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Technical Notes and  Correspondence 

Matrix Partial Fraction Expansions of Rational Matrices is the denominator polynomial, and 

YEN-LEI  LING AND BOR-CHWN  WANG m 

d, E R ,  N ,  E Rq"p, i = l ,  ..., t ,  AI E F, j = 1 ,  I . . ,  rn, t ,= t ;  
, = I  

(4 

find the residue matrices R,k E F q X P ,  i = 1, . . ., rn, k = 1, . . . , ti, in 
terms of the coefficient matrices N,, i = 1, . . . , t ,  such that 

Abstract-A general and rigorous derivation is made of a new formula, 
established recently in the  literature, for matrix  partial  fraction expansion 
of a  rational matrix. The procedure, by use  of a minimal Jordan 
realization of the  rational  matrix, provides as a  byproduct, general 
expressions for residue matrices in terms of products of columns of the 
output matrix and rows of the  input matrix of the realization. 

LIST OF SYMBOLS AND ABBREVIATIONS 

transpose and  inverse  of matrix A .  
Kronecker product of matrix A and matrix B. 

degree of characteristic polynomial of rational G(s). 
complex field C or real field R .  
Markov's parameters CAjB. 
n x n unit matrix. 
ring of rn X n matrices over K ,  K is F, R(s) or R [ s ] .  
Vector  Space Of n X 1 column Vectors with elements in K. 
zero n-vector and zero m X n mauix. 
real field. 
partial fraction expansion. 
field of rational functions in s with coefficients in R .  
ring of polynomials in s with coefficients in R.  
Stanley matrix associated with polynomial d(s). 

( l ) / ( j ! ) (dJAk)/(dA') ,  &(Ak) = hk. 

The fundamental method for matrix PFE is the same  as that used  in PFE 
of rational functions. i.e., by assuming residues and equating correspond- 
ing terms.  Other methods available in the literature are based on Lagrange 
interpolation [I]. 121 or Taylor series expansion [3. p. 3091. But they are 
complicated for  large dimension and high-order systems. Recently, as the 
solution of  the matrix PFE problem,  a new formula, namely 

S( d )  = 

I. IhTRODUCTION 

Matrix PFE is frequently used  in linear system theory, e.g., to obtain 
inverse Laplace and  Z-transforms, and in state-space realizations of 
rational matrices. The problem of matrix PFE is phrased as follows. 

Given a strictly proper rational matrix G(s) E R(s)qXP 

G ( s ) = N ( s ) / d ( s ) ,   N ( s )  E R[s]q"P (1) 

where 

is the numerator matrix, 

The derivation in [4], [5] is not in general form and is thus less rigorous. 
Instead, it is illustrated by simple examples, and  is basically the same as 
the fundamental method. 

A more rigorous derivation in a general form of formula (6) is 
presented in this note. The method is based on the fact that the residue 
matrices can be expressed in terms of products of columns of the output 
matrix and rows of the input matrix of the minimal Jordan realization of 
Gb-1. 

i= I 
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11. A BASIC FORMULA 

In ( l ) ,  G(s) is assumed irreducible, i.e., d(s) and every NJs) is 
relatively prime. Suppose { A ,  B, C} is the minimal Jordan realization [7, 
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and the Stanley matrix given by (7), the numerator matrix becomes 

NIs ' - '+N 2s ' - 2 + ~ . ~ + R i , _ l s + N ,  

={[s'- '  ... s 1]@3I,}[N,'N; . . .  N,']' ( 17a) 

TABLE I 
MINIMAL  JORDAN REALIZATION { A ,   B ,  c} OF G(S) 

~ 

(nxn)A=diag (A,  A 2  . . .  A m ) ,  

(n,xn,)A,=diag  (A;, A , 2  ... A,r,), 

r,= number of Jordan  blocks  associated with X,, 

rx, 
O1 We reach now a basic formula 

III. MATRIX PFE FOR GENERAL CASE OF MULTIPLE ROOTS 

With (14). the residue matrices can be obtained in terms of products of 
columns of C and rows of B. First, note that 

where for k < n,, p. 2401 of G(s); then 

where the matrices A E FnX",  B E F n x P ,  and C E Fqx" are of the 
forms shown in Table I, and n = deg G(s). 

Note that in submatrix Ai there is at least one  Jordan block, say Ail, of 
the maximum order t i .  Thus, 

By minimality of { A ,  B, C} it follows that 

R ( i j ,  ~ v ) = C , J . I b ~ . n , J ~ 8 ~ x p .  (21) 

Collecting R(g,  k)'s corresponding to  the same denominator and noting 
that nlj < ti, from (12), we get R,k  in ( 5 )  

The  Jordan block A ,  has some useful properties 

by setting l ? ( i j ,  k )  = B q x p  f o r k  > nu, r f . ,  (14),  (20). 

be, by use of (13), (20), and (22), expressed in terms of R;k's and h,'s 
The  Markov's parameters h,, 01 = 0, I ,  2, . . . , t - 1, in (18) can now 

m 

h , = E  C,APB;  
i =  I 

Since d(s) is the minimal polynomial of A ,  by [8, p. 3251, we have 

After  some  algebraic manipulations and by use of the Markov parameters 
19, P. 3541 
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Then 

[ h i  h,' ... hI'_,] 

0 0 0  
- 

= [ R ,'I . . . Rh,,,,]( W' '8 Iq ) .  

Substitute (24b) into (18), we have 

8 Iq 

[ N , ' N ;  ... N , ' ] ' = ~ [ S ( d ) W ] ~ I , ) [ R , ' ,  ... RL,"]' 

from which formula (6) results. 

IV. MATRIX PFE FOR CASE OF SIMPLE ROOTS 

In this simple case r; = 1, then nu = 1, rn = t ,  n, = r, 

where 

d(s)  = (s - Ai). 
;= I 

with u(A) given by (9), is the Vandermonde matrix. 
As an alternative and interesting derivation, (28) can  also be easily 

proved by considering {A ,  B, C }  as the Gilbert diagonal realization [9. p. 
3491 of G(s), where 

A =diag (X, I",, i =  1 - r )  A, E F, (30) 

B'=[B, '  B,' ... Bl'], B; E Fnfx?, (3 1) 

c= tc, c2 ... C I ] ,  c, E F q x " 8 ,  (32) 

n , = n ,  
, = I  

(33) 

Note that 

[ h i  h ;  ... h, '_,] '=[ V@I,][B,'C,' B;CI . . .  B,'C,']' (35a) 

= [  V@I,][R, 'R; ... R, '] ' .  (35b) 

Then (28) follows with (35b) substituting into (18). 

V. NUMERICAL EXAMPLE [7 ,  p. 2511 

Let 

L- 'I - s+ 1 1 

where d(s) = s(s + 1)2 = s3 + 2s' + s. By (6), the resi, 
obtained as follows: 

due matrices are 

The matrices B and C of the minimal Jordan realization of G(s) are 

By (20) and (22), R I I ,  Rlz, and R?I can  also be expressed as: 

= [;] [O O]+ E] 11 O l +  [:I [ - 1  11= [-: :] , 
R I Z = R ( l I ,  2)+d(12, 2) 

Remarks: Computations of the Rik's by (22), i.e., by summations of 
the products of the columns of C and the rows of B,  provides an 
interesting double check only. Otherwise, it could be argued if there is 
any value in these computations, since in the Jordan realization problem 

R, = CiBi; i = I -+t. (34) 171 B and C are obtained using the result of the matrix PFE of G(s) 
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VI. CONCLUSIONS 

A completely different and rigorous derivation of a new formula for 
matrix partial fraction expansions of a rational matrix is presented. For 
the general case of multiple roots the proof is  via the minimal Jordan 
realization of the rational matrix, while for the case of simple roots the 
proof would be easy via the Gilbert diagonal realization. In both cases  the 
key steps are: 1) to express residue matrices in terms of products of 
columns of the output matrix and the rows of the input matrix of the 
realization; 2 )  to relate the Markov parameters with residue matrices and 
the roots. Study of possible applications in linear multivariable control 
design, such as Owen’s dyadic approach [lo] and modal control [ 111. is 
now under way. 
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Coprime  Fraction  Computation of 2-D Rational 
Matrices 

YHEAN-SEN LAI AND CHI-TSONG  CHEN 

Abstract-This note presents a numerical method  of computing a 
coprime fraction  of a two-dimensional (2-D) rational matrix, not 
necessarily proper. It is achieved by searching the primary linearly 
dependent rows, in order from top to bottom,  of the two generalized 
resultants. The procedure can  be extended to the three- or higher 
dimensional case and the result can  also be used to compute the greatest 
common divisor (CCD) of 2-D polynomial matrices without employing 
primitive factorizations which does not exist in the three- or higher 
dimensional case. 

and 

I. INTRODUC~ION 

digital signal processing and in the study of multidimensional system 
theory: and has been studied by a number of authors [l], [2].  These 
methods check wshether or not the two polynomials are coprime and 
compute their greatest common divisor (GCD). They are carried out by 
considering R [ z I ,  z2] as  R[z1][z2] or R[z2][zI]. In this note, we bypass 
the computation of the GCD and compute directly the reduced rational 
matrix. 

This paper is an extension of the 2-D scalar case in [3] to  the 2-D matrix 
case. The extension. however, is highly nontrivial. Many properties 
which do not exist in the scalar case will appear in the matrix case. The 2- 
D matrix case is also drastically different from the 1-D matrix case. In this 
note. by coprimeness. we mean factor coprimeness [7]. 

Let G(zl, z2) be a 2-D q x p rational matrix, not necessarily proper, 
factored as 

G ( z I ,   z ~ ) = N ( z I ,  z ~ D - ’ ( z I ,  ~ 2 )  

= -,’-l(z,, ZdB(Zlr z2) (1) 

where N(zl, ZZ) ,  D(zl,  221, A (z I ,z~) ,  and B(zI, ZZ) are, respectively, q x 
p ,  p X p ,  q X q, and q X p 2-D polynomial matrices. Equation (1) 
implies 

This is a set of linear homogeneous algebraic equations with elements in 
the 2-D polynomial commutative ring R [ z l ,  221. Given D(zl, ZZ) and 
N ( z I ,  z2), it can be shown that all solutions [B(zl,  zz)A(zI, z2)] of (2) 
form a free module over R[zl,  z2] of dimension q. Let V denote  the 
module. A basis of V is the minimal set of  generators (in this case, q 
generators) which generate V [4], [6].  Then it is easy to establish the 
following lemma. 

Lemma I [8]: The left fraction G(zl, z2) = -A-I(zI,  22) B(z,, ZZ) is 
coprime if and only if [B(zl, z2)A(zl, z2)] is a basis of the module V. 

Lemma 2 [S’]: Consider a 2-D q X p rational matrix G(zl, 2 2 )  = - 
k l ( z l ,  z~)E(zl,  z2) = -A-l(zl ,  z2)B(zI, 22).  Let O ~ Z I ,  ZZ) be any q 
different columns of [B(zl, z2)A(zI, zz)] and let O(zl, zz) be the 
corresponding q columns of [ &zl, (zl , z2)]. If A (zl , 22) and B(zl,  ZZ) 
are left coprime,  and if o(zl, 22) is nonsingular, then 

6,10(zl ,   z2)1~6,10(zl,  z2)1 i = l ,  2 

where I . I denotes the determinant and 6 f ( z l ,  z 3  denotes the highest 
degree of z; inf(zl. z2). The equalities hold if A(zl, z2) and &zl, 22) are 
also left coprime. 

Instead of solving ( 2 )  directly. we shall transform it into sets of linear 
homogeneous algebraic equations. Define 

The computation of an  irreducible fraction of a twvo-dimensional (2-D) 
rational function or matrix is important in the minimal implementation of 

,=o ,=o 
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