Chapter 3

Modified Algorithm

3.1 Quantized Weighting M ethod

From the previous chapter, we learn some TEQ algorithm. However, current
design method such as MMSE, maximum shortening SNR (MSSNR), and maximum
geometric SNR (MGSNR) do not maximize the bit rate directly. Since the bit rateis a
function of noise, channel‘gain, and transmit-power spectrum, a bit rate optima TEQ
design method must take into:account all three. From the chapter two, we know only
the maximum bit rate (MBR) method and Minimize-1SI (Min-1SI) method pay
attention to maximize the bit rate.

By observing the Min-1Sl cost function in equation (2.47), we can find that the

N .
weighting factor é (g 2“ q") needs so many multiplication when N is large.
i=1 n,i

From the viewpoint of rea time implementation, in order to lower the computation

complexity, we should reduce the multiplication. The way we proposed is to quantize

the weighting factor. At first, we would like to set a SNR threshold. If the SNR

is lower than the threshold, we will set it to “zero”. The weighting being set to OFF

means the subchannel is in bad situation. Since the noise power is too strong, we do
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not even care about the ISl in this subchannel. Hence, it is reasonable to turn it off. On
the contrary, if the situation that the SNR is higher than the threshold, we would like
to set it to “one”.

The threshold that we choose is to pick the subchannels which can transport
more than three bits. By the Shannon channel capacity theorem, we can derive avalue
of signal-to- noise ratio that make these subcarriers take more than three bits.

Because the “Off & On” simplified method is rough, we would like to improve
the accuracy. Based on the idea of quantization, we can extend the “Off & On”
simplified method to multiple thresholds. However, from a point of view of the
hardware implement, we till do not want to increase the load of the hardware. It
implies that we do not look forward to raising the number of multiplication. As a
result, our idea is to set four level thresholds and they are “1”, “2”, “4”, and “8”. In
this way, it only needs two ' comparisons. Besides, because these coefficients are
power of 2, we can implement the multiplication by shifting. It really reduces the

computation complexity.

3.2 Generalized Eigenvalue Problem
In the Min-1SI design method, the problem we deal with is as follow:
argmin (wT Xw) st wYw=1

where

X=H'D'§ (qi%qi”)DH

its i
Y =H'G'GH
We would like to figure out the problem by using Lagrange multiplier. We write the

cost function as
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L(w, 1) =w" Xw+I (W Yiv- 1) (3.1
wherel is a Lagrange multiplier. Before we deal with this cost function, we want to
introduce a Lemmas and a Theorem.

LemmasAl: Let xi R" beavector.

Then
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If we take the gradient of L(w, ) with respect to w and set it to the zero. That is

Tew,l ) =2Xw+ 2l Yw=0 (3.2
w

The equation (3.2) is derived from the theorem A. From (3.2), we know that we can

find an optimal w__, to satisfy it. That'is

opt

2XW, 5 =21 Y, (3.39)

opt

This is the generalized eigenvalue and eigenvector problem. However, the
problem we usually deal with is the regular eigenvalue problem. Hence, we may

prefer transferring (3.3) to another form. We will eliminate the coefficient “2”, and

setl =-1 . Wewill obtain
1 wv-l
Wopt—| X Y\NOpt

1 }
TWopt = (X lY)WO

pt

U

I = Mw

opt opt

(3.4)

By observing (3.4), we can find it is aregular eigenvalue problem.
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In (3.3), the optimal solution is the eigenvector corresponding to the minimum
eigenvalue. Moreover, the minimum generalized eigenvalue | of the matrix pair X

and Y is equivalent to the maximum eigenvalue Il\J of the matrix M. Therefore, we
only need to compute the maximum eigenvaue.

Following, we will adopt the power method to get the maximum eigenvalue.
After severa iterative computations, we can derive to the dominant (maximum)

eigenvalue and its corresponding eigenvector. The power method steps are as follows:

Start with the vector
1)
w, =[111.-- 1},

Generate the sequence { w, } recursively, using

()
Q. =Mw,
1
W,y ==——0Q,
c‘\'k+1

where c,,, isthe coordinate of Q, of largest magnitude (in the case of atie, choose

the coordinate that comes first). The sequences { w,} and { cc} will convergeto V
U -

and | , respectively:
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v
lim x, =V and L'Qlckzl

k® ¥

0
Since we only care about w, thel  does not have to be calcul ated.



