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Abstract 
 

A novel thermal-aware power management (TAPM) Software Intellectual 

Property (Soft-IP) for modern platform-based SoC designs is presented in this thesis. 

This research proposes a system-level architecture of thermal-aware power 

management, which includes a Power Management Bus (PMB), TAPM Soft-IP and 

interface circuitry for proposed PMB. Each component of proposed design is 

encapsulated to a Soft-IP. With above design, system architects are able to incorporate 

on-chip power-controls and sensors to achieve nominal power dissipation and ensure 

the targeting system working within specification. The design yields intricate control 

and optimal management with little system overhead and minimum hardware 

requirements, as well as provides the flexibility to support different management 

schemes. The proposed system and its components are designed, implemented and 

verified by a prototype chip, which was fabricated in a TSMC 0.25um 1P5M standard 

CMOS technology through Chip Implementation Center (CIC), Taiwan [1]. 



 

 iii 

(CIC)

 

SoC LAB

 

 

 NSC-92-2218-E-009-014  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 iv 

Content: 
 

…… ..................................................................................................i 

Abstract.. ................................................................................................ ii 

…… ............................................................................................... iii 

Chapter 1 Introduction...........................................................................1 

1.1 Motivation .......................................................................................... 1 

1.2 Organization ...................................................................................... 4 

Chapter 2 System-Level Design .............................................................5 

2.1 Thermal-Aware Power Management Systems.................................... 6 

2.1.1 Basic Building Blocks .........................................................................6 

2.1.2 System Architectures ...........................................................................7 

2.2 Specification of System Management Bus ....................................... 10 

2.2.1 Introduction.......................................................................................10 

2.2.2 Basic Bus Operations........................................................................10 

Chapter 3 Implementation....................................................................15 

3.1 Computer-Aided Design Flow ......................................................... 15 

3.2 Thermal-Aware Power Management System Integration ................ 18 

3.3 Verification with Testbench Set-up ................................................... 22 

3.4 Simulation Results............................................................................ 25 

3.4.1 Pre-layout Simulation of Multi-level Controller...............................25 

3.4.2 Pre-layout Simulation of Thermal Management Unit.......................28 

3.4.3 Pre-layout Simulation of System Management Bus ..........................35 

3.4.4 Pre/Post-layout Simulation of System Integration............................40 

3.5 Circuit Summary .............................................................................. 47 



 

 v 

Chapter 4 Experimental Results ..........................................................49 

4.1 Measurement Environment .............................................................. 49 

4.2 Printed Circuit Board Design .......................................................... 51 

4.3 Testing Results of Thermal Management Unit ................................. 53 

4.4 Testing Results of Thermal-Aware Power Management Systems .... 61 

4.5 Summary .......................................................................................... 69 

Chapter 5 Conclusion & Future Works...............................................71 

Bibliography: ........................................................................................74 

Appendix A: The Defined Read/Write Commands for TMU..............76 

Appendix B: Configuration & Report Registers Assignments ...........77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 vi 

List of Figures: 
 

Figure 1.1 Proposed Architecture of TAPM System ...................................................................3 

Figure 2.1.1 Building Blocks of TAPM.......................................................................................6 

Figure 2.1.2 Detailed Block Diagram of TAPM.........................................................................8 

Figure 2.1.3 TAPM System Operation........................................................................................9 

Figure 2.2.1 Generic Transaction Diagram .............................................................................11 

Figure 2.2.2 START and STOP Conditions...............................................................................11 

Figure 2.2.3 SMBus Byte Format .............................................................................................12 

Figure 2.2.4 ACK and NACK Signaling of SMBus...................................................................13 

Figure 2.2.5 Write/Read Word/Byte Protocol ...........................................................................14 

Figure 3.1.1 Cell-Based Design Flow ......................................................................................17 

Figure 3.2.1 Schematic Circuit.................................................................................................19 

Figure 3.2.2 Top Module ..........................................................................................................20 

Figure 3.3.1 Testbench of MLC Set-up .....................................................................................23 

Figure 3.3.2 Testbench of TMU Set-up.....................................................................................23 

Figure 3.3.3 Testbench of SMBus Set-up ..................................................................................24 

Figure 3.3.4 Testbench of TAPM Set-up ...................................................................................24 

Figure 3.4.1 Pre-Layout Simulation of MLC............................................................................27 

Figure 3.4.2 Pre-Layout Simulation of Write Commands for TMU .........................................33 

Figure 3.4.3 Pre-Layout Simulation of Read Commands for TMU..........................................34 

Figure 3.4.4 Pre-Layout Simulation of Write Protocol for SMBus...........................................38 

Figure 3.4.5 Pre-Layout Simulation of Read Protocol for SMBus ...........................................39 

Figure 3.4.6 Pre/Post-Layout Simulation of TAPM..................................................................43 

Figure 3.4.7 Zoom in Sensors Firstly Change in Figure 3.4.5.................................................44 



 

 vii 

Figure 3.4.8 Zoom in Sensors Secondly Change in Figure 3.4.5 .............................................45 

Figure 3.4.9 Zoom in Sensors Thirdly Change in Figure 3.4.5 ................................................46 

Figure 3.4.1 TAPM Chip Layout ..............................................................................................48 

Figure 4.1.1 Testing Set-Up......................................................................................................50 

Figure 4.1.2 Photograph of Testing Environment ....................................................................50 

Figure 4.2.1 PCB Circuit Implementation................................................................................51 

Figure 4.2.2 Photograph of Taped-out Chip on PCB...............................................................52 

Figure 4.3.1 Testing TMU & MLC Block .................................................................................53 

Figure 4.3.2 Testing Controller Registers by 00h Pattern........................................................54 

Figure 4.3.3 Testing Controller Registers by 55h Pattern........................................................54 

Figure 4.3.4 Testing Controller Registers by AAh Pattern .......................................................54 

Figure 4.3.5 Testing Controller Registers by FFh Pattern.......................................................55 

Figure 4.3.6 Testing Controller Registers by Different Patterns ..............................................55 

Figure 4.3.7 Testing Temperature Registers by 00h Pattern ....................................................55 

Figure 4.3.8 Testing Temperature Registers by 55h Pattern ....................................................55 

Figure 4.3.9 Testing Temperature Registers by AAh Pattern....................................................56 

Figure 4.3.10 Testing Temperature Registers by FFh Pattern..................................................56 

Figure 4.3.11 Testing Temperature Registers by Different Patterns .........................................56 

Figure 4.3.12 Testing (Offset) Threshold Registers by 00h Pattern .........................................57 

Figure 4.3.13 Testing (Offset) Threshold Registers by 55h Pattern .........................................57 

Figure 4.3.14 Testing (Offset) Threshold Registers by AAh Pattern.........................................57 

Figure 4.3.15 Testing (Offset) Threshold Registers by FFh Pattern.........................................57 

Figure 4.3.16 Testing (Offset) High/Low Threshold Registers by Different Patterns...............58 

Figure 4.3.17 Testing Interrupt and Offset Interrupt Functions...............................................60 

Figure 4.4.1 Testing TAPM Block.............................................................................................61 

Figure 4.4.2 Testing Controller Register 0 by SMBus (Test Pattern AAh) ...............................63 



 

 viii 

Figure 4.4.3 Testing Controller Register 1 by SMBus (Test Pattern AAh) ...............................64 

Figure 4.4.4 Testing Controller Register 2 by SMBus (Test Pattern AAh) ...............................64 

Figure 4.4.5 Testing Controller Register 3 by SMBus (Test Pattern AAh) ...............................64 

Figure 4.4.6 Testing Threshold Register 0 by SMBus (Test Pattern 55h & AAh) .....................64 

Figure 4.4.7 Testing Threshold Register 1 by SMBus (Test Pattern 55h & AAh) .....................65 

Figure 4.4.8 Testing Threshold Register 2 by SMBus (Test Pattern 55h & AAh) .....................65 

Figure 4.4.9 Testing Threshold Register 3 by SMBus (Test Pattern 55h & AAh) .....................65 

Figure 4.4.10 Testing Offset Threshold Register by SMBus (Test Pattern 55h & AAh)............65 

Figure 4.4.11 Testing Temperature Register 0/3 by SMBus (Test Pattern 80h/FFh) ................66 

Figure 4.4.12 Testing Temperature Register 1/2 by SMBus (Test Pattern C0h/D5h) ...............66 

Figure 4.4.13 Testing Interrupt and Offset Interrupt by SMBus...............................................67 

Figure 4.4.14 Zoom in Sensors Firstly Change in Figure 4.4.13.............................................67 

Figure 4.4.15 Zoom in Sensors Secondly Change in Figure 4.4.13 .........................................68 

Figure 4.4.16 Zoom in Sensors Thirdly Change in Figure 4.4.13 ............................................68 

Figure 4.5.1 Die Microphotograph ..........................................................................................70 

Figure 5.1.1 Building Blocks of Temperature Sensor with TAPM ............................................72 

Figure 5.1.2 Building Blocks of Voltage Island with TAPM .....................................................73 

 

 

 

 

 

 

 

 



 

 ix 

List of Tables: 
 

Table 3.2.1 Output Signal Description of Top Module .............................................................20 

Table 3.2.2 Input Signal Description of Top Module................................................................21 

Table 3.4.1 Signal Description of I/O Ports for Figure 3.4.1...................................................25 

Table 3.4.2 Signal Description of I/O Ports for Figure 3.4.2 and 3.4.3...................................32 

Table 3.4.3 Signal Description of I/O Ports for Figure 3.4.4 and 3.4.5...................................37 

Table 3.4.4 Signal Description of I/O Ports for Figure 3.4.6~9...............................................42 

Table 3.4.1 Circuit Summaries .................................................................................................48 

Table 4.4.1 Expositions for Figure 4.4.2~10 ............................................................................63 

Table 4.5.1 Actual System Perfromance ...................................................................................70 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 1 

__________________________________ 
 

Chapter 1 Introduction 
__________________________________ 

 

1.1 Motivation 

Modern semiconductor technologies enable the integration of different 

components from an on-board system to a single chip using reliable design tools and 

methodologies. Different novel material and process technologies, including 

embedded memories, embedded processors, copper interconnect, low-k dielectric 

material and high-Q passive component, supply low-noise and low-resistance 

interconnects for mixed-signal design and high speed circuit design. The evolution of 

recent Electronics Design Automation (EDA) tools and design methodologies such as 

hardware/software co-design, code coverage analysis as well as high-level synthesis 

and language [2], help designers to verify and implement their project in a short time. 

Thus, the design productivity is increased, and the System-on-Chip (SoC) design is no 

longer an unreachable goal for designers.  

As the whole systems merge into a single chip, the total area and circuit 

complexity of a SoC design increase dramatically. The time-to-market pressure and 

integration of such a complex system have brought different design and verification 

methodologies to increase the design efficiency. Thus, IP-based and Platform-based 

SoC design [3] is proposed, which are solutions for these challenges of SoC design. 

By using such methodologies, the concept of utilizing designed Intellectual Property 

(IP) cores is widely used to achieve the performance and function requirements of a 
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targeted SoC.  

As circuit density and operation frequency of the SoC design increased, more 

power dissipated on a single chip and more heat generated on a single dies. The local 

heated up seriously impacts the system performance. Thus, how to quickly dissipate 

the heat has become an important research topic in recent years. The previous 

researches have proposed the dynamic thermal management system (TMS) [4-6] to 

solve the thermal problem on SoC design. In this research, a “Soft-IP” is designed for 

Thermal-Aware Power Management system (TAPM) in order to integrate with 

targeting system. The proposed TAPM is designed as a synthesizable module in a 

hardware description language such as Verilog or VHDL and can be easily transferred 

to different manufacturing technologies [7]. The advantage provides a faster 

implementation for new designs. 

Besides the TAPM Soft-IP, an interface module is designed to provide the 

communication mechanism between TAPM and other IPs on targeting SoC bus. 

However, in this design, a controlling bus which adopts the System Management Bus 

(SMBus) standard [8] is also proposed. In Figure 1, the processor, TAPM and other 

functional units are connected by high speed bus, such as AMBA [9], IBM core 

connect [10] and MIPS’ EC bus [11]. 

In addition, each IPs is connected by the SMBus to communicate actively with 

TAPM to implement the system-level power management. The interface module for 

each IPs on the system is also provided as a Soft-IP in proposed design. The purpose 

of such set-up is to offer a separate power management bus for the whole system. 

Such bus is necessary since the performance of system bus can be seriously decreased 

because active thermal/power management often comes with a lot of interrupts and 

power setting commands. Such set-up does not require a high speed communication 
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between TAPM and different IPs, but the frequent interrupts will hurt the performance 

of most SoC on-chip buses. 

 In the mean time, most on-chip buses are designed to provide a relatively higher 

data-bandwidth compared with peripheral buses and controlling buses, which means 

TAPM might not take charge of the buses while the critical thermal or power failure 

are happening. Thus, the proposed design utilized a separate power management bus 

in a lower clock-rate (compared with the platform) to delicately control all the 

power/thermal commands and events. To solve above problems and fulfill such 

requirements, the SMBus was chosen since it provided a 2~3 wires connection with a 

relative lower clock rate which implied a very tiny overhead in terms of power and 

area for targeting SoC designs. This thesis proposed a thermal aware architecture for 

SoC designs which includes the bus architecture, SMBus interface and TAPM 

micro-architecture. These units are encapsulated to Soft-IPs, and are fabricated and 

verified in a prototype chip using TSMC 0.25um 1P5M standard CMOS process. 

 

Figure 1.1 Proposed Architecture of TAPM System 
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1.2 Organization 

In Chapter 1, the overview of SoC design trends and platform-based SoC designs 

from IP viewpoints are described. From thermal/power impact on SoC designs, the 

concept of TAPM Soft-IP is proposed for this catastrophe. 

In Chapter 2, the system-level design issues are mentioned. The functional units 

and architecture of TAPM are addressed and illustrated, which is followed by 

introduction of SMBus. 

In Chapter 3, the design flow, circuitry integration, and simulations are shown. 

Finally, the circuit summary of TAPM is presented. 

In Chapter 4, the environment of measurement set-up is shown, and the printed 

circuit board (PCB) design issues are proposed and implemented. The experimental 

results of taped-out chip are presented. 

In Chapter 5, this proposed design is concluded, which is followed by discussing 

for future works. 
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__________________________________ 
 

Chapter 2 System-Level Design 
__________________________________ 

 

In this chapter, the system-level design of TAPM is shown. Based on the 

proposed architecture of TAPM system in Figure 1.1 in previous chapter, the backup 

transmission bus, SMBus, was implemented and designed as modules [12], which is 

directly adopted by this design because it’s characteristic provides a control for 

system and power management related tasks. In addition, for die size and power 

density increasing in the SoC design, the on-chip temperature gradient becomes a 

major problem for system stability. The feature of TAPM must deal with local 

overheating and offset overheating events and provided essential the multi-stage 

monitor for temperature variance on chips. From some compact thermal/power 

models to predict the thermal/power distribution on chips, TAPM can be necessarily 

programmed suitable critical value and decided where place the sensors on targeted 

system. Thus, the flexible architecture using little overhead is another consideration in 

order to support different thermal/power management scheme according to targeted 

system characteristic.  
In Section 2.1, the proposed architecture of TAPM is shown. The specification of 

SMBus is introduced in Section 2.2.  
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2.1 Thermal-Aware Power Management Systems 

2.1.1 Basic Building Blocks 

The building block of a complete TAPM with the targeted SoC design is shown 

in Figure 2.1.1. The dotted-line defines whole system that includes Thermal 

Management Units (TMU), Power Control & Active Cooling Units (PC&AC), 

temperatures sensors, targeted systems and interfaces. The dashed-line indicates the 

designed TAPM IP, which includes a TMU, a PC&AC and an interface circuit 

(SMBus).  

The selections of every sub-unit design depend on the speciation of the targeting 

system in order to reduce the cost and complexity of final system design. The 

temperature sensors, TMU and PC&AC build up a feedback-loop to control and 

stabilize thermal events and power consumptions of targeting SoC design. The TMU 

can be programmed by different power management algorithms to fit the 

thermal/power requirements of different targeting system. 

 

 

Figure 2.1.1 Building Blocks of TAPM 
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2.1.2 System Architectures 

The detailed block diagram of TAPM is shown in Figure 2.1.2. The explanations 

of each block are described in the following paragraphs: 

Offset temperature threshold, temperature threshold, temperature of sensors, 

system reports, system configuration and driven value of controllers are individually 

stored in the six kinds of specified register of TMU. By using defined command 

through SMBus, the setting of above registers can be adjusted to optimize the 

different power management levels, and keep states of the targeted system within 

specified temperature/power range. As this Figure 2.1.2 indicates, comparators are 

used to compare the sensor temperature with specified threshold in order to monitor 

states of different location for either overheating or offset overheating. The 

dashed-arrows indicate the control loops of configuration registers and assigned 

comparators and sensors. If overheating or offset overheating happens, the interrupt 

generator will produce a corresponding interrupt signal to the processor. The system 

reports were read out from report registers of TMU through SMBus in order to 

understand the system situation. 

The Pulse-Width-Modulation (PWM) controllers are chosen as Multi-level 

controller in this design. Based on the previous research [13], this pure digital design 

yields lower cost and higher efficiency than conventional liner driven fan controllers. 

The total area of this design can be decreased by using less shift-register [14]. It can 

trigger a 256-level signal to control the cooling device or voltage regulated device, 

and takes one step ahead to strengthen performance of TAPM. 

A master interface and a slave interface of SMBus are designed. There are two 

wires in SMBus, and the transmission is bi-directional on SMBDAT. Originally, a 

tri-state buffer is necessary for the output stage, but it is difficult for designers to do 

timing control on this buffer. Thus, the input and output data are split into two wires. 
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The operation frequency of SMBus (SMBCLK) is from 10 to 100 KHz. The SMB 

clock is generated by SMB master interface. Each cycle of SMBCLK is divided into 

least six cycles of internal clock according to the frequency of internal clock, and this 

period would match the minimum high period of SMBCLK, hold time of start 

condition and setup time of stop condition in AC specification. The timing parameters 

of the master interface and slave interface can be easily set up to fit the variant 

clock-rate requirements for different targeting systems. 

 

 

 

Figure 2.1.2 Detailed Block Diagram of TAPM 
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In Figure 2.1.3, by integrating various sensors with TMU, TAPM can rigorously 

monitor power, thermal/power and cooling level for targeting SoC design. In addition, 

individually functional blocks of the SoC design can have unique power 

characteristics, and can be optimized based on requirement of its voltage. Thus, the 

voltage islands are capable of providing design leverage [15], and the regulative 

mechanisms of voltages can be adopted to scale voltage at any region in order to 

enhance power control ability of TAPM. 

 

 

Pµ

 

 

Figure 2.1.3 TAPM System Operation 
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2.2 Specification of System Management Bus 

According to the specification version 2.0 [8], the SMBus is introduced in 

Section 2.2.1, and the basic data transfer and read/write protocol of the bus is 

presented in Section 2.2.2. 

2.2.1 Introduction 

The SMBus is based on the principles of operation of I2C, which was developed 

in the early 1980’s by Philips semiconductors, and its purposes were to provide an 

easy way to connect a CPU to peripheral chips. In February 1995, Intel Corporation 

defined the SMBus. It is widely used in personal computers and servers for low-speed 

system management communications. The various system components can 

communicate with each other or the rest of the system through SMBus that is a 

two-wire interface. The SMBus provides a control bus for system and power 

management related tasks. Due to removing the individual control lines in order to 

reduce pins count, a system may use SMBus to transmit messages to devices and 

received messages from devices instead of tripping individual control lines. 

 

2.2.2 Basic Bus Operations 

In Figure 2.2.1, the SMBus addresses are 7 binary bits long and are 

conventionally expressed as 4 bits followed by 3 bits followed by the letter ‘b’ which 

is binary format, such as “0001 110b”. These addresses occupy the high seven bits of 

an eight-bit field on the bus. However, the low bit of this field has other semantic 

meaning that is not part of a SMBus address. In this figure, the un-shaded portions are 

supplied by the bus master and the shaded portions are driven by the bus slave. The 

numbers across the top of the transaction diagram indicate the bit widths of each field. 

The specific SMBus START and STOP conditions are defined in Figure 2.2.2. 
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Figure 2.2.1 Generic Transaction Diagram 

 

 

 

Figure 2.2.2 START and STOP Conditions 

 

The START and STOP conditions are always generated by the bus master, and 

its definition is described in the following paragraphs: 

START Condition: A HIGH to LOW transition of the SMBDAT line while 

SMBCLK is HIGH indicates a message START condition. After a START condition, 

the bus is considered to be busy. 

STOP Condition: A LOW to HIGH transition of the SMBDAT line while 

SMBCLK is HIGH defines a message STOP condition. The bus becomes idle state 

after certain time following by a STOP condition. 

In Figure 2.2.3, every byte consists of 8 bits, and each byte transferred on the bus 

must be followed by an acknowledge bit. In Figure 2.2.4, the positioning of 

acknowledge (ACK) and not acknowledge (NACK) pulses relative to other data are 

illustrated. The acknowledge-related clock pulse is generated by the master. The 

transmitter, master or slave, releases the SMBDAT line (HIGH) during the 

acknowledge clock cycle. In order to acknowledge a byte, the receiver must pull the 
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SMBDAT line LOW during the HIGH period of the clock pulse according to the 

SMBus timing specifications. A receiver that wishes to NACK a byte must let the 

SMBDAT line remain HIGH during the acknowledge clock pulse. 

A SMBus device must always acknowledge (ACK) its own address. A SMBus 

slave device may decide to NACK a byte other than the address byte, which described 

in the following paragraphs: 

First, the slave device is busy performing a real time task, or data requested are 

not available. Upon detection of the NACK condition, the master must generate a 

STOP condition to abort the transfer.  

Second, the slave device detects an invalid command or invalid data. In this case, 

the slave device must NACK the received byte. Upon detection of this condition, the 

master must generate a STOP condition and retry the transaction. 

 

 

 

Figure 2.2.3 SMBus Byte Format 
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Figure 2.2.4 ACK and NACK Signaling of SMBus 

 

In Figure 2.2.5, the write/read word/byte protocol is described in the following 

paragraphs: 

After the master asserts the slave device address followed by the write bit, the 

device acknowledges and the master delivers the command code. The first byte of a 

Write Byte/Word access is the command code. The next one or two bytes are the data 

to be written. The slave again acknowledges before the master sends the data byte or 

word. The slave acknowledges each byte, and the entire transaction is finished with a 

STOP condition. 

Reading data is slightly more complicated than writing data. First, the host must 

write a command to the slave device. Then it must follow that command with a 

repeated START condition to denote a read from that device’s address. The slave then 

returns one or two bytes of data. Note that there is no STOP condition before the 

repeated START condition, and that a NACK signifies the end of the read transfer. 

Similarly, the entire transaction is finished with a STOP condition. 
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Figure 2.2.5 Write/Read Word/Byte Protocol 
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__________________________________ 
 

Chapter 3 Implementation 
__________________________________ 

 

In this chapter, the implementation of the taped-out IP is presented. The 

Computer-Aided Design (CAD) flow for cell-based design is introduced in Section 

3.1. The TAPM integration is shown in Section 3.2, and the verification with 

testbench set-up for TAPM is shown in Section 3.3. The pre-layout simulation of 

every component and pre/post-layout simulation of the whole system integration are 

shown in Section 3.4. Finally, the circuit summaries of the taped-out IP are presented 

in Section 3.5. 

3.1 Computer-Aided Design Flow 

A complete digital design flow with standard cells is shown in Figure 3.1.1. The 

three main Electronics Design Automation (EDA) tools are used to design this IP, one 

is simulator, another is synthesizer and the other is automatic placement and routing 

tools. Hardware Description Language (HDL), Verilog, is used to stylize proposed 

architecture. Each step of this design flow is introduced in the following paragraphs:   

First, algorithms and architectures must be decided before implementations, 

including selected standard interface, defined system performance and system 

functions. After the specification of this design was formulated, the proposed 

architecture is carefully delimited to several module based on individual 

characteristics of modules. This crucial stage for designs directly affects the signals of 

modules communicating with each other, and indirect determines synthesis results. 
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Second, the proposed design is stylized by Verilog language, which must be 

synthesizable codes. Register-Transfer-Level (RTL) simulations verify the behavioral 

functions of modules, which do not take timing into account, such as wire delays, gate 

delay and transport delay. Once RTL simulations do not match demanded functions, 

RTL codes must be modified and simulated again. 

Third, after verifications of the functions, RTL codes are synthesized by 

synthesizer according to select logic cells from standard cell library. Setting synthesis 

constraints fits requirements of system performance, and gate power, gate counts, as 

well as timing information between gates can be estimated from the synthesis reports. 

After synthesis, Gate-Level simulations consider gate timing, which verify the 

functions of gate-level netlist. Similarly, if simulation results do not match behavioral 

functions as these problems of hold time and setup time between modules, we must go 

back preceding stage to solve these troubles. 

Forth, the appropriate constrains are set to optimize the floorplanning by 

automatic placement and routing tools. Besides Post-layout simulations checking, 

another two checking is necessary. One, Layout Versus Schematic (LVS) checks the 

connectivity of a physical layout design to its related schematic circuit netlist. Another, 

Design Rule Check (DRC) checks the physical layout data against the design rules of 

the fabrication. Each design must follow design rule document that is golden; after 

checking, designers find all DRC errors out and have to modify these. 

Transistor-Level (Circuit-Level) simulations are essential to analyzes power and 

check timing. The design has gone through this cell-based design flow to produce 

GDSII layout file, which can be fabricated in any foundry. 
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Figure 3.1.1 Cell-Based Design Flow 
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3.2 Thermal-Aware Power Management System Integration 

This section presents a prototype implementation of the proposed design 

according to cell-based design flow in the previous section, which adopts TSMC 

0.25um process with the Aritsan standard cells. First, the behavioral verilog code is 

verified by Simulator Verilog-XL and Debugger/Checker Debussy. After the 

verification, this IP is synthesized by Synopsys Design Analyzer. The gate-level 

synthesis results are verified before Synopsys Apollo is used to place and route for the 

IP floorplanning, which is followed by Circuit Simulator NanoSim. This IP was 

fabricated in TSMC through CIC. 

The schematic circuit of the taped-out IP is shown in Figure 3.2.1. This IP 

includes a TMU, four MLCs, four serial-to-parallel interfaces of temperature sensors, 

a slave interface and a master interface of SMBus. Furthermore, the input clock is 

separated into three kinds of internal clock; one is for TMU, another is for MLC and 

the other is for SMBus. The serial-to-parallel interfaces of temperature sensors can 

reduce the Input/Output (I/O) pins and total areas of this IP since I/O pins might cause 

pad limited design. By integrating a master of SMBus into this IP, the transfer of 

SMBus can be observed between the master interface and slave interface. In addition, 

we also take account of the measurement for this IP in order to test TMU and TAPM 

individually. This approach enables us to check the functional units of this IP 

separately, and functional units can be selected by using a multiplexer, a “MUX” input 

as shown in Figure 3.2.1. 

The I/O ports of the top module is shown in Figure 3.2.2, and their signal 

description are summarizes in Table 3.2.1 and Table 3.2.2. 
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Figure 3.2.1 Schematic Circuit  
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Figure 3.2.2 Top Module 

 

Table 3.2.1 Output Signal Description of Top Module  

Output Port Name  Signal Description 
SMBDATout Slave-to-Master bus data output (Mux=1) 

FAN0~FAN3 MLC0~3 output 

INTR interrupt signal due to local temperature 
overflow/underflow 

INTRoff offset interrupt signal due to offset temperature 
overflow/underflow 

smbOUT_tmuOUT[7:0] data output of master interface (Mux=1); data output 
data of TMU (Mux=0) 

smbSMBCLKout Master-to-Slave bus clock output (Mux=1) 

smbSMBDATout Master-to-Slave bus data output (Mux=1) 

smbCLEAN when it’s accessed, sent data is successful, then 
continue to send next data (Mux=1) 

smbFAIL when it’s accessed, sent data is failure, then try to send 
data again (Mux=1) 

smbOUTEN received byte is completed, when it’s accessed (Mux=1) 
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Table 3.2.2 Input Signal Description of Top Module  

Input Port Name  Signal Description 
CLK TAPM internal clock 

MUX test TAPM, when it’s “High” ; test TMU, when it’s 
“Low” 

RESET TAPM reset 

ADDR[2:0] address of slave interface (Mux=1) 

SMBCLK Master-to-Slave bus clock (Mux=1) 

SMBDATin Master-to-Slave bus data input (Mux=1) 

SEN0~SEN3 sensor0~3 serial input 

SEN0EN~SEN3EN sensor0~3 serial-to-parallel enable line 

smbRESET master interface reset (Mux=0) 

smbIN_tmuIN[7:0] data input of master interface (Mux=1); data input of 
TMU (Mux=0) 

smbEN_tmuINEN enable write/read protocol of master interface 
(Mux=1); data is written into TMU, when it’s accessed 
(Mux=0) 

smbRW_tmuOUTEN select read/write protocol for master interface 
(Mux=1); data is read from TMU, when it’s accessed 
(Mux=0) 

smbSMBCLK bus clock input of master interface (Mux=1) 

smbSMBDATin Slave-to-Master bus data input (Mux=1) 
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3.3 Verification with Testbench Set-up 

In this section, each modules of the TAPM is verified by individual testbench 

set-up. The diagram of the testbench set-up for MLC is shown in Figure 3.3.1. The 

function of this module must provide Pulse-Width-Modulation (PWM) control. Thus, 

the testbench need to access (write) variously driven value into input “D_in” in order 

to ensure that there are different level PWM signal from the output “OUT”. 

The verification of TMU module is shown in Figure 3.3.2. There is 

programmable block in TMU; this block must be normally accessed (write/read), so 

testbench includes writing data test and reading data test. Another function is interrupt 

generators is also checked. The local overheat and offset overheat events are utilized 

to trigger corresponding interrupt signal in order into verify these functions. 

In Figure 3.3.3, the testbench set-up of the SMBus is shown. The interactive 

signals between the master and slave interface of SMBus are verified, so the testbench 

includes write and read protocol of the specification in order to test SMBus 

transaction functions. 

The final testbench set-up is shown in Figure 3.3.4, and the three main principle 

of testing TAPM is described as following. One, the programmable block of TMU is 

accessed (write/read) by SMBus. Another, the driven value of MLC from 

programmable block of TMU is checked by estimating output of MLC0~3. The other, 

the interrupt generator is also verified in this stage. 

In next section, the every module and TAPM integration are simulated based on 

these testbench set-up diagram in this section. 
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Figure 3.3.1 Testbench of MLC Set-up 

 
 
 
 
 

 
Figure 3.3.2 Testbench of TMU Set-up 
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Figure 3.3.3 Testbench of SMBus Set-up 

 

 

 

Figure 3.3.4 Testbench of TAPM Set-up 
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3.4 Simulation Results 

The pre-layout simulations of MLC, TMU and SMBus are shown in Section 

3.4.1, Section 3.4.2 and Section 3.4.3, respectively. Finally, the Pre/Post-layout 

simulations of the system integration are shown in Section 3.4.4. 

3.4.1 Pre-layout Simulation of Multi-level Controller 

In Figure 3.4.1, the pre-layout simulation of MLC is presented, and its I/O ports 

is described in Table 3.4.1. In this simulation, all of the signal value is set 

hexadecimal form, and the timescale unit is 100 picoseconds. According to testbench 

considerations of the MLC module in Section 3.3, its verification is described as 

following steps: 

Step1: drive “01H” into input “d_in[7:0]”, estimate output “out” 

Step2: drive “03H” into input “d_in[7:0]”, estimate output “out” 

Step3: drive “07H” into input “d_in[7:0]”, estimate output “out” 

Step4: drive “0fH” into input “d_in[7:0]”, estimate output “out” 

Step5: drive “1fH” into input “d_in[7:0]”, estimate output “out” 

Step6: drive “3fH” into input “d_in[7:0]”, estimate output “out” 

Step7: drive “7fH” into input “d_in[7:0]”, estimate output “out” 

Step8: drive “ffH” into input “d_in[7:0]”, estimate output “out” 

 

Table 3.4.1 Signal Description of I/O Ports for Figure 3.4.1 

I/O Ports Name Signal Description 
clk MLC internal clock 

reset MLC reset 

d_in[7:0] MLC input 

out MLC PWM output 
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The detailed explanations are that after the six input data of the “d_in” is stored 

in MLC at time stamps of 0.035us, 10.06us, 20.085us, 30.11us, 40.135us, 50.16us, 

60.185us and 70.205us, the output “out” produces six kind outputs of the 

Pulse-Width-Modulation (PWM). The simulation result demonstrates that the 

designed MLC matches our expectation. 
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Figure 3.4.1 Pre-Layout Simulation of MLC 
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3.4.2 Pre-layout Simulation of Thermal Management Unit 

The pre-layout simulations of TMU are presented in Figure 3.4.2 that is followed 

by Figure 3.4.3 and its I/O ports is described in Table 3.4.2. In these simulations, all of 

the signal value is set hexadecimal form, and the timescale unit is 100 picoseconds. 

The defined read/write commands of TMU is shown in Appendix A, and the detailed 

assignments of Configuration, Report 1 and Report 2 register are shown in Appendix 

B. Based on Appendix A and Appendix B, these simulation are clearly understood. 

The testbench considerations are explained in Section 3.3, and the verification is 

described as following steps: 

Step01: reset is accessed, all register is initialized 

Step02: temperature of sensor0~3 change, estimate registers “TEMP0~3[7:0]” 

Step03: set system configuration to “ffH”, estimate register “CONFIG[7:0]” 

Step04: set driven value for MLC0 to “11H”, estimate register “FAN0[7:0]” 

Step05: set driven value for MLC1 to “12H”, estimate register “FAN1[7:0]” 

Step06: set driven value for MLC2 to “13H”, estimate register “FAN2[7:0]” 

Step07: set driven value for MLC3 to “14H”, estimate register “FAN3[7:0]” 

Step08: set low/high threshold for sensor0 to “01H/15H”, estimate register 

“THRES0[15:0]" 

Step09: set low/high threshold for sensor1 to “02H/16H”, estimate register 

“THRES1[15:0]" 

Step10: set low/high threshold for sensor2 to “03H/17H”, estimate register 

“THRES2[15:0]" 

Step11: set low/high threshold for sensor3 to “04H/18H”, estimate register 

“THRES3[15:0]" 

Step12: set offset low/high threshold to “fbH/05H”, estimate register 

“OFFS_THRES[15:0]" 
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Step13: temperature of sensor0~3 change, estimate registers “TEMP0~3[7:0]” 

Step14: local overheating & offset overheating of sensor2 happen, estimate 

output “intr” & “intr_offs” 

Step15: read data from register “CONFIG[7:0]”, estimate output “OUT[7:0]” 

Step16: read data from register “REPORT0[15:0]”, estimate output “OUT[7:0]” 

Step17: read data from register “REPORT1[15:0]”, estimate output “OUT[7:0]” 

Step18: read data from register “FAN0[7:0]”, estimate output “OUT[7:0]” 

Step19: read data from register “FAN1[7:0]”, estimate output “OUT[7:0]” 

Step20: read data from register “FAN2[7:0]”, estimate output “OUT[7:0]” 

Step21: read data from register “FAN3[7:0]”, estimate output “OUT[7:0]” 

Step22: read data from register “TEMP0[7:0]”, estimate output “OUT[7:0]” 

Step23: read data from register “TEMP1[7:0]”, estimate output “OUT[7:0]” 

Step24: read data from register “TEMP2[7:0]”, estimate output “OUT[7:0]” 

Step25: read data from register “TEMP3[7:0]”, estimate output “OUT[7:0]” 

Step26: read data from register “THRES0[15:0]”, estimate output “OUT[7:0]” 

Step27: read data from register “THRES1[15:0]”, estimate output “OUT[7:0]” 

Step28: read data from register “THRES2[15:0]”, estimate output “OUT[7:0]” 

Step29: read data from register “THRES3[15:0]”, estimate output “OUT[7:0]” 

Step30: read data from register “OFFS_THRES[15:0]”, estimate output 

“OUT[7:0]” 

Step31: temperature of sensor 0~3 change, estimate registers “TEMP0~3[7:0]” 

Step32: local overheating & offset overheating of sensor3 end, estimate output 

“intr” & “intr_offs” 

 

 

 



 

 30

The detailed explanations are shown as following two paragraphs: 

In Figure 3.4.2, the data is written into all of the registers of TMU with using 

defined command. When reset was accessed at a time stamp of 10ns, TEMP0~3 

registers is initialized to “00H”; FANC0~3 registers is initialized to “7fH”; 

THRES0~3 registers is initialized to “3c00H” which is high threshold and low 

threshold; OFFS_THRES registers is initialized to “0a0aH”, offset high and low 

threshold are the same “0aH”; CONFIG register is initialized to “ffH”. After the 

“sen0~3” read serial data from time stamps of 32.3ns to 123ns, and “11H” and “13H” 

store in TEMP0~1 and TEMP2~3 registers. When the input “in_en” is accessed each 

time, the input data is being stored in specified register. With looking up Appendix A, 

every register be changed from initial value to assigned value, which can be carefully 

observed from left to right in Figure 3.4.2. 

Following Figure 3.4.2, in Figure 3.4.3, the data is read from all of the registers 

of TMU by using defined command after setting value was assigned to every register. 

The input “sen0~3” is changed again from time stamps of 1633.3ns to 1724.3ns. At a 

time stamp of 1725ns, the output “intr” and “intr_offs” is accessed to notify processor 

due to offset overflow/underflow and local overflow of sensor2. The local overflow is 

temperature of the sensor over set threshold, and the offset temperature 

overflow/underflow is the temperature difference between two positions over/under 

offset threshold. From a time stamp of 7714.3ns to 7805.3ns, the input “sen0~3” is 

changed. The temperature of the sensors is no longer overheating and offset 

overheating, so the interrupt signal and the offset interrupt signal end at a time stamp 

of 7806ns. When the input “out_en” is accessed each time, the output data is being 

read from specified registers. With looking up Appendix A, every output data come 

from specified register, which can be carefully observed. By analyzing the output 

value of Report1, Report2 and Configuration registers, the states of TMU are known 
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based on Appendix B.  

The two functions are confirmed by us from these simulation results. One, all 

registers of the designed TMU can be normally accessed and stored with using the 

defined commands. Another, the interrupt generator can notify the processor in time 

when system is overheating and offset overheating. 
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Table 3.4.2 Signal Description of I/O Ports for Figure 3.4.2 and 3.4.3 

I/O Ports Name Signal Description 
clk TMU internal clock 

reset TMU reset 

IN[7:0] TMU input (8 bits command according to Appendix A)  

in_en data write into TMU, when it’s accessed 

OUT[7:0] TMU output  

out_en data is read from TMU, when it’s accessed 

sen0 sensor0 serial input 

sen0_en sensor0 serial-to-parallel enable line 

sen1 sensor1 serial input 

sen1_en sensor1 serial-to-parallel enable line 

sen2 sensor2 serial input   

sen2_en sensor2 serial-to-parallel enable line 

sen3 sensor3 serial input 

sen3_en sensor3 serial-to-parallel enable line 

TEMP0[7:0] store temperature data of sensor0 

TEMP1[7:0] store temperature data of sensor1 

TEMP2[7:0] store temperature data of sensor2 

TEMP3[7:0] store temperature data of sensor3 

FAN0[7:0] store driven data for MLC0 

FAN1[7:0] store driven data for MLC1 

FAN2[7:0] store driven data for MLC2 

FAN3[7:0] store driven data for MLC3 

THRES0[15:0] store local threshold for sensor0 

THRES1[15:0] store local threshold for sensor1 

THRES2[15:0] store local threshold for sensor2 

THRES3[15:0] store local threshold for sensor3 

OFFS_THRES[15:0] store offset threshold for sensors 

intr interrupt signal due to local temperature 
overflow/underflow 

intr_offs offset interrupt signal due to offset temperature 
overflow/underflow 

REPORT0[7:0] local overflow/underflow report for sensors 

REPORT1[7:0] offset overflow/underflow report for sensors 

CONFIG[7:0] system configuration 
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Figure 3.4.2 Pre-Layout Simulation of Write Commands for TMU 
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Figure 3.4.3 Pre-Layout Simulation of Read Commands for TMU 
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3.4.3 Pre-layout Simulation of System Management Bus  

The pre-layout simulation of SMBus is presented in Figure 3.4.4 which is 

followed by Figure 3.4.5, and its I/O ports is described in Table 3.4.3. In these 

simulations, all of the signal value is set hexadecimal form, and the timescale unit is 

10 nanoseconds. The address of the slave interface is assigned to “04H”. These 

figures are divided into two parts; the upper part is the master interface and the lower 

part is the slave interface. As mentioned in previous chapter, the explanations of 

SMBus, including the write/read protocol of SMBus, are helpful to understand 

simulation results. The testbench set-up of simulations is shown in Section 3.3, and 

the SMBus transaction is verified as following steps: 

Step1: master interface transmits data (37H & 73H) to slave interface (write 

word protocol), estimate output “OUT[7:0]” & “out_en” of slave 

interface. 

Step2: master interface receives data (37H & 73H) from slave interface (read 

word protocol), estimate output “OUT[7:0]” & “out_en” of master 

interface. 

 

The detail explanations of these simulations are described as following these 

paragraphs:  

In Figure 3.4.4, by observing master interface, the write word protocol begins at 

a time stamp of 54us according to START signals of both “SMBCLKout” and 

“SMBDATout”. The input “IN” transmits four bytes from the master interfaces to 

slave interface between time stamps of 54us and 504us. This transmission ends at a 

time stamp of 504us according to STOP signals of both “SMBCLKout” and 

“SMBDATout”.  
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By observing slave interface, the first input byte of the master interface checks 

the address of the slave interface with writing mode. When the output “out_en” is 

accessed at time stamps of 271.01us, 379.01us and 487.01us, the slave interface 

successfully receives the other bytes from the master interface. 

Following Figure 3.4.4, in Figure 3.4.5, by observing master interface, the 

communication of the read word protocol is from time stamps of 560us and 1136us. 

At time stamps of 552us and 670us, the first input two bytes of the master interface 

are the same as write word protocol. At a time stamps of 778us, the third byte of the 

master interface checks the address of the slave interface with reading mode. 

By observing slave interface, the output “out_en” is accessed at a time stamp of 

778 us and the slave interface successfully receives the second byte from the master 

interface. The input “IN” sends two bytes after the slave interface changed to reading 

mode at a time stamp of 902us.  

By observing master interface, when the output “out_en” is accessed at time 

stamps of 1005us and 1113us, the master interface successfully receives the two bytes 

from the slave interface. 

From these simulations, the interactions of the master interface and slave 

interface can achieve requirements as described in the specification of SMBus.  
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Table 3.4.3 Signal Description of I/O Ports for Figure 3.4.4 and 3.4.5 

I/O Ports Name Signal Description 

Master Interface  
clk SMBus internal clock 

reset SMBus reset 

en enable write/read protocol of master interface 

rw select read/write protocol for master interface 

SMBCLKin bus clock of master interface 

SMBDATin Slave-to-Master bus data input 

IN[7:0] master interface input 

SMBCLKout Bus clock output of master interface 

SMBDATout Master-to-Slave data output 

OUT[7:0] Master interface output 

out_en data is read out from master interface, when it’s accessed 

clean when it’s accessed, sent data is successful, then continue to 
send next data 

fail when it’s accessed, sent data is failure, then try to send data 
again 

Slave Interface  
clk SMBus internal clock 

ADDR[2:0] slave interface address 

SMBCLK bus clock input of slave interface  

SMBDATin Master-to-Slave bus data input 

IN[7:0] slave interface input 

in_ready when it’s accessed, sending data is successful, and ready to 
send next byte 

SMBDATout Slave-to-Master bus data output 

OUT[7:0] slave interface output 

out_en data is read out from slave interface, when it’s accessed 
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Figure 3.4.4 Pre-Layout Simulation of Write Protocol for SMBus 
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Figure 3.4.5 Pre-Layout Simulation of Read Protocol for SMBus 
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3.4.4 Pre/Post-layout Simulation of System Integration 

The pre/post-layout simulations of system integration are presented in Figure 

3.4.6~9 and its I/O ports is described in Table 3.4.4. The figures are divided into two 

parts; the upper part is the master interface and the lower part is TAPM. In these 

simulations, all of the signal value is set hexadecimal form, and the timescale unit is 

10 picoseconds. In Figure 3.4.7~9, the simulation of system integration is zoom in the 

change regions of the input “sen0~3” in Figure 3.4.6. The testbench set-up of 

simulations is shown in Section 3.3, and the TAPM functions are verified as following 

steps: 

Step01: reset is accessed, all register is initialized 

Step02: set system configuration to “ffH”, estimate register “CONFIG[7:0]” 

Step03: sensor0~3 change, estimate registers “SEN0~3[7:0]” 

Step04: set low/high threshold for sensor2 to “00H/14H”, estimate register 

“THRES2[15:0]" 

Step05: set offset low/high threshold for sensors to “fbH/05H”, estimate register 

“OFFSET_THRES2[15:0]” 

Step06: temperature of sensor2 change, estimate registers “SEN2[7:0]” 

Step07: local overheating & offset overheating of sensor2 happen, estimate 

output “interrupt” & “offset_interrup” 

Step08: read data from register “REPORT1[7:0]”, estimate output “OUT[7:0]” 

Step09: temperature of sensor2 change, estimate registers “SEN2[7:0]” 

Step10: local overheating & offset overheating of sensor2 end, estimate output 

“interrupt” & “offset_interrup” 

Step11: set driven value for MLC2 to “03H”, estimate register “FAN2[7:0]” 
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The detailed explanations of simulations are described as following two 

paragraphs: 

When reset is accessed, all registers of TMU is initialized. With observing master 

interface, there are five commands of the read/write protocols in the sequences of the 

input “IN”. From time stamps of 53.89us to 407.89us, the first command set CONFIG 

register. The second and third command set THRES2 and OFFSET_THRES registers 

from time stamps of 463.89us to 913.89us and 969.89us to 1419.89us. From time 

stamps of 1475.89us and 2051.89us, the forth command read system report from 

REPORT1 register. When the output “out_en” is accessed at time stamps of 1920.89us 

and 2028.89us, the output “OUT” of the master interface successfully receives data 

from specified register of TMU. From time stamp 2083.89us to 2425.89us, final 

command set the driven value of the fan2. 

In Figure 3.4.6, the serial data of the input “sen0~ 3” vary from time stamps of 

392.005us to 392.096us, and the “04H” is stored in SEN0~3 temperature registers. In 

Figure 3.4.7, the second change of the sensor2 is from time stamps of 1404.155us to 

1404.197us. Its temperatures variation cause local overheating and offset overheating, 

so the output “interrup” and “offset interrup” is accessed at time stamp 1404.2us. 

After the third changed of the sensor 2 is from 2410.307us to 2410.398us, interrupt 

and offset interrupt end at a time stamp of 2410.4us due to its temperature within 

specified temperature. 

From the simulations, all registers of TMU can be read/written by SMBus 

according to the write/read word and bytes protocols. TAPM is successfully 

completed by system integrating.  
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Table 3.4.4 Signal Description of I/O Ports for Figure 3.4.6~9 

I/O Ports Name Signal Description 

SMBus Master  
SMBusCLK Bus clock 

SMBDATin to TAPM Master-to-Slave bus data 

SMBDATout from TAPM Slave-to-Master bus data  

IN[7:0] master interface input 

OUT[7:0] Master interface output 

out_en data is read out from master interface, when it’s 
accessed 

TAPM  
TAPM_clk TAPM internal clock 

reset system reset 

SMBus Slave_ADDR[2:0] slave interface address 

sen0 sensor0 serial input 

sen0_start sensor0 serial-to-parallel enable line 

sen1 sensor1 serial input 

sen1_start sensor1 serial-to-parallel enable line 

sen2 sensor2 serial input   

sen2_start sensor2 serial-to-parallel enable line 

sen3 sensor3 serial input 

sen3_start sensor3 serial-to-parallel enable line 

fan0 ~ fan3 MLC0~3 output 

SEN0[7:0] ~ SEN3[7:0] store temperature data of sensor0~3 

interrupt interrupt signal due to local overheating  

offset interrupt offset interrupt signal due to offset overheating  

OFFSET_THRES[15:0] store offset threshold for sensors 

THRES0[15:0] ~ THRES3[15:0] store local threshold for sensor0~3 

REPORT0[7:0] local threshold overflow/underflow for sensors 

REPORT1[7:0] offset threshold overflow/underflow for sensors 

CONFIG[7:0] system configuration 

FAN0[7:0] ~ FAN3[7:0] store driven data for MLC0~3 
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Figure 3.4.6 Pre/Post-Layout Simulation of TAPM 
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Figure 3.4.7 Zoom in Sensors Firstly Change in Figure 3.4.5  
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Figure 3.4.8 Zoom in Sensors Secondly Change in Figure 3.4.5 
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Figure 3.4.9 Zoom in Sensors Thirdly Change in Figure 3.4.5  



 

 47

3.5 Circuit Summary 

The performance evaluation of TAPM are presented in this section. The 

implementation of TAPM is completed by utilized cell-based design flow which are 

supported by CIC. The circuit summaries are presented in Table 3.4.1, and the circuit 

layout is shown in Figure 3.4.1. The highest operation frequency of TAPM is 100MHz, 

and the data transaction frequency of SMBus is 83KHz (Specification:10K~100KHz).  

According to Synopsys Design Analyzer tool providing areas reports, because 2-input 

NAND gate areas is 6.4�m x 2.7�m (about 17.28�m2) for TSMC 0.25�m process 

(Artisan cell library), the areas of this design is divided by 17.28 equals gates counts. 

The total gate counts of whole circuits is about 8860 which is less, and because of 

more I/O pins, pad limited effects make its area increases. The core power is 17 pins 

in which there are “VDD” 9 pins and “VSS” 8 pins, and more power pins in 

integrated circuits is helpful for power distribution on the chip. One power straps 

place on the chip center, and two power rings, VDD ring and VSS ring, is around the 

chip. Finally, the CLCC84 package is adopted due to more I/O pins based on the 

package types provided by CIC. 

This table shows that the circuit complexity and total area of proposed design are 

minimized and optimized in order to integrating into targeting SoC designs with little 

system overhead. This IP is fabricated after a layout GDSII file of proposed design is 

generated, and the measurement environment, PCB designs and experimental results 

will be shown in next chapter. 
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Figure 3.4.1 TAPM Chip Layout 

 

Table 3.4.1 Circuit Summaries 

Thermal Management Unit 
Operating Frequency  

100 MHz 

SMBus Operating Frequency 500 KHz 

SMBus Data Transaction Frequency 83 KHz 

Multi-level Controller Operating 
Frequency 

10 KHz 

Technology TSMC 0.25um Mixed Signal (1P5M) CMOS 

Total Gate Counts 8860 

SMBus Slave Gate Counts 470 

SMBus Master Gate Counts 485 

Chip Area Cell : 1 x 1mm2 
Total : 1.26 X 1.26 mm2 

Pins Total : 76 pins 
(  Core Power : 17 pins 

Pad Power : 9 pins 
System Signals : 50 pins  ) 

Package Type CLCC 84 

 


