使用三維信號的柵狀編碼調變技術之效能分析

學生: 吳柏均

指導教授:李程輝教授

國立交通大學 電信工程學系

摘要

THURSDAY.

以傳統的柵狀編碼調變技術來說,二維的信號,比如說像是*M*-PSK 或是 *M*-QASK(其中*M*=2^N),通常都會被用在許多傳輸系統當中。在這篇論文裡, 我們將會介紹所謂「三維信號」的想法,以及「將三維信號視為二維信號的延伸」 的概念。以傳統上使用二維信號的柵狀編碼調變技術為參考,我們會敘述建立三 維信號的方式、將三維信號分解(partition)為小組(subset)的方式、以及將二 進位的資料對應到這些信號的方式。相對於發送端的編碼,接收端使用了一種叫 做「軟性決定維特比演算法」的方式來解碼。我們會舉出一些二維的以及三維的 例子,並且將這些例子做分析比較。我們可以由結果來推斷,使用三維信號的柵 狀編碼調變技術的錯誤品質會比使用二維信號的來得好。

Performance Analysis On Trellis-Coded Modulation Schemes Using Three-Dimensional Signal Sets.

Student: Po-Chun Wu

Advisor: Prof. Tsern-Huei Lee

Institute of Communication Engineering National Chiao-Tung University

Abstract

In conventional trellis-coded modulation (TCM) schemes, two-dimensional constellations such as M-PSK or M-QASK, where $M = 2^N$, are generally used in many transmission systems. In this thesis, the idea of three-dimensional constellations is introduced and the concept of treating three-dimensional constellations as an expansion of two-dimensional constellations is presented. Conventional TCM schemes using two-dimensional constellations and partitioning the signal points into subsets and mapping information bits into those signal points are described. Soft-decision Viterbi algorithm (SOVA) is applied for the decoding process of the presented TCM schemes. A number of examples are given and comparisons are made. We conclude that three-dimensional TCM schemes perform better than conventional two-dimensional TCM schemes.

Acknowledgement

Firstly I would like to thank my thesis advisor, Professor Tsern-Huei Lee, for his professional advice helping me through my work, his generous support and his patience for the last couple of years.

Secondly I would like to express my appreciation for all my friends, especially those who have been staying with me in Network Technologies Lab, National Chiao-Tung University, Taiwan, during these years. I would not have academically gained so much were it not for their generous help.

I would like to dedicate this thesis and my special thank to my parents, who have been my most supportive backup in my life, for their encouragement and love. I would not have been who and where I am were it not for them.

40000

Index

Chinese Abstract	i
English Abstract	ii
Acknowledgements	iii
Index	iv
List of Tables	vii
List of Figures	viii
Chapter 1 Introduction	1
1.1 Background	1
1.1.1 Channel Capacity and Channel Coding	1
1.1.2 Conventional Sense	1
1.1.3 Driving Force for New Code Design	2
1.1.4 Trellis-Coded Modulation	3
1.2 Channel Capacity of Multilevel/Phase Modulation Channels	4
1.2.1 In Terms of Channel Capacity	4
1.2.2 Interpretation of The Channel Capacity	8
1.3 Organization of the Thesis	9

Chapter 2 Ungerboeck's TCM Scheme	11
2.1 Four-State Trellis Code for 8-PSK Modulation	12
2.1.1 Signal Sets And Trellis Diagrams	12
2.1.2 Rules for Assignment of The Signals	14
2.1.3 The Soft-Decision Decoding	15
2.1.4 The Free Distance And Error Events	17
2.2 Eight-State Trellis Code for Amplitude/Phase Modulation	19
2.2.1 The Effect of Set Partitioning	19
2.2.2 Examples of Error Bursts	22
2.3 Design of Trellis-Coded Modulation Schemes	24
2.3.1 General Structure of Encoder/Modulator for TCM	25
2.3.2 Mapping by Set Partitioning	26
2.3.3 Convolutional Codes for Trellis-Coded Modulation	29
Chapter 3 TCM Schemes Using 3-D Constellations	32
3.1 Four-State Trellis Code for 8-Point Cubic Modulation	32
3.1.1 Basic Structure of The Proposed Schemes	32
3.1.2 Rate-1/2 Convolutional Encodes	34
3.1.3 The Three-Dimensional Signal Set	35
3.1.4 The Modified Three-Dimensional Signal Set	37

3.1.5 Free Distances of Cubic and Cuboid Signal Sets	40
3.2 Eight-State Trellis Code for 16-Point Cubic Modulation	42
3.2.1 Two-Dimensional TCM Schemes	42
3.2.2 The Three-Dimensional Signal Set	43
3.2.3 The Modified Three-Dimensional Signal Set	45
3.2.4 Free Distances of Cubic and Cuboid Signal Sets	46
3.2.5 The Design Lemma of Three-Dimensional Signal Sets	48
Chapter 4 Computer-Aided Simulation Results	51
Chapter 5 Conclusions	59
Appendix : The Structure of Transmitter And Receiver	60
Bibliography 1896	62

List of Tables

2-1 Comparison of uncoded 4-PSK to coded 8-PSK (at high SNR)	18

- 2-2 Four error paths at the free distance $\sqrt{5}\Delta_0$ from S0 S0 S3 S6 23
- 3-1 An error path S5 S2 at the free distance $\sqrt{\Delta_2^2 + 2r^2}$ from S1 S4 47

List of Figures

1-1	Channel signal sets of (a) one- (b) two-dimensional constellation	6
1-2	Channel capacity of band-limited AWGN channels with discrete-valued input and continuous-valued output. (a) One-dimensional modulation. (b) Two-dimensional modulation	8
2-1	(a) Uncoded four-phase modulation (4-PSK).(b) Four-state trellis-coded eight-phase modulation (8-PSK)	13
2-2	A realization of an encoder-modulator for four-state coded 8-PSK	5
2-3	Shortest path diagram	16
2-4	Error-event probability versus signal-to-noise ratio for uncoded 4-PSK and four-state 8-PSK	18
2-5	Set partitioning of 16-QASK and 32-CROSS signal sets	20
2-6	The trellis diagram of eight-state amplitude/phase modulation	21
2-7	General structure of encoder/modulator for TCM	25
2-8	Set partitioning of 8-PSK signals with increasing Δ_i	27
2-9	A four-state trellis diagram	28
2-10	Two realizations of rate- $2/3$, $u = 3$ convolutional encoders. (a) Systematic encoder with feedback (b) Feedback-free encoder	31
3-1	Simplified System Diagram (For Computer Simulation)	32
3-2	Basic structure of four state trellis code for 8-Point Cubic Modulation	33

3-3	Three realizations of rate- $1/2$ convolutional encoders. (a) Feedback-free encoder with $u = 2$. (b) Systematic encoder with feedback and $u = 2$. (c) Feedback-free encoder with $u = 6$	34
3-4	8-point cubic signal set	35
3-5	Set partitioning diagram of 8-point cubic signal set	36
3-6	Subset B0 for (a) 8-PSK (b) 8-point cubic, signal sets	38
3-7	Subset <i>B</i> 0 for modified 8-point cubic signal set	38
3-8	Modified 8-point cubic signal set	39
3-9	Set partitioning diagram of modified 8-point cuboid signal set	40
3-10	Set partitioning diagram of a redundant 16-QASK signal set	42
3-11	16-point cubic signal set	43
3-12	Set partitioning diagram of the 16-point cubic signal set	44
3-13	Modified 16-point cubic signal set	45
3-14	Set partitioning diagram of the 16-point cuboid signal set	46
3-15	The trellis diagram of 8-state 16-point cubic TCM	47
3-16	The design lemma of the 16-point cuboid signal set	49
3-17	A 3-D signal set and its corresponding 2-D reference	50
4-1	Uncoded 4-PSK and uncoded 8-PSK	51
4-2	Uncoded 8-point cubic and cuboid signal sets	52
4-3	Uncoded 4-PSK, 4-state 8-PSK TCM	53

4-4	4-state 8-PSK TCM, 4-state 8-point cubic and cuboid TCM	54
4-5	Uncoded 8-PSK, 8-state 16-QASK TCM	55
4-6	A rate- $2/3$ convolutional encoder and a trellis diagram	55
4-7	8-state 16-QASK, 16-point cubic and 16-point cuboid TCM	56
4-8	4-state 8-PSK TCM and 64-state 8-PSK TCM	57
4-9	4-state 8-point cubic, cuboid TCM schemes and 64-state 8-point cubic, cuboid TCM schemes	58
A-1	The structure of the three-dimensional signal transmitter.	60
A-2	The structure of the three-dimensional signal receiver.	61