AAFRANAR (IT) 2 XHRA L S

F A% B B A2 A 92 RESTful APIs H 89 483545 85 R &

Transmission Reduction between Mobile Phone
Applications and RESTful APIs

HE R OAE D O Ren

BRI whRIE

o R B L+ U F AN

F % e A2 X L RESTHul APIs P 89 48 35 1% 80 0% &

Transmission Reduction between Mobile Phone Applications and
RESTful APIs

R Re Student: Chin-Liang Tsai
¥/ EHR D HhiE Advisor: Jiun-Long Huang

HMLRAAF R (IT) A EABA LS
B+ H

A Thesis
Submitted to Collegeot-Computer Science
National Chiae-Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Industrial Technology R & D Master Program on
Computer Science and Engineering
August 2010

Hsinchu, Taiwan, Republic of China

R E /AT IFAA

F Ak e A2 X L RESTful APIs M 89 48 351% 80 0% &

2 4 @ REeER 8 FKRAE
B 2 iR KL FRERANAE (IT) ZEABSAL 2

2

TEFR MRBSHEAZEAFTEAFRFTFHRA LA R FTAH B
B % BARAT 6 B IR R H A A A P 69 AL BE 4 5E (] e Twitter ~ Facebook##MySpace) L
B AT AR RE o iE BBk P AY AL B A sk 3R g REEAPT (Application Programming
Interface) ° PAZEA B T vA4% J 38 2 APIR A2 — 18 37 69 4835 & & BB F & A A2
K o REST (Representational State Transfer) sk ¥ L4L ik % 4% IR 37 444 P18 A
BJAPIZR A% o % 13 3L T 89 AL ZE A 30 S L MR S0 e 45 2 & P T B B 09 47 B
AHsE > E R P T AL R F 4k B s 2k 5 Bl o A2 AR R F R E R A2 X 3R 8 e] 4R 4
#)RESTful APIs/R /& ig & #8558 A AR SRS » b st » 5 W8 A 42 XA AR JE AR AT
B4 A & A~ > 4B T VA S F AR PE K A B A Tl de P AR 46 A 69 69 Android T & o B
AR T A — 18 RESTful® P s RN & % T # %8 HTML R JavaScript4¥
KRN WG RN E o ZRESTIul APIs& KA T AR T o5 £ L6 A
WERREE - EARALT » KIMEB LKA T R KAH T > FHERARESTHul
APIshl 89158 B 3% » AR AMRE —BALRE > QRS BRMEHAE - Empbe
J& B B L Y AR & o

i

Transmission Reduction between Mobile Phone Applications and
RESTful APIs

Student: Chin-Liang T'sai Advisor: Jiun-Long Huang

Submitted to College of Computer Science
Computer Science and Engineering
National Chiao-Tung University

ABSTRACT

In recent years, more and more users use the handheld devices such as smartphone to
access the Internet. Users can get their data from the Internet or update their status to the
hot social networking Web sites (e.g., Twitter, Facebook and MySpace). These popular
social networking Web sites usually provide thé API (Application Programming Interface).
Developers can use these APIs to rebuild asnew.\Web site or a mobile phone application.
The REST (Representational State Transfer) scheme isanost famous architecture style to
call these APIs. Despite there are already exist friendly*mobile version Web sites. Users
can use mobile Web browser to access these hot-social networking Web sites or others.
But there are many advantages in using mebile phone applications to access these Web
sites through the RESTful APIs they provide. For example, mobile phone applications
have fantastic UI and they can integrate with the mobile phone operation system such as
open-source Android platform. Developers can develop a RESTful client application to
avoid to download entire HTML or Javascript files that will cause many network traffics.
But RESTful APIs also have overhead in transmission. In this thesis, we observed the
overhead between mobile phone applications and RESTful APIs in low-bandwidth wireless
network. We proposed a system architecture to reduce these transmission overheads. And

then, speed up the response time and decrease the total transmission bytes.

iii

AT B A IR LR B+ B S M 8T R L8
BERBLFAEGHT - RRBIVLAS A AR ARG T 6 o RLZBHEL O KZE B
— K G RAKL PR K 0 PR T K R SR S K
L EMRERIY - REBAH RN LBL R0 EF 0 RAREHRE > RET 0L
LS MIAR c LERBEREVNRYZER - B H RERZ - FANERNZUARE
FLEA LG W DB AN ARSI B RRAEE LT A% Hoh Bk

g/g&ﬁgoﬁ\#ﬁi?éﬁ‘gl@; ’ {ié’ké’]#ﬁiﬁ%ﬂlﬁﬁj%ﬁk °

v

Contents

FLR i
2 i
S 1 iii
A iv
Contents A\
List of Tables o viii
List of Figures ix
1. Introduction Lella e L 1
2. Preliminaries s s e L L)
2.1 Related Work50 o o0 L)
2.1.1 Web Browsing . . wa . ..o LA Lo)

2.1.2 Web Content Adaptation 6

2.2 Open APT 0 0 o 7
221 REST Overview 7

2.2.2 SQL-Style APT 8

223 OAuth 8

2.3 Motivation 9
231 Mainlssue L 9

2.3.2 Request a RESTful API 10

2.3.3 Observations 11

3. System Architecture Lo 17

3.1 Proposed System Architecture L 17
3.2 HTTP Header Reduction, 18
3.3 Client-Side Library 19
3.3.1 API Query Language 19
3.3.2 Image Multi-Get Module 22
3.3.3 Guzip Compression Request 25
3.3.4 Spilt Combined Image L. 26

3.4 Proxy-Side Library 26
3.4.1 Parsing the Query S0 e, L oL 26
3.4.2 Filtering Results i . 0w s o000 D Lo 26
3.4.3 Convert Response Format =~ v Jln. . 000 0L 27
3.4.4 Combining Images @ im0 . L L L Lo 27
3.4.5 OAuth Authentication 28

4. Experimental Results 29
4.1 Experimental Setup 29
4.2 Common Plain Text 30
4.3 Multiple Images 35
4.3.1 Image Quality 35
4.3.2 Image Resize 35
4.3.3 Normal versus AQL Picasa Application 36

5. Conclusion L 39

vi

Bibliography

vil

2.1

2.2

2.3

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

List of Tables

Relationships Between SQL and HTTP Verbs 8
3G Flat-Rate of Hinet emome 10
Yahoo! LifeStyle API Method List 11
Query Format of AQL and Relationships Between AQL and HTTP Verbs . 19

Specifications of Our Client Device (HTC Desire A8181) 30
Experimental Parameters in Yahoo! LifeStyle APT 31
Ratio of XML Content Compressediby Gzip in LifeStyle API (Bytes) . .. 32
Ratio of JSON Content Compressed by Gzipin LifeStyle API (Bytes) . . . 33
Average Response Time-in Yahool LifeStyle API (ms). 34
Quality Parameter versus”Total Image Size ", 35
Resize Rate versus Total Image Size 36
Normal Picasa APP. versus PicasaAQL APP. 38

viii

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

List of Figures

Common REST Architecture.
OAuth Authentication Flow
Common RESTful Call in Android Client
HTTP Request Header from Our Client
HTTP Response Header that Including Gzip Compression Information

HTTP Response Header from Yahoo! LifeStyle API Server
Result of Call “statuses/friends” from Twitter API Server
Normal flow to use API to getrphotos - ~iis.
Per Image Need Per Request and Response Pair

Sample Picasa Android Application wewe. oo, o . . L0

Proposed System Architecture “L00 LR T Lo oL
Simplified HTTP Request and Response Header
“Select *” and “Select id, name” From Twitter.statuses/friends
Flow of SubSelect Query
Two Implement of Picasa Android Application
Image Multi-Get Module L.
AQL HTTP Request and Response Header

Example of OAuth Authentication

HTC Desire AI81

1X

4.2

4.3

4.4

4.5

4.6

4.7

Gzip Compression in LifeStyle API (XML) 32
Gzip Compression in LifeStyle APT (JSON) 33
Line Chart of Average Response Time in Yahoo! LifeStyle API (ms) 34
Line Chart of Quality Parameter and Resize Rate versus Total Image Size 36
Application Screen Capture L. 37

Line Chart of Response Time and Total Transmission Traffic 38

Chapter 1

Introduction

In recent years, handheld devices (e.g., Android phone, iPhone and Windows phone)
were very popular and the wireless networks (e.g., WiFi, 3.5G and 3G) were develop so
quickly. Using mobile phone to access the Internet had became a trend. In addition, for
the concept of Cloud Computing, miore and.nore pedple put their data into the Internet.
Moreover, there were many people using-the'social networking Web sites (e.g., Twitter,
Facebook and MySpace) to contaet with their friends.” People can use the handheld devices
such as the smartphone to access the Internet and get/their data from the Cloud or update
their status to the hot social networking Web.sités:, These popular social networking Web
sites usually provide the API (Application Programming Interface). Developers can get
data through these APIs to rebuild a new Web site or a mobile phone application. The
REST (Representational State Transfer) [1] scheme is most famous architecture style to
call these APIs. Conforming to the REST constraints is referred to as being “RESTful”!.
Developers can use RESTful APIs to develop the mobile phone applications such as
Android? RESTful client applications.

Although it is very convenient to access the Internet by the mobile phone browser and
the popular Web sites also provide the mobile version Webs, but there are some drawback
by using the mobile phone browser to access the Internet in wireless environment. Com-
paring to the wired network, wireless network is high-cost, high-latency, low-bandwidth

and low-reliability [2]. Current Web browsers greedy fetch the entire HTML from the

'Representational State Transfer From Wikipedia. URL<http://en.wikipedia.org/wiki/

Representational _State_Transfer>
2Google Projects for Android. URL<http:/code.google.com/int1l/en/Android>

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http:/code.google.com/intl/en/Android

server. This is inappropriate for use in low-bandwidth networks because mobile devices
always design for easy-to-carry, so their screen size are small. Mobile Web browsers will
fetch the off-screen objects to cause large response time for users. [3] indicated this prob-
lem and propose three mechanisms for Web browser to reduce Web response time. On
the other hand, there are some schemes such as WAP [4] , WML? | and BREW* have
also been developed to address the limitation of Web performance on mobile devices.
However, using Web browser to surf the Web sites is a “what they provide, what you
may see” scheme. There is another choice to access the Internet by the mobile devices.
We suggest developing the RESTful mobile client application to get on-demand data. We
choose the Android platform because it has free and familiar cross-platform development
tool, moreover, it is an open source operating system platform. Developers who have
object-oriented programing concepts will easy to get started. It will reduce cost of devel-
oping. In the Android platform, there were five reasons that mentioned by Google 1/0
2010° for why developing Android applications if‘mobile friendly Web sites already exist.
We list as follow:

(1) Android applications will be“able to-integrate with:the Android platform :
It will be able to use Intents®) Content Providers” and be able to access all the

private APIs available only to Andreid applications. (Can’t do from browsers).

(2) Android applications can offer intents to other applications :
It will be able to enrich the behavior of the platform by offering new functionality

to other applications.

(3) Android applications can run in the background :

If you would like to have your application refresh the data from the server and new

3Wireless Application Protocol Forum, WML 2.0 DTDs. URL<http://www.wapforum.org/DTD/

wml20.dtd>
4Qualcomm Inc., Binary Runtime Environment for Wireless. URL<http://brew.qualcomm.com>
5Virgil Dobjanschi, Developing Android RESTful client applications. URL<http://code.google.

com/intl/zh-TW/events/io/2010/sessions/developing-RESTful-android-apps.html>
6Android - Intents and Intent Filters. URL<http://developer.android.com/guide/topics/

intents/intents-filters.html>
"Android - Content Providers. URL<http://developer.android.com/guide/topics/providers/

content-providers.html>

http://www.wapforum.org/DTD/wml20.dtd
http://www.wapforum.org/DTD/wml20.dtd
http://brew.qualcomm.com
http://code.google.com/intl/zh-TW/events/io/2010/sessions/developing-RESTful-android-apps.html
http://code.google.com/intl/zh-TW/events/io/2010/sessions/developing-RESTful-android-apps.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/intents/intents-filters.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html

data is actually retrieved from the server, your application has the option to present

a notification to the user to let them know that particular data is available.

(4) Limited connectivity :
The network is comes and goes in some wireless environments. An Android applica-
tion has the option to run in the background and retry operations in the background
by using an alarm for the purpose of relieving the user for trying to hit that refresh
button or post in the browser. An Android application can fast than browsers. It
has the option of retrieving all the network content or the on-demand content in
JSON (JavaScript Object Notation), XML (Extensible Markup Language) or some
binary format. Android applications can parse it and store it in a database, and
then, just retrieving content that’s newer than the one that you already have or
older than the one you already have, but not the same data. Browsers will retrieve

entire HTML and JavaScript that cause more time to download.

(5) User interface :
Android applications can innovate in many ways to deliver a fantastic user experi-
ence to the user. It will be.so much faster and easier in some cases to use than the

browser.

Nowadays, developers can produce their own applications for some mobile devices,
such as iPhone applications and Android applications. Developers can publish their in-
novative applications to on-line market. And then, other users can download them for
free or buy them. If the users buy the application from the on-line market, the author of
the application will gain a part of the money from it. Developers will happy to produce a
powerful application to earn a huge amount of money by this way. They will consider to
using the API that provided by popular Web sites, because there are very large numbers

of users access it.

There were many advantages for developing Android applications with RESTful
APIs, but the bandwidth was a bottleneck. We observed the bandwidth usage between
Android RESTful client applications an API servers. We found that when we call the
RESTful APIs, there exists some unnecessary bandwidth waste. In addition, we observed

some common application that used the RESTful API such as social networking applica-

tions and photo album applications. There were many small images to download such as
the cover image of album list. It will take a lot of bandwidth for all API request. For
these issues, we proposed a system architecture to reduce the transmission overhead when

we use the RESTful APIs.

We set up a proxy server between mobile phone applications and RESTful APIs.
Mobile phone applications include our Client-Side Library that provide HTTP header
reduction and use an API Query Language (AQL) query to communicate with our proxy.
Our proxy interacts with the mobile client and the API server. It has Proxy-Side Library
that can parse the query and get the result from the API server. Proxy-Side Library
can reduce the results by filtering and compressing. Proxy-Side Library also provide a
Image-Multiple-Get (IMG) module to process the images. It can parallel download the
multiple images and then be able to optional compress, resize and combine the images in

order to reduce the total image bytes.

The experimental result shows our-system @rchitecture can reduce the transmission
traffic over 61% if the content is plain text data. For the images, according to image
count and parameter setting, it could reduce'the total transmission bytes about 80% and
speed up the response time to about\50% when there were over 10 small images and the

quality parameter and resize rate was ‘set 1o H0:

In this thesis, we design a system architecture that can reduce the transmission
between Android applications and RESTful API servers. We implement it on Android
mobile device. The remainder of this thesis is organized as follows: In Chapter 2, we
present the preliminaries including the related work and the motivation about why we
design thus system architecture. In Chapter 3 , we show our system architecture. In

Chapter 4, we show the experimental results and Chapter 5 concludes this thesis.

Chapter 2

Preliminaries

2.1 Related Work

In this section, we review the related work:~Prévious works were focus on using Web

browser to surf the Internet on handheld-devices.

2.1.1 Web Browsing

Over the past decades, a large number of studies had addressed the Web browsing in
a wireless environment because of the challenges of mobile computing such as device het-
erogeneity and constraints (screen size, battery lifespan, color depth, computation power,
etc.), content heterogeneity (audio, video, image, etc.), the network (GPRS, wireless LAN,

Bluetooth, etc.) and user preferences.

Housel et al. [5] proposed WebExpress that was a Client/Intercept based system for
optimizing Web browsing in a wireless environment. It is transparent to the client and
the server and facilitates highly effective data reduction and protocol optimization. The
performance of WebExpress is 60% to 90% reductions in wireless network traffic and 36%

to 97% improvements in application response time.

Chang et al. proposed WebAccel [3] that identify two major reasons, screen con-
tention and bandwidth under-utilization, which result in large user-perceived response

time. WebAccel uses an intelligent mix of prioritized fetching, object reordering, and

connection management to address these problems.

2.1.2 Web Content Adaptation

Content adaptation emerges to remedy the problem by offering the different mobile

users suitable versions of the same object.

Han et al. [6] derive the theoretical conditions of transcoding and present adaptive
transcoding policies for mobile Web browser. The advantages of [6] are without requiring
modifications to Web servers and browsers, an HT'TP transcoding proxy can dramatically
reduce Web download times over low-bandwidth links via data compression, reduce per-
byte costs over tariffed links via data compression, and tailor Web data to a variety of
client devices via format conversion. However, in most cases, they need to perform lossy

compressions that degrade the quality_ efiithagés or sound significantly.

Hwang et al. [7] focuses on structure-aware transeoding heuristics. The goal is to
develop a high-quality syntax-based Web transcoding system that allows universal access

to Web pages without manual reauthoring:

Apart from transcoding scheme, ‘some-studies.[8], [9], [10], [11], [12] focused on Web
page layout modification techniques to solve the restrained capability and limited band-

width on mobile devices.

Hua et al. [13] proposed an adaptive scheme called MobiDNA for serving dynamic
Web content in a mobile computing environment. Utilizing the fragment information
through a modified content adaptation algorithm to adapt the dynamic content at first,
and then, saving the adapted content to the mobile client cache for reducing network

transmission and Web content adaptation costs.

2.2 Open API

Open API! (often referred to as OpenAPI) is a word used to describe sets of tech-
nologies that enable websites to interact with each other by using SOAP, Javascript and
other Web technologies. It is not limited to web-based applications. It is become an
increasing trend in Web 2.0 applications. Open API is a common service-oriented Web
site application. Web service providers can package their own Web services into a series
of API and then open out for third-party developers to use. Third-party developers do

not need a huge investment in hardware and technology.

2.2.1 REST Overview

REST is an architectural style that Roy T. Fielding firstly defined in his doctoral
thesis [1]. REST treats everything as “resources™and, use URI (Uniform Resource Identi-
fier) indicate the location of resources.-Resource usersuse the HTTP method to operate
resources. HTTP also defines the four basicmethods, namely GET, POST, PUT and
DELETE that generally correspond, to four-types-of data processing actions CRUD (Cre-
ate, Read, Update and Delete). GET.retrieves the current state of a resource in some
representation, PUT updates a resource, POST transfers a new state onto a resource, and

DELETE removes an existing resource.

()
HTTP Packet
HTTP Verb:
GET | PUT | POST | DELETE
Client Server
Resource Representation
_ Y, -
Stateless Web Services Conversation

Figure 2.1: Common REST Architecture

1Open API from Wikipedia. URL<http://en.wikipedia.org/wiki/Open_API>

http://en.wikipedia.org/wiki/Open_API

2.2.2 SQL-Style API

Four basic HTTP methods just like SQL (Structured Query Language) four state-
ments (Insert, Select, Update, Delete). Table 2.1 shows the relationship between SQL and
HTTP verbs. SQL-Style API such as YQL [14] (Yahoo! Query Language) and FQL [15]
(Facebook Query Language). The Yahoo! Query Language is an expressive SQL-like
language that lets you query, filter, and join data across Web services. FQL is a way to
query the same Facebook data you can access through the other API functions, but with

a SQL-style interface.

Table 2.1: Relationships Between SQL and HTTP Verbs

Action SQL HTTP | Description

Create | Insert POST Create a resource without id

Read Select GET Get a resource

Update | Update PUT Update a resoureeor, create a resource with id if not exist

Delete | Delete | DELETE | Delete-a-resource

2.2.3 OAuth

OAuth? provides a method for clients to access server resources on behalf of a re-
source owner (such as a different client or an end-user). It also provides a process for
end-users to authorize third-party access to their server resources without sharing their
credentials (typically, a username and password pair), using user-agent redirections. Fig-
ure 2.2% shows OAuth authentication flow. First, you need to sign up and submit some
details about your application to the service provider. When your users get involved,
your application uses your consumer key to obtain a request token, and then directs user
to service provider. In this his time, user will direct to the url that consist of service
provider’s login url and request token. When users login and allow your application to
access their private data, your application needs to exchange the approved request token

for an access token, which tells Service Provider that your application has been given

20Auth. URL<http://oauth.net/>
30Auth Authentication Flow. URL<oauth.googlecode.com/svn/spec/core/1.0/diagram.pdf>

http://oauth.net/
oauth.googlecode.com/svn/spec/core/1.0/diagram.pdf

authorization to access user data. And then, your application will get the access token

from service provider to access user’s data until it expires.

Consumer

Request
Request Token

Service Provider

Grant

Request Token

Direct User to Service
Provider

Obtain User
Authorization

v

Direct User to
Consumer

Request
Access Token

-

~
XS

s

~~

Grant
Access Token

~~{E)y

Access Protected
Resources

Person Using Web Browser or

Manual Entry

Consumer/Service Provider

A\ 4

Consumer Requests
Request Token

Request includes

oauth _consumer key,
oauth_signature_method,
oauth_signature,
oauth_timestamp,
oauth_nonce,

oauth_version (optional).

Service Provider Grants
Request Token
Response includes

oauth_token,
oauth_token_secret.

@ Consumer Directs User to
Service Provider
Request includes
oauth_token (optional),

oauth_callback (optional).

@ Service Provider Directs

User to Consumer
Request includes
oauth_token (optional).

Figure 2.2: OAuthrAuthentication Flow

2.3 Motivation

®

9

Consumer Requests
Access Token

Request includes
oauth_consumer_key,
oauth_token,
oauth_signature_method,
oauth_signature,
oauth_timestamp,
oauth_nonce,
oauth_version (optional).

Service Provider
Grants Access Token
Response includes
oauth_token,
oauth_token_secret.

Consumer Accesses
Protected Resources
Request includes
oauth_consumer_key,
oauth_token,
oauth_signature_method,
oauth_signature,
oauth_timestamp,

oauth nonce,
oauth_version (optional).

In this section, we observed the behavior between Android application and API

server. There are some overheads and inconvenient on it. According our observations and

motivations, we proposed a better way to enhance them.

2.3.1 Main Issue

The Android application call the RESTful API in the wireless environment, the

connection is more weaker than wireline network. Weak connection was a common issue

in the wireless network. For the cost of wireless network, we survey the flat-rate of 3G

mobile network that formulated by Hinet*. Table 2.2 shows the 3G Flat-Rate of Hinet
emome. The more packets you use, the more money you pay. Our system architecture
was going to design for the purpose to alleviate the impact of the limited bandwidth
between Android application and RESTful APIs in the wireless environment. It will
reduce the total bytes of transmission, and then reduce the number of packets to save the

transmission cost.

Table 2.2: 3G Flat-Rate of Hinet emome

183 383 583 983 1683

NS Style Style Style Style Style
Monthly Fee (NT) 183 383 583 983 1,683
<= 500,000 0.005| 0.0025| 0.0013| 0.0006] 0.0003
Flat-Rate Data (Upper Bound) 2,500 1,250 650 300 150
Packet (NT/Packet) | 500,000~1,000,000 0.0025| 0.0013| 0.0006| 0.0003| 0.00016

and Upper/Lower

Bound (Upper Bound) 2,500 1,300 600 300 160
>1,000,000 0.0013| 0.0006] 0.0003| 0.00016| 0.00008
(Lower Bound) 1,300 600 300 160 80

2.3.2 Request a RESTful API

When developers using the RESTful API, their application need to send a HTTP
request to API server, and then, API server response the result to the application. Fig-

ure 2.3 shows the common RESTful call in Android client. In Figure 2.3 ; Android Client

GET /resources/listCity?format=xml

- N >
<?xml version="1.0" encoding="UTF-8"?>
Mobile <rsp stat="ok">
Client <city id="A">Taipei</city> API
App. <city id="0O">Hsinchu</city> SERVER

</rsp>
<<
@

Figure 2.3: Common RESTful Call in Android Client

43G flat-rate of Hinet emome. URL<http://emome.asia/channel?chid=134>

10

http://emome.asia/channel?chid=134

application assign a request URI in an HT'TP GET request. This request URI include the
parameters, one of the parameters is “format=xml” that “tell” the API server to return

a result in XML format.

2.3.3 Observations

Observation Setup

We use the Google Android emulator with Android 2.2 Platform SDK?® to be our
client platform and run an application on it. We use the Wireshark® to capture and

analysis the packets between the client application and API server.

Observation 1: HTTP Request in REST API

Table 2.3: Yahoo! LifeStyle API Method List

API Method HTTP Method | Deseription
Auth.bootUp GET Boot Up the ApplD, just need one times.
Addr.listCity GET List Cities
Addr.listDistrict GET List Districts
Addr.listArea GET List Area [Night Market / Shopping District]
Biz.search GET Search Businesses
Biz.getDetails GET Get Details
Biz.listReviews GET List Reviews
Biz.getPhotos GET Get Photos
Class.listClasses GET List all categories by specified category 1D
(Class.list BizsInRange GET List the business in Range
Search.get TopQuery GET Get Top Query
Theme.getList GET List the carefully chosen topic
Theme.getDetail GET Get Theme Detail

First, we observed the HT'TP request when we called the REST API. There were

®Android SDK. URL<http://developer.android.com/sdk/index.html>
SWireshark. URL<http://www.Wireshark.org/about.html>

11

http://developer.android.com/sdk/index.html
http://www.Wireshark.org/about.html

so many REST APIs in the internet. Their format were similar but not the same. In
this observation, we choose the Yahoo! LifeStyle API [16] to our observed API server.
Table 2.3 shows the method list and the request URI format as follow:

Request URI: http://tw.lifestyle.yahooapis.com/v0.3/[API_Method] ? [Parameters]
In Yahoo! LifeStyle API, all the API methods use HTTP GET method to retrieve the
resources. According to the method list, we would see one method need one URI, so if
we want to get the different data from different methods, we need to send more than one
HTTP request to call the API. Too many request will produce too many HT'TP headers.

We wonder to use fewer request to get more results.

Observation 2: HTTP response in REST API

In this observation, we called the method “Addr.listCity” in Yahoo! LifeStyle API,
Figure 2.4 was a part of the client HT TP headerthat captured by WireShark. We set the

GET /v0.3/Addr.listCity?appid=tISGRbjV34Hn0.6FI8......
Accept-Encoding: gzip
Host: tw.lifestyle.yahooapis.com

Connection: Keep-Alive
User-Agent: Apache-HttpClient/UNAVAILABLE (java 1.4)

Figure 2.4: HTTP Request Header from Our Client

“Accept-Encoding” to “gzip” in request header because we wonder the data size is small
in transmission. And then, we observed the HTTP response header. If Yahoo! LifeStyle
API support Gzip compression, we will see the response header that include “Content-

Encoding: gzip” like Figure 2.5. Figure 2.6 shows a part of the response header that cap-

HTTP/1.1 200 OK

Date: Tue, 22 Jun 2010 19:06:53 GMT
Vary: Accept-Encoding
Content-Encoding: gzip
Content-Length: 326

Content-Type: text/html

Figure 2.5: HTTP Response Header that Including Gzip Compression Information

tured by Wireshark. We could observe the the header didn’t include “Content-Encoding;:

gzip”. The reason is Yahoo! LifeStyle API didn’t support the Gzip [17] compression. We

12

http://tw.lifestyle.yahooapis.com/v0.3/[API_Method]?[Parameters]

HTTP/1.1 200 OK

Date: Tue, 22 Jun 2010 19:09:28 GMT

P3P: policyref="http://p3p.yahoo.com/w3c/p3p.xm”, ...
P3P: policyref="http://info.yahoo.com/w3c/p3p.xml”, ...
Content-Type: text/xml; charset="utf-8”

X-Cache: MISS from tw.lifestyle.yahooapis.com
Connection: close

Transfer-Encoding: chunked

Figure 2.6: HTTP Response Header from Yahoo! LifeStyle API Server

also called the other API such as Twitter API [18], and Yahoo! Knowledge Plus API [19],
they didn’t support the Gzip compression, too. According to [20], gzipping generally
reduces the response size by about 70%. The response data of REST API usually be
XML or JSON format. If we compress it, the data size would reduce the response size
by about 70%. The compression will reduce the transmission overhead. In addition, the
request header “Connection” and “UsersAgent’ s unnecessary in this case. We would
obtain the same result if we didn’t set thesesheaders in our request. Furthermore, the
response header “P3P” and “X-Cache” is unnecessary for our application, too. We could

remove them to save the network bandwidths:

Observation 3: Dependency of API Method

In this observation, we observed the parameters in API methods. We found some
parameters for calling method A need method B’s result. For example, if we want to list
districts of Taipei when we use the Yahoo! LifeStyle API, we need to set the parameter
“city=A" because “A” is stand for the id of Taipei in the Yahoo! LifeStyle API. But we
need to call the API method “List Cities” to obtain the id of Taipei, so we need to call
the API method “List Cities” first to get the city id, and then call the API method ”List
districts”. For this case, we need to send two requests to the API server. More connections

will take more network traffics. We wonder fewer connecting when the dependency exist.

13

Observation 4: Verbose response body

In this observation, we observed the response body from Twitter API server. We
considered a scenario about social network application. The friend list is very important
in social network application. If we want to list all the friends in our Android application,
we always select the most important information about our friends (e.g., friend id, name,
image link.) because the Android phone just has small screen to display the information of
that. Figure 2.4 shows a part of the method “statuses/friends” response from Twitter API.
The API server response the entire result and the content didn’t compress. We wonder

to get on-demand results and compress them, but some API method didn’t provide such

methods.
<?xml version="1.0" encoding="UTF-8"?> The Information we need.
<users type="array'>
<user> /\
<id>159557145</id>
<name>Andriod REST</name>
<screen name>AndroidREST</screen name>
/<location></location> N\

<description></description>

<profile image url>http://s.twimg.com/a/1282351897/images/default profile 6 normal.png</profile image url>
<url></url>

<protected>false</protected>

<followers_count>1</followers_count>

<profile background color>9ae4e8</profile background color>

<profile text color>000000</profile text color>

<profile link color>0000ff</profile link color>

<profile sidebar fill color>e0ff92</profile sidebar fill color>

<profile sidebar border color>87bc44</profile sidebar border color>

<friends_count>2</friends_count>

<created at>Fri Jun 25 18:23:06 +0000 2010</created at>

<favourites_count>0</favourites count>

<utc_offset></utc_offset>

<time zone></time zone>

<profile background image url>http://s.twimg.com/a/1282351897/images/themes/themel/bg.png</profile backgr...
<profile background tile>false</profile background tile>

<geo/>
<coordinates/>
<place/>
<contributors/>

\</status> J

</user> . , .
The Information we\{lon t care 1n our app.

Figure 2.7: Result of Call “statuses/friends” from Twitter API Server

14

Observation 5: Get Images From API

In this observation, we observed the API method about images. Social networking
websites usually have photo album service. Using their APIs to get the photos just get
the image links. If our Android application want to get the image files, we must using
the image links to retrieve the image files. Figure 2.8 shows the normal flow when we

use the API method to get the photos. Figure 2.9 shows the packets we captured by

— GET PhotoList q
() . . API
Information and links about photos SERVER
Mobile
ihent Each photo need one HTTP Request
pp-
. IMAGE
. 3 Response the images SERVER
—

Figure 2.8: Nermal-flow to use.APIto get photos

WireShark. If we want to get many images, that will produce many HTTP connections
(HTTP requests and responses). Itawill produce many redundant headers. If we want to
GET /_drMirRQ74-A/S_K NEX{fQfi/AAAAAAAABX4/-TBPLzf2Bho/s72/compass.jpg HTTP/1.1
HTTP/1.1 2000K (JPEG JFIF image)
GET /_drtMirRQ74-A/S_K_NUsBcj/AAAAAAAABXS8/p49JRTUZIyE/s72/corbeillevidesz.jpg HTTP/1.1
HTTP/1.1 2000K (JPEG JFIF image)

GET /_drMirRQ74-A/S_K_NKRbix/AAAAAAAABXO0/HiQaetH-0Uc/s288/digg-1.jpg HTTP/1.1
HTTP/1.1 2000K (JPEG JFIF image)

Figure 2.9: Per Image Need Per Request and Response Pair

develop an Android application about album, we usually list a part of photos in small size,
and then, select the photo we want to see the full size because the small screen size. So, if
the image server return a big size image, that will waste a lot of bandwidth. Figure 2.10
shows a simple Picasa” Android Application. The Picasa RSS (Really Simple Syndication)
API just provides the thumbnail album cover images that size is 160 x 160 pixels. The
Android HVGA® (Half-size VGA) screen resolution is 480 x 320 pixels. It is hard to

"Picasa. URL<http://picasaweb.google.com.tw>
8SHVGA from Wikipedia. URL<http://en.wikipedia.org/wiki/HVGA>

15

http://picasaweb.google.com.tw
http://en.wikipedia.org/wiki/HVGA

show all the albums without scrolling. This Simple Android Application downloads all
the album cover images and show them in size 60 x 60 pixels. It would need 12 requests
to download 12 images and cause 78 KB network traffic. We wonder to get the multiple

photos by one request and the image size can be controlled.

M€ 6:39em

. 60x60
@ * - E O O = =
Bigages AQL6 AQL7
U/ @ Download size 160x160
- ? 2 - y but show 60x60 in App.
AQL8 AQL9 B AQL10
5“ li""" x .7 i
g 12 request headers
AQL1 AQL AQL2
A — 12 response headers % 78 KB
© 2 e -
\a b 12 response bodies
AQL3 AQL4 AQLS

Figure 2.10: SSample Picasa“Android. Application

Summary of Observations

According to our observations, we could list the requirements of our system as follow:

(1) We wonder to reduce the request and response header size.

(2) We wonder to use fewer request to get more results.

(3) We wonder to get more smaller response body by compression.

(4) We wonder fewer connecting when the dependency exist.

(5) We wonder to get on-demand results.

(6) We wonder to get multiple photos by one request and the image size can be controlled.
The above-mentioned six system requirements with the purpose of reducing the transmis-
sion overhead between Android application and RESTful APIs.

16

Chapter 3

System Architecture

3.1 Proposed System Architecture

According to our motivation and system requirements that mentioned in Chapter
2, we proposed a system architectuire that satisfied them. Figure 3.1 shows our system
architecture. We setup a proxy between the Android application and the API server in

place of logic flow (direct connect with-APL server). /“The Android application include

API
Logic Flow Server

f
HTTP
Cache Cac e\ (TCP/IP)

l&----

!
/ HTTP Header Reduction
Mobile API Query Language > Prox
APP Image MultiGet Request i
. Y Content Reduction r Y
Client) (Compress, Filtering) Proxy
L'Sblde) Image Combine L'Sblde
ibrar i ibrar
| Hhrary) (Compress, Resize) y

Figure 3.1: Proposed System Architecture

the Client-Side Library that interconnect with Proxy-Side Library in the proxy. Android
application call the REST API through the proxy. The proxy interconnect with API

Server through wireline network (strong connection). Client and Proxy-Side can option

17

enable cache service if your Application need better response time. We do the HT'TP
Header reduction between the Client and Proxy-Side connection. The details and other

functions we will explain in follow sections.

3.2 HTTP Header Reduction

We set the HTTP request and response header as simple as possible. For example,
Figure 2.4 in Observation 2 shows the HT'TP request header that we call the REST API.
The header “Host” and “Accept-Encoding: gzip” is necessary for our request, but the
“User-Agent” is unnecessary because we will get the same result if we don’t set it. We
can add the header “Accept-Encoding: gzip” and the parameter “appid” in the Proxy-
Side to reduce the traffic from client to server. And then, we simplify the HT'TP response
header by our Proxy-Side Library. Figure'3.2:shows our headers. We removed the “P3P”

information and added the compression information.

Added Request Header

Request Header e

: Host : [Host IP]

Mobile Prox
APP Response Header y
— Date: [DATE] —

F Vary: Accept-Encoding
Cl!ent Content-Encoding: gzip Pr_oxy
Side Content-Length: [Length] Side

Library Content-Type: text/htm| Library
\—/;)

Figure 3.2: Simplified HTTP Request and Response Header

18

3.3 Client-Side Library

In this section, we will describe the details about our Client-Side Library.

3.3.1 API Query Language

The API Query Language(AQL) is a SQL-Style Language for our Request. It trans-
form one or multiple REST call to the one SQL-Style query. Table 3.1 shows the query

format of AQL and relationships between AQL and HTTP verbs.

Table 3.1: Query Format of AQL and Relationships Between AQL and HTTP Verbs

Action

AQL

HTTP

Query Format

Create

Insert

POST

INSERT INTO [API].[Method]
([Parameter Key(s)])
VALUES ([Parameter Value(s)])

Read

Select

GET

SELECT |[Field]//[Attribute]
FROM [API].[Method]
WHERE A or B

Ac:[Key. Value_Parameters]
B: [Key] IN ([SubSelect])

Update

Update

PUT

UPDATE [API].[Method]
SET [New_Value]
WHERE [Key_Value_Parameters]

Delete

Delete

DELETE

DELETE FROM [API]./Method]
WHERE [Key_Value_Parameters]

Insert

The “Insert” query is to create a resource to the API provider. Developer assign a
specific API name, method and required parameters to the query. For example, devel-
oper can use query “INSERT INTO Twitter.statuses/update (status) VALUES (Tweet)”
to send a status update to Twitter through our proxy. When our Proxy-Side Library

19

receive the query, the query will be parsed into real REST URI for Twitter API such
as “http://api.twitter.com /version/statuses/update.xml?status=Tweet”!. Proxy use the
HTTP POST to access the resource and then return the result to the Client-Side Library.
If the API method need any authentication such as OAuth. Developer must direct user to
Service Provider to obtain user authorization first. User need to allow Proxy-Side Library
to get the Access Token. The Authentication Flow is show in Figure 2.2. And then,

Server will have permission to access the resource of service provider.

Select

The “Select” query is use to get resource from API server. It is always the most query
that an application call. To “Select” the specific field is useful to get on-demand resource.
Figure 3.3 shows the result of query “SELECT id, name FROM Twitter.statuses/friends”?.

Method “statuses/friends” will response the-information about friends of Twitter user.

Select * Select id, name
<user> <user>
<1d>7309052</1d> _ <id>7309052</id>
<name>Yahoo! News</name> > <name>Yahoo! News</name>

<screen_name>YahooNews</screen name> </user>
<location>Santa Monica, CA</location>

<description>The official Twitter account for Yahoo! ...
<profile image url>http://a0.twimg.com/profile_ima ...
<url>http://news.yahoo.com</url>

<protected>false</protected>
<followers_count>40935</followers_count>

<profile_background color>E5FO0FB</profile background color>
<profile text color>314251</profile text color>

<profile_link color>0059a6</profile link color>

<profile sidebar fill color>e5f0fb</profile sidebar fill color>
<profile_sidebar border color>bcd2e7</profile sidebar border color>
<friends_count>243</friends_count>

<created_at>Sat Jul 07 06:52:31 +0000 2007</created at>
<favourites_count>0</favourites_count>

</user>

Figure 3.3: “Select *” and “Select id, name” From Twitter.statuses/friends

The information include the background color of friends’ Twitter page. When we develop

'POST statuses/update. URL<http://dev.twitter.com/doc/post/statuses/update>
2GET statuses/friends. URL<http://dev.twitter.com/doc/get/statuses/friends>

20

http://dev.twitter.com/doc/post/statuses/update
http://dev.twitter.com/doc/get/statuses/friends

an Android application, we usually have our user interface. So we don’t care about the
color or image of their background image information. In this case, we can know all of our
Twitter friends’ id, name and latest status id by AQL. It can save a lot of bandwidth. We
also can use “SubSelect” to solve the problem of “Dependency of API Method” because
we can send one query to the Proxy-Side Library, and then, Proxy-Side Library parse the
query and call the specific API respectively to complete the result of query. Figure 3.4
shows the flow of SubSelect query. Just like YQL, we can use AQL to call the method of
APT and set the parameter to result from another API. The “Select” query can retrieve the
XML of RSS feed by query “SELECT * FROM xml where url=[RSS_URI]”. The “Select”
query also can retrieve the value from XML attributes. For example, “<media:thumbnail
url="http://example.jpg’ />" can use “SELECT media:thumbnail//url” to get the value
“http://example.jpg”.

SubSelect A
Result A g
Mobile Query Include SubSelect < o
APP > Proxy SubSelect B + Result A
— — _ Result B SAPI
Client Proxy | . erver
Side _ Filter(ResultN) Side
Library Library Result N
— =

Figure 3.4: Flow of SubSelect Query

Update

The “Update” query is used to update the resource by REST API call. Android
application send the “Update” query through Client-Side Library. When the Proxy-
Side Library received the query, the query would be parsed and using HT'TP “PUT” or
“POST” method to send a update request to the API server.

Delete

The “Delete” query is used to delete the resource by REST API call. Android

application sends the “Delete” query through Client-Side Library. When Proxy-Side

21

Library received the query, the query would be parsed and using HTTP “POST” or
“DELETE” method to send a delete request to the API server.

Summary of AQL

Developers can use the AQL or not by their preferences because in four AQL query
types, the “Select” query is more effectivity than others. AQL provides a friendly way
to call the REST API. Facebook provides their own SQL-Style language called FQL but
it just providing “Select” Query. We also can implement multi-query in our Client-Side
Library if we want to send more than one query by one HTTP request. For example, if
users want to send their message to Twitter, Facebook or other Web sites, or upload photos
to different album Web sites (e.g., Flickr, Picasa), they can bundle multiple “Insert” query
to one HTTP request. Our Proxy-Side Library will do all the queries for users.

3.3.2 Image Multi-Get-Module

For the purpose of minimizing, HETP requests [20], CSS Sprites® are the preferred
method for reducing the number of image requests« Combine your background images into
a single image and use the CSS background-image and background-position properties
to display the desired image segment. We adopted this idea for our system function.
Figure 3.5 shows two implement of Picasa Android Application. For this case, App. A is
normal design that download all the album cover images and show them in size 60 x 60
pixels. It would need 12 requests to download 12 images and cause 78 KB network traffic.
If we implement it like App. B, we resized all images and combined them to one images
first, it just need one request to get all the album cover images and just cause 28 kb
network traffic. It is 64% reduction of this case. For the purpose of reducing the network
traffic of getting images, the “Image Multi-Get” (IMG) module is provides a multiple
image getting method to reduce the request header, compress the images and resize the
images. Figure 3.6 is shows the work flow of Image Multi-Get Module. Just like the idea
of CSS-Sprite, Client-Side send one request to get multiple images to reduce the HT'TP

3CSS Sprites: Image Slicing’s Kiss of Death. URL<http://www.alistapart.com/articles/

sprites>

22

http://www.alistapart.com/articles/sprites
http://www.alistapart.com/articles/sprites

. Download size 160x160 Download Combined and resized image
but show 60x60 in App. e 4

* . Bl e 6:39em

: Qg 60x60 Bt}
Big images AQL6 AQL7 Big images AQL6 AQL7
/] a4 L/ A
e U A7 vy 4 a°
-~ -
AQL8 AQL9Y AQL10 AQLB AQL9Y AQL10
4 x g £ > -y
AQLY AQL AQL2 AQLY AQL AQL2
p 77 ,, P)
@ & s @ T e
AQL3 AQL4 AQLS AQL3 AQL4 AQLS
App. A App.B
12 request headers + 12 response headers + 1 request header + 1 response header +
12 response bodies = 78 KB response body =28 KB

Figure 3.5: Two ImplementiofiPicasa Android Application

request headers. We can send a set of image urls or get multiple urls from API Server by
AQL to the IMG module as Stepd in the Figtire 3.6./ If we just send a set of image urls,
the Proxy-Side will download all the iimages according to the urls. And then, the Proxy-
Side Library combines all the images to one image. The image size for each image will add
to response header. For example, response header “Size: 24562 45231 _64523” is stand for
three images size. First image size is 24562 bytes, the second image is 45231 bytes and the
third image is 64523 bytes. When the Client-Side Library received the combined image, it
will spilt the image according to the response header. If we want to get the urls from the
result of AQL, we can use the term “[IMG]” to indicate the Proxy-Side Library to get the
urls from API Server, and then send the urls to the IMG module to combine the images
and return to Client-Side Library. For example, we use query “SELECT [IMG].Url FROM
LifeAPI.Biz.getPhotos WHERE ID=LB4VSXM38511” to get the image urls of result of
query “SELECT Url FROM LifeAPI.Biz.getPhotos WHERE ID=LB4VSXM38511” and
then send the urls to IMG module to get the combined image. For the combined image,

we have three optional parameters to set:

(1) Optional Quality Parameter:

23

API Server
?
IF (AQL)
1 2 3
Mobile _| ImageMultiGet(URL) N Parallel
APP ImageMultiGet(AQL) Proxy Download Images
— < > s
Client : Proxy |< > Server
Side (—I Combined Image |— Side D) ~
Library Library |« >
\—— 6 —/ 4
Spilt Image Combine Images

Resize Images
Compress Images

Figure 3.6: Image Multi-Get Module

If the quality parameter is set,«he-combinedrimage will be compressed by JPEG.
The quality parameter range is 0=to 100 percentage. For example, if our Android
Application want to get the 80% quality images, we can use AQL to set the “SE-
LECT” statement to “SELECT [IMGJ.[80].TagName_of_Url” to get the 80% quality
images from IMG module. When we compréss'the image, the total bytes of im-
age will be reduced, too. There is‘a trade-off between the image quality and total
bytes. Developers can according to their application requirement to set the quality

parameter.

(2) Optional Resize Rate:
If the resize rate is set, the combined image will be resize by the given rate. The
resize rate range is 1 to 100 percentage. For example, if our Android Application
want to get a size is 50% of original image size and quality is 90%, we can use AQL
to set “SELECT” statement to “SELECT [IMG].[90].[50]. TagName_of_Url” to get
the 90% quality and 50% size images from IMG module. When the image is resized

to smaller size, the total bytes of image will become smaller.

(3) Optional Resize To Fixed Size:
If our application want to get a set of fixed size images, we can set the AQL “SE-

LECT” statement to “SELECT [IMG].[100].[100*100]. TagName_of_Url” to resize an

24

original image to 100 x 100 pixels. It is useful for a photo album application to set

a small size of thumb cover like Figure 3.5.

The “IMG” module is based on PHP GD library 4. Before we combine the images,
we use PHP GD function “ImageCreateTrueColor” to create a new true color image.
And then, use PHP GD function “ImageCopyResized” to resize the original image by
given resize rate. Moreover, we use PHP GD function “ImageJpeg” to assign a quality
parameter and then save a result image to the buffer and record the total bytes of this
image. Finally, when all the images had been buffered, the images in buffer will be merged
and returned to client. The response header will add the size information about all the

images.

3.3.3 Gzip Compression Request

Our Client-Side Library expends DefaultHttpClient® and add a response interceptor
to support the Gzip decompression. The compression héader “Accept-Encoding: gzip” is
going to be added in the proxy, sowe donot-need.to addat in our Client-Side Library. Fig-
ure 3.7 is request and response headerof the query.#Select * from LifeAPI.Addr.listCity”.

AQL HTTP Request Header

GET /aql/doQuery.php?g=select+*+from+LifeAPI.Addr.listCity HTTP/1.1
Host: 140.113.240.106

AQL HTTP Response Header

HTTP/1.1 200 OK

Date: Sun, 08 Aug 2010 18:52:53 GMT
Vary: Accept-Encoding
Content-Encoding: gzip
Content-Length 326

Content-Type: text/html

Figure 3.7: AQL HTTP Request and Response Header

‘PHP GD URL<http://www.php.net/manual/en/book.image.php>
SDefaultHttpClient. URL<http://developer.android.com/reference/org/apache/http/impl/

client/DefaultHttpClient.html>

25

http://www.php.net/manual/en/book.image.php
http://developer.android.com/reference/org/apache/http/impl/client/DefaultHttpClient.html
http://developer.android.com/reference/org/apache/http/impl/client/DefaultHttpClient.html

3.3.4 Spilt Combined Image

When the Client-Side Library get the combined image, the combined image will be
spilt to multiple images according to the response header “Size” that added by Proxy-
Side Library. For example, if the response header is “Size: 4310.2394_2914”) we will know
there are three images, first image is 4310 bytes, second image is 2394 bytes and third
image is 2914 bytes. Client-Side Library can cut the input stream to images according to
byte length information in response header. The multiple images will option be a Bitmap®

array or another style that Android developer like to use.

3.4 Proxy-Side Library

In this section, we will describe the details about our Proxy-Side Library. Our Proxy-
Side Library was written by PHP .and based on«Apache HTTP Server. The Client-Side
Library use the HT'TP “GET” ot “POSTE” to-send thequery to our Proxy-Side Library.

3.4.1 Parsing the Query

The query will be parse to url of resource that use to access the API server. For exam-
ple, the query “INSERT INTO API.Method (p1, p2, ps, --., pn) VALUES (vy, v9, v3, ..., v,)"
will parse to url “http://Uri.Of. API/Method?p; = v1&pe = va&ps = v3&...&p, = v,”
and use HT'TP POST method to access it. If the “SELECT” query includes the sub select

query, it will be parsed and be processed recursively.

3.4.2 Filtering Results

When our proxy got the results from the API server, our proxy will filter the result
by specific fields in the “SELECT” query. If the AQL query is start by “SELECT *”, our
proxy will return the entire result. If proxy got the result in XML format, the white space

between different XML tag will be removed. The comments of XML will be removed,

SBitmap. URL<http://developer.android.com/reference/android/graphics/Bitmap.html>

26

http://developer.android.com/reference/android/graphics/Bitmap.html

too. Finally, the first line of XML (<7xml version="1.0" encoding="UTF-8" 7>) will be

removed because we can add it in our Client-Side Library.

3.4.3 Convert Response Format

If there exists a parameter “format” in the “SELECT” query, our proxy will convert
the format to the related value. For example, If the service provider just has XML
format to response, we can add the parameter “format=JSON” after “WHERE” in AQL
“SELECT” query. Our Proxy-Side Library will convert the format to JSON format.
JSON format can convert to XML, too.

3.4.4 Combining Images

If our AQL parser meet term “JIMG]” is “SELECT” query, the IMG module will be
launch. Proxy will download all the images by parallel scheme (multi-thread). The IMG

query format is
SELECT[IMG].[Quality].[Réswze].TagNameiof-Url/ | Attribute Name_of Url

. When proxy download all the images, proxy will combine all images into one byte array
output stream and set the HT'TP response header “Size” that record all the image’s byte

length. Finally, return the combined image to the client.

27

3.4.5 OAuth Authentication

Our proxy supports OAuth authentication if users want to get their private data
through our proxy. The authentication flow had been shown in Figure 2.2. Figure 3.8
shows the example about the flow of OAuth authentication in the simple Twitter Android
application. When user allows our proxy to access their private data, we will get their
access token and then return to Client-Side Library. Client-Side can save this access token

and use this access token to send requests to proxy.

; ‘ : You
!

The application AndroidTw by
NCTU would like to Sign you into
ITwitter.

Username or email Connect your account?

chinliang
Invoked Login Password date u

Hi ChinLiang,
The application AndroidTw by
NCTU would like to Access and

Sign in Cancel Update your data on Twitter.
YAlec Ross . . Make sure you trust this application!
S 'sun Aug 08 13:28:45 +0000 2010 Proxy Directs User To Login Page
Report that Taliban kills 10 medical aid workers Allow Deny

orking for Christian charity organization in
#Afghanistan http://tinyurl.com/367ybyd
2 W¥Chad Fowler
f--Sun Aug 08 13:23:26 +0000 2010
RT @rich_kilmer: T don't get people that fight fa
the spots closest to the gym entrance. #exercise:

. /|eff Keni Pulver Can Access

Sun Aug 08 12:03:38 +0000 2010 an Access

s & Update
RT @DalaiLama: Anger, jealousy, impatience, and

Don't want to connect using this
Connection Allowed account? Sign in as a different user.

hatred are the real troublemakers, with them ’ AHOW Our PI‘OXy
problems cannot be solved. o
Guardian Tech To Get User’s Data

Sun Aug 08 11:48:58 +0000 2010

All done, ChinLiang. You can now
use this application with Twitter.

You may revoke access to this
Get Data Through Proxy 4

application at any time by visiting
your Settings page.

Redirecting you back to
AndroidTw.

Home - Sign out

Redirect To Application

Figure 3.8: Example of OAuth Authentication

28

Chapter 4

Experimental Results

In this chapter, we will show our experimental results in following sections. First,
we show the results that we call the Yahoo! LifeStyle API by different ways. One is to
get results from the API server directly.andranother is through our proxy. We also show
the result of different formats (XML and JSON)a Second, we compared the two different

implementations about common Picasa-album-application.

4.1 Experimental Setup

Our client side device is “HTC Desire A8181”7!. The specifications show in Table 4.1.

119mm
47

60mm 11.9mm
(2.36" (0477

Figure 4.1: HTC Desire A8181

Our client side device use Wi-Fi to access the RESTful APIs and capture the packets by
Wireshark. In order to simulate the low-bandwidth wireless network, our Wi-Fi access

point was connecting a wireline that just has 2M downlink and 128k uplink. Our proxy

YHTC Desire Specification<http://www.htc.com/www/product/desire/specification.html>

29

http://www.htc.com/www/product/desire/specification.html

Table 4.1: Specifications of Our Client Device (HTC Desire A8181)

Model A8181

CPU Speed 1 GHz

Platform Android™ 2.1 (Eclair) with HTC Sense 7™

Memory 512 MB ROM and 576 MB RAM

Size and weight | 119 x 60 x 11.9mm, 135 grams

Network HSPA/WCDMA (900,/2100 MHz)
GSM/GPRS/EDGE (850/900/1800/1900 MHz)

Display 3.7-inch AMOLED touch-sensitive screen

Resolution 480 X 800 WVGA

Internet 3G: Up to 7.2 Mbps download speed

Up to 2 Mbps upload speed
GPRS: Up to 114 kbps downloading
EDGEsUpto 560 kbps . downloading
Wi-EiI"™IEEE 802.11 b/g

was implemented with PHP Vetsion 5.3:2-1ubuntu4.2-6n Ubuntu 10.04.1 LTS and the
memory size is 4GB, processor is “AMD Athlon(tnt)IT X4 630 Processor 2. 8 GHz”.

4.2 Common Plain Text

In the section, we choose the Yahoo! LifeStyle API to show our improvement. The
response of RESTful APIs always be plain text just like Yahoo! LifeStyle API. Our
experimental application will normally call the Yahoo! LifeStyle API with the parameters
that show in Table 4.2. We use the same parameters to call the Yahoo! LifeStyle API by
AQL. Table 4.3 is shows our reduce ratio. The original size is to call the method normally.
The fields of content received is the size of response content (including response header
length). The fields of Total is all the transmission traffic that including TCP three-way
handshake (about 200 bytes), TCP ACK (per packet 66 bytes), HTTP request headers
and response headers. The original HT'TP request header length in this experiment is

about 305 358 bytes. Our reduced HTTP request header length is about 180 to 245 bytes.

30

Table 4.2: Experimental Parameters in Yahoo! LifeStyle API

Method Name Parameters

Addr listCity (NULL)

Addr.listDistrict city=A

Addr.listArea city=A&dist=02

Biz.search BizName=coffee&address=&page=1
Biz.getDetail ID=N96KJRS68418

Biz.listReviews ID=N97K68530418&begin=0&limit=100
Biz.getPhotos ID=P87YBWS38512&begin=1&limit=100
Class.listClasses id=0

Class.listBizsInRange | lon=121.548030&1at=25.036608& class=152979953
Search.getTopQuery | (NULL)

Theme.getList count=20

Theme.getDetail id=30

The compress ratio was calculated by the formuiila:
CompressRatio = 1 — Content Received(AQ L) /€ ontent Received(Original)
The total reduce ratio was calculated by the formula:

Total Reduce Ratio = 1 — Total(AQL)/Total(Original)

We can see the average compress is about 74% because the gzipping is generally re-
duces the response size by about 70%. In addition, the total reduce ratio is over 60%
for average. Figure 4.2 is a bar chart of this experiment. The reduce ratio of method
“Search.getTopQuery” is only 44.12% because the response of this method is small (825
bytes by original). Table 4.4 is the data of the same API method but the response format
is JSON. We can see the size of JSON format usually small than the XML format because
JSON format is lightweight data-interchange format. But the original response of method
“Theme.getDetail” in JSON format is larger than XML format. The reason is the content
of the Yahoo LifeSytle API has many Chinese words. When JSON encode the Chinese
words, it will become a long code (e.g., “% & after json encode is “\u7f8¢\u98df”).

We observed the response time in two types of API calling. The response time is start

from sending the request and displaying on screen in the end. We set the format to XML

31

Table 4.3: Ratio of XML Content Compressed by Gzip in LifeStyle API (Bytes)

Cont.ent Cont.ent Total Total Compress Compress Total
Method Name Received Received .. Rate Reduce
(Original) (aQr) Original) (AQL) pyppp) Rate(TCP) g
Addr.listCity 3,143 491 4,446 1,261 84.38% 71.64% 3,185
Addr.listDistrict 2,044 398 3,226 1,187 80.53% 63.21% 2,039
Addr.listArea 2,988 586 4,306 1,383 80.39% 67.88% 2,923
Biz.search 7,697 2,515 9,094 3,461 67.32% 61.94% 5,633
Biz.getDetail 2,438 779 3,626 1,574 68.05% 56.59% 2,052
Biz.listReviews 7,678 1,999 9,084 2,953 73.96% 67.49% 6,131
Biz.getPhotos 3,182 620 4,519 1,440 80.52% 68.13% 3,079
Class.listClasses 1,926 501 3,106 1,288 73.99% 58.53% 1,818
Class.listBizsInRange 4,321 929 5,479 1,768 78.50% 67.73% 3,711
Search.getTopQuery 825 232 1,869 1,007 71.88% 46.12% 862
Theme.getList 8,410 3,055 9,788 4,106 63.67% 58.05% 5,682
Theme.getDetail 17,886 3,988 20,187 5,038 77.70% 75.04% 15,149
Overall 62,538 16,093 78,730 26,466 74.27% 66.38% 52,264
Addr.listCity
Addr.listDistrict
Addr.listArea
Biz.search
Biz.getDetail
Biz.listReviews
Biz.getPhotos
Class.listClasses
Class.listBizsInRange
Search.getTopQuery
Theme.getList
Theme.getDetalil
0 5,000 10,000 15,000 20,000 25,000

B Total (Original)

[] Total (AQL)

Figure 4.2: Gzip Compression in LifeStyle API (XML)

32

Table 4.4: Ratio of JSON Content Compressed by Gzip in LifeStyle API (Bytes)

Cont.ent Cont.ent Total Total Compress Compress Total
Method Name Received Received .. Rate Reduce
(Original) (AQr) \Origina) (AQL) yyppp) Rate(TCP) ;0
Addr.listCity 1,602 464 2,785 1,254 71.04% 54.97% 1,531
Addr.listDistrict 1,171 377 2,233 1,182 67.81% 47.07% 1,051
Addr.listArea 2,052 583 3,250 1,396 71.59% 57.05% 1,854
Biz.search 7,505 2,618 8,914 3,580 65.12% 59.84% 5,334
Biz.getDetail 1,588 684 2,788 1,495 56.93% 46.38% 1,293
Biz.listReviews 5,910 1,985 7,196 2,955 66.41% 58.94% 4,241
Biz.getPhotos 2,261 558 3,478 1,394 75.32% 59.92% 2,084
Class.listClasses 1,355 469 2,415 1,272 65.39% 47.33% 1,143
Class.listBizsInRange 2,929 893 4,297 1,748 69.51% 59.32% 2,549
Search.getTopQuery 698 229 1,754 1,024 67.19% 41.62% 730
Theme.getList 9,697 3,300 11,219 4,367 65.97% 61.07% 6,852
Theme.getDetail 18,133 4,184 20,446 5,250 76.93% 74.32% 15,196
Overall 54,901 16,344 70,775 26,917 70.23% 61.97% 43,858
Addr.listCity
Addr.listDistrict
Addr.listArea
Biz.search
Biz.getDetall
Biz.listReviews
Biz.getPhotos
Class.listClasses
Class.listBizsInRange
Search.getTopQuery
Theme.getList
Theme.getDetalil
0 5,000 10,000 15,000 20,000 25,000

B Total (Original)

[] Total (AQL)

Figure 4.3: Gzip Compression in LifeStyle API (JSON)

33

and JSON and then called all the methods one hundred times respectively. Table 4.5
shows the average response time in Yahoo! LifeStyle API. The bold number is stand for
“more fast”. We can found that we call API by AQL is more fast than call it directly,

Table 4.5: Average Response Time in Yahoo! LifeStyle API (ms)

XML JSON
Method Name Directly AQL Directly AQL

Addr.listCity 710.67 666.88 569.20 672.05

Addr.listDistrict 642.24 636.02 629.54 617.28

Addr.listArea 667.81 650.30 633.03 633.31

Biz.search 996.39 706.50 715.64 671.55

Biz.getDetail 646.60 656.11 626.11 623.76

Biz.listReviews 979.13 690.93 916.66 619.21

Biz.getPhotos 655.08 660.99 639.76 642.24

Class.listClasses 643.52 638.61 635.34 623.32
Class.listBizsInRange 967.16 664.23 646.59 641.07
Search.getTopQuery 619.92 612.58 611.77 615.19

Theme.getList 982.86 674.66 993.36 676.78

Theme.getDetail 1,317.58 738.82 1,239.19 648.73

Average 819.08 666.39 738.02 640.37
Addr.listCity Addr.listCity |m———
Addr.listDistrict Addr.listDistrict ~|E=———
Addr.listArea Addr.listAreq |

Biz.search Biz.search |E———————==m
Biz.getDetall Biz.getDetail |E——
Biz.listReviews Biz.listReviews |E————e———

Biz.getPhotos Biz.getPhotos |F——
Class.listClasses Class.listClasses |F———
Class.listBizsInRange Class.listBizsInRange |m———

Search.getTopQuery Search.getTopQuery —|E—————)

Theme.getList Theme.getlList |F————
Theme.getDetail Theme.getDetail |EE—
Average Average |
0 500.00 1,000.00 1,500.00 0 500.00 1,000.00 1,500.00
B Directly O AQL

Figure 4.4: Line Chart of Average Response Time in Yahoo! LifeStyle APT (ms)

especially in large data. The reason is large data will be reduce more bytes by Gzip com-
pression. So it needs less time to transfer. According to Table 4.5, AQL is more efficient

because the average time is less then another.

34

4.3 Multiple Images

In this section, we will show the effect when we using “IMG” module or not. First,
we observed the impact between quality and total image size. Second, we observed the
effect of resize ratio. And then, we compared different applications’ response time and

total packet length in the end .

4.3.1 Image Quality

The image quality and the total image size is a trade off. More smaller image size is
less quality. We choose ten images to observed the quality parameter in “IMG” module.
The size of original image is 160 x 160. Table 4.6 shows the quality parameter related to
the total image size (including TCP packet data). The “Original” quality is the images

Table 4.6: Quality Parameter versus.Total Image Size

Quality| 100 90 80 70 60 50 40 30 20 10

Total
Bytes

142,714 | 68,385 | 49,278 | 41,150 | 35,682 | 32,185 | 28,809 | 25,000 | 20,399 | 14,555

that we do not do any compression and downléad it in normal HTTP connection (one
connection per image). Quality in Figure 4.5 (a) shows the line chart of Table 4.6. We
found that the total size of combined image is large than the sum of all original size when
the quality parameter is “100” because the combined image is TrueColor image. When

we set the quality parameter to “90”, the total image size is decrease very soon.

4.3.2 Image Resize

The total image size is proportional to resize rate. We can resize a big image to a
smaller one to reduce the total image size. We choose the same images as “Image Quality”
experimental. In this experimental, we set the “Quality parameter” to “100”. Table 4.6
shows the resize rate related to the total image size. Resize in Figure 4.5 (b) shows the

line chart of Table 4.7.

35

Table 4.7: Resize Rate versus Total Image Size

Resize

100 90 80 70 60 50 40 30 20 10
Rate
;;::; 168,573 1150,029{122,900 105,444 | 84,138 | 63,598 | 47,266 | 32,283 | 18,716 | 7,944
180,000 180,000
135,000 135,000
290,000 290,000
a <)
45,000 45,000
0 0
100 90 80 70 60 50 40 30 20 10 100 90 80 70 60 50 40 30 20 10
Quality Parameter Resize Rate
O Size (Bytes) O Size (Bytes)
(a) Quality (b) Resize

Figure 4.5: Line Chart of QualitysParametersand Resize Rate versus Total Image Size

4.3.3 Normal versus AQL Picasa Application

We implemented the Picasa album applicationnormally and by AQL respectively.
Figure 4.6 is a screen capture of our application. User enter a user ID and then click
the “Enter” button, and then it will show the album list of that user’s ID. The normal
Picasa application get the entire RSS from Picasa album list without compression. And
then, parse the XML to get the album title and cover image urls. Finally, download all
the “on screen”? images. On the other hand, AQL Picasa application (PicasaAQL) one
set the quality parameter to “50” (PicasaAQL-50) another set quality parameter to “95”
(Picasa-95), the other set quality parameter to “100” (Picasa-100) for worst case in this
experimental. We set the resize rate of all the PicasaAQL to “50” to get the images that
is 80 x 80 pixels because original image size is 160 x 160 pixels, our application just show
60 x 60 pixels so 80 x 80 pixels is more better user interface looking. First, PicasaAQL
get the necessary XML data by AQL query. For example, It will decrease XML size from

20n screen image is stand for the images that will initial show on Android phone’s screen. For example,
if the screen can only contain 18 images, normal Picasa application will just download these 18 images

until the user scroll the screen.

36

Picasa Album g A b

AQL16 AQL17 AQL18
D : gsking0917 e e @

- 0

8
Enter AQL19 AQL21 AQL22
) :)Y 2
Quality Parameter @l / 5)
50 - AQL23 AQL11 AQL12
Resize Rate !
AQL13 AQL14 AQL15
50 ko4 - .
‘;/é Q
: &
Big images AQL6 AQL7

Figure 4.6: Application Screen Capture

19.443 bytes to 884 bytes (about 95.3% reduction)avhen there are 10 albums.

Table 4.8 shows the response time-and the total transmission bytes (Request and
Response). Figure 4.7 shows thel line chart-of Table 4.8. The response time is start
from user click the “Enter” button\to user see the album list. The total transmission
bytes is the total packet length that send-and-receive by application during the response
time. According to our experimental, we can found the normal Picasa application is little
faster (200ms to 600ms) than PicasaAQL when the album image count is less (about 4 in
Figure 4.7 (a)). The reason is the fewer images need fewer request headers and it directly
get images from Picasa. But the total transmission bytes is larger than PicasaAQL.
When the image count increase, normal application’s response time is raise very fast but

PicasaAQL-50 and PicasaAQL-100 are increase slowly.

37

Table 4.8: Normal Picasa APP. versus PicasaAQL APP.

Image

Count 2 4 6 8 10 12 14 16 18
Respomse |\ 41 2025 3,040 3462 3821 4959 5576 5938 7,345
Normal Time (ms)
Picasa
Total Bytes 32,725 52,039 86,291 103,362 121,311 130,627 147,519 159,747 172,012
Response
. 2278 2,322 2,62 2,725 2,635 2,896 2,938 2,96 3,013
PicasaAQL Time (ms) 7 7 7 9 9 969
(50)
Total Bytes 4,798 7,356 10,193 13,102 14,634 17,608 19,525 21,302 22,717
Response
. 2,131 2,4 2, ,011 ,1 ,1 34 , 722
PicasaAQL Time (ms) 3 77 583 3,0 3,156 3,190 3,348 3,669 3,7
(ES)]
Total Bytes 8,715 16,339 25240 32,634 38,568 46,300 52,766 57,883 62,485
Response
. 2,2 2, 2,824 2 , ,442 551 ,82 91
PicasaAQL Time (ms) ,260 736 8 3,266 3,375 3 3,55 3,827 3,915
(100)
Total Bytes 12,653 26,856 40,842 53,409 63,746 77,181 87,786 96,120 104,091
8,000 200,000
- 6,000 150,000
E
£ 8
[s
g 4,000 100,000
g 8
[0}
3
T 2,000 50,000
0 0
4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
Image Count Image Count
O Normal 1} PicasaAQL-50 O Normal 1} PicasaAQL-50
PicasaAQL-95 < PicasaAQL-100 PicasaAQL-95 < PicasaAQL-100

(a) Response Time (b) Total Transmission Bytes

Figure 4.7: Line Chart of Response Time and Total Transmission Traffic

38

Chapter 5

Conclusion

In this thesis, we observed the overhead when Android mobile phone application
calling the RESTful API in wireless environment. The Android mobile phone has very
fantastic user interface and a large numbertofiapplication to use. More and more mobile
phone users using the Android REST" client, application to take the place of using Web
browser to access the internet. The wireless network is“more weaker than wired network
so we proposed a system architeeture to reduce the wireless transmission overhead when
calling RESTful APIs. Our system, architecture-has two parts. Client-Side Library in
Android application is to send the APT query-language to Proxy-Side Library and handle
the response result from our proxy. It can reduce the HT'TP request headers and use fewer
request to get more results by AQL. Proxy-Side Library is to parse the query from Client-
Side Library. It can filter the result according to AQL and compress the XML, JSON
or any plain text format data to reduce the transmission traffic. Proxy-Side Library also
have “Image Multiple Get” module to provides image compression, image resize and image
combined function to reduce the Image transmission overhead. Experimental results show
our system architecture can reduce the transmission traffic and improve the response time.
For the common plain text data, it will reduce over 61% of original data. For the images,
according to image count and parameter setting, it could reduce the total transmission
bytes about 80% and speed up the response time to about 50% when there were over 10

small images and the quality parameter and resize rate was set to 50.

39

[1]

[10]

Bibliography

R. T. Fielding, Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, UNIVERSITY OF CALIFORNIA, IRVINE, 2000.

I. Kilanioti, G. Sotiropoulou, and S. Hadjiefthymiades, “A client/intercept based
system for optimized wireless access to web services,” in Database and Expert Systems
Applications, 2005. Proceedings. Sizteenth International Workshop on, pp. 101 —105,
26-26 2005.

T.-Y. Chang, Z. Zhuang, A. Velayutham, and R. Sivakumar, “Webaccel: Accelerating
web access for low-bandwidth hosts,” Computer Networks, vol. 52, no. 11, pp. 2129
— 2147, 2008.

Open Mobile Alliance Inc., WAP FORUM/ http://www.wapforum.org.

B. C. Housel, G. Samaras, and D=B. Lindquist,»“Webexpress: A client/intercept
based system for optimizing web browsing in a witeless environment,” Mobile Net-

works and Applications, 1998.

R. Han, P. Bhagwat, R. LaMairé/T.-Muminert, V. Perret, and J. Rubas, “Dynamic
adaptation in an image transcoding proxy for mobile web browsing,” IEFE Personal

Communications, pp. 817, 1998.

Y. Hwang, J. Kim, and E. Seo, “Structure-aware web transcoding for mobile devices,”

IEEFE Internet Computing, vol. 7, no. 5, pp. 14-21, 2003.

T. Bickmore and B. N. Schilit, “Digestor: Device-independent access to the world
wide web,” in Proc. WWW-6, pp. 655—663, 1997.

O. Buyukkokten, H. Garcia-molina, and A. Paepcke, “Seeing the whole in parts:
Text summarization for web browsing on handheld devices,” pp. 652-662, 2000.

J. Chen, B. Zhou, and H. Zhang, “Function-based object model towards website
adaptation,” in In Proceedings of the 10th International World Wide Web Confer-
ence, pp. b87-596, ACM Press, 2001.

40

[11]

[12]

Y. Chen, “Detecting web page structure for adaptive viewing on small form factor

devices,” in In Intl. World Wide Web Conf. (WWW), pp. 225-233, ACM Press, 2003.

X.-D. Gu, J. Chen, W. ying Ma, and G. liang Chen, “Visual based content under-
standing towards web adaptation,” in In Second International Conference on Adap-

tive Hypermedia and Adaptive Web-based Systems (AH2002, pp. 164-173, 2002.

7. Hua, X. Xie, H. Liu, H. Lu, and W.-Y. Ma, “Design and performance studies of
an adaptive scheme for serving dynamic web content in a mobile computing environ-

ment,” IEEE Trans. Mob. Comput., vol. 5, no. 12, pp. 1650-1662, 2006.

Yahoo! Query Language. http://developer.yahoo.com/yql/.

Facebook Query Language. http://developers.facebook.com/docs/reference/fql/.
Yahoo!31 & .7 + APL http:/ /tw.developer.yahoo.com/lifestyle/.

P. Deutsch, “Guzip file format specification. version 4.3,” RFC 1952, May 1996.
Twitter API Documentation: http://dev.twitter.com /doc.

Yahoo!?1 & %a3k + APIL http//tw.developer.yahoo.com /knowledge/ .

Best Practices for Speeding Up YourT Web Site by Yahoo! Developer Network.
http://developer.yahoo.com/performance/rules.html.

41

	書名頁
	中文摘要
	英文摘要
	誌謝
	Contents
	List of Tables
	List of Figures
	Introduction
	Preliminaries
	Related Work
	Web Browsing
	Web Content Adaptation

	Open API
	REST Overview
	SQL-Style API
	OAuth

	Motivation
	Main Issue
	Request a RESTful API
	Observations

	System Architecture
	Proposed System Architecture
	HTTP Header Reduction
	Client-Side Library
	API Query Language
	Image Multi-Get Module
	Gzip Compression Request
	Spilt Combined Image

	Proxy-Side Library
	Parsing the Query
	Filtering Results
	Convert Response Format
	Combining Images
	OAuth Authentication

	Experimental Results
	Experimental Setup
	Common Plain Text
	Multiple Images
	Image Quality
	Image Resize
	Normal versus AQL Picasa Application

	Conclusion
	Bibliography

