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Chapter 3 
 

Modified Algorithm 

 
                                                                      

 

 

3.1  Quantized Weighting Method 

From the previous chapter, we learn some TEQ algorithm. However, current 

design method such as MMSE, maximum shortening SNR (MSSNR), and maximum 

geometric SNR (MGSNR) do not maximize the bit rate directly. Since the bit rate is a 

function of noise, channel gain, and transmit power spectrum, a bit rate optimal TEQ 

design method must take into account all three. From the chapter two, we know only 

the maximum bit rate (MBR) method and Minimize-ISI (Min-ISI) method pay 

attention to maximize the bit rate.  

By observing the Min-ISI cost function in equation (2.47), we can find that the 
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From the viewpoint of real time implementation, in order to lower the computation 

complexity, we should reduce the multiplication. The way we proposed is to quantize 

the weighting factor. At first, we would like to set a SNR threshold. If the SNR 
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is lower than the threshold, we will set it to “zero”. The weighting being set to OFF 

means the subchannel is in bad situation. Since the noise power is too strong, we do 
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not even care about the ISI in this subchannel. Hence, it is reasonable to turn it off. On 

the contrary, if the situation that the SNR is higher than the threshold, we would like 

to set it to “one”.  

The threshold that we choose is to pick the subchannels which can transport 

more than three bits. By the Shannon channel capacity theorem, we can derive a value 

of signal-to-noise ratio that make these subcarriers take more than three bits. 

Because the “Off & On” simplified method is rough, we would like to improve 

the accuracy. Based on the idea of quantization, we can extend the “Off & On” 

simplified method to multiple thresholds. However, from a point of view of the 

hardware implement, we still do not want to increase the load of the hardware. It 

implies that we do not look forward to raising the number of multiplication. As a 

result, our idea is to set four level thresholds, and they are “1”, “2”, “4”, and “8”. In 

this way, it only needs two comparisons. Besides, because these coefficients are 

power of 2, we can implement the multiplication by shifting. It really reduces the 

computation complexity.  

 

 

3.2 Generalized Eigenvalue Problem 

    In the Min-ISI design method, the problem we deal with is as follow: 

( ) 1    s.t.      minarg =YwwwXw TT
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We would like to figure out the problem by using Lagrange multiplier. We write the 

cost function as  
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               )1(),( −+= YwwXwwwL TT λλ                          (3.1) 

where λ  is a Lagrange multiplier. Before we deal with this cost function, we want to 

introduce a Lemmas and a Theorem. 

Lemmas A: Let    vector.a be nRx ∈  

Then 
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Theorem A: Let nnA CC ×∈ be an nn×  array and nx R∈  be an n element vector. 

Then 
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Proof: 
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If we take the gradient of ),( λwL  with respect to w and set it to the zero. That is  
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                           (3.2) 

The equation (3.2) is derived from the theorem A. From (3.2), we know that we can 

find an optimal optw  to satisfy it. That is  

                   optopt YwXw λ22 −=                                (3.3) 

This is  the generalized eigenvalue and eigenvector problem. However, the 

problem we usually deal with is the regular eigenvalue problem. Hence, we may 

prefer transferring (3.3) to another form. We will eliminate the coefficient “2”, and 

set λλ −=
~

. We will obtain 

                   optopt YwXw 1
~

−= λ  

                   optopt wYXw )(
1 1
~

−=
λ

 

                   optopt Mww =
∧

λ                                   (3.4) 

By observing (3.4), we can find it is a regular eigenvalue problem.  
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In (3.3), the optimal solution is the eigenvector corresponding to the minimum 

eigenvalue. Moreover, the minimum generalized eigenvalue 
~
λ  of the matrix pair X 

and Y is equivalent to the maximum eigenvalue 
∧
λ  of the matrix M. Therefore, we 

only need to compute the maximum eigenvalue.  

    Following, we will adopt the power method to get the maximum eigenvalue. 

After several iterative computations, we can derive to the dominant (maximum) 

eigenvalue and its corresponding eigenvector. The power method steps are as follows: 

 

Start with the vector  

(1) 

                    ]'1  1 1 1[0 L=w . 

Generate the sequence { kw } recursively, using 

(2) 
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where 1+kc  is the coordinate of kQ of largest magnitude (in the case of a tie, choose 

the coordinate that comes first). The sequences { kw } and { ck } will converge to V  

and 
∧
λ , respectively: 

(3)  

                    Vxkk
=

∞→
lim   and   

∧

∞→
= λkk

clim  

Since we only care about w, the
∧
λ  does not have to be calculated.  

 

 


