energy

consumption will depend on the sampling frequency of DAQ.

Figure 2 function

3. Correlating system activities and power sample,

The system activities and power samples are measured simultaneously with two hardware

platforms. The time synchronization between two hardware

to ensure power samples are assigned to running processes correctly

synchronization methods such as network time protocol (NTP) and external trigger provided by

DAQ. We adopt external trigger

The general purpose input and output (GPIO) signal is used in

DAQ and start to collect power samples. The timestamp is recorded in the device while

triggering the DAQ simultaneously.

power samples. By recording the system activ

function ID (FID), block ID

be correlated with system activities. In figure 3, it represents power samples variation with time.

We can correlate each time slice

timestamp. For the energy consumption

9

function-level and code block-level energy consumption

Correlating system activities and power sample,

The system activities and power samples are measured simultaneously with two hardware

s. The time synchronization between two hardware platforms should be done correctly

sure power samples are assigned to running processes correctly. There are

synchronization methods such as network time protocol (NTP) and external trigger provided by

DAQ. We adopt external trigger method to do time synchronization between two platforms.

The general purpose input and output (GPIO) signal is used in the device to trigger the external

DAQ and start to collect power samples. The timestamp is recorded in the device while

triggering the DAQ simultaneously. It is a reference timestamp which mapping to the first

By recording the system activities information such as process ID

block ID (BID), start timestamp, and end time stamp, the power samples can

related with system activities. In figure 3, it represents power samples variation with time.

ach time slice of running processes to power samples

energy consumption that occurs between start and tend

level energy consumption concepts

The system activities and power samples are measured simultaneously with two hardware

s should be done correctly

. There are several time

synchronization methods such as network time protocol (NTP) and external trigger provided by

to do time synchronization between two platforms.

the device to trigger the external

DAQ and start to collect power samples. The timestamp is recorded in the device while

which mapping to the first

such as process ID (PID),

, start timestamp, and end time stamp, the power samples can

related with system activities. In figure 3, it represents power samples variation with time.

to power samples using reference

end in Function 1(F1) of

Process 1(P1) can be represented in

concept can be applied to p

Figure 3

However, the following I/O

become difficult.

1. Device driver usually removes process ID of I/O events in kernel space for better I/O

efficiency.

2. Operating system usually performs scatter

3. I/O events are asynchronous

phases. The first phase

processed at driver level.

is actually performed the I/O request.

Figure 3 also shows I/O behavior of WNIC

may be delayed and happened in time slice of process 2

We need to modify the kernel to link the applications to related

10

can be represented in formula (1), where P (t) = I (t) current

provide the energy consumption to function-level and bloc

Figure 3 Correlating power samples with system activities

owever, the following I/O features cause correlating energy consumption with software to

evice driver usually removes process ID of I/O events in kernel space for better I/O

perating system usually performs scatter-gather for better I/O efficiency

I/O events are asynchronous, and asynchronous issue could be further divided into two

phase is from application issues the I/O request to the request is

processed at driver level. The second phase is from driver notifies device to the dev

is actually performed the I/O request.

behavior of WNIC. The send or receive I/O requests from Process 1

and happened in time slice of process 2 due to its asynchronization I/O nature.

kernel to link the applications to related transmitted/received

∫= end

begin

t

t

P
F dttPE)(1

1

current x V (t) voltage. The same

level and block-level.

 (1)

power samples with system activities

features cause correlating energy consumption with software to

evice driver usually removes process ID of I/O events in kernel space for better I/O

gather for better I/O efficiency.

, and asynchronous issue could be further divided into two

is from application issues the I/O request to the request is

is from driver notifies device to the device

The send or receive I/O requests from Process 1

due to its asynchronization I/O nature.

transmitted/received packets.

11

3.2. System Architecture

The energy profiling tool consists of the monitored target and host PC ad depicted in the Figure

4. The monitored target device is in charge of recording system activities and host PC is in

charge of collecting power samples. The power samples and system activities are correlated

together in host PC. Putting the time consuming tasks in host PC can reduce significant amount

of monitor overhead for target device.

The profiling tool in the host PC consists of the graphical user interface (GUI) front-end,

source-level and function-level probes module, symbol to address helper, and energy

consumption analyzer. The GUI front-end provides several features, users can select benchmark

program, and checking/un-checking preferred functions and code block, and controlling DAQ

and target device to start/stop the profiling, and setting the profiling duration. The profiling

results are presented with well formatted GUI in the host PC.

The Source/Function Probe module is in charge of preparing the probes information, and

symbol to address helper will translate function name and lines of source code to its program

address. The probes information will send to target device and register/un-register to dynamic

instrument module. The Energy consumption analyzer is in charge of analyzing profiling data

and power samples. The process/function/code block time slices will be mapped to

corresponding CPU and Wi-Fi power samples to generate fine-grained energy consumption

report.

In the target site, there are two user-space Daemons, PowerMemo and Energy Probes. They

are corresponding to Energy Probes kernel module and System Monitor. System Monitor kernel

module stores time slice of benchmarking program in process level, function level, and code

block level. When the kernel buffer is almost full, kernel module notifies the PowerMemo

daemon to receive these kernel level data from kernel-space to user-space as files, and at the

end of the profiling it automatically transfers these files to host side for the mapping process.

The Energy probes daemon handles register/un-register requests from host PC, these requests

will convert to compatible data structure and use IOCTRL provided by Energy probes kernel

module to register/un-register the requirement to Kprobes/Uprobes module. The

Kprobes/Uprobes provides a set of APIs to service the register/un-register requests for dynamic

source instrument in user-space application and Linux kernel. The detail about dynamic source

instrument will be described in later section.

3.3. Recording System Activities

Previous researches on measurement based profiling tool use

instrument techniques to record system activities. Statistical sampling can have fine

profiling information when sampling interval is short. However, the overhead is hig

more storage space. Manual instrument

instrument system activities to function

to spend a lot of efforts to instrument the source code. There are several compiler

such as prof, gprof and kern

flexible and need to re-compile the source code. We use dynamic source code instruction

technique to improve the drawback of

this chapter is organized as below:

instrument in user-space application and Linux kernel. Section 3.3.2

line of codes to energy consumption.

implementation of recording

12

Figure 4 System Architecture

Recording System Activities

measurement based profiling tool use statistical

es to record system activities. Statistical sampling can have fine

profiling information when sampling interval is short. However, the overhead is hig

anual instrument can have lower overhead but is not suitable to

instrument system activities to function-level or code block-level. The software designers need

to instrument the source code. There are several compiler

such as prof, gprof and kernel function trace can help to record system activities.

compile the source code. We use dynamic source code instruction

drawback of statistical sampling and manual instrument.

is organized as below: Section 3.3.1 goes through the details about dynamic

space application and Linux kernel. Section 3.3.2 describes

line of codes to energy consumption. Section 3.3.3 and section 3.3.4 present

implementation of recording CPU and WNIC system activities.

statistical sampling or manual

es to record system activities. Statistical sampling can have fine-grained

profiling information when sampling interval is short. However, the overhead is high and needs

ower overhead but is not suitable to

level. The software designers need

to instrument the source code. There are several compiler techniques

system activities. But it is not

compile the source code. We use dynamic source code instruction

and manual instrument. The rest of

through the details about dynamic

describes how to correlate

and section 3.3.4 present the

3.3.1 Dynamic Source Instrument

As depicted in previous section, there have several performance profiling techniques. We adopt

Kernel Probes (Kprobes) to perform dynamic source code instrument.

dynamic instrument are shown in Figure 5. The

replaced to un-defined or b

register probe API. Once the program hits the un

exception. The user pre-defined handler

We can collect timestamp, process ID, function ID, and block number in

The original instruction and un

returning from exception ha

instruction in new allocated page and executing

step-out-of line. After doing single step out

instruction is hit in new page

is called. The program counter will be

address and continue normal program flow.

13

Dynamic Source Instrument

in previous section, there have several performance profiling techniques. We adopt

to perform dynamic source code instrument.

shown in Figure 5. The instruction in preferred program address is

r break instruction (depending on the architecture) when calling the

r probe API. Once the program hits the un-defined instruction, CPU trap

defined handler will be called based on interrupted

We can collect timestamp, process ID, function ID, and block number in

The original instruction and un-defined instruction will be copied to new allocated

returning from exception handler, the program counter is set to memory address of

in new allocated page and executing the original instruction

After doing single step out-of-line of original instruction, the un

in new page. CPU traps an un-defined exception and user

program counter will be set to memory address next to

normal program flow.

Figure 5 Dynamic instrument concepts

in previous section, there have several performance profiling techniques. We adopt

to perform dynamic source code instrument. The basic concepts of

preferred program address is

reak instruction (depending on the architecture) when calling the

, CPU traps an un-defined

interrupted program address.

We can collect timestamp, process ID, function ID, and block number in pre-defined handler.

copied to new allocated page. After

set to memory address of original

 there. It is called single

line of original instruction, the un-defined

defined exception and user-defined post handler

memory address next to original instruction

Table 1 lists Kprobes and Uprobes APIs for kernel space and user

arguments such as function name or function address and user

for function-level register probe function.

user-defined handler are necessary

information such as application name and binary path

API.

To reduce the dynamic instrument overhead, we can single step the original instru

simulation and emulation method. Simulation

in C code. Emulation is where the original instruction is rewritten and executed, often by

altering its registers. Using simulation and emulation meth

and improve the instrument overhead. Figure 6 represents the flow for improved dynamic

instrument method. We adopt this method in this thesis.

Figure 6 Reduc

14

Table 1 lists Kprobes and Uprobes APIs for kernel space and user-space program.

function name or function address and user-defined handler

level register probe function. The input arguments such as instruction address and

defined handler are necessary for the instruction-level register probe function

information such as application name and binary path are also necessary for user

Table 1 Kprobes and Uprobes API

To reduce the dynamic instrument overhead, we can single step the original instru

and emulation method. Simulation is where the instruction's behavior is duplicated

is where the original instruction is rewritten and executed, often by

Using simulation and emulation method can reduce the

and improve the instrument overhead. Figure 6 represents the flow for improved dynamic

instrument method. We adopt this method in this thesis.

Figure 6 Reducing dynamic instrument overhead

space program. The input

defined handler are necessary

The input arguments such as instruction address and

l register probe function. Additional

are also necessary for user-space register

To reduce the dynamic instrument overhead, we can single step the original instruction using

is where the instruction's behavior is duplicated

is where the original instruction is rewritten and executed, often by

od can reduce the exception number

and improve the instrument overhead. Figure 6 represents the flow for improved dynamic

dynamic instrument overhead

The call flow of function-level instrument is presented in Figure 7. The exception is trapped

when function is called and user

exception is trapped again when function return and user

record the exit timestamp.

Figure 7

3.3.2 Correlating Energy to

Correlating the source code with energy consumption makes it possible for software designer to

optimize their system’s energy consumption.

lines of code and instruction address mapping

block-level energy consumption feature by using

instance, source code can be

Figure 8. Using line to instruction address mapping

record the timestamps wh

Correlating timestamps with

during the running instant of program

15

level instrument is presented in Figure 7. The exception is trapped

when function is called and user-defined handler is used to record the enter timestamp. The

exception is trapped again when function return and user-defined return ha

record the exit timestamp.

Figure 7 Function-level dynamic instrument concepts

Energy to Source Code

Correlating the source code with energy consumption makes it possible for software designer to

s energy consumption. Using a set of tool-chain utilities, we can create

lines of code and instruction address mapping table as depicted in Figure 8.

consumption feature by using instruction-level register

instance, source code can be separated into three blocks, line 5~6, line 7~10, and line 11~12

instruction address mapping table and register probe function

when program hits these two lines by insert

with collected power samples, we can provide

during the running instant of program between line 7~10.

level instrument is presented in Figure 7. The exception is trapped

defined handler is used to record the enter timestamp. The

defined return handler is used to

instrument concepts

Correlating the source code with energy consumption makes it possible for software designer to

chain utilities, we can create

as depicted in Figure 8. We can implement

level register probe functions. For

into three blocks, line 5~6, line 7~10, and line 11~12 in

register probe function, we can

inserting instruction probes.

provide energy consumption

Figure 8

3.3.3 Recording CPU System Activities

The schedule () function is the implementation of scheduler in Linux kernel. Its objective is to

find a process in ready queue list and assign

time slice of the running process

in place where scheduler switch out the old

function. For system activities in

markerfunc_exit() functions are used as user

information such as process id, function id, block id,

timestamp, and end timestamp (relative to reference timestamp in Figure 3)

kernel buffer. Since the kernel buffer

daemon that kernel buffer is almost

system activities from kernel buffer and write to the files. These files are sent to host PC after

measurement duration expired or user stops the energy measurement

represents that per-process stacks are used

functions. The process_exit() or markerfunc_exit() functions are called,

information will be pop out and stored to

16

Figure 8 lines of code and instruction address mapping

Recording CPU System Activities

) function is the implementation of scheduler in Linux kernel. Its objective is to

find a process in ready queue list and assigns the CPU resource to it. The target

time slice of the running processes by putting the process_entry() and process_exit() function

scheduler switch out the old process and switch in the new process

. For system activities in function-level and block-level, the markerfunc_entry() and

functions are used as user-defined handlers in register probes APIs. The

information such as process id, function id, block id, function name, block name,

nd timestamp (relative to reference timestamp in Figure 3)

Since the kernel buffer size is limited, it sends a signal to

is almost full. User-space daemon receives the signal,

system activities from kernel buffer and write to the files. These files are sent to host PC after

expired or user stops the energy measurement

process stacks are used when calling process_entry() or markerfunc_entry()

process_exit() or markerfunc_exit() functions are called,

on will be pop out and stored to kernel buffer.

of code and instruction address mapping

) function is the implementation of scheduler in Linux kernel. Its objective is to

The target device records

process_entry() and process_exit() functions

and switch in the new process in schedule()

level, the markerfunc_entry() and

in register probes APIs. The

function name, block name, start

nd timestamp (relative to reference timestamp in Figure 3) are recorded in

a signal to notify user-space

space daemon receives the signal, and reads the

system activities from kernel buffer and write to the files. These files are sent to host PC after

expired or user stops the energy measurement manually. Figure 9

process_entry() or markerfunc_entry()

process_exit() or markerfunc_exit() functions are called, and the related

Figure 9 per-process

3.3.4 Recording WNIC System Activities

To obtain begin and end time of process activities that cause energy consumption in the WNIC,

we patch the network subsystem and

subsystem lies between the kernel’s networking stack and WNIC device drivers and provides

valuable information that was once only available in hardware logic or device drivers. We can

get the data bit rate value for each packet transmitted or received from this subs

instrument any driver code. Our

packet using bit rate value, packet size and initial time

begin time of a transmit event before the underlyi

bit of the packet to air, and use bit rate value of this transmit event to calculate the end time

offline mapping stage. For a receive

packet reaches to the device driver, and then we use the bit rate value of this newly arrived

packet to calculate the begin time

17

process stacks to record system activities to kernel buffer

Recording WNIC System Activities

To obtain begin and end time of process activities that cause energy consumption in the WNIC,

we patch the network subsystem and new mac80211 subsystem in Linux kernel.

lies between the kernel’s networking stack and WNIC device drivers and provides

valuable information that was once only available in hardware logic or device drivers. We can

get the data bit rate value for each packet transmitted or received from this subs

instrument any driver code. Our implementation calculates duration to transmit or receive a

bit rate value, packet size and initial time of the transmit/receive

begin time of a transmit event before the underlying device driver begins to send out the first

bit of the packet to air, and use bit rate value of this transmit event to calculate the end time

or a receive packet event, we get the end time when the last bit of the

reaches to the device driver, and then we use the bit rate value of this newly arrived

the begin time. Following formulas summarize this technique:

kernel buffer

To obtain begin and end time of process activities that cause energy consumption in the WNIC,

new mac80211 subsystem in Linux kernel. The mac80211

lies between the kernel’s networking stack and WNIC device drivers and provides

valuable information that was once only available in hardware logic or device drivers. We can

get the data bit rate value for each packet transmitted or received from this subsystem without

to transmit or receive a

of the transmit/receive event. We get the

ng device driver begins to send out the first

bit of the packet to air, and use bit rate value of this transmit event to calculate the end time in

event, we get the end time when the last bit of the

reaches to the device driver, and then we use the bit rate value of this newly arrived

. Following formulas summarize this technique:

18

���� = ������ +
��
��� ���� �� ����

�� ��� ����
 (2)

������ = ���� −
��
��� ���� �� ����

�� ��� ����
 (3)

∆� = ���� − ������ (4)

A duration value (∆t) is the key to energy calculation for a system activity, but is not sufficient

to be able to charge processes correctly for the energy they consume. We also need to identify

the processes that are responsible for the energy consumed during every set of begin-end time.

It is more complicated due to the asynchronous nature of I/O operations. To solve this problem

for WNIC devices, we have added process id item to the socket data structure in network

subsystem. When we record the time values for a packet, we simply access this item through

the packet’s socket structure.

3.4. Power Measurement

We adopt the NI-9223 data acquisition (DAQ) card from National Instruments as the

measurement device. It supports a common API that can be used under various programming

languages like VB, C, C++ and C#. When the “START” button is clicked on the main window

of profiling tool GUI, DAQ card is set to run at 50kSample/s/channel and waits for a trigger

input from target device. Right after that, a begin command is sent to the user-daemon running

in the target. When this command is received, user-daemon uses IOCTRL to triggers GPIO

signal which is connected to the trigger input of the DAQ card and records the reference

timestamp of target system. After user-daemon loads the benchmarks and issues an IOCTL call

to cause the system monitor to set a global flag so that kernel profiling can begin. When the

trigger is sensed by DAQ card, it begins to sample and stores the collected samples in files.

19

3.5. Correlating Energy with System Activities

Energy analyzer module is responsible to correlate power samples with system activities.

Energy consumption analyzer module analyzes system activities files to detect the Process ID,

Function ID, and Block ID values that were collected during the test. Later on PID values are

charged with energy values for both CPU and WNIC activities. As one of profiling tool’s

limitation, Function ID and Block ID values are charged only with the energy values of CPU

activities. The process’s total energy consumption can be represented as formula (5) in

Beagleboard.

 (5)

)()(

)()(

_

_

_

∑∑
∑∑

×+×=

+×+×=
WNICrx

WNICPIDRXWNICPID
WNICtx

WNICPIDTXWNICPID
ACTIVITYWNIC

WNICPID

ACTIVITYWNIC
WNICPID

WNICidle
WNICPIDWNICPID

Board
PIDPIDPID

PTPTE

EPTPTE

20

Chapter 4

Experiment Overview

In this thesis, we propose a measurement base energy profiling tool which can provide

process-level, function-level, and code block-level energy consumption report. We design

several experiments to demonstrate the capabilities and correctness of our tool. The first

experiment measures power consumption of functions with different instruction classes and

compares the results with previous researches. The second experiment measures power

consumption before and after turning on device’s LEDs. The results of these two experiments

can show the correctness of our profiling tool in function-level and block-level. The third

experiment demonstrates the capability to measure the energy consumption of USB Wi-Fi

interface. We also measure the energy consumption of FTP client by sending files with different

size to FTP server.

4.1. Experiment Environment

The experiment environment is shown in Figure 10. The measurement equipment contains a

current probe and a data acquisition (DAQ) card. The current clamp uses Ampere's law to

measure current flow of target I/O device, and the data acquisition card collects measured

current value by current clamp. The experimental platform is beagleboard xM using TI Cortex

A8 with 1 GHZ (DM3730). The Wi-Fi 802.11 BG USB adaptor is connected to the target board

as the I/O component and connected to D-Link DIR-600 AP Router via air. The programs

execute on the experimental platform running the Linux kernel 2.6.37 with Android framework

version 2.3.4.

Table 2 Specification of experiment equipments

 Name Model

Measurement

Equipment

DAQ NI cDAQ-9174

Current clamp Fluke I30S

Target

Experimental platform BeagleBoard xM Rev C

USB WLAN adaptor D-Link DWL-G122

Wi-Fi Router D-Link DIR-600

4.2. Cases study and results

The first experiment measures power consumption of functions with different instruction

classes. The functions are

add instruction is duplicated 10000 times using .rept directive

experiment result shows that

and nop instructions. Previous researches

and ARM926EJ-S- core respectively.

Figure 11 Power consumption of

21

Figure 10 Measurement Equipments

Cases study and results

The first experiment measures power consumption of functions with different instruction

 implemented using inline assembler as depicted

instruction is duplicated 10000 times using .rept directive in addinst() function. The

experiment result shows that power consumption of multiply instruction

Previous researches [16][17] also represent the same result for ARM7TDI

core respectively.

Figure 11 Power consumption of different instruction

The first experiment measures power consumption of functions with different instruction

implemented using inline assembler as depicted in Figure 11. The

in addinst() function. The

multiply instruction is higher than add, sub,

me result for ARM7TDI

 types

The second experiment measure

device. The instruction numbers

shows consistent results for different functions

Figure 12 Power consumption of turning on/off LED

The next experiment represents the

supported in Linux kernel. We observe the energy consumption of

find that energy consumes by idle process is high.

CPU IDLE feature can save 13.5% total system energy and save 250 mW average

Figure 13 Energy consumption of enabling/disabling CPU IDLE feature

1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68

10000

P
o

w
e

r(
W

)

22

The second experiment measures power consumption before and after turning

The instruction numbers are varied from 10000 to 160000 for different functions

for different functions before and after turning on LED in Figure 12.

Figure 12 Power consumption of turning on/off LED

resents the total energy saving when we turn on the CPU IDLE

Linux kernel. We observe the energy consumption of the measurement result and

find that energy consumes by idle process is high. The measurement result shows that turn on

IDLE feature can save 13.5% total system energy and save 250 mW average

Figure 13 Energy consumption of enabling/disabling CPU IDLE feature

10000 20000 40000 80000
Instruction Numbers

Turn ON Leds

Turn OFF Leds

before and after turning on LED in target

for different functions. It

rning on LED in Figure 12.

Figure 12 Power consumption of turning on/off LED

total energy saving when we turn on the CPU IDLE feature

the measurement result and

The measurement result shows that turn on

IDLE feature can save 13.5% total system energy and save 250 mW average Power.

Figure 13 Energy consumption of enabling/disabling CPU IDLE feature

160000

Turn ON Leds

Turn OFF Leds

Most mobile devices support Wi

Wi-Fi component contributes

modified wpa_supplicant daemon for

address. We measure the total energy of device before

dongle. The total energy increases 22.93 Joule

energy increases, (E2-E1)/E1

daemon to establish Wi-Fi connection

is 18.29 Joule (53.8% total energy increases

we execute dhcpcd daemon

less energy than CPU because dhcp

acquirement flow. The total energy increases is unremarkable when executing dhcpcd daemon

Disable Wi-Fi component can improve the energy consumption significantly.

Figure 14 Energy consumption of

The next experiment measures energy consumption of FTP client sending

size to FTP server. The Wi

depicted in Figure 15 and Table 3

size.

23

Most mobile devices support Wi-Fi interface. In this experiment, we would like to know how

Fi component contributes total energy consumption of mobile device.

daemon for Wi-Fi support and uses dhcpcd daemon

We measure the total energy of device before (E1) and after (E2)

increases 22.93 Joule after inserting USB Wi

E1)/E1). After inserting USB Wi-Fi dongle, we execute

Fi connection and measure total energy (E3). The total energy

53.8% total energy increases, (E3-E1)/E1). After establishing Wi

daemon to obtain IP address from dhcp server. Wi-Fi component consumes

because dhcp protocol takes only four packets

The total energy increases is unremarkable when executing dhcpcd daemon

onent can improve the energy consumption significantly.

Figure 14 Energy consumption of target device with various

The next experiment measures energy consumption of FTP client sending

Wi-Fi component contributes more energy consumption

and Table 3. The total energy consumption is proportional to transfer file

Fi interface. In this experiment, we would like to know how

energy consumption of mobile device. Android uses a

daemon to obtain the IP

(E2) inserting USB Wi-Fi

ter inserting USB Wi-Fi dongle (30% total

Fi dongle, we execute wpa_supplicant

The total energy increases

After establishing Wi-Fi connection,

Fi component consumes

packets to complete IP

The total energy increases is unremarkable when executing dhcpcd daemon.

onent can improve the energy consumption significantly.

target device with various scenarios

The next experiment measures energy consumption of FTP client sending files with different

consumption than CPU as

The total energy consumption is proportional to transfer file

Figure 15 Energy consumption of FTP Client with different file size

Table 3

0

1

2

3

4

5

6

7

8

9

8M

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 (
J)

Total Energy(J)

24

Figure 15 Energy consumption of FTP Client with different file size

Table 3 Energy consumption of FTP Client

4M 2M 1M 512K 256K

File Size (bytes)

Total Energy(J) WiFi Energy(J) CPU Energy(J)

Figure 15 Energy consumption of FTP Client with different file size

128K

25

We have demonstrated the capabilities of our profiling tool in previous experiments. The next

experiment wants to evaluate the performance overhead of dynamic source instrument. We

chose Lmbench [38] performance analysis tool as our benchmark program. The average

running time is measured in three cases, instrument all functions, instrument all instructions

within main() function, and without instrument in benchmark program. The measurement

results are represented in Figure 16. Per-function instrument overhead is 0.021 milliseconds

and is less than per-instruction instrument overhead which is 0.149 milliseconds. The

instruction numbers within main() function is too small and may lead to higher overhead.

Figure 16 Dynamic source instrument overhead

26

Chapter 5

Conclusion

In this thesis, we have developed an energy profiling tool which can provide GUI front-end and

profiles native part of Android system. Using the dynamic source instrument technique, we

have improved our profiling tool and provide more flexible way to record system activities.

Using line of codes and instruction address mapping makes it possible to coupling source code

to energy consumption. We verify the correctness of profiling tool by several experiments. The

result shows that the profiling tool can measure power consumption in process-level,

function-level and code block-level with low overhead. Furthermore, the asynchronize I/O

issue is addressed. We instrument the kernel code to map energy consumes by Wi-Fi

component with correct process and demonstrate the ability of the profiling tool on

asynchronize I/O issue using ftp client application. The well formatted performance and energy

profiling reports in process-level, function-level, and code block-level make software designers

to focus on the energy consumption hot spot and optimize their software in a better way.

27

Chapter 6

References

[1] J. Flinn and M. Satyanarayanan, “Powerscope: A Tool for Profiling the Energy Usage of

Mobile Applications”, in Proceedings of Second IEEE Workshop Mobile Computer Systems

and Applications, 1999.

[2] Changjiu Xian, Le Cai, and Yung-Hsiang Lu, “Power Measurement of Software Programs

on Computers With Multiple I/O Components”, IEEE Transactions on Instrumentation and

Measurement, Vol. 56, pp. 2079-2086, 2007.

[3] Kutty S Banerjee, Emmanuel Agu., “PowerSpy: Fine-Grained Software Power Profiling for

Mobile Devices”, in Proceedings of IEEE WirelessCom, 2005.

[4] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li , and K.W. Cameron.,

“Powerpack: Energy profiling and analysis of high-performance systems and applications”,

IEEE Transactions on Parallel and Distributed Systems, 2010.

[5] IAR Systems, http://www.iar.com/en/Products/IAR-Embedded-Workbench/Power-debuggi

ng.

[6] A. Kansal and F. Zhao, “Fine-grained energy profiling for power-aware application design”,

in Proceedings of the Workshop on Measurement and Modeling of Computer Systems, 2008.

[7] T. Do, S. Rawshdeh, and W. Shi, “pTop: A Process-level Power Profiling Tool”, in

Proceedings of the Workshop on Power Aware Computing and Systems, October 2009.

[8] Changjiu Xian, Yung-Hsiang Lu, Zhiyuan Li, “A Programming Environment with Runtime

Energy Characterization for Energy-Aware Applications”, ISLPED'07, August 27-29, 2007.

[9] Kanishka Lahiri, Anand Raghunathan, Sujit Dey, “Efficient Power Profiling for

Battery-Driven Embedded System Design”, IEEE Transactions on Computer-aided Design of

Integrated Circuits and Systems, Vol. 23, No. 6, June. 2004.

[10] Y.-H. Lu, L. Benini and G. Michelli, “Power-Aware Operating Systems for Interactive

Systems”, IEEE Transactions on VLSI Systems, Vol. 10, No. 2, Apr. 2002.

[11] Yunsi Fei , Srivaths Ravi , Anand Raghunathan , Niraj K. Jha, “Energy-optimizing source

code transformations for operating system-driven embedded software”, ACM Transactions on

Embedded Computing Systems (TECS), Vol. 7, No 1, December 2007.

[12] Tajana Šimunić , Luca Benini , Giovanni De Micheli , Mat Hans, “Source code

optimization and profiling of energy consumption in embedded systems”, in Proceedings of the

13th international symposium on System synthesis, September 20-22, 2000.

[13] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: A first step

toward software power minimization”, IEEE Transactions on VLSI System, Vol. 2, 1994.

[14] V. Tiwari, S. Malik, A. Wolfe, M. Lee, “Instruction Level Power Analysis”, Journal of

28

VLSI Signal Processing Systems, No 1, pp.223–2383, 1996.

[15] T. Simunic, L. Benini, G. De Micheli,“Cycle-Accurate Simulation of Energy Consumption

in Embedded Systems”, DAC, 1999.

[16] N. Chang, K. Kim, and H. G. Lee, “Cycle-accurate energy consumption measurement

and analysis: Case study of ARM7TDMI”, in Proceedings of Int. Symp. Low Power Electron.

Design, pp.185 - 190, 2000.

[17] Blume, H., Becker, D., Rotenberg, L., Botteck, M., Brakensiek, J., Noll, T.G. ”Hybrid

functional- and instruction-level power modeling for embedded and heterogeneous processor

architectures”, Journal of Systems Architecture, 53 (10), pp. 689-702, 2007.

[18] SystemTap, http://sourceware.org/ systemtap/

[19] J. Levon, “Oprofile - a system profiler for linux”, http://oprofile.sourceforge.net/doc/

index.html.

[20] Tracing Wiki, http://lttng.org/tracingwiki/index.php/Tracepoints_and_Markers.

[21] Ptrace, http://en.wikipedia.org/wiki/Ptrace.

[22] A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A. Keshavamurthy, and M.

Hiramatsu, “probing the guts of kprobes”, in Ottawa Linux Symposium, pp. 101–115, 2006.

[23] Yao Guo, Ziwen Chen, Xiangqun Chen, “A Lightweight Dynamic Performance

Monitoring Framework for Embedded Systems”, Embedded Software and Systems, ICESS

'09. 25-27 May 2009.

[24] Alexey G., Sergey G., Jaehoon J., “Dynamic Binary Instrumentation Framework for CE

Devices”, in Proceedings of the Linux Symposium, July 13th–16th, 2010.

[25] Jim K., Ananth M., Prasanna P., Vara P., “Ptrace, Utrace, Uprobes: Lightweight, Dynamic

Tracing of User Apps”, in Proceedings of the Linux Symposium, Volume One, June 27th–30th,

2007.

[26] LessWatts. http://www.lesswatts.org

[27] uprobes patch, http://thread.gmane.org/gmane.linux.kernel/390558

[28] Kprobes Support for MIPS, Lubna, Vikas, Madhvesh, Sony India Software Centre.

http://elinux.org/images/4/44/Kprobes-MIPS-overview.pdf

[29] RANGANATHAN, P., GEELHOED, E., MANAHAN, M., AND NICHOLAS, K.

“Energy-Aware User Interfaces and Energy- Adaptive Displays”, Computer 39, 3, 31-38,

2006.

[30] Cheng-kun Yu, Wen-Chih Peng,“Profiling Energy Consumption of I/O Events for

Embedded Systems”, A Thesis for master degree of Dept. of Comput. Sci. & Inf. Eng., Nat.

Chiao Tung Univ., Hsinchu, Taiwan, 2010.

[31] Ilter Suat and Shiao-Li Tsao, “Energy Consumption Profiling Tool for Mobile Devices in

an Emulated Wireless Environment”, A Thesis for master degree of Dept. of Comput. Sci. &

Inf. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan, 2010.

[32] Xiang Zhou, Bing Guo, Yan Shen and Qi Li, “Design and implementation of an

improved C source-code level program energy model”, Embedded Software and Systems,

29

2009.

[33] Pollari, M. and Kanstren, T., “A Probe Framework for Monitoring Embedded Real-time

Systems”, Internet Monitoring and Protection, 2009.

[34] J. Levon, “Oprofile - a system profiler for linux”, http://oprofile.sourceforge.net/doc/

index.html.

[35] Beagle board xM Platform, http://beagleboard.org/

[36] NI PCI-6115 DAQ Card, http://sine.ni.com/nips/cds/view/p/lang/en/nid/11886

[37] D-Link DWL-G122 USB Wireless NIC - FW Version 3.0, http://www.dlink.com/

products/?pid=334

[38] Lmbench – Tools for Performance Analysis, http://www.bitmover.com/lmbench/

