

 31

Chapter 3

Modified Algorithm

3.1 Quantized Weighting Method

From the previous chapter, we learn some TEQ algorithm. However, current

design method such as MMSE, maximum shortening SNR (MSSNR), and maximum

geometric SNR (MGSNR) do not maximize the bit rate directly. Since the bit rate is a

function of noise, channel gain, and transmit power spectrum, a bit rate optimal TEQ

design method must take into account all three. From the chapter two, we know only

the maximum bit rate (MBR) method and Minimize-ISI (Min-ISI) method pay

attention to maximize the bit rate.

By observing the Min-ISI cost function in equation (2.47), we can find that the

weighting factor ∑
−

=

N

i

H
i

in

ix
i q
S
S

q
1 ,

.)(needs so many multiplication when
−
N is large.

From the viewpoint of real time implementation, in order to lower the computation

complexity, we should reduce the multiplication. The way we proposed is to quantize

the weighting factor. At first, we would like to set a SNR threshold. If the SNR
in

ix

S
S

,

.

is lower than the threshold, we will set it to “zero”. The weighting being set to OFF

means the subchannel is in bad situation. Since the noise power is too strong, we do

 32

not even care about the ISI in this subchannel. Hence, it is reasonable to turn it off. On

the contrary, if the situation that the SNR is higher than the threshold, we would like

to set it to “one”.

The threshold that we choose is to pick the subchannels which can transport

more than three bits. By the Shannon channel capacity theorem, we can derive a value

of signal-to-noise ratio that make these subcarriers take more than three bits.

Because the “Off & On” simplified method is rough, we would like to improve

the accuracy. Based on the idea of quantization, we can extend the “Off & On”

simplified method to multiple thresholds. However, from a point of view of the

hardware implement, we still do not want to increase the load of the hardware. It

implies that we do not look forward to raising the number of multiplication. As a

result, our idea is to set four level thresholds, and they are “1”, “2”, “4”, and “8”. In

this way, it only needs two comparisons. Besides, because these coefficients are

power of 2, we can implement the multiplication by shifting. It really reduces the

computation complexity.

3.2 Generalized Eigenvalue Problem

 In the Min-ISI design method, the problem we deal with is as follow:

() 1 s.t. minarg =YwwwXw TT

w

where

)DH(DH
,

,T H
i

in

ix
i

Si

T q
S
S

qX ∑
∈

=

 GHGH TT=Y

We would like to figure out the problem by using Lagrange multiplier. We write the

cost function as

 33

)1(),(−+= YwwXwwwL TT λλ (3.1)

where λ is a Lagrange multiplier. Before we deal with this cost function, we want to

introduce a Lemmas and a Theorem.

Lemmas A: Let vector.a be nRx ∈

Then

≠=

≠=

==

=
∂
∂

otherwise 0
 and for

 and for

for 2

kikjx

kjkix

kjix

xx
x i

j

k

ji
k

Theorem A: Let nnA CC ×∈ be an nn× array and nx R∈ be an n element vector.

Then

 xAAx
x
Axx T

T

+=
∂

∂)(

Proof:

[]

)(
)(2

1

21

22221

11211

21

∇=∇=
∂

∂

nmnmm

n

n

nx
T

x

T

x

x
x

aaa

aaa
aaa

xxxAxx
x
Axx

M
…

MOMM
L
L

L

∑ ∑∑ ∑

∑ ∑

∑ ∑

∑ ∑

= == =

= =

= =

= =

∂
∂

∂
∂

∂
∂

=

∂
∂

∂
∂

∂
∂

=∇=
n

i

n

j

ji
n

ji

ji

ij

n

i

n

j

n

i

n

j
jiij

n

n

i

n

j
jiij

n

i

n

j
jiij

jiijx

xx
x

xx
x

xx
x

a

xxa
x

xxa
x

xxa
x

xxa
1 1

*

*

2

*

1

1 1

1 1

*

1 1

*

2

1 1

*

1

*

)(

)(

)(

MM

 34

∑∑∑∑∑∑
= == == =

+

=

+

+
+

=
n

i

n

j

jn

j

j

iij

n

i

n

j

in

i

i

jij

n

i

n

j

ijnjin

ijji

ijji

ij xaxa

xx

xx
xx

a
1 1

2

1

1 1

2

1

1 1

22

11

δ

δ
δ

δ

δ
δ

δδ

δδ
δδ

MMM

 ∑ ∑∑ ∑∑ ∑
= == == =

+

=

+

=
n

j

n

i

in

i

i

i

nj

j

j

j

n

i

n

j

jn

j

j

iji

n

j

n

i

in

i

i

ijj

a

a
a

x

a

a
a

xaxax
1 1

2

1

2

1

1 1

2

1

1 1

2

1

MMMM
δ

δ
δ

δ

δ
δ

 TT AxAx)(+=

 xAAx T+=

If we take the gradient of),(λwL with respect to w and set it to the zero. That is

 022
),(

=+=
∂

∂
YwXw

w
wL

λ
λ

 (3.2)

The equation (3.2) is derived from the theorem A. From (3.2), we know that we can

find an optimal optw to satisfy it. That is

 optopt YwXw λ22 −= (3.3)

This is the generalized eigenvalue and eigenvector problem. However, the

problem we usually deal with is the regular eigenvalue problem. Hence, we may

prefer transferring (3.3) to another form. We will eliminate the coefficient “2”, and

set λλ −=
~

. We will obtain

 optopt YwXw 1
~

−= λ

 optopt wYXw)(
1 1
~

−=
λ

 optopt Mww =
∧

λ (3.4)

By observing (3.4), we can find it is a regular eigenvalue problem.

 35

In (3.3), the optimal solution is the eigenvector corresponding to the minimum

eigenvalue. Moreover, the minimum generalized eigenvalue
~
λ of the matrix pair X

and Y is equivalent to the maximum eigenvalue
∧
λ of the matrix M. Therefore, we

only need to compute the maximum eigenvalue.

 Following, we will adopt the power method to get the maximum eigenvalue.

After several iterative computations, we can derive to the dominant (maximum)

eigenvalue and its corresponding eigenvector. The power method steps are as follows:

Start with the vector

(1)

]'1 1 1 1[0 L=w .

Generate the sequence { kw } recursively, using

(2)

kk MwQ = ,

k
k

k Q
c

w
1

1
1

+
+ =

where 1+kc is the coordinate of kQ of largest magnitude (in the case of a tie, choose

the coordinate that comes first). The sequences { kw } and { ck } will converge to V

and
∧
λ , respectively:

(3)

 Vxkk
=

∞→
lim and

∧

∞→
= λkk

clim

Since we only care about w, the
∧
λ does not have to be calculated.

