

A Thermal-Aware Power Management Soft-IP
for Platform-based SoC Designs

A Thermal-Aware Power Management Soft-IP
 for Platform-based SoC Designs

Student Chin-Hung Chan

Advisor Dr. Herming Chiueh

A Thesis
Submitted to Department of Communication Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master of Science

in

Communication Engineering

July 2004

Hsinchu, Taiwan

 i

(Platform-Based SoC Design)

(Thermal-Aware Power Management Soft-IP

Design)

TSMC 0.25um 1P5M CMOS

[1]

(Prototype Soft-IP)

 ii

A Thermal-Aware Power Management Soft-IP

for Platform-based SoC Designs

Student: Chin-Hung Chan Advisor: Dr. Herming Chiueh

Department of Communication Engineering

National Chiao Tung University

Hsinchu, Taiwan

Abstract

A novel thermal-aware power management (TAPM) Software Intellectual

Property (Soft-IP) for modern platform-based SoC designs is presented in this thesis.

This research proposes a system-level architecture of thermal-aware power

management, which includes a Power Management Bus (PMB), TAPM Soft-IP and

interface circuitry for proposed PMB. Each component of proposed design is

encapsulated to a Soft-IP. With above design, system architects are able to incorporate

on-chip power-controls and sensors to achieve nominal power dissipation and ensure

the targeting system working within specification. The design yields intricate control

and optimal management with little system overhead and minimum hardware

requirements, as well as provides the flexibility to support different management

schemes. The proposed system and its components are designed, implemented and

verified by a prototype chip, which was fabricated in a TSMC 0.25um 1P5M standard

CMOS technology through Chip Implementation Center (CIC), Taiwan [1].

 iii

(CIC)

SoC LAB

 NSC-92-2218-E-009-014

 iv

Content:

…… ..i

Abstract.. .. ii

…… ... iii

Chapter 1 Introduction...1

1.1 Motivation .. 1

1.2 Organization .. 4

Chapter 2 System-Level Design ...5

2.1 Thermal-Aware Power Management Systems.................................... 6

2.1.1 Basic Building Blocks ...6

2.1.2 System Architectures ...7

2.2 Specification of System Management Bus 10

2.2.1 Introduction...10

2.2.2 Basic Bus Operations..10

Chapter 3 Implementation..15

3.1 Computer-Aided Design Flow ... 15

3.2 Thermal-Aware Power Management System Integration 18

3.3 Verification with Testbench Set-up ... 22

3.4 Simulation Results.. 25

3.4.1 Pre-layout Simulation of Multi-level Controller...............................25

3.4.2 Pre-layout Simulation of Thermal Management Unit.......................28

3.4.3 Pre-layout Simulation of System Management Bus35

3.4.4 Pre/Post-layout Simulation of System Integration............................40

3.5 Circuit Summary .. 47

 v

Chapter 4 Experimental Results ..49

4.1 Measurement Environment .. 49

4.2 Printed Circuit Board Design .. 51

4.3 Testing Results of Thermal Management Unit 53

4.4 Testing Results of Thermal-Aware Power Management Systems 61

4.5 Summary .. 69

Chapter 5 Conclusion & Future Works...71

Bibliography: ..74

Appendix A: The Defined Read/Write Commands for TMU..............76

Appendix B: Configuration & Report Registers Assignments77

 vi

List of Figures:

Figure 1.1 Proposed Architecture of TAPM System ...3

Figure 2.1.1 Building Blocks of TAPM...6

Figure 2.1.2 Detailed Block Diagram of TAPM...8

Figure 2.1.3 TAPM System Operation..9

Figure 2.2.1 Generic Transaction Diagram ...11

Figure 2.2.2 START and STOP Conditions...11

Figure 2.2.3 SMBus Byte Format ...12

Figure 2.2.4 ACK and NACK Signaling of SMBus...13

Figure 2.2.5 Write/Read Word/Byte Protocol ...14

Figure 3.1.1 Cell-Based Design Flow ..17

Figure 3.2.1 Schematic Circuit...19

Figure 3.2.2 Top Module ..20

Figure 3.3.1 Testbench of MLC Set-up ...23

Figure 3.3.2 Testbench of TMU Set-up...23

Figure 3.3.3 Testbench of SMBus Set-up ..24

Figure 3.3.4 Testbench of TAPM Set-up ...24

Figure 3.4.1 Pre-Layout Simulation of MLC..27

Figure 3.4.2 Pre-Layout Simulation of Write Commands for TMU ...33

Figure 3.4.3 Pre-Layout Simulation of Read Commands for TMU..34

Figure 3.4.4 Pre-Layout Simulation of Write Protocol for SMBus...38

Figure 3.4.5 Pre-Layout Simulation of Read Protocol for SMBus ...39

Figure 3.4.6 Pre/Post-Layout Simulation of TAPM..43

Figure 3.4.7 Zoom in Sensors Firstly Change in Figure 3.4.5...44

 vii

Figure 3.4.8 Zoom in Sensors Secondly Change in Figure 3.4.5 ...45

Figure 3.4.9 Zoom in Sensors Thirdly Change in Figure 3.4.5 ..46

Figure 3.4.1 TAPM Chip Layout ..48

Figure 4.1.1 Testing Set-Up..50

Figure 4.1.2 Photograph of Testing Environment ..50

Figure 4.2.1 PCB Circuit Implementation..51

Figure 4.2.2 Photograph of Taped-out Chip on PCB...52

Figure 4.3.1 Testing TMU & MLC Block ...53

Figure 4.3.2 Testing Controller Registers by 00h Pattern..54

Figure 4.3.3 Testing Controller Registers by 55h Pattern..54

Figure 4.3.4 Testing Controller Registers by AAh Pattern ...54

Figure 4.3.5 Testing Controller Registers by FFh Pattern...55

Figure 4.3.6 Testing Controller Registers by Different Patterns ..55

Figure 4.3.7 Testing Temperature Registers by 00h Pattern ..55

Figure 4.3.8 Testing Temperature Registers by 55h Pattern ..55

Figure 4.3.9 Testing Temperature Registers by AAh Pattern..56

Figure 4.3.10 Testing Temperature Registers by FFh Pattern..56

Figure 4.3.11 Testing Temperature Registers by Different Patterns ...56

Figure 4.3.12 Testing (Offset) Threshold Registers by 00h Pattern ...57

Figure 4.3.13 Testing (Offset) Threshold Registers by 55h Pattern ...57

Figure 4.3.14 Testing (Offset) Threshold Registers by AAh Pattern...57

Figure 4.3.15 Testing (Offset) Threshold Registers by FFh Pattern...57

Figure 4.3.16 Testing (Offset) High/Low Threshold Registers by Different Patterns...............58

Figure 4.3.17 Testing Interrupt and Offset Interrupt Functions...60

Figure 4.4.1 Testing TAPM Block...61

Figure 4.4.2 Testing Controller Register 0 by SMBus (Test Pattern AAh)63

 viii

Figure 4.4.3 Testing Controller Register 1 by SMBus (Test Pattern AAh)64

Figure 4.4.4 Testing Controller Register 2 by SMBus (Test Pattern AAh)64

Figure 4.4.5 Testing Controller Register 3 by SMBus (Test Pattern AAh)64

Figure 4.4.6 Testing Threshold Register 0 by SMBus (Test Pattern 55h & AAh)64

Figure 4.4.7 Testing Threshold Register 1 by SMBus (Test Pattern 55h & AAh)65

Figure 4.4.8 Testing Threshold Register 2 by SMBus (Test Pattern 55h & AAh)65

Figure 4.4.9 Testing Threshold Register 3 by SMBus (Test Pattern 55h & AAh)65

Figure 4.4.10 Testing Offset Threshold Register by SMBus (Test Pattern 55h & AAh)............65

Figure 4.4.11 Testing Temperature Register 0/3 by SMBus (Test Pattern 80h/FFh)66

Figure 4.4.12 Testing Temperature Register 1/2 by SMBus (Test Pattern C0h/D5h)66

Figure 4.4.13 Testing Interrupt and Offset Interrupt by SMBus...67

Figure 4.4.14 Zoom in Sensors Firstly Change in Figure 4.4.13...67

Figure 4.4.15 Zoom in Sensors Secondly Change in Figure 4.4.13 ...68

Figure 4.4.16 Zoom in Sensors Thirdly Change in Figure 4.4.13 ..68

Figure 4.5.1 Die Microphotograph ..70

Figure 5.1.1 Building Blocks of Temperature Sensor with TAPM ..72

Figure 5.1.2 Building Blocks of Voltage Island with TAPM ...73

 ix

List of Tables:

Table 3.2.1 Output Signal Description of Top Module ...20

Table 3.2.2 Input Signal Description of Top Module..21

Table 3.4.1 Signal Description of I/O Ports for Figure 3.4.1...25

Table 3.4.2 Signal Description of I/O Ports for Figure 3.4.2 and 3.4.3...................................32

Table 3.4.3 Signal Description of I/O Ports for Figure 3.4.4 and 3.4.5...................................37

Table 3.4.4 Signal Description of I/O Ports for Figure 3.4.6~9...42

Table 3.4.1 Circuit Summaries ...48

Table 4.4.1 Expositions for Figure 4.4.2~10 ..63

Table 4.5.1 Actual System Perfromance ...70

 1

Chapter 1 Introduction

1.1 Motivation

Modern semiconductor technologies enable the integration of different

components from an on-board system to a single chip using reliable design tools and

methodologies. Different novel material and process technologies, including

embedded memories, embedded processors, copper interconnect, low-k dielectric

material and high-Q passive component, supply low-noise and low-resistance

interconnects for mixed-signal design and high speed circuit design. The evolution of

recent Electronics Design Automation (EDA) tools and design methodologies such as

hardware/software co-design, code coverage analysis as well as high-level synthesis

and language [2], help designers to verify and implement their project in a short time.

Thus, the design productivity is increased, and the System-on-Chip (SoC) design is no

longer an unreachable goal for designers.

As the whole systems merge into a single chip, the total area and circuit

complexity of a SoC design increase dramatically. The time-to-market pressure and

integration of such a complex system have brought different design and verification

methodologies to increase the design efficiency. Thus, IP-based and Platform-based

SoC design [3] is proposed, which are solutions for these challenges of SoC design.

By using such methodologies, the concept of utilizing designed Intellectual Property

(IP) cores is widely used to achieve the performance and function requirements of a

 2

targeted SoC.

As circuit density and operation frequency of the SoC design increased, more

power dissipated on a single chip and more heat generated on a single dies. The local

heated up seriously impacts the system performance. Thus, how to quickly dissipate

the heat has become an important research topic in recent years. The previous

researches have proposed the dynamic thermal management system (TMS) [4-6] to

solve the thermal problem on SoC design. In this research, a “Soft-IP” is designed for

Thermal-Aware Power Management system (TAPM) in order to integrate with

targeting system. The proposed TAPM is designed as a synthesizable module in a

hardware description language such as Verilog or VHDL and can be easily transferred

to different manufacturing technologies [7]. The advantage provides a faster

implementation for new designs.

Besides the TAPM Soft-IP, an interface module is designed to provide the

communication mechanism between TAPM and other IPs on targeting SoC bus.

However, in this design, a controlling bus which adopts the System Management Bus

(SMBus) standard [8] is also proposed. In Figure 1, the processor, TAPM and other

functional units are connected by high speed bus, such as AMBA [9], IBM core

connect [10] and MIPS’ EC bus [11].

In addition, each IPs is connected by the SMBus to communicate actively with

TAPM to implement the system-level power management. The interface module for

each IPs on the system is also provided as a Soft-IP in proposed design. The purpose

of such set-up is to offer a separate power management bus for the whole system.

Such bus is necessary since the performance of system bus can be seriously decreased

because active thermal/power management often comes with a lot of interrupts and

power setting commands. Such set-up does not require a high speed communication

 3

between TAPM and different IPs, but the frequent interrupts will hurt the performance

of most SoC on-chip buses.

 In the mean time, most on-chip buses are designed to provide a relatively higher

data-bandwidth compared with peripheral buses and controlling buses, which means

TAPM might not take charge of the buses while the critical thermal or power failure

are happening. Thus, the proposed design utilized a separate power management bus

in a lower clock-rate (compared with the platform) to delicately control all the

power/thermal commands and events. To solve above problems and fulfill such

requirements, the SMBus was chosen since it provided a 2~3 wires connection with a

relative lower clock rate which implied a very tiny overhead in terms of power and

area for targeting SoC designs. This thesis proposed a thermal aware architecture for

SoC designs which includes the bus architecture, SMBus interface and TAPM

micro-architecture. These units are encapsulated to Soft-IPs, and are fabricated and

verified in a prototype chip using TSMC 0.25um 1P5M standard CMOS process.

Figure 1.1 Proposed Architecture of TAPM System

 4

1.2 Organization

In Chapter 1, the overview of SoC design trends and platform-based SoC designs

from IP viewpoints are described. From thermal/power impact on SoC designs, the

concept of TAPM Soft-IP is proposed for this catastrophe.

In Chapter 2, the system-level design issues are mentioned. The functional units

and architecture of TAPM are addressed and illustrated, which is followed by

introduction of SMBus.

In Chapter 3, the design flow, circuitry integration, and simulations are shown.

Finally, the circuit summary of TAPM is presented.

In Chapter 4, the environment of measurement set-up is shown, and the printed

circuit board (PCB) design issues are proposed and implemented. The experimental

results of taped-out chip are presented.

In Chapter 5, this proposed design is concluded, which is followed by discussing

for future works.

 5

Chapter 2 System-Level Design

In this chapter, the system-level design of TAPM is shown. Based on the

proposed architecture of TAPM system in Figure 1.1 in previous chapter, the backup

transmission bus, SMBus, was implemented and designed as modules [12], which is

directly adopted by this design because it’s characteristic provides a control for

system and power management related tasks. In addition, for die size and power

density increasing in the SoC design, the on-chip temperature gradient becomes a

major problem for system stability. The feature of TAPM must deal with local

overheating and offset overheating events and provided essential the multi-stage

monitor for temperature variance on chips. From some compact thermal/power

models to predict the thermal/power distribution on chips, TAPM can be necessarily

programmed suitable critical value and decided where place the sensors on targeted

system. Thus, the flexible architecture using little overhead is another consideration in

order to support different thermal/power management scheme according to targeted

system characteristic.
In Section 2.1, the proposed architecture of TAPM is shown. The specification of

SMBus is introduced in Section 2.2.

 6

2.1 Thermal-Aware Power Management Systems

2.1.1 Basic Building Blocks

The building block of a complete TAPM with the targeted SoC design is shown

in Figure 2.1.1. The dotted-line defines whole system that includes Thermal

Management Units (TMU), Power Control & Active Cooling Units (PC&AC),

temperatures sensors, targeted systems and interfaces. The dashed-line indicates the

designed TAPM IP, which includes a TMU, a PC&AC and an interface circuit

(SMBus).

The selections of every sub-unit design depend on the speciation of the targeting

system in order to reduce the cost and complexity of final system design. The

temperature sensors, TMU and PC&AC build up a feedback-loop to control and

stabilize thermal events and power consumptions of targeting SoC design. The TMU

can be programmed by different power management algorithms to fit the

thermal/power requirements of different targeting system.

Figure 2.1.1 Building Blocks of TAPM

 7

2.1.2 System Architectures

The detailed block diagram of TAPM is shown in Figure 2.1.2. The explanations

of each block are described in the following paragraphs:

Offset temperature threshold, temperature threshold, temperature of sensors,

system reports, system configuration and driven value of controllers are individually

stored in the six kinds of specified register of TMU. By using defined command

through SMBus, the setting of above registers can be adjusted to optimize the

different power management levels, and keep states of the targeted system within

specified temperature/power range. As this Figure 2.1.2 indicates, comparators are

used to compare the sensor temperature with specified threshold in order to monitor

states of different location for either overheating or offset overheating. The

dashed-arrows indicate the control loops of configuration registers and assigned

comparators and sensors. If overheating or offset overheating happens, the interrupt

generator will produce a corresponding interrupt signal to the processor. The system

reports were read out from report registers of TMU through SMBus in order to

understand the system situation.

The Pulse-Width-Modulation (PWM) controllers are chosen as Multi-level

controller in this design. Based on the previous research [13], this pure digital design

yields lower cost and higher efficiency than conventional liner driven fan controllers.

The total area of this design can be decreased by using less shift-register [14]. It can

trigger a 256-level signal to control the cooling device or voltage regulated device,

and takes one step ahead to strengthen performance of TAPM.

A master interface and a slave interface of SMBus are designed. There are two

wires in SMBus, and the transmission is bi-directional on SMBDAT. Originally, a

tri-state buffer is necessary for the output stage, but it is difficult for designers to do

timing control on this buffer. Thus, the input and output data are split into two wires.

 8

The operation frequency of SMBus (SMBCLK) is from 10 to 100 KHz. The SMB

clock is generated by SMB master interface. Each cycle of SMBCLK is divided into

least six cycles of internal clock according to the frequency of internal clock, and this

period would match the minimum high period of SMBCLK, hold time of start

condition and setup time of stop condition in AC specification. The timing parameters

of the master interface and slave interface can be easily set up to fit the variant

clock-rate requirements for different targeting systems.

Figure 2.1.2 Detailed Block Diagram of TAPM

 9

In Figure 2.1.3, by integrating various sensors with TMU, TAPM can rigorously

monitor power, thermal/power and cooling level for targeting SoC design. In addition,

individually functional blocks of the SoC design can have unique power

characteristics, and can be optimized based on requirement of its voltage. Thus, the

voltage islands are capable of providing design leverage [15], and the regulative

mechanisms of voltages can be adopted to scale voltage at any region in order to

enhance power control ability of TAPM.

Pµ

Figure 2.1.3 TAPM System Operation

 10

2.2 Specification of System Management Bus

According to the specification version 2.0 [8], the SMBus is introduced in

Section 2.2.1, and the basic data transfer and read/write protocol of the bus is

presented in Section 2.2.2.

2.2.1 Introduction

The SMBus is based on the principles of operation of I2C, which was developed

in the early 1980’s by Philips semiconductors, and its purposes were to provide an

easy way to connect a CPU to peripheral chips. In February 1995, Intel Corporation

defined the SMBus. It is widely used in personal computers and servers for low-speed

system management communications. The various system components can

communicate with each other or the rest of the system through SMBus that is a

two-wire interface. The SMBus provides a control bus for system and power

management related tasks. Due to removing the individual control lines in order to

reduce pins count, a system may use SMBus to transmit messages to devices and

received messages from devices instead of tripping individual control lines.

2.2.2 Basic Bus Operations

In Figure 2.2.1, the SMBus addresses are 7 binary bits long and are

conventionally expressed as 4 bits followed by 3 bits followed by the letter ‘b’ which

is binary format, such as “0001 110b”. These addresses occupy the high seven bits of

an eight-bit field on the bus. However, the low bit of this field has other semantic

meaning that is not part of a SMBus address. In this figure, the un-shaded portions are

supplied by the bus master and the shaded portions are driven by the bus slave. The

numbers across the top of the transaction diagram indicate the bit widths of each field.

The specific SMBus START and STOP conditions are defined in Figure 2.2.2.

 11

Figure 2.2.1 Generic Transaction Diagram

Figure 2.2.2 START and STOP Conditions

The START and STOP conditions are always generated by the bus master, and

its definition is described in the following paragraphs:

START Condition: A HIGH to LOW transition of the SMBDAT line while

SMBCLK is HIGH indicates a message START condition. After a START condition,

the bus is considered to be busy.

STOP Condition: A LOW to HIGH transition of the SMBDAT line while

SMBCLK is HIGH defines a message STOP condition. The bus becomes idle state

after certain time following by a STOP condition.

In Figure 2.2.3, every byte consists of 8 bits, and each byte transferred on the bus

must be followed by an acknowledge bit. In Figure 2.2.4, the positioning of

acknowledge (ACK) and not acknowledge (NACK) pulses relative to other data are

illustrated. The acknowledge-related clock pulse is generated by the master. The

transmitter, master or slave, releases the SMBDAT line (HIGH) during the

acknowledge clock cycle. In order to acknowledge a byte, the receiver must pull the

 12

SMBDAT line LOW during the HIGH period of the clock pulse according to the

SMBus timing specifications. A receiver that wishes to NACK a byte must let the

SMBDAT line remain HIGH during the acknowledge clock pulse.

A SMBus device must always acknowledge (ACK) its own address. A SMBus

slave device may decide to NACK a byte other than the address byte, which described

in the following paragraphs:

First, the slave device is busy performing a real time task, or data requested are

not available. Upon detection of the NACK condition, the master must generate a

STOP condition to abort the transfer.

Second, the slave device detects an invalid command or invalid data. In this case,

the slave device must NACK the received byte. Upon detection of this condition, the

master must generate a STOP condition and retry the transaction.

Figure 2.2.3 SMBus Byte Format

 13

Figure 2.2.4 ACK and NACK Signaling of SMBus

In Figure 2.2.5, the write/read word/byte protocol is described in the following

paragraphs:

After the master asserts the slave device address followed by the write bit, the

device acknowledges and the master delivers the command code. The first byte of a

Write Byte/Word access is the command code. The next one or two bytes are the data

to be written. The slave again acknowledges before the master sends the data byte or

word. The slave acknowledges each byte, and the entire transaction is finished with a

STOP condition.

Reading data is slightly more complicated than writing data. First, the host must

write a command to the slave device. Then it must follow that command with a

repeated START condition to denote a read from that device’s address. The slave then

returns one or two bytes of data. Note that there is no STOP condition before the

repeated START condition, and that a NACK signifies the end of the read transfer.

Similarly, the entire transaction is finished with a STOP condition.

 14

Figure 2.2.5 Write/Read Word/Byte Protocol

 15

Chapter 3 Implementation

In this chapter, the implementation of the taped-out IP is presented. The

Computer-Aided Design (CAD) flow for cell-based design is introduced in Section

3.1. The TAPM integration is shown in Section 3.2, and the verification with

testbench set-up for TAPM is shown in Section 3.3. The pre-layout simulation of

every component and pre/post-layout simulation of the whole system integration are

shown in Section 3.4. Finally, the circuit summaries of the taped-out IP are presented

in Section 3.5.

3.1 Computer-Aided Design Flow

A complete digital design flow with standard cells is shown in Figure 3.1.1. The

three main Electronics Design Automation (EDA) tools are used to design this IP, one

is simulator, another is synthesizer and the other is automatic placement and routing

tools. Hardware Description Language (HDL), Verilog, is used to stylize proposed

architecture. Each step of this design flow is introduced in the following paragraphs:

First, algorithms and architectures must be decided before implementations,

including selected standard interface, defined system performance and system

functions. After the specification of this design was formulated, the proposed

architecture is carefully delimited to several module based on individual

characteristics of modules. This crucial stage for designs directly affects the signals of

modules communicating with each other, and indirect determines synthesis results.

 16

Second, the proposed design is stylized by Verilog language, which must be

synthesizable codes. Register-Transfer-Level (RTL) simulations verify the behavioral

functions of modules, which do not take timing into account, such as wire delays, gate

delay and transport delay. Once RTL simulations do not match demanded functions,

RTL codes must be modified and simulated again.

Third, after verifications of the functions, RTL codes are synthesized by

synthesizer according to select logic cells from standard cell library. Setting synthesis

constraints fits requirements of system performance, and gate power, gate counts, as

well as timing information between gates can be estimated from the synthesis reports.

After synthesis, Gate-Level simulations consider gate timing, which verify the

functions of gate-level netlist. Similarly, if simulation results do not match behavioral

functions as these problems of hold time and setup time between modules, we must go

back preceding stage to solve these troubles.

Forth, the appropriate constrains are set to optimize the floorplanning by

automatic placement and routing tools. Besides Post-layout simulations checking,

another two checking is necessary. One, Layout Versus Schematic (LVS) checks the

connectivity of a physical layout design to its related schematic circuit netlist. Another,

Design Rule Check (DRC) checks the physical layout data against the design rules of

the fabrication. Each design must follow design rule document that is golden; after

checking, designers find all DRC errors out and have to modify these.

Transistor-Level (Circuit-Level) simulations are essential to analyzes power and

check timing. The design has gone through this cell-based design flow to produce

GDSII layout file, which can be fabricated in any foundry.

 17

Figure 3.1.1 Cell-Based Design Flow

 18

3.2 Thermal-Aware Power Management System Integration

This section presents a prototype implementation of the proposed design

according to cell-based design flow in the previous section, which adopts TSMC

0.25um process with the Aritsan standard cells. First, the behavioral verilog code is

verified by Simulator Verilog-XL and Debugger/Checker Debussy. After the

verification, this IP is synthesized by Synopsys Design Analyzer. The gate-level

synthesis results are verified before Synopsys Apollo is used to place and route for the

IP floorplanning, which is followed by Circuit Simulator NanoSim. This IP was

fabricated in TSMC through CIC.

The schematic circuit of the taped-out IP is shown in Figure 3.2.1. This IP

includes a TMU, four MLCs, four serial-to-parallel interfaces of temperature sensors,

a slave interface and a master interface of SMBus. Furthermore, the input clock is

separated into three kinds of internal clock; one is for TMU, another is for MLC and

the other is for SMBus. The serial-to-parallel interfaces of temperature sensors can

reduce the Input/Output (I/O) pins and total areas of this IP since I/O pins might cause

pad limited design. By integrating a master of SMBus into this IP, the transfer of

SMBus can be observed between the master interface and slave interface. In addition,

we also take account of the measurement for this IP in order to test TMU and TAPM

individually. This approach enables us to check the functional units of this IP

separately, and functional units can be selected by using a multiplexer, a “MUX” input

as shown in Figure 3.2.1.

The I/O ports of the top module is shown in Figure 3.2.2, and their signal

description are summarizes in Table 3.2.1 and Table 3.2.2.

 19

Figure 3.2.1 Schematic Circuit

 20

Figure 3.2.2 Top Module

Table 3.2.1 Output Signal Description of Top Module

Output Port Name Signal Description
SMBDATout Slave-to-Master bus data output (Mux=1)

FAN0~FAN3 MLC0~3 output

INTR interrupt signal due to local temperature
overflow/underflow

INTRoff offset interrupt signal due to offset temperature
overflow/underflow

smbOUT_tmuOUT[7:0] data output of master interface (Mux=1); data output
data of TMU (Mux=0)

smbSMBCLKout Master-to-Slave bus clock output (Mux=1)

smbSMBDATout Master-to-Slave bus data output (Mux=1)

smbCLEAN when it’s accessed, sent data is successful, then
continue to send next data (Mux=1)

smbFAIL when it’s accessed, sent data is failure, then try to send
data again (Mux=1)

smbOUTEN received byte is completed, when it’s accessed (Mux=1)

 21

Table 3.2.2 Input Signal Description of Top Module

Input Port Name Signal Description
CLK TAPM internal clock

MUX test TAPM, when it’s “High” ; test TMU, when it’s
“Low”

RESET TAPM reset

ADDR[2:0] address of slave interface (Mux=1)

SMBCLK Master-to-Slave bus clock (Mux=1)

SMBDATin Master-to-Slave bus data input (Mux=1)

SEN0~SEN3 sensor0~3 serial input

SEN0EN~SEN3EN sensor0~3 serial-to-parallel enable line

smbRESET master interface reset (Mux=0)

smbIN_tmuIN[7:0] data input of master interface (Mux=1); data input of
TMU (Mux=0)

smbEN_tmuINEN enable write/read protocol of master interface
(Mux=1); data is written into TMU, when it’s accessed
(Mux=0)

smbRW_tmuOUTEN select read/write protocol for master interface
(Mux=1); data is read from TMU, when it’s accessed
(Mux=0)

smbSMBCLK bus clock input of master interface (Mux=1)

smbSMBDATin Slave-to-Master bus data input (Mux=1)

 22

3.3 Verification with Testbench Set-up

In this section, each modules of the TAPM is verified by individual testbench

set-up. The diagram of the testbench set-up for MLC is shown in Figure 3.3.1. The

function of this module must provide Pulse-Width-Modulation (PWM) control. Thus,

the testbench need to access (write) variously driven value into input “D_in” in order

to ensure that there are different level PWM signal from the output “OUT”.

The verification of TMU module is shown in Figure 3.3.2. There is

programmable block in TMU; this block must be normally accessed (write/read), so

testbench includes writing data test and reading data test. Another function is interrupt

generators is also checked. The local overheat and offset overheat events are utilized

to trigger corresponding interrupt signal in order into verify these functions.

In Figure 3.3.3, the testbench set-up of the SMBus is shown. The interactive

signals between the master and slave interface of SMBus are verified, so the testbench

includes write and read protocol of the specification in order to test SMBus

transaction functions.

The final testbench set-up is shown in Figure 3.3.4, and the three main principle

of testing TAPM is described as following. One, the programmable block of TMU is

accessed (write/read) by SMBus. Another, the driven value of MLC from

programmable block of TMU is checked by estimating output of MLC0~3. The other,

the interrupt generator is also verified in this stage.

In next section, the every module and TAPM integration are simulated based on

these testbench set-up diagram in this section.

 23

Figure 3.3.1 Testbench of MLC Set-up

Figure 3.3.2 Testbench of TMU Set-up

 24

Figure 3.3.3 Testbench of SMBus Set-up

Figure 3.3.4 Testbench of TAPM Set-up

 25

3.4 Simulation Results

The pre-layout simulations of MLC, TMU and SMBus are shown in Section

3.4.1, Section 3.4.2 and Section 3.4.3, respectively. Finally, the Pre/Post-layout

simulations of the system integration are shown in Section 3.4.4.

3.4.1 Pre-layout Simulation of Multi-level Controller

In Figure 3.4.1, the pre-layout simulation of MLC is presented, and its I/O ports

is described in Table 3.4.1. In this simulation, all of the signal value is set

hexadecimal form, and the timescale unit is 100 picoseconds. According to testbench

considerations of the MLC module in Section 3.3, its verification is described as

following steps:

Step1: drive “01H” into input “d_in[7:0]”, estimate output “out”

Step2: drive “03H” into input “d_in[7:0]”, estimate output “out”

Step3: drive “07H” into input “d_in[7:0]”, estimate output “out”

Step4: drive “0fH” into input “d_in[7:0]”, estimate output “out”

Step5: drive “1fH” into input “d_in[7:0]”, estimate output “out”

Step6: drive “3fH” into input “d_in[7:0]”, estimate output “out”

Step7: drive “7fH” into input “d_in[7:0]”, estimate output “out”

Step8: drive “ffH” into input “d_in[7:0]”, estimate output “out”

Table 3.4.1 Signal Description of I/O Ports for Figure 3.4.1

I/O Ports Name Signal Description
clk MLC internal clock

reset MLC reset

d_in[7:0] MLC input

out MLC PWM output

 26

The detailed explanations are that after the six input data of the “d_in” is stored

in MLC at time stamps of 0.035us, 10.06us, 20.085us, 30.11us, 40.135us, 50.16us,

60.185us and 70.205us, the output “out” produces six kind outputs of the

Pulse-Width-Modulation (PWM). The simulation result demonstrates that the

designed MLC matches our expectation.

 27

C
u
r
s
o
r
:
0

M
a
r
k
e
r
:
0

D
e
l
t
a
:
0

x
1
0
0
p
s

0
2
0
0
0
0
0

4
0
0
0
0
0

6
0
0
0
0
0

8
0
0
0
0
0

0
2
0
0
0
0
0

4
0
0
0
0
0

6
0
0
0
0
0

8
0
0
0
0
0

1
3

7
f

1
f

3
f

7
f

f
f

Figure 3.4.1 Pre-Layout Simulation of MLC

 28

3.4.2 Pre-layout Simulation of Thermal Management Unit

The pre-layout simulations of TMU are presented in Figure 3.4.2 that is followed

by Figure 3.4.3 and its I/O ports is described in Table 3.4.2. In these simulations, all of

the signal value is set hexadecimal form, and the timescale unit is 100 picoseconds.

The defined read/write commands of TMU is shown in Appendix A, and the detailed

assignments of Configuration, Report 1 and Report 2 register are shown in Appendix

B. Based on Appendix A and Appendix B, these simulation are clearly understood.

The testbench considerations are explained in Section 3.3, and the verification is

described as following steps:

Step01: reset is accessed, all register is initialized

Step02: temperature of sensor0~3 change, estimate registers “TEMP0~3[7:0]”

Step03: set system configuration to “ffH”, estimate register “CONFIG[7:0]”

Step04: set driven value for MLC0 to “11H”, estimate register “FAN0[7:0]”

Step05: set driven value for MLC1 to “12H”, estimate register “FAN1[7:0]”

Step06: set driven value for MLC2 to “13H”, estimate register “FAN2[7:0]”

Step07: set driven value for MLC3 to “14H”, estimate register “FAN3[7:0]”

Step08: set low/high threshold for sensor0 to “01H/15H”, estimate register

“THRES0[15:0]"

Step09: set low/high threshold for sensor1 to “02H/16H”, estimate register

“THRES1[15:0]"

Step10: set low/high threshold for sensor2 to “03H/17H”, estimate register

“THRES2[15:0]"

Step11: set low/high threshold for sensor3 to “04H/18H”, estimate register

“THRES3[15:0]"

Step12: set offset low/high threshold to “fbH/05H”, estimate register

“OFFS_THRES[15:0]"

 29

Step13: temperature of sensor0~3 change, estimate registers “TEMP0~3[7:0]”

Step14: local overheating & offset overheating of sensor2 happen, estimate

output “intr” & “intr_offs”

Step15: read data from register “CONFIG[7:0]”, estimate output “OUT[7:0]”

Step16: read data from register “REPORT0[15:0]”, estimate output “OUT[7:0]”

Step17: read data from register “REPORT1[15:0]”, estimate output “OUT[7:0]”

Step18: read data from register “FAN0[7:0]”, estimate output “OUT[7:0]”

Step19: read data from register “FAN1[7:0]”, estimate output “OUT[7:0]”

Step20: read data from register “FAN2[7:0]”, estimate output “OUT[7:0]”

Step21: read data from register “FAN3[7:0]”, estimate output “OUT[7:0]”

Step22: read data from register “TEMP0[7:0]”, estimate output “OUT[7:0]”

Step23: read data from register “TEMP1[7:0]”, estimate output “OUT[7:0]”

Step24: read data from register “TEMP2[7:0]”, estimate output “OUT[7:0]”

Step25: read data from register “TEMP3[7:0]”, estimate output “OUT[7:0]”

Step26: read data from register “THRES0[15:0]”, estimate output “OUT[7:0]”

Step27: read data from register “THRES1[15:0]”, estimate output “OUT[7:0]”

Step28: read data from register “THRES2[15:0]”, estimate output “OUT[7:0]”

Step29: read data from register “THRES3[15:0]”, estimate output “OUT[7:0]”

Step30: read data from register “OFFS_THRES[15:0]”, estimate output

“OUT[7:0]”

Step31: temperature of sensor 0~3 change, estimate registers “TEMP0~3[7:0]”

Step32: local overheating & offset overheating of sensor3 end, estimate output

“intr” & “intr_offs”

 30

The detailed explanations are shown as following two paragraphs:

In Figure 3.4.2, the data is written into all of the registers of TMU with using

defined command. When reset was accessed at a time stamp of 10ns, TEMP0~3

registers is initialized to “00H”; FANC0~3 registers is initialized to “7fH”;

THRES0~3 registers is initialized to “3c00H” which is high threshold and low

threshold; OFFS_THRES registers is initialized to “0a0aH”, offset high and low

threshold are the same “0aH”; CONFIG register is initialized to “ffH”. After the

“sen0~3” read serial data from time stamps of 32.3ns to 123ns, and “11H” and “13H”

store in TEMP0~1 and TEMP2~3 registers. When the input “in_en” is accessed each

time, the input data is being stored in specified register. With looking up Appendix A,

every register be changed from initial value to assigned value, which can be carefully

observed from left to right in Figure 3.4.2.

Following Figure 3.4.2, in Figure 3.4.3, the data is read from all of the registers

of TMU by using defined command after setting value was assigned to every register.

The input “sen0~3” is changed again from time stamps of 1633.3ns to 1724.3ns. At a

time stamp of 1725ns, the output “intr” and “intr_offs” is accessed to notify processor

due to offset overflow/underflow and local overflow of sensor2. The local overflow is

temperature of the sensor over set threshold, and the offset temperature

overflow/underflow is the temperature difference between two positions over/under

offset threshold. From a time stamp of 7714.3ns to 7805.3ns, the input “sen0~3” is

changed. The temperature of the sensors is no longer overheating and offset

overheating, so the interrupt signal and the offset interrupt signal end at a time stamp

of 7806ns. When the input “out_en” is accessed each time, the output data is being

read from specified registers. With looking up Appendix A, every output data come

from specified register, which can be carefully observed. By analyzing the output

value of Report1, Report2 and Configuration registers, the states of TMU are known

 31

based on Appendix B.

The two functions are confirmed by us from these simulation results. One, all

registers of the designed TMU can be normally accessed and stored with using the

defined commands. Another, the interrupt generator can notify the processor in time

when system is overheating and offset overheating.

 32

Table 3.4.2 Signal Description of I/O Ports for Figure 3.4.2 and 3.4.3

I/O Ports Name Signal Description
clk TMU internal clock

reset TMU reset

IN[7:0] TMU input (8 bits command according to Appendix A)

in_en data write into TMU, when it’s accessed

OUT[7:0] TMU output

out_en data is read from TMU, when it’s accessed

sen0 sensor0 serial input

sen0_en sensor0 serial-to-parallel enable line

sen1 sensor1 serial input

sen1_en sensor1 serial-to-parallel enable line

sen2 sensor2 serial input

sen2_en sensor2 serial-to-parallel enable line

sen3 sensor3 serial input

sen3_en sensor3 serial-to-parallel enable line

TEMP0[7:0] store temperature data of sensor0

TEMP1[7:0] store temperature data of sensor1

TEMP2[7:0] store temperature data of sensor2

TEMP3[7:0] store temperature data of sensor3

FAN0[7:0] store driven data for MLC0

FAN1[7:0] store driven data for MLC1

FAN2[7:0] store driven data for MLC2

FAN3[7:0] store driven data for MLC3

THRES0[15:0] store local threshold for sensor0

THRES1[15:0] store local threshold for sensor1

THRES2[15:0] store local threshold for sensor2

THRES3[15:0] store local threshold for sensor3

OFFS_THRES[15:0] store offset threshold for sensors

intr interrupt signal due to local temperature
overflow/underflow

intr_offs offset interrupt signal due to offset temperature
overflow/underflow

REPORT0[7:0] local overflow/underflow report for sensors

REPORT1[7:0] offset overflow/underflow report for sensors

CONFIG[7:0] system configuration

 33

C
u
r
s
o
r
:

0

M
a
r
k
e
r
:
0

D
e
l
t
a
:
0

x

1
0
0
p
s

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

X
X

f
f
f

0
1
1

1
1
2

2
1
3

3
1
4

8
1

1
5

9
2

1
6

a
3

1
7

b
4

1
8

c
f
b

0 0 0 0

7
f

7
f

7
f

7
f

3
c
0
0

3
c
0
1

3
c
0
0

3
c
0
2

3
c
0
0

3
c
0
3

3
c
0
0

3
c
0
4

a
0
a

a
f
b

5

0

1
1

1
1

1
3

1
3

1
1

1
2

1
3

1
4

1
5
0
1

1
6
0
2

1
7
0
3

1
8
0
4

5
f
b

0 0 f
f

Figure 3.4.2 Pre-Layout Simulation of Write Commands for TMU

 34

C
u
r
s
o
r
:

0

M
a
r
k
e
r
:
0

D
e
l
t
a
:
0

x

1
0
0
p
s

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

*
5

8
f

8
d

8
e

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

8
a

8
b

0
f
f

2
0

0
5
0

4
1
1

1
2

1
3

1
4

1
5

1
6

1
f

1
7

1
1
5

2
1
6

3
1
7

4
1
8

f
b

1
1

1
5

1
1

1
6

1
3

1
f

1
3

1
7

*

0
2
0

0
4
5
0

8
c

5

8 8 9 9

1
1

1
2

1
3

1
4

1
5
0
1

1
6
0
2

1
7
0
3

1
8
0
4

5
f
b

0 0

f
f

Figure 3.4.3 Pre-Layout Simulation of Read Commands for TMU

 35

3.4.3 Pre-layout Simulation of System Management Bus

The pre-layout simulation of SMBus is presented in Figure 3.4.4 which is

followed by Figure 3.4.5, and its I/O ports is described in Table 3.4.3. In these

simulations, all of the signal value is set hexadecimal form, and the timescale unit is

10 nanoseconds. The address of the slave interface is assigned to “04H”. These

figures are divided into two parts; the upper part is the master interface and the lower

part is the slave interface. As mentioned in previous chapter, the explanations of

SMBus, including the write/read protocol of SMBus, are helpful to understand

simulation results. The testbench set-up of simulations is shown in Section 3.3, and

the SMBus transaction is verified as following steps:

Step1: master interface transmits data (37H & 73H) to slave interface (write

word protocol), estimate output “OUT[7:0]” & “out_en” of slave

interface.

Step2: master interface receives data (37H & 73H) from slave interface (read

word protocol), estimate output “OUT[7:0]” & “out_en” of master

interface.

The detail explanations of these simulations are described as following these

paragraphs:

In Figure 3.4.4, by observing master interface, the write word protocol begins at

a time stamp of 54us according to START signals of both “SMBCLKout” and

“SMBDATout”. The input “IN” transmits four bytes from the master interfaces to

slave interface between time stamps of 54us and 504us. This transmission ends at a

time stamp of 504us according to STOP signals of both “SMBCLKout” and

“SMBDATout”.

 36

By observing slave interface, the first input byte of the master interface checks

the address of the slave interface with writing mode. When the output “out_en” is

accessed at time stamps of 271.01us, 379.01us and 487.01us, the slave interface

successfully receives the other bytes from the master interface.

Following Figure 3.4.4, in Figure 3.4.5, by observing master interface, the

communication of the read word protocol is from time stamps of 560us and 1136us.

At time stamps of 552us and 670us, the first input two bytes of the master interface

are the same as write word protocol. At a time stamps of 778us, the third byte of the

master interface checks the address of the slave interface with reading mode.

By observing slave interface, the output “out_en” is accessed at a time stamp of

778 us and the slave interface successfully receives the second byte from the master

interface. The input “IN” sends two bytes after the slave interface changed to reading

mode at a time stamp of 902us.

By observing master interface, when the output “out_en” is accessed at time

stamps of 1005us and 1113us, the master interface successfully receives the two bytes

from the slave interface.

From these simulations, the interactions of the master interface and slave

interface can achieve requirements as described in the specification of SMBus.

 37

Table 3.4.3 Signal Description of I/O Ports for Figure 3.4.4 and 3.4.5

I/O Ports Name Signal Description

Master Interface
clk SMBus internal clock

reset SMBus reset

en enable write/read protocol of master interface

rw select read/write protocol for master interface

SMBCLKin bus clock of master interface

SMBDATin Slave-to-Master bus data input

IN[7:0] master interface input

SMBCLKout Bus clock output of master interface

SMBDATout Master-to-Slave data output

OUT[7:0] Master interface output

out_en data is read out from master interface, when it’s accessed

clean when it’s accessed, sent data is successful, then continue to
send next data

fail when it’s accessed, sent data is failure, then try to send data
again

Slave Interface
clk SMBus internal clock

ADDR[2:0] slave interface address

SMBCLK bus clock input of slave interface

SMBDATin Master-to-Slave bus data input

IN[7:0] slave interface input

in_ready when it’s accessed, sending data is successful, and ready to
send next byte

SMBDATout Slave-to-Master bus data output

OUT[7:0] slave interface output

out_en data is read out from slave interface, when it’s accessed

 38

C
u
r
s
o
r
:

0

M
a
r
k
e
r
:
0

D
e
l
t
a
:
0

x

1
0
n
s

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

1
2
0
0
0
0

0
8

a
3
7

7
3

0
1

2
4

8
1
1

2
2

4
4

8
8

1
0

2
1

4
2

8
5

a
1
5

2
a

5
4

a
9

5
3

a
6

4
d

9
b

3
7

6
f

d
e

b
d

7
b

f
7

e
e

d
c

b
9

7
3

0

0 4 0

e
7

Figure 3.4.4 Pre-Layout Simulation of Write Protocol for SMBus

 39

C
u
r
s
o
r
:

0

M
a
r
k
e
r
:
0

D
e
l
t
a
:
0

x

1
0
n
s

6
0
0
0
0

7
0
0
0
0

8
0
0
0
0

9
0
0
0
0

1
0
0
0
0
0

1
1
0
0
0
0

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

1
2
0
0
0
0

0
8

8
a

9

0
2
0

3
0

3
4

3
6

3
7

7
7

0
3
7

e
7

0
1

2
4

8
1
1

2
3

4
6

8
c

1
8

3
1

6
2

c
5

8
a

*
0

1
2

4
9

0

7
3

4

7
3

0

Figure 3.4.5 Pre-Layout Simulation of Read Protocol for SMBus

 40

3.4.4 Pre/Post-layout Simulation of System Integration

The pre/post-layout simulations of system integration are presented in Figure

3.4.6~9 and its I/O ports is described in Table 3.4.4. The figures are divided into two

parts; the upper part is the master interface and the lower part is TAPM. In these

simulations, all of the signal value is set hexadecimal form, and the timescale unit is

10 picoseconds. In Figure 3.4.7~9, the simulation of system integration is zoom in the

change regions of the input “sen0~3” in Figure 3.4.6. The testbench set-up of

simulations is shown in Section 3.3, and the TAPM functions are verified as following

steps:

Step01: reset is accessed, all register is initialized

Step02: set system configuration to “ffH”, estimate register “CONFIG[7:0]”

Step03: sensor0~3 change, estimate registers “SEN0~3[7:0]”

Step04: set low/high threshold for sensor2 to “00H/14H”, estimate register

“THRES2[15:0]"

Step05: set offset low/high threshold for sensors to “fbH/05H”, estimate register

“OFFSET_THRES2[15:0]”

Step06: temperature of sensor2 change, estimate registers “SEN2[7:0]”

Step07: local overheating & offset overheating of sensor2 happen, estimate

output “interrupt” & “offset_interrup”

Step08: read data from register “REPORT1[7:0]”, estimate output “OUT[7:0]”

Step09: temperature of sensor2 change, estimate registers “SEN2[7:0]”

Step10: local overheating & offset overheating of sensor2 end, estimate output

“interrupt” & “offset_interrup”

Step11: set driven value for MLC2 to “03H”, estimate register “FAN2[7:0]”

 41

The detailed explanations of simulations are described as following two

paragraphs:

When reset is accessed, all registers of TMU is initialized. With observing master

interface, there are five commands of the read/write protocols in the sequences of the

input “IN”. From time stamps of 53.89us to 407.89us, the first command set CONFIG

register. The second and third command set THRES2 and OFFSET_THRES registers

from time stamps of 463.89us to 913.89us and 969.89us to 1419.89us. From time

stamps of 1475.89us and 2051.89us, the forth command read system report from

REPORT1 register. When the output “out_en” is accessed at time stamps of 1920.89us

and 2028.89us, the output “OUT” of the master interface successfully receives data

from specified register of TMU. From time stamp 2083.89us to 2425.89us, final

command set the driven value of the fan2.

In Figure 3.4.6, the serial data of the input “sen0~ 3” vary from time stamps of

392.005us to 392.096us, and the “04H” is stored in SEN0~3 temperature registers. In

Figure 3.4.7, the second change of the sensor2 is from time stamps of 1404.155us to

1404.197us. Its temperatures variation cause local overheating and offset overheating,

so the output “interrup” and “offset interrup” is accessed at time stamp 1404.2us.

After the third changed of the sensor 2 is from 2410.307us to 2410.398us, interrupt

and offset interrupt end at a time stamp of 2410.4us due to its temperature within

specified temperature.

From the simulations, all registers of TMU can be read/written by SMBus

according to the write/read word and bytes protocols. TAPM is successfully

completed by system integrating.

 42

Table 3.4.4 Signal Description of I/O Ports for Figure 3.4.6~9

I/O Ports Name Signal Description

SMBus Master
SMBusCLK Bus clock

SMBDATin to TAPM Master-to-Slave bus data

SMBDATout from TAPM Slave-to-Master bus data

IN[7:0] master interface input

OUT[7:0] Master interface output

out_en data is read out from master interface, when it’s
accessed

TAPM
TAPM_clk TAPM internal clock

reset system reset

SMBus Slave_ADDR[2:0] slave interface address

sen0 sensor0 serial input

sen0_start sensor0 serial-to-parallel enable line

sen1 sensor1 serial input

sen1_start sensor1 serial-to-parallel enable line

sen2 sensor2 serial input

sen2_start sensor2 serial-to-parallel enable line

sen3 sensor3 serial input

sen3_start sensor3 serial-to-parallel enable line

fan0 ~ fan3 MLC0~3 output

SEN0[7:0] ~ SEN3[7:0] store temperature data of sensor0~3

interrupt interrupt signal due to local overheating

offset interrupt offset interrupt signal due to offset overheating

OFFSET_THRES[15:0] store offset threshold for sensors

THRES0[15:0] ~ THRES3[15:0] store local threshold for sensor0~3

REPORT0[7:0] local threshold overflow/underflow for sensors

REPORT1[7:0] offset threshold overflow/underflow for sensors

CONFIG[7:0] system configuration

FAN0[7:0] ~ FAN3[7:0] store driven data for MLC0~3

 43

C
u
r
s
o
r
:

0

M
a
r
k
e
r
:
0

D
e
l
t
a
:
0

x

1
0
0
p
s

0
5
0
0
0
0
0
0

1
0
0
0
0
0
0
0

1
5
0
0
0
0
0
0

2
0
0
0
0
0
0
0

2
5
0
0
0
0
0
0

0
5
0
0
0
0
0
0

1
0
0
0
0
0
0
0

1
5
0
0
0
0
0
0

2
0
0
0
0
0
0
0

2
5
0
0
0
0
0
0

8
f

f
f

0
8

a
0

1
4

0
8

c
f
b

5
0

8
8
e

9
0

8
2

3

0
*

5
0

*
0

0 0 0
4

3
e

0

a
0
a

a
f
b

3
c
0
0

0
2
0

0
4
5
0

7
f

0

4

4

4 4

3

4

5
f
b

3
c
0
0

3
c
0
0

1
4
0
0

3
c
0
0

0 0

f
f

7
f

7
f

3

7
f

Figure 3.4.6 Pre/Post-Layout Simulation of TAPM

 44

C
u
r
s
o
r
:

0

M
a
r
k
e
r
:
0

D
e
l
t
a
:
0

x

1
0
0
p
s

3
9
1
9
5
0
0

3
9
2
0
0
0
0

3
9
2
0
5
0
0

3
9
2
1
0
0
0

3
9
2
1
5
0
0

0
5
0
0
0
0
0
0

1
0
0
0
0
0
0
0

1
5
0
0
0
0
0
0

2
0
0
0
0
0
0
0

2
5
0
0
0
0
0
0

f
f

0 0 0 0

0

0 4

4 4 4 4

a
0
a

3
c
0
0

3
c
0
0

3
c
0
0

3
c
0
0

0 0 f
f

7
f

7
f

7
f

7
f

Figure 3.4.7 Zoom in Sensors Firstly Change in Figure 3.4.5

 45

C
u
r
s
o
r
:
0

M
a
r
k
e
r
:
0

D
e
l
t
a
:
0

x
1
0
0
p
s

1
4
0
4
1
0
0
0

1
4
0
4
1
5
0
0

1
4
0
4
2
0
0
0

1
4
0
4
2
5
0
0

1
4
0
4
3
0
0
0

0
5
0
0
0
0
0
0

1
0
0
0
0
0
0
0

1
5
0
0
0
0
0
0

2
0
0
0
0
0
0
0

2
5
0
0
0
0
0
0

5

4

0 0

0

0 4 4 4

3
e

4

5
f
b

3
c
0
0

3
c
0
0

1
4
0
0

3
c
0
0

2
0

4
5
0

f
f

7
f

7
f

7
f

7
f

Figure 3.4.8 Zoom in Sensors Secondly Change in Figure 3.4.5

 46

C
u
r
s
o
r
:

0

M
a
r
k
e
r
:
0

D
e
l
t
a
:
0

x

1
0
0
p
s

2
4
1
0
2
5
0
0

2
4
1
0
3
0
0
0

2
4
1
0
3
5
0
0

2
4
1
0
4
0
0
0

2
4
1
0
4
5
0
0

0
5
0
0
0
0
0
0

1
0
0
0
0
0
0
0

1
5
0
0
0
0
0
0

2
0
0
0
0
0
0
0

2
5
0
0
0
0
0
0

3
e

2
0

4
5
0

0 4 4 4 4

3

4

5
f
b

3
c
0
0

3
c
0
0

1
4
0
0

3
c
0
0

0 0

f
f

7
f

7
f 3 7
f

Figure 3.4.9 Zoom in Sensors Thirdly Change in Figure 3.4.5

 47

3.5 Circuit Summary

The performance evaluation of TAPM are presented in this section. The

implementation of TAPM is completed by utilized cell-based design flow which are

supported by CIC. The circuit summaries are presented in Table 3.4.1, and the circuit

layout is shown in Figure 3.4.1. The highest operation frequency of TAPM is 100MHz,

and the data transaction frequency of SMBus is 83KHz (Specification:10K~100KHz).

According to Synopsys Design Analyzer tool providing areas reports, because 2-input

NAND gate areas is 6.4�m x 2.7�m (about 17.28�m2) for TSMC 0.25�m process

(Artisan cell library), the areas of this design is divided by 17.28 equals gates counts.

The total gate counts of whole circuits is about 8860 which is less, and because of

more I/O pins, pad limited effects make its area increases. The core power is 17 pins

in which there are “VDD” 9 pins and “VSS” 8 pins, and more power pins in

integrated circuits is helpful for power distribution on the chip. One power straps

place on the chip center, and two power rings, VDD ring and VSS ring, is around the

chip. Finally, the CLCC84 package is adopted due to more I/O pins based on the

package types provided by CIC.

This table shows that the circuit complexity and total area of proposed design are

minimized and optimized in order to integrating into targeting SoC designs with little

system overhead. This IP is fabricated after a layout GDSII file of proposed design is

generated, and the measurement environment, PCB designs and experimental results

will be shown in next chapter.

 48

Figure 3.4.1 TAPM Chip Layout

Table 3.4.1 Circuit Summaries

Thermal Management Unit
Operating Frequency

100 MHz

SMBus Operating Frequency 500 KHz

SMBus Data Transaction Frequency 83 KHz

Multi-level Controller Operating
Frequency

10 KHz

Technology TSMC 0.25um Mixed Signal (1P5M) CMOS

Total Gate Counts 8860

SMBus Slave Gate Counts 470

SMBus Master Gate Counts 485

Chip Area Cell : 1 x 1mm2
Total : 1.26 X 1.26 mm2

Pins Total : 76 pins
(Core Power : 17 pins

Pad Power : 9 pins
System Signals : 50 pins)

Package Type CLCC 84

