r SEE AR IEN B R A 171 2

Source-L evel Energy Profiling Tool for Embedded Devices

SRR N A
s R

PR -(- & - 7

PR E D RABE R AT R

Source-Level Energy Profiling Tool for Embedded Devices

Moy o4 sk % Student Yi-Hsin Chang

R X # Advisor: Shiao-Li Tsao

SIS

PAER Fage

A Thesis
Submitted to College of Computer Science
National Chiao Tung:University

in partial Fulfillment of the Requirements

for the Degree of

Master of Science

in
Computer Science

January 2012

Hsinchu, Taiwan, Republic of China

PEAR -0- £ - 7

o1

INENE -3 =L VR bR K BT AT

&$‘ﬁ

= 4 U3 f B Student Yi-Hsin Chang
R X Advisor: Shiao-Li Tsao

W2 2 4 F Fafm FREemLs

5 &

FARH AR KR R —F AR AT & TR o A LR
S AT R E TR R R o T AR F PR 8
Hizhw e ? O APESFEAXI - BHELERAFTLE oizB1 R uﬁ ﬁ@@%
H AR o 30 R R R s g i A TR 2 %ﬁu.pp@ B g mi 2o
WO S i Py B KGR E B AR ikl o TR R AT BT A 5

wﬁﬁimﬁﬁﬁmﬁw TP~k g Bl R BRE) B3 R o Bdh T R
BoiTaR L & = BRRA o APHF T @ AR AR RE 2 ol e L T Ay APE T
A2 B ERERET R - BE M TR R R AT A

12 &3 - xﬁfg]m]]g’a;}z/;m) AR N .ﬁ;;ﬁq@m{rﬁaiw Tt_@g;gqﬁqu,gz,
L @ié\%#@%%A§W% PEAEEBET > AU PR AR - B A
Pegl iy £RIA T 1 BT RIS AT ARA B SV B2 R4S R B it R A T 3F

o

s

Source-Level Energy Profiling Tool for Embedded Devices

Student: Yi-Hsin Chang Advisor: Dr. Shiao-Li Tsao

Degree Program of Computer Science
National Chiao Tung University

Abstract

Energy is always a critical resource in battery-driven devices. How hardware
components ‘are controlled and used by the applications and system software can
significantly. affect system’s energy consumption. In this thesis, we propose a
measurement based energy profiling tool to assist software designer to determine
different software design choices. The measurement based tool records target device’s
power samples and system activities simultaneously, and correlating them together to
generate device’s energy consumption report.. Previous researches use statistical
sampling or manual instrument method to record device’s system activities which may
increase system overhead and-lack-of flexibility. We adopt dynamic source instrument
technique and provide a GUI front-end tool to profile on the native (non-Java) part of
Android system. The fine-grained process-level, function-level and code block-level
performance and energy profiling reports are provided. The experiment results show
the correctness of proposed profiling tool with low instrument overhead (0.02
milliseconds per function calls).

Acknowledgement

B R 2 L0k 2 B ED b B #A L AR NG 5

S0

BE FAPE G EAomit L AGA 2 IR~ SR 30 8 T FF"%E.E%E‘;" W+ fRiani

3w i F2 2% AT ORI R AH 0 AR B #m’%& o 3T
éﬁﬁPF"*d«;”“v%ﬁJiipﬁﬂéﬁ—!*ﬁ*ﬁw/‘v ma‘-ﬁ%é IR %%m&ﬂ,,
Fd ?\x 73.‘]’0

L

v
)@:&Tﬁ‘»r CERAYE I REFRESE PREFIFFOEKRE SR 2 ET
PRt h & Sk n 0 A mg‘f FOPRERRE o & fs o ;hgfg‘\;egf;u IR Y

|24
Eﬁﬁ}"}%‘ %:u%f"/‘? mle.ﬁ,‘ﬂ?}m ’ _“_“m}‘;}’i‘,?i\. ,ﬁi}ﬁvi\. ' 3 J—\._}E fé&‘?‘ rg 5)ﬂé‘?qé—,’j;—‘étl\;
R e LA e o AT LA RS RRA Z P AP AR RFRF B E SR

gt 4 -

Table of Contents

Y 6] 1 = T PP PP PP 1
F ot [V =T o =T 0 =T o | U v
Table Of CONIENTS ...ciiiiiiiiei et e e e e e e e e e e e e e s e e e e e e asnr e e e e e e aaas \Y
I A L T U] S Vi
LISt Of TADIES .o e e e e Vi
IO 1 oo [F Tt 1 o] o IO PR RP PP 1
2. REIAIEA WOTK ...ttt e st e e e e e e e e e e e e e 4
3. Design and Implementation of Energy Profiling TOOlccooviiiiiiiiiccee e, 7
I 200 |V =1 0 To To (o] (oo | Y 8
3.2 SYStEM AICNITECIUME i i e i e e e e e e e e i dha eeae st a e e e e e e aaeaaeaeees 11
3.3 Recording SYSIEM ACHVITIES .iiiiiieeeieeieeeeetbe i e si80 e e e e e e eeeeeeeeeeseana s e e e e e e aaeeeaeaeeeeees 12
3.3.1 DynamiC Source INSTFUMENT Li...ci.ueeei 00t ee i ettt s e e e e e e e e e e e e aeeeeeenanenes 13
3.3.2 Correlating Energy to SOUICe COUe cciiiii it e e e e e e e 15
3.3.3 Recording CPU SyStEM ACHVITIES ..i....vvvvveeeiiie i eeeeceeeeeeeer e e e e e e e e eeees 16
3.3.4 Recording WNIC System ACHVITIESc....cc.isiiieeeieieeeeiiiiiiiiess e e e e e e e e e e eeeeeeeeeaannns 17
3.4 Power MeasUIEMENTS i ... i b b sl 18
3.5 Correlating Energy with. System ACHIVILIES ii . i iviiiieiiieiee e 19
4. EXPEIIMENT OVEIVIEW ..oiiiuiii it et e e iet st eatta e s s s e e e e e aeaaeeeaeeeeessssssansnaaseaaeaeeeaaeaeeeeenes 20
4.1 EXperiment ENVIFONMENTooiiiiieeeiiiiis e ettt e s s e e e e e e e e e e aaeeeenennnnnes 20
4.2 Cases Study and RESUILSeeuuiiiiiiiiiiiee e e e e e e e e e e e s 21
SO0 3 o411] o] o PP PP PPPPRPPPPO 26
6. REFEIBICES ...t e e e et e e e e e e e e e 27

List of Figures

Figure 1 Processes share hardwar€ reSOUrCES cocceveeveeieeseesieseeseeseesee s 7
Figure 2 function level and code block-level energy consumption concepts 9
Figure 3 Correlating power samples with system activitiescccocevevveeieneenens 10
Figure 4 System ArChiteCIUIE.........ccveeeiieceeesee e ne s 12
Figure 5 Dynamic inStrument CONCEPLSocvvveerieiiereerieseeseeee e e sneenee e e 13
Figure 6 Reducing dynamic instrument overheadcccccoovevevevenceesecceceenns 14
Figure 7 Function-level dynamic instrument CONCEPESovvvevereererieeseeneseennns 15
Figure 8 lines of code and instruction addrress mappingcccocevveeeeereeresreennens 16
Figure 9 per-process stacks to record system activities to kernel buffer 17
Figure 10 Measurement EQUIPMENTScccooveiieieeie e 21
Figure 11 Power consumption of different instruction types —........cccceeeveeveeeenens 21
Figure 12 Power consumption.of-turning on/off LEDccccoceveevvvceiecreeeenns 22
Figure 13 Energy.consumption of enabling/disabling CPU IDLE feature 22
Figure 14 Energy consumption-of target device with various scenarios — 23
Figure 15 Energy consumption of FTP Client with different filesize 24
Figure 16 Dynamic sourceinstrument overhead = ..o 25

vi

List of Tables

Table 1: Kprobesand UprobeS AP ..ot see s 14
Table 2: Specification of experiment eQUIPMENTS........ccovevereere e 20
Table 3: Energy consumption of FTP Clientcccoeveiieiecceese e 24

Vii

Chapter 1

| ntroduction

Hand held devices including smart phones and Tablet PCs have become more and more popula
in recent years. These devices provide better user experience to access the Internet. Sever:
complex applications, which are used only on PCs, have been developed and run on hand helc
devices. Although there have been many improvements in low power hardware design and
battery life, energy is still a critical resource for these battery-driven devices [1]. The less

energy your device consumes, the longer-it.can be used without being recharged.

Previous research ‘on ‘energy-consumption mainly focuses on hardware. However, energy
consumption depends on not only the hardware but also how hardware is controlled and used
by the software [5]: There are significant opportunities-exist for system energy optimization at
application and system software [6]. Operating-system ‘and application developers need to
estimate how the different scheduling algorithm and software design choices affects the
system’s energy consumption [6] [10]..An-application designer may reduce mobile device’s
display quality when battery is low [29] and transmit/receive the E-mail when Wi-Fi
transmission with higher data rate [31]. Using energy optimized library, the application can
achieve the same functionality but consuming less energy [6]. All these design choices need a
tool that can provide fine-grained energy profiling report. Software designer can analysis
system’s runtime energy consumption to identify energy-critical bottlenecks and determine the

best design choice.

There are two commonly approaches for energy profiling tools, simulation and measurement [2]

[30] [31]. Simulation and modeling based approaches can provide energy profiling information

in transistor level, architecture level, and instruction level. The lower level model can produce

more accurate energy consumption report but consumes more time. In [12], the executable
binary code is fed into cycle-accurate energy simulator to calculate the execute time and energy
consumption of all system components including CPU, cache, bus, and memory, and provide
function level energy consumption report to the software designer. Simulation and modeling

based approaches are useful when hardware device is not available in early design stage, while
measurement based approach can provide accurate energy consumption report by connectin
external measurement device to data-acquisition card (DAQ) or multi-meter to target device’s

measurement points. Depending on the type and number of measurement points provided by
the target device, power samples for different-hardware components such as CPU, memory anc
I/O can be retrieved simultaneously. The power samples are correlated with system activities

together to obtain accurate energy consumption report.

Today’s embedded devices consist of several networking I/O components such as 3G, WLAN,
and Bluetooth, these I/O components consume-significant-amount of energy compared with
energy consumed by the CRPU. The applications and system software running on these devices
are getting more and more complicated and it is not a trivial task to analyze energy

consumption of these devices. To ease the complexity of analyzing and reducing device’s
energy consumption, the profiling tool requires the abilities to determine how the energy is

used by application and system software on CPU and I/O components. Fine-grained energy
consumption report from process-level to code block-level assists system and software
developers to understand the energy behavior of the system and optimize them for better

performance and lower energy consumption.

In this thesis, we propose a direct measurement based energy profiling tool and profiles energy

consumption of native parts of Android system running on a TI| OMAP3/Beagle board platform

[35]. The profiling tool provides system’s energy consumption report for both CPU and 1/0
components in process-level, function-level, and code block-level. Using a set of existing
techniques, system’s energy consumption can be correlated with the source code. The software
designer does not require the static instrumentation or modification of source code in traditional
way, making it possible for software designer to debug and optimize software repeatedly. A
user friendly GUI fronted-end is provided to help software designer control and select
interested functions and code blocks for specific application. The system activities and power
samples are correlated together to generate fine-grained energy consumption report from
process-level to code block-level. Software developer can see inside their application’s energy
characteristics and determine the effects of program code and flow on energy consumption in

real time.

The rest of the thesis is organized as below: Section 2 reviews related work. Section 3 describes
the design and implementation of energy profiling tool. Section 4 presents our profiling results.

Section 5 presents conclusions and future work.

Chapter 2

Related Work

There are several similar energy profiling tools. As mentioned in the previous section, these
tools can be categorized into two main groups: simulation and modeling based [12] [15] [17]

[32], and measurement-based tools. Measurement-based tools can be further categorized int
measurement-based estimation [13] [14] [16] and direct measurement based [1] [2] [4] [16] [31]

tools.

For measurement-based estimation tools, the most widely used concept is to associate
instructions running on the processor with their corresponding energy. Ewalri[13] [14]

propose to measure the base energy consumption of each instruction, and inter-instruction
energy, and other energy consumption due to stall and cache misses. An improved
measurement methad is provided in [16] to measure instruction-level energy consumption in
ARM7TDMI. The influences on energy-sensitive factors such as opcode, register number and
fetch address are provided. These results-are useful guideline for high-level energy reduction
mechanism. The memory models are integrated to instruction-level simulator and a
cycle-accurate simulation model is provided in [15]. The cycle-accurate simulation engine is
then extended in [12] to correlate the source code to instructions, making it easier to evaluate

energy efficiency of interested source code.

PowerScope [1] uses the digital multi-meter to trigger the profiling computer to collects
program counter and process ID, while data collection computer records power samples
simultaneously. The program counter, process ID, and power samples are correlated by energy

analyzer together to generate procedure level energy profile. The overhead to obtain the systen

activities may vary depending on the interval of external trigger generated by multi-meter.
Software designer can’t select interested application and focus on the procedures within
specific application using PowerScope. Xian et al. [2] use a direct measurement based method
and propose a time synchronization method to accurately assign the power samples to the
system activities. The power consumption of CPU and several hardware components (I/O) are
measured simultaneously and the component-wise energy-assignment method is proposed fc
raise the accuracy of software's energy consumption. The system activities are only in process
level, making it difficult to debug process’s energy consumption hotspots. PowerPack[4] is also
a direct measurement based profiling.tool.. It provides a set of APIs for profiled applications to
inform control thread that start or'stop of interest .code regions are hit, how to map power
profile with source code. The application designer should insert these APIs to the profiled
application manually, making it-time consuming and can notapply to complicated applications

easily.

Performance monitor techniques can be dividedinto two main categories: instrumentation and
statistical sampling [23]: The Oprofile [34] is a statistical sampling profiling Tool for Linux
systems, capable of profiling all running code-at low overhead. The program counter and other
runtime information are collected when certain interrupt event happened. PowerScope also
adopts the same technique to collect system activities. Tracepoints [20], Kernel Probes
(Kprobes) [22], Process Trace (Ptrace) and User-space Probes (Uprobes) [25] are
instrumentation techniques. Tracepoints is hooking mechanisms providing static
instrumentation in Linux kernel's critical locations and can be enabled at runtime (dynamically)
with very small footprint when disabled. The Tracepoints is sufficient to record time critical
system events such as schedule context switch and receive/transmit network packets. Kprobes
is a simple, lightweight kernel instrumentation mechanism and can insert/remove probes into a

running kernel dynamically. The performance information can be collected in user-defined

handler when a probe point is hit. While Kprobes is used for kernel instrumentation, Ptrace and
Uprobes are provided for user-space applications instrumentation. Ptrace provides a set of
system call for debugging user-space applications. The GNU Project Debugger (GDB) is the
most widely used application debugger in Linux. GDB uses Ptrace system call to observe and
control the execution of traced process, and examine and change its binary image and registers
The drawback of using Ptrace is performance, which is influenced by its high context-switch
overheads between tracer and traced application. Uprobes is also a dynamic instrumentation
mechanism for user-space application in Linux. The detail implementation is not final and it is
not accepted in Linux community until. developing this energy profiling tool. But Uprobes
significantly improves the® performance overhead of Ptrace because of inherent from the

Kprobes approach.

In this thesis, we adopt the Kprobes mechanism to record system activities dynamically in
function-level and code block-level. The Uprobes patch listed in [27] is used to assist us to

develop Uprobes mechanism and support dynamic source instrument in user-space application.

Chapter 3
Design and I mplementation of Energy Profiling

T ool

The processes share hardware resource, and operahardware resource consumes en.
The typical energy consumption behavior of embedded system is sn Figure 1. In this
thesis, we desiga measureme-based energy profiling tool which canovide

» GUI front-end tool + profiling'on the native (n-Java) part of Android syste

* Dynamic source instrume

* Coupling source‘code to energy consumy

* Finegrained performance-and energy profiling ref

* Mappingenergy consumption of /O devices to corresponding software fun
* Accurate measurement res with low overhead

1Q

UOLIAWITNSUO) AodolU 4

—Board
—WNIC

A\ A\ Total
AAA‘

Time

Figure 1 Procees share hardware resources

3.1. Methodology

The main idea of measuring system’s energy consumption can be separated into three parts,

1. Recording System Activities, a process is a running instance of a program stored in the
memory, the system activities are the usage instance of a hardware component by a process
Recording the running time slices for each process in the system can help to obtain process
level's energy consumption. To have fine-grained energy consumption report, the running
time slices for each function within process and running time slices for each block within
function are necessary. The penalty is the performance and storage overhead when using
static instrument method. Fortunately, dynamic source instrument technique can be used to
insert or remove interested probes dynamically and reduce the instrument overhead. Figure
2 represents a piece of application source code. Fram process-level energy consumption
report, we found that this application consumes a lot of energy. We would like to find the
energy hot spot of this application. To do this, we separate the main function into three
source code blocks, and measure-the energy consumes by these three blocks. We found the
block2 consumes-more energy than blockl and block3.in first run. Therefore, we focus on
energy consumption of block2 and found that'sort function consumes most of energy. We

can concentrate on optimizing performance and energy consumption of sort function.

2. Measuring system’s power sample, using external measurement device (DAQ) and connect
it to specific measurement points in the device. DAQ can record average loop current and
voltage of each hardware component for a given duration. The accuracy of energy

consumption will depend on the sampling frequency of DAQ.

void main() void main()

Block1:1~7
{ { E?g Joule
receive_msg(buf); receive_msg(buf); Block2:8~14
w E: 90 Joule p—
sort{buf); sort(buf); ’ e
ock3:15~
send_msg(buf); send_msg(buf); E: 10 Joule
i . }
void main()
{
Block1:8~13
E:5Joule : H
- Try to Optimize
sort(buf); FEEs toue Sort Algorithm

Figure 2functior-level and code bloclevel energy.consumptit concepts

3. Correlating system activities and power sam|

The system activities and power samples are measured simultaneously with two h

platforms. The time'synchronization between two-hardvplatforms should be done correc

to ersure power samples are assigned to running processes c. There ar several time
synchronization methods such-as-network time‘protocol (NTP) and external trigger prov

DAQ. We adopt external triggemethodto do time synchronization between two platfor

The general purpose input and output (GPIO) signal is u the device to trigger the exterr

DAQ and start to collect power samples. The timestamp is recorded in the device

triggering the DAQ simultaneousllt is a reference timestamphich mapping to the firs

power samplesBy recording the system acities informationsuch as process (PID),

function ID (FID),block ID (BID), start timestamp, and end time stamp, the power sample

be corelated with system activities. In figure 3, it represents power samples variation wit
We can correlate agh time sliceof running processeto power sample using reference

timestamp. For thenergy consumptiothat occurs betweenygsand tnc in Function 1(F1) of

Process 1(P19an be represented formula (1), where P (t) = I (thrren X V (t) voitage The same

concept can be applied poovide the energy consumption to functiewel and blok-level.

Lend
=] Pt

begin (1)
P1(Process D) P2 . 2P p?
t,\ir”l tFl'd I ,""‘ F5S \\.kj

F1(FID) r3 [UF4 o100) 3
g - *‘,Atﬁ e \Ath =£=EL§ _‘_AtBl 4AtB“=AtB3= W Board
L RN T i
% ; - y . g A O USB-WNIC
i
D2
w5
’_—n'" 5
o
3
o B
r
& |

Hel’erj:me Tirreslamp Time

Figure Correlatingpower.samples with system activif

However, the following l/Cfeatures cause correlating energy consumption with softwe
become difficult.

1. Device driver usually removes process ID of I/O events in kernel space for bet
efficiency.

2. Operating system usually performs scegather for better 1/O efficien.

3. 1/O events are asynchron¢, and asynchronous issue could be further divided intc
phases. The firsphaseis from application issues the I/O request to the reque
processed at driver lev The second phass from driver notifies device to the cice
is actually performed the I/O requt

Figure 3 also shows I/@ehavior of WNIC. The send or receive I/O requests from Proce

may be delayednd happened in time slice of procesdue to its asynchronization /O natt
We need to modify thkernel to link the applications to relattransmitted/receivepackets.

10

3.2. System Architecture

The energy profiling tool consists of the monitored target and host PC ad depicted in the Figure
4. The monitored target device is in charge of recording system activities and host PC is in

charge of collecting power samples. The power samples and system activities are correlated
together in host PC. Putting the time consuming tasks in host PC can reduce significant amount
of monitor overhead for target device.

The profiling tool in the host PC consists of the graphical user interface (GUI) front-end,
source-level and function-level probes module, symbol to address helper, and energy
consumption analyzer. The GUI front-end provides several features, users can select benchmari
program, and checking/un-checking preferred functions and code block, and controlling DAQ
and target device to start/stop the profiling, and setting the profiling duration. The profiling
results are presented with well formatted GUI in the host PC.

The Source/Function Probe module-is: in.charge of preparing the probes information, and
symbol to address helper will translate function name and lines of source code to its program
address. The probes information-will send to target device and register/un-register to dynamic
instrument module.. The Energy consumption analyzer is in.charge of analyzing profiling data
and power samples. The process/function/code block time slices will be mapped to
corresponding CPWU and Wi-Fi power samples to generate:fine-grained energy consumption
report.

In the target site, there are two user-space Daemons, PowerMemo and Energy Probes. The
are corresponding to Energy Probes kernel'-module and System Monitor. System Monitor kernel
module stores time slice of benchmarking program in process level, function level, and code
block level. When the kernel buffer is almost full, kernel module notifies the PowerMemo
daemon to receive these kernel level data from kernel-space to user-space as files, and at th:
end of the profiling it automatically transfers these files to host side for the mapping process.
The Energy probes daemon handles register/un-register requests from host PC, these reques
will convert to compatible data structure and use IOCTRL provided by Energy probes kernel
module to register/un-register the requirement to Kprobes/Uprobes module. The
Kprobes/Uprobes provides a set of APIs to service the register/un-register requests for dynamic
source instrument in user-space application and Linux kernel. The detail about dynamic source
instrument will be described in later section.

11

—> Gu :

4> 1
. Result!
Run Script \esutty
> N
, L —
Register/UnRegister Probes Source/Function Probes : og o
E Disk
Benchmarking programs TARGET {}S\/mb0| to address Helper .
qd
(HCTeAM (el I PowerMemo DaemonA u Energy Consumption
Energy Probes |_| Ana Iyzer
Linux System Profiling
i I/V L
keme'<::| Monitor Data /V Log
Beagle Board «,—‘A
| cru | wirig I 73
< ~

Figure 4 System Architecture

3.3. Recording System Activities

Previous researches oneasurement-based profiling tool Lstatisticalsampling or manual
instrument techniges to record system activities. Statistical sampling can hav-grained
profiling information when sampling interval is short. However, the overheadh and needs
more storage space. ddual instrumel can have dwer overhead but is not suitable
instrument system activities to funct-level or code blockevel. The software designers ne
to spend a lot of effortid instrument the source code. There are several contechniques
such as prof, gprof and kel function trace can help to recaystem activitie: But it is not
flexible and need to reempile the source code. We use dynamic source code instr
technique to improve thérawback oistatistical samplingind manual instrumerThe rest of
this chapteris organized as belo Section 3.3.1 goethrough the details about dynan
instrument in usespace application and Linux kernel. Section 3describe how to correlate
line of codes to energy consumptioiSection 3.3.3and section 3.3.4 preserthe
implementation of recordinCPU and WNIC system activities.

12

3.3.1 Dynamic Sour ce I nstrument

As depictedn previous section, there have several performance profiling techniques. Wi
Kernel Probes (Kprobegd perform dynamic source code instrumeThe basic concepts of
dynamic instrument arshown in Figure 5. Thinstruction inpreferred program address
replaced to un-definedrdoreak instruction (depending on the architecture) when callin
registe probe API. Once the program hits the-defined instructionCPU trajs an un-defined
exception. The user peefined handlewill be called based omterruptedprogram address.
We can collect timestamp, process ID, function ID, and block numkpre-defined handler.
The original instruction and ~defined instruction will be&opied to new allocati page. After
returning from exception Indler, the program counter gt to memory address original
instructionin new allocated page and executthe original instructiorthere. It is called single
step-out-of line.After doing single step o-of-line of original instruction, the -defined
instruction is hitin new pag. CPU traps an udefined.exception and u-defined post handler
is called. Theprogram counter will t set tomemory address next foriginal instruction
address and continumermal program flow:

i e e

Original Program After Insert Probe

o e e e e e e gy

Register
Probe

Inst1 .»

Inst2

New Allocate Page

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

Figure 5 Dynamic instrument concepts

13

Table 1 lists Kprobes and Uprobes APIs for kernel space an-space progranThe input
arguments such dsnction name or function address and -defined handleare necessary
for functiondevel register probe functioThe input arguments such as instruction addres:
userdefined handler are necessifor the instruction-levieregister probe functic. Additional
information such as application name and binary are also necessary for u-space register
API.

Table 1 Kprobes and Uprobes API

register Kretprobes(...) Register functicn level probe register uretprobe(...) Register user-space function-level probe
unregister kretprobes(...) Unregister functionlevel probe unregister uretprobe(...) Unregister user-space function-level probe
register kprobe(...) Register instruction level probe register uprobe(...) Register user-space instruction probe

unregister kprobe(...) Unregister instruction level probe unregister uprobe(...) Unregister user-space instruction probe

To reduce the dynamic.instrument overhead, we can single step the originiction using

simulationand emulation method. Simulatiis where the instruction's behavior is duplice

in C code. Emulations ‘where the original-instruction is rewritten and executed, ofte

altering its registerdJsing simulation and emulation mod can.reduce thexception number
and improve the ‘instrument overhead. Figure 6 represents the flow for improved d

instrument method.We adopt this method-in this the

Original Program After’insert Probe ,/ \‘I

!]

: : :

Registey : i

Probe ! :
1

: :

: :

Inst1 IQ : :

i i

Inst2 i i

: :

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

\ ;

‘\ ,I

Figure 6 Redting dynamic instrument overhe

14

The call flow of functiontevel instrument is presented in Figure 7. The exception is tre
when function is called and u-defined handler is used to record the enter timestamp
exception is trapped again when function return and-defined return rndler is used to
record the exit timestamy

=
=
=
o
=1
o
=]
P
o
-
(=
=
=

Figure % Function-level dynamimstrument concef

3.3.2 Corréating Energy to Source Code

Correlating the source code with energy consumption makes it possible for software de:
optimize their systers’ energy consumptiolusing a set of toothain utilities, we can crea
lines of code and instruction address mapjtableas depicted in Figure We can implement
block-level energgxonsumption feature by usitinstructiontevel registeiprobe functions. For
instance, source code canseparatedhto three blocks, line 5~6, line 7~10, and line 11in
Figure 8. Using line tanstruction address mappirtable andregister probe functi¢, we can
record the timestampwhen program hits these two lines loysering instruction probes.
Correlating timestampwvith collected power samples, we carovide energy consumption
during the running instant of progrebetween line 7~10.

15

C Program Source Code Line Instruction Address

#include <stdio.h> 1
#define LAST 10 2
int main() 3
{ 4 0x8430
inti=0; 5 0x843¢
int sum = 0; 6 0x8444
for(i=1;i<=LAST;i++) 7 0x8450
{ 8 0x8454
sum += i; 9 0x8478
} /* -for- */ 10 0x8482
printf("sum = %d\n", sum); 11 0x848c¢
return O; 12 0x8490
} 13 0x8494

Figure 8linesof code-and instruction address map

3.3.3 Recording CPU System Activities

The schedule) funetion is the implementation of scheduler in-Linux kernel. Its objective
find a process in ready gueue listand as the CPU resource to The targeidevice records
time slice of the running procees by putting th@rocess_entry() and process_exit() funcs
in place wherescheduler switch out the oprocessand switch in the new procein schedule()
function For system activities ifunction-level and blockevel, the markerfunc_entry() ai
markerfunc_exit(Jfunctions are used as u-defined handlersn register probes APIs. Ti
information such as process id, function id, block function name, block namestart
timestamp, andra timestamp (relative to reference timestamp in Figu are recorded in
kernel buffer.Since the kernel buffesize is limited, it senda signal tonotify user-space
daemon that kernel buffés almostfull. Userspace daemon receives the sigand reads the
system activities from kernel buffer and write to the files. These files are sent to host F
measurement duratioexpired or user stops the energy measure manually. Figure 9
represents that p@rocess stacks are uswhen callingprocess_entry() or markerfunc_entn
functions. Theprocess_exit() or markerfunc_exit() functions are caland the related
information will be pop out and stored kernel buffer.

16

process_entry process_exit

markerfunc_entry markerfunc_exit

PID/FID/Function Name PID/FID/Function Name
/do_gettimeofday /do_gettimeofday

Process kernel
Buffer Pool

Process &

Marker kernel
Func

Buffer Pool

Process &
Func
Stack

Figure 9 pemprocessstacks to record system activitieskernel buffe

3.3.4 Recording WNIC System Activities

To obtain begin and end time of process activities that cause energy consumption in the
we patch the network subsystem inew mac80211 subsystem in Linux keriThe mac80211
subsystenlies between the kernel’s networking stack and WNIC device drivers and pr.
valuable information that was once only available in hardware logic or device drivers. \
get the data bit rate value for each packet transmitted or received from tlystem without
instrument any driver code. Oimplementation calculates duratido transmit or receive
packet usingpit rate value, packet size and initial tiiof the transmit/receivevent. We get the
begin time of a transmit event before the undng device driver begins to send out the 1
bit of the packet to air, and use bit rate value of this transmit event to calculate the (in
offline mapping stage.df a receivepacketevent, we get the end time when the last bit of
packetreaches to the device driver, and then we use the bit rate value of this newly

packet to calculatthe begin tim. Following formulas summarize this technic

17

packet size in bits
)

tenda = thegin +

TX bit rate
packet size in bits
tphegin =t — 3
begin end RX bit rate ()
At = tepg — thegin 4)

A duration value 4t) is the key to energy calculation for a systenivagt but is not sufficient

to be able to charge processes correctly for the energy they consume. We also need to identify
the processes that are responsible for the energy consumed during every set of begin-end time
It is more complicated due to the asynchronous nature of 1/0O operations. To solve this problem
for WNIC devices, we have added process id item to the socket data structure in network
subsystem. When we record the time values for a packet, we simply access this item through

the packet’s socket structure.

3.4. Power M easur ement

We adopt the NI-9223 data acquisition-(DAQ) card from National Instruments as the
measurement device. It-supports a common API that can be used under various programming
languages like VB, C, C++ and C#. When the “START” button is clicked on the main window

of profiling tool GUI, DAQ card is set to run at 50kSample/s/channel and waits for a trigger
input from target device. Right after that, a begin command is sent to the user-daemon running
in the target. When this command is received, user-daemon uses IOCTRL to triggers GPIO
signal which is connected to the trigger input of the DAQ card and records the reference
timestamp of target system. After user-daemon loads the benchmarks and issues an IOCTL call
to cause the system monitor to set a global flag so that kernel profiling can begin. When the

trigger is sensed by DAQ card, it begins to sample and stores the collected samples in files.

18

3.5. Correlating Energy with System Activities

Energy analyzer module is responsible to correlate power samples with system activities.
Energy consumption analyzer module analyzes system activities files to detect the Process ID,
Function ID, and Block ID values that were collected during the test. Later on PID values are
charged with energy values for both CPU and WNIC activities. As one of profiling tool’s
limitation, Function ID and Block ID values are charged only with the energy values of CPU
activities. The process’s total energy consumption can be represented as formula (5) in

Beagleboard.

— Board WNICidle WNIC_ ACTIVITY
Epp = Z(I-PID X Poip)+ Z(TPID_WNIC X PPID_\NNIC) F EPID_WNIC

WNIC_ACTIVITY _ NI Ctx VNI Crx
EPID_WNIC = Z(TPID_VVNIC_TX X PPID_VVNIC) + Z(TPID_VVNIC_RX X PPID_WNIC) (5)

19

Chapter 4

Experiment Overview

In this thesis, we propose a measurement base energy profiling tool which can provide
process-level, function-level, and code block-level energy consumption report. We design
several experiments to demonstrate the capabilities and correctness of our tool. The first
experiment measures power consumption of functions with different instruction classes and
compares the results with previous researches. The second experiment measures powe
consumption before and after turning on device’s LEDs. The results of these two experiments
can show the correctness of our profiling tool in function-level and block-level. The third
experiment demonstrates the capability to measure the energy consumption of USB Wi-Fi
interface. We also measure the energy consumption of FTP client by sending files with different
size to FTP server.

4.1. Experiment Environment

The experiment environment is shown in-Figure 10. The measurement equipment contains a
current probe and a data acquisition’(DAQ) card. The current clamp uses Ampere's law to
measure current flow of target /O device, and the data acquisition card collects measured
current value by current clamp< The experimental platform is beagleboard xM using TI Cortex
A8 with 1 GHZ (DM3730). The Wi-Fi 802.11 BG USB adaptor is connected to the target board
as the I/O component and connected to D-Link DIR-600 AP Router via air. The programs
execute on the experimental platform running the Linux kernel 2.6.37 with Android framework

version 2.3.4.
Table 2 Specification of experiment equipments
Name Model

Measurement DAQ NI cDAQ-9174

Equipment Current clamp Fluke 130S
Experimental platform BeagleBoard xM Rev ¢
Target USB WLAN adaptor D-Link DWL-G122
Wi-Fi Router D-Link DIR-600

20

D-Link

Figure 10 Measurement Equipments

4.2. Cases study and results

The first experiment. measures power consumption of functions with different instr
classes. The functions amaplemented using inline assembler as depiin Figure 11. The
add instruction is“duplicated 10000 times using .rept dire in addinst() function. Th
experiment result shows thpower consumption ahultiply instructionis higher than add, sub,
and nop instruction$revious research(16][17] also represent thersa result for ARM7TD!
and ARM926EJ-Seare respectively

Power (W)
(R
-l [«is] [Se]

T T T
add function nop function sub function multiply furiction

Figure 11 Power consumption different instructiortypes

21

The second experiment meass power consumptiobefore and after turnit on LED in target
device.The instruction numberare varied from 10000 to 160000r different function. It
shows consistent resufr different functionsbefore and after tming on LED in Figure 1.

1.68
1.66
1.64 \ —— ———
2 162
g
o 1.6
[-%
158 | p——— — =
=@==Turn ON Leds
1.56
=f=Turn OFF Leds
1.54 | T I T 1
10000 20000 40000 80000 160000

Instruction Numbers

Figure 12 Power consumption of turning.on/off L

The next experiment regsents thiotal energy saving when we turn on the CPU Il feature
supported irLinux kernel. We observe the energy consumptiothe measurement result a
find that energy consumes by idle process-is- The measurement result shows that tur
CPUIDLE feature can'save.13.5% total system energy and save 250 mW ePower.

Choose Profiling Component ~ Kemel - TOTAL ~ ChartCategory Statistic Chart - 65.650154603426
Process Name PID Time(ms) Power(Watt) Energy(Joule) ‘:
memo 1675 31.02 1.904 0.059
Compi 1378 0.4 1.891 0.001 _[Save 13.5 %) Total Energy
sh 1014 6.16 1.881 0.012 =
flush 1676 0.24 1.912 0
swapp 0 40906.02 1.601 65.471
kthre 2 0.06 171 o
Choose Profiling Component Kemel - TOTAL + ChartCategory Statistic Chart - 75.898786842896
Process Name PID Time (ms) Power(Watt) Energy(Joule) #
Binde 1153 0.54 1.86 0.001 Save 250 avg. Power
Compi 1144 0.48 1.863 0.001
Binde 1198 2.1 1.832 0.004
servi 1005 0.16 1.96 0 2
swapp 1] 40839 1.851 75.602
Activ 1069 15 1.909 0.029
ksoft 3 0.4 1.845 0.001
flush 1243 0.22 1.896 0
kwork 426 2.58 1.86 0.005
sync_ 254 0.16 1.677 0
e, 1120 20 1002 an12

Figure 13 Energy consumption of enabling/disabling CPU IDLE fe

22

Most mobile devices support -Fi interface. In this experiment, we would like to know
Wi-Fi component contributetotal energy consumption of mobile devicAndroid uses a
modified wpa_supplicardlaemon foiWi-Fi support and uses dhcpdaemol to obtain the IP
addressWe measure the total energy of device be (E1) and afte(E2) inserting USB Wi-Fi
dongle. The total energyncreases 22.93 Joi after inserting USB W-Fi dongle (30% total
energy increases, (E21)/EJ). After inserting USB Wi dongle, we execu wpa_supplicant
daemon to establish Vit connectio and measure total energy (EBhe total energincreases
is 18.29 Joule53.8% total energy increa;, (E3-E1)/E1) After establishing W-Fi connection,
we execute dhcpcdaemol to obtain IP address from dhcp server. BWcomponent consumi
less energy than CPWecause dhcyprotocol takes only foumpacketsto complete IP
acquirement flowThe total energy increases is unremarkable when executing dhcpcd
Disable Wi-Fi compnent can improve the energy consumption significant

v ChiartCategony, Statistic Chart v 76.5748802526058

Choose Profiling Component ~ Kemel- TOTAL
1) — — - - .
Choose Profiling Component | Kernel - TOTAL < | Chart Category | Statisic Chart -~ 99.5140067758198 Y U0ue) l

T - - p— . W N ® e . — w - —— "
Choose Profiling Component Kemnel - TOTAL v Chart Category, Statistic Chart q 1781533351934 W) Inc 22.93)
Choose Profiling Component _ Kemel - TOTAL - Chart Category Statistic Chart ~ 118.106319579575 ii '
Process Name PID Iime(ms) Power(Watt) Total Energy(Joule Energy(Joule) WlFiEmro(]ou.la)_ 3 |nC 1829 J
setpr 1105 5.984 1.512 0.009 0.009 0
setpr 1113 6.1 1.511 0.009 0.009 0

flush

sync_
dhepe
sleep
setpr
setpr

1015

1102
254

1118
1091
1107
1099

0.424

571
0.15
2.378
0.334
5.89
5.806

15

1.511
1.473
1.506
1.503
1.502
157

0.001

0.009
0

0.004
0.001
0.009
0.009

.. A115..6,042 < 1493 ..0,009

0.001

1094

handle_dhep_packet

writepid

028

1.580187
1.499758

0.000436
0.000414

1094

handle_dhep

1.579082

0.000338

1094

send_raw_packet

1.565164

0.000335

I

Figure 14 Energy consumptiontarget device with varioLscenarios

The next experiment measures energy consumption of FTP client sdiles with different
size to FTP server. Thé/li-Fi component contributes more enepnsumptiorthan CPU as
depicted in Figure 18nd Table . The total energy consumption is proportional to transfel
size.

23

Energy Consumption (J)
N w D [0} [e)} ~N (o] (e}

[EEN

o

M Total Energy(J)

= WiFi Energy(J)

B CPU Energy(J)

8M 4M

2M M 512K 256K

File Size (bytes)

128K

Figure 15 Energy consumption of FTP Client with different file

Table 3Energy consumption of FTP Client

'l'imo(g

»
nergy(J)

File Size(byics) Wik Encrew(])
M 207 938 a3 0.311 7.828
AM 117601 4,107 0.176 3,028
M 72414 2.0032 0.138 1.895
1M 43 498 {1,999 {0.047 {0.932
512K 31.358 0507 0.048 0,459
256K 25.942 0.266 0.041 0,225
128K 21.672 0,147 0.034 0.111

24

We have demonstrated the capabilities of our profiling tool in previous experiments. The next
experiment wants to evaluate the performance overhead of dynamic source instrument. We
chose Lmbench [38] performance analysis tool as our benchmark program. The average
running time is measured in three cases, instrument all functions, instrument all instructions
within main() function, and without instrument in benchmark program. The measurement

results are represented in Figure 16. Per-function instrument overhead is 0.021 milliseconds
and is less than per-instruction instrument overhead which is 0.149 milliseconds. The

instruction numbers within main() function is too small and may lead to higher overhead.

R L

AVG RUN Time(s) (Without Instrument) 27.75 0.56
AVG RUN Time(s) (Instrument All functions) 27.85 0.61
Overhead(s)(1) 0.1 0.05
Number of Function Calls(Function Numbers)(2) 4791(91) 3814(99)
Overhead{(ms) of Per FunctionsInstrument=(1)/(2) 0.020872 0.013109

AVG RUN TIME(s) (Instrument All Instructions 27.76 0.57
within main() function)

Overhead(s)(3) 0.01 0.01

Number of Instruction Calls{Instruction Numbers)(4) 67(142) 76(216)

Overhead(ms) of PerInstructions Instrument = (3)/(4) 0.149253 0.131578

Figure 16 Dynamic source instrument overhead

25

Chapter 5

Conclusion

In this thesis, we have developed an energy profiling tool which can provide GUI front-end and
profiles native part of Android system. Using the dynamic source instrument technique, we
have improved our profiling tool and provide more flexible way to record system activities.
Using line of codes and instruction address mapping makes it possible to coupling source code
to energy consumption. We verify the correctness of profiling tool by several experiments. The
result shows that the profiling tool can measure power consumption in process-level,
function-level and code block-level with low overhead. Furthermore, the asynchronize 1/O
issue is addressed. We instrument the kernel code to map energy consumes by Wi-Fi
component with correct process and demonstrate the ability of the profiling tool on
asynchronize I/O issue using ftp client application. The well formatted performance and energy
profiling reports in process-level, function-level, and code block-level make software designers
to focus on the energy consumption hot spot and optimize their software in a better way.

26

Chapter 6

References

[1] J. Flinn and M. Satyanarayanan, “Powerscope: A Tool for Profiling the Energy Usage of
Mobile Applications”, in Proceedings of Second IEEE Workshop Mobile Computer Systems
and Applications, 1999.

[2] Changjiu Xian, Le Cai, and Yung-Hsiang Lu, “Power Measurement of Software Programs
on Computers With Multiple I/O Components”, IEEE Transactions on Instrumentation and
Measurement, Vol. 56, pp. 2079-2086, 2007.

[3] Kutty S Banerjee, Emmanuel Agu., “PowerSpy: Fine-Grained Software Power Profiling for
Mobile Devices”, in Proceedings of IEEE WirelessCom, 2005.

[4] Rong Ge, Xizhou Feng,‘Shuaiwen Song, Hung-Ching Chang, Dong Li , and K.W. Cameron.,
“Powerpack: Energy profiling and analysis of high-performance systems and applications”,
IEEE Transactions on Parallel-and Distributed Systems, 2010.

[5] IAR Systems, http://www.iar.com/en/Products/IAR-Embedded-Workbench/Power-debuggi
ng.

[6] A. Kansal and F. Zhao, “Fine-grained energy profiling for power-aware application design”,
in Proceedings of the Workshop on Measurement and Modeling of Computer Systems, 2008.
[7] T. Do, S. Rawshdeh, and W. Shi, “pTop:-A.Process-level Power Profiling Tool”, in
Proceedings of the Warkshop on. Power Aware Computing and Systems, October 2009.

[8] Changjiu Xian, Yung-Hsiang Lu, Zhiyuan Li, “A Programming Environment with Runtime
Energy Characterization for Energy-Aware Applications”, ISLPED'07, August 27-29, 2007.

[9] Kanishka Lahiri, Anand ‘Raghunathan, Sujit Dey, “Efficient Power Profiling for
Battery-Driven Embedded System Design”, IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems, Vol. 23, No. 6, June. 2004.

[10] Y.-H. Lu, L. Benini and G. Michelli, “Power-Aware Operating Systems for Interactive
Systems”, |EEE Transactions on VLSI Systems, Vol. 10, No. 2, Apr. 2002.

[11] Yunsi Fei , Srivaths Ravi , Anand Raghunathan , Niraj K. Jha, “Energy-optimizing source
code transformations for operating system-driven embedded software”, ACM Transactions on
Embedded Computing Systems (TECS), Vol. 7, No 1, December 2007.

[12] Tajana Simuri , Luca Benini , Giovanni De Micheli , Mat Hans, ‘Boe code
optimization and profiling of energy consumption in embedded systems”, in Proceedings of the
13th international symposium on System synthesis, September 20-22, 2000.

[13] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: A first step
toward software power minimization”, IEEE Transactions on VLSI System, \ol. 2, 1994.

[14] V. Tiwari, S. Malik, A. Wolfe, M. Lee, “Instruction Level Power Analysis”, Journal of

27

VLSI Signal Processing Systems, No 1, pp.223-2383, 1996.

[15] T. Simunic, L. Benini, G. De Micheli,"Cycle-Accurate Simulation of Energy Consumption

in Embedded Systems”, DAC, 1999.

[16] N. Chang, K. Kim, and H. G. Lee, *“Cycle-accurate energy consumption measurement
and analysis: Case study of ARM7TDMI”, in Proceedings of Int. Symp. Low Power Electron.
Design, pp.185 - 190, 2000.

[17] Blume, H., Becker, D., Rotenberg, L., Botteck, M., Brakensiek, J., Noll, T.G. "Hybrid
functional- and instruction-level power modeling for embedded and heterogeneous processor
architectures”, Journal of Systems Architecture, 53 (10), pp. 689-702, 2007.

[18] SystemTap, http://sourceware.org/ systemtap/

[19] J. Levon, “Oprofile - a system profiler for linux”, http://oprofile.sourceforge.net/doc/
index.html.

[20] Tracing Wiki, http://lttng.org/tracingwiki/index.php/Tracepoints_and_Markers.

[21] Ptrace, http://en.wikipedia.org/wiki/Ptrace.

[22] A. Mavinakayanahalli, - P.Panchamukhi;. J." Keniston, A. Keshavamurthy, and M.
Hiramatsu, “probing the guts of kprobes”, in Ottawa Linux Symposium, pp. 101-115, 2006.
[23] Yao Guo, Ziwen Chen, Xianggqun_ Chen, “A Lightweight Dynamic Performance
Monitoring Framework for Embedded Systems”, Embedded Software and Systems, ICESS
'09. 25-27 May 2009.

[24] Alexey G., Sergey G., Jaehoon J., “Dynamic Binary Instrumentation Framework for CE
Devices”, in Proceedings of the Linux Symposium, July 13th=16th, 2010.

[25] Jim K., Ananth M., Prasanna P., Vara P., “Ptrace, Utrace, Uprobes: Lightweight, Dynamic
Tracing of User Apps”, in Proceedings of the Linux Symposium, Volume One, June 27th—30th,
2007.

[26] LessWatts. http://www.lesswatts.org

[27] uprobes patch, http://thread.gmane.org/gmane.linux.kernel/390558

[28] Kprobes Support for MIPS, Lubna, Vikas, Madhvesh, Sony India Software Centre.
http://elinux.org/images/4/44/Kprobes-MIPS-overview.pdf

[29] RANGANATHAN, P., GEELHOED, E., MANAHAN, M., AND NICHOLAS, K.
“Energy-Aware User Interfaces and Energy- Adaptive Displays”, Computer 39, 3, 31-38,
2006.

[30] Cheng-kun Yu, Wen-Chih Peng,“Profiling Energy Consumption of 1/0O Events for
Embedded Systems”, A Thesis for master degree of Dept. of Comput. Sci. & Inf. Eng., Nat.
Chiao Tung Univ., Hsinchu, Taiwan, 2010.

[31] lliter Suat and Shiao-Li Tsao, “Energy Consumption Profiling Tool for Mobile Devices in
an Emulated Wireless Environment”, A Thesis for master degree of Dept. of Comput. Sci. &
Inf. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan, 2010.

[32] Xiang Zhou, Bing Guo, Yan Shen and Qi Li, “Design and implementation of an
improved C source-code level program energy model”, Embedded Software and Systems,

28

20009.

[33] Pollari, M. and Kanstren, T., “A Probe Framework for Monitoring Embedded Real-time
Systems”, Internet Monitoring and Protection, 2009.

[34] J. Levon, “Oprofile - a system profiler for linux”, http://oprofile.sourceforge.net/doc/
index.html.

[35] Beagle board xM Platform, http://beagleboard.org/

[36] NI PCI-6115 DAQ Card, http://sine.ni.com/nips/cds/view/p/lang/en/nid/11886

[37] D-Link DWL-G122 USB Wireless NIC - FW Version 3.0, http://www.dlink.com/
products/?pid=334

[38] Lmbench — Tools for Performance Analysis, http://www.bitmover.com/Imbench/

29

