

國 立 交 通 大 學

資訊學院資訊科技（IT）產業研發碩士專班

碩 士 論 文

JPEG2000 壓縮在雙核心數位訊號處理器上的實作與最佳化研

究

Implementation and Optimization of JPEG2000 Compression on Dual-core

DSP Processors

研 究 生：何柏瑲

指導教授：游逸平 教授

中 華 民 國 一百 年 七 月

JPEG2000 壓縮在雙核心數位訊號處理器上的實作與最佳化研究

Implementation and Optimization of JPEG2000 Compression on Dual-core

DSP Processors

研 究 生：何柏瑲 Student：Po-Chiang Ho

指導教授：游逸平 博士 Advisor：Dr. Yi-Ping You

國 立 交 通 大 學

資訊學院資訊科技（IT）產業研發碩士專班

碩 士 論 文

A Thesis

Submitted to College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Industrial Technology R & D Master Program on

Computer Science and Engineering

July 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年七月

i

JPEG2000 壓縮在雙核心數位訊號處理器上的實作

與最佳化研究

學生：何柏瑲

指導教授：游逸平 博士

國立交通大學資訊學院產業研發碩士專班

摘 要

多核心是未來處理器設計的趨勢。Analog Device (ADI)在最新一代的 Blackfin 處

理器—ADSP-BF561—中也採用了多核心的設計。BF561 是一顆採用微信號架構

(Micro Signal Architecture)的雙核心數位訊號處理器，此架構擅長於處理影像及各

種多媒體訊息。在本篇論文中，我們從 OpenJPEG 公開原始碼計畫中移植一個

JPEG2000 壓縮的程式到 BF561 上，接著在應用程式的階層上提出並實作最佳化

的方法。我們的最佳方法主要在於(一)資料地域性最佳化和(二)把工作分配到兩

個核心上執行。我們挑選了 JPEG2000 壓縮中佔運算比重最大的兩個部份—DWT

和 EBCOT Tier-1—來實行我們所提出最佳化方法。此外，我們在論文中討論實

驗中遇到的兩個關於編譯器的問題：其一是 GCC 內建函式對跨函式最佳化的干

擾，另一是 GCC 無法有效率的產生出平行指令。在我們的實驗中，我們發現使

用我們所提出的資料地域性最佳化後可以有效地提昇兩個核心的使用效率，原因

是我們的最佳化幅度減少了對外界低速記憶體存取的需求。我們使用了四張標準

的測試影像來評估我們最佳化的效能。我們的最佳化結果相較於原始程式在一個

核心上執行並加了-O3 編譯器最佳化，可以加速影像壓縮達 1.92 至 2.04 倍左右。

關鍵詞：Blackfin，數位訊號處理器，BF561，JPEG2000，平行處理，雙核心

ii

Implementation and Optimization of JPEG2000

Compression on Dual-core DSP Processors

student：Po-Chiang Ho

Advisors：Dr. Yi-Ping You

Industrial Technology R & D Master Program of

Computer Science College

National Chiao Tung University

ABSTRACT

Multi-core is the trend of future processor design. Along with this trend, Analog Device

(ADI) developed their latest Blackfin processor–ADSP-BF561–with a multi-core design.

BF561 is a dual-core, SMP-like DSP processor based on micro signal architecture (MSA),

which is specialized for video processing and multimedia computations. In this paper we

propose several software-level optimizations to speed up a JPEG2000 compression program

ported from OpenJPEG project on a Blackfin BF561 processor. Two optimization methods,

data locality optimization and utilization of two cores, are performed on the two

heavy-loading stages of JPEG2000 compression: DWT and EBCOT Tier-1. Implementation

issues such as the disturbance to compiler optimizations when using GCC attributes and

inefficient generations of parallel instructions are discussed. In our experiments, we found

that we can only benefit from the utilization of two cores after the data locality optimization is

well performed because the data locality optimization reduces the heavy loading of accesses to

low-speed SDRAM. Four popular image testbenches are used to evaluate the efficiency of our

optimizations. The experiments showed that the optimizations have a speed-up of

1.92x–2.04x for the compression compared to the baseline with -O3 optimization flag running

on single core.

Keywords: Blackfin, DSP, BF561, JPEG2000, parallel processing, dual-core

iii

誌 謝

首先，誠摯感謝我的指導老師游逸平教授在我碩士生捱研究上的指導與生活

上的關照。老師的指導，非但讓我在學術研究及專業能力上有所收穫，也讓我養

成對文章撰寫及口語表達追求嚴謹、有條不紊的態度。

感謝實驗室的同學世融在實驗設備採購上的協助。感謝學弟璨榮，翰融在研

究上的討論及實驗上的協助。有你們的協力，這篇論文得以更加豐富及完整。也

感謝學弟學妹：羽軒、深弘、聖偉、思捷、睦昂，有你們的歡笑及活力，讓我得

以度過一天天枯燥的研究生活。

最重要的，我非常感謝父母的支持與鼓勵。這段時間甚少回家，感謝你們的

體諒與關心，你們的支持讓我撐下去完成碩士的學業。

最後，感謝洋銘科技的何總監及劉副理在研究上的意見及生活上的關心。你

們的賞識及支持，是我完成這篇論文的一切前提。

誌於 辛卯年夏 竹塹交大

柏瑲

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Problem Definition . 3

1.4 Contribution . 4

1.5 Thesis Organization . 5

2 Related Work 6

3 JPEG2000 Overview 9

3.1 Background and History . 9

3.2 JPEG2000 Compression Procedure .. 11

3.2.1 Pre-processing . 12

3.2.2 Discrete Wavelet Transform . 13

3.2.3 EBCOT Tier-1 Coding . 16

3.2.4 EBCOT Tier-2 Coding . 20

4 The Architecture of Analog Device BF561 21

4.1 Blackfin Core . 21

4.2 Blackfin ADSP-BF561 . 23

4.2.1 Memory Hierarchy . 24

iv

4.2.2 DMA Support . 25

5 Implementation and Optimization 28

5.1 Experiment Environment Setup .. 28

5.2 Software-based JPEG2000 Implementation and Profiling 29

5.3 Overview of JPEG2000 Optimizations on BF561 30

5.3.1 Data Locality Optimization . 30

5.3.2 Utilization of Two Cores . 33

5.4 Optimization of DWT . 36

5.4.1 Data Locality Optimization . 36

5.4.2 Utilization of Two Cores . 40

5.4.2.1 Data Partition . 40

5.4.2.2 Task Partition . 42

5.4.3 DMA Optimization . 45

5.5 Optimization of EBCOT Tier-1 . 47

5.5.1 Data Locality Optimization . 47

5.5.2 Utilization of Two Cores . 50

5.6 Optimization Using Inline Assembly 51

6 Evaluations and Discussions 53

6.1 Evaluations and Discussions of DWT 53

6.2 Evaluation and Discussion of EBCOT Tier-1 56

6.2.1 The Disturbance of Compiler Optimizations due to Putting Proce-

dures to the L1 Instruction SRAM 60

6.3 Evaluation of Inline Assembly Optimization 61

6.4 Overall Evaluation . 62

6.4.1 Data Cache V.S. Handmade Data Locality Optimization 64

v

6.4.2 Overall Results . 64

7 Conclusion and Future Work 68

7.1 Summary . 68

7.2 Future Work . 69

vi

List of Figures

3.1 The procedure of JPEG2000 lossless compression. 12

3.2 (5,3) DWT (left) and inverse DWT (right). 14

3.3 An example of discrete wavelet transform: (a) the original image, (b) after

1D-DWT computation in horizontal direction, (c) after 2D-DWT compu-

tation, (d) 2-level DWT computation. 14

3.4 The ordering of high pass coefficients and low pass coefficients being gen-

erated. 16

3.5 The hierarchy of data partition of an image. 17

3.6 The scan pattern of a codeblock in one bit-plane. 18

3.7 An example to show what is “significant”. 18

3.8 The hierarchy of bit-plane coding. 18

4.1 Blackfin core architecture. .. 22

4.2 Block diagram of BF561 architecture. 23

4.3 Memory and bus architecture of BF561. 27

5.1 Execution time breakdown of JPEG2000 compression on theBF561 pro-

cessor. 31

5.2 Master-slave model of MPEG-2 encoder on dual-core processors. 34

5.3 Pipelined model of MPEG-2 encoder on dual-core processors. 35

5.4 2D-DWT computation. 37

vii

5.5 Dataflow of DWT computation performed in one line. 38

5.6 The data moving flow in a horizontal line. 39

5.7 The data moving flow in a vertical line. 40

5.8 Dataflow of DWT computation performed in one line: (a) before data lo-

cality optimization (b) after data locality optimization.. 41

5.9 The data partition to two cores. .. . 42

5.10 The memory/calculation partition to two cores 43

5.11 Latency of DMA transfer in continuous data. 46

5.12 Linking of DMA despriptors. .. 46

6.1 The analysis of time consumption in DWT before and after data locality

optimization. 55

6.2 The analysis of execution time of DWT using mem/cal partition. 57

6.3 Speed-up of the proposed optimizations for DWT. 57

6.4 Speed-up of the proposed optimizations for EBCOT Tier-1. 59

6.5 A simple program to show the disturbance of compiler optimizations due

to putting procedures to the L1 instruction SRAM. 61

6.6 The assembly codes of the simple test program in Figure 6.5. The left is

the original one; the other is the disturbed one. 62

6.7 The MCT source code. 63

6.8 The assembly code generated by GCC. 63

6.9 The assembly code we reassembled. 64

6.10 The performance comparison between automatic data cache and our hand-

made data locality optimization. .65

6.11 Time consumption to compress a 640x480 image. 66

6.12 The standard image testbenches. 66

viii

6.13 The overall performance evaluation of proposed optimizations on standard

image testbenches. 67

ix

List of Tables

3.1 An example of the three coding passes being performed in every bit-plane. 19

5.1 The data allocation of EBCOT Tier-1 in the L1 data SRAM. 49

6.1 DWT: The evaluation of performance improvements of two optimizations:

data locality optimization and utilization of two cores. 53

6.2 The loading comparison between memory transfer and computations in

DWT. 56

6.3 EBCOT Tier-1: The evaluation of performance improvements of two opti-

mizations: data locality optimization and utilization of two cores. 58

x

Chapter 1

Introduction

1.1 Overview

Digital images or videos need large amounts of space for storage of the contents. For the

efficient utilization of memory and storage space, we need tocompress them via reducing

spacial or temporal redundancy. Image (video) compressionis a digital signal process-

ing technique developed to compress an image (video). The compression procedures have

heavy computation and calculation loading. In a desktop environment, this is not hard be-

cause the computing power of modern CPUs often could afford the loading. However, in

an embedded environment, power consumption often needs to be considered since power

supply of many embedded systems come from batteries. Application-specific integrated

circuit (ASIC) is a good choice for speed and power consumption, and the price are often

not expensive. DSP processors may be another flexible choicesince they could run soft-

ware programs just like we run on desktop. Although the performance are not good as

ASIC, DSP processors are convenient to change software programs to target specific appli-

cations and the performance on image compression are often better than general purpose

processors.

DSP processors are microprocessors designed to perform digital signal processing, the

mathematical manipulation of digitally represented signals. Digital signal processing is one

of the core technologies in rapidly growing application areas such as wireless communica-

1

CHAPTER 1. INTRODUCTION 2

tions, audio and video processing, and industrial control [9]. Powerful ALUs and Multipli-

ers are the basic characteristics of DSP processors and their memory access often could be

parallel with mathematic calculations. Furthermore, special hardware components are de-

signed on them for accelerating digital signal processing like subtract-absolute-accumulate

(SAA), multiplier-and-accumulation (MAC), and so on.

JPEG2000 [15] is a novel image standard proposed by JPEG committee to approach the

modern applications such as Internet, medical images, video conference and etc. Hence,

we do some researches to examine that how JPEG2000 could benefit from the architectures

of modern DSP processors.

1.2 Motivation

Moore’s law tell us that the number of transistors that can beput on an integrated circuit

has doubled approximately every two years. The trend has continued for more than half

a century. It will stop, however, eventually on a certain level and cannot go on any more

since the atomic limit. In addition, there are two serious problems while we try to put

more transistors on a chip: overheat and power consumption.Therefore, processors are

designed multi-cores, which means to put one more cores on one chip. Hence, how to

divide calculating jobs to many cores becomes an important issue.

To follow this trend, the newest DSP processors of Blackfin family, which are devel-

oped by Analog Device (ADI), are also designed multi-core; that is ADSP-BF561 [3].

Blackfin 16/32-bit embedded processors are designed for software flexibility and scala-

bility for convergent applications: multi-format audio, video, voice and image processing,

multi-mode baseband and packet processing, control processing, and real-time security.

ADSP-BF561 is configured as a symmetric multiprocessing arrangement of two Blackfin

processor cores. Each is capable of operating at up to 600 MHzand has up to 2.6 MB of

on-chip SRAM memory.

CHAPTER 1. INTRODUCTION 3

Why we choose Blackfin? There are some reasons make it distinctive. Blackfin archi-

tecture is named micro signal architecture (MSA); it’s co-developed by Intel and Analog

Device. Unlike very long instruction word (VLIW) architecture, MSA mixes powerful

ALUs into RISC-like processors. This leads several advantages. First, RISC architecture

is known compiler friendly. Hence, compiler designs for MSAare easier than for VLIW,

which is adapted by most DSP processors. In addition, the design flow is straightforward;

the two suites of development tools aren’t needed. Finally,the hardware designs are more

cost and power effective.

In recent years, surveillance cameras and automatic trafficrecorders (ATR) are popular

and widely used in our daily life. To reach better compression video quality, we need a

novel video compression standard.

JPEG2000, a new compression standard for still images, is developed to overcome

the shortcomings of the existing JPEG standard, which is standardized by Joint Technical

Committee on Information technology of the International Organization for Standardiza-

tion (ISO)/International Electrotechnical Commission (IEC).

In JPEG2000 standard, Motion JPEG2000 has been standardized to be a part of JPEG2000.

It could be used as video standard to achieve better video quality for widely uses include

cinema, surveillance, ATR and so on.

For the reasons mentioned above, we try to examine how JPEG2000 software based

compression could efficiently run on a dual-core BF561 to achieve good compression per-

formance.

1.3 Problem Definition

Since we know ADSP-BF561 is a dual-core processor, and uClinux could run on both

cores like symmetric multi-processor (SMP). uClinux is a lightweight version of Linux

working on processors with no memory management unit (MMU) and the trunks for BF561

CHAPTER 1. INTRODUCTION 4

are developed by the community. If we have full uClinux supports on BF561, we have

affluent library supports from Linux. This makes easy for us to establish our own image

compressing systems. In addition, abundant resources about Linux also could be found on

the Internet.

However, there are still lacks of researches and reference manuals to discuss the utiliza-

tion of two cores. We need to know if jobs’ partition to two cores in BF561 could as good

as in general SMP. If it works well, we are convenient to move our software development

procedures in a general SMP system to this SMP-like system.

For these reasons, we implement and optimize JPEG2000 on BF561. We divide JPEG2000

into several components and do the parallelization on thesecomponents.

Our JPEG2000 compression program would be expected to totally come from open-

source resources. To exploit famous open-source projects from the Internet, we are not

only easy to build our experimental environments but also capable to learn the source

code implementations. Furthermore, they may be allowed to be commercial utilization;

this depends on their release Licenses. Our JPEG2000 compression would be focused on

lossless compression since it could conserve the details for flexible utilization.

Our optimization approaches would derivate from the convergence of profiling, the

understanding of JPEG2000 algorithms, and hardware architectures; the optimization or-

dering would follow the principle: the efficient one, the prior one.

1.4 Contribution

In this paper, we implement and optimize the JPEG2000 lossless compression under SMP-

like mode on Analog device BF561. Our optimizations focus onthe components of JPEG2000,

DWT and EBCOT Tier-1, which are the heavy loading and also potential parallel parts of

the whole compression procedure. Our main contributions list in the following:

• Discussion of open-source resource supports and hardware constraints under full OS

CHAPTER 1. INTRODUCTION 5

supports on BF561 SMP-like environments.

• Implementation and evaluation of data locality optimization by using high-speed L1

data SRAM

• Implementation and evaluation of jobs’ partition to dual cores.

• Implementation and evaluation of the effectiveness of inline assembly optimization

on JPEG2000.

1.5 Thesis Organization

This thesis is organized as follow. In chapter 2, the relatedwork is introduced. In chap-

ter 3, we describe the overview of JPEG2000. In chapter 4, we describe the architecture

of Blackfin BF561, the target platform of this work, especially on the memory architec-

ture and DMA supports. In chapter 5, we detailed discuss the implementations and our

optimization methods of JPEG2000 on BF561. In chapter 6, theexperimental results is

presented and the problems we encountered is discussed. Thechapter 7 concludes the

work and presents future work.

Chapter 2

Related Work

There are several researches about JPEG2000. Majif Rabbainand Rajan Johsi gave a very

good overview of JPEG2000 [22]; it’s a good beginning to understand JPEG2000. David

Taubman and Michael Marcellin have deeply discussed the theory of digital signal pro-

cessing techniques used in JPEG2000 [25]. Timku Acharya andPing-sing Tsai detailedly

explained the specifications of JPEG2000 [2]. They focused on the specifications and im-

plementations. In addition, many good examples are included. It is a very good reference

to understand the implementation details of JPEG2000.

There are also many studies about JPEG2000 software implementations on different

processors. H. Mutaet al. did implementation and parallelizations of JPEG2000 com-

pression on Cell/B.E [19]. They speeded up the JPEG2000 encoding by parallelizations

using SPEs on the Cell/B.E. In addition, they did the system level parallelizations by using

Cell/B.E blade servers. P. Meerwaldet al. evaluated parallelizations of JPEG2000 using

OpenMP and JAVA threads on SMP Intel Pentium II Xeon running at 500 MHz [17]. The

tile parallelization was abandoned here due to the artifacteffects. The JAVA implemen-

tation was from JJ2000 and the OpenMP was adpated in the C implementation of Jasper.

The parallelization results showed that they could avoid cache missing greatly if the image

was read from the vertical directions. In addition, EBCOT Tier-1 was encoded by parallel

codeblocks. Azkarate-Askasua Mikel built a JPEG2000 compression system in a multi-

6

CHAPTER 2. RELATED WORK 7

processor system on FPGA using the commercial system-level-design tool [7]. They used

OpenJPEG library to be the JPEG2000 implementation and divided it into several parts in

order to map them on to the design tool. System-level-designtools are used to reduce the

efforts of developers and speed up the time to market.

Discrete wavelet transform (DWT), which is an important component of JPEG2000

compression, suffers memory uncontinuous reading problems while using software im-

plementations. Dividing the image into pseudo small tiles is the solution used in [19].

However, in order to avoid edge effects, they have to make thetiles overlapping. This work

needs large efforts. Putting the vertical lines together and then performing DWT to them

using JAVA threads is the solution used in [17]. However, we don’t have a JAVA environ-

ment and Linux threads cannot be scheduled to the other core on BF561. In our solution,

we analyze the model of uncontinuous memory accesses and transform theses accesses to

be the jobs of DMA controllers. Then, DMA controllers help transform these data to be

continuous data and put them in the high speed SRAM for fast accesses. Our work can

efficiently eliminate the slow accesses to external SDRAM.

In addition, there are several with respect to Blackfin platforms. Michael G.et al. put

data in shared L2 SRAM of BF561 and performed the data processing from both cores [8].

They showed that to put the data in the SRAM could only benefit from the stream pro-

gramming model. The model means that the two cores do different jobs. Jun-Wei Gao and

Ke-Bin Jia established a H.264 based video surveillance system with real-time compression

on a BF561 platform [13]. They briefly described five methods to optimize the h.264 en-

coder: (1) allocating storage space , (2) issuing parallel instructions ,(3) using special video

instructions ,(4) utilizing hardware loop ,and (5) choosing a suitable assembly instruction.

Hee Seo and Seon Wook Kim improved OpenMP performance on BF561 by moving shared

data into shared L2 SRAM and further moving private data intoL1 SRAM [23]. They fo-

cused on the fork/join model and put the data into L1 data SRAMas possible as they can;

CHAPTER 2. RELATED WORK 8

only shared variables stayed in shared L2 SRAM. They showed that the power consump-

tion could be reduced by directly measurement using external sourcemeters. C.H. Chen

showed that well-optimized Blackfin assembly code could achieve high performance im-

provement compared to unoptimized one [11]. The assembly ofBlackfin architecture can

be parallelized under some restrictions. They used the feature to reassemble the assembly

to speed up the discrete wavelet transform in JPEG2000.

The related work mentioned above include many aspects of researches. Some of these

work mentioned that how they optimized their implementations on the Blackfin platform.

These work can be references for us to avoid going the wrong ways in our researches.

Chapter 3

JPEG2000 Overview

In this chapter, we will introduce the basic concepts of JPEG2000 and explain why it is

special and different from traditional JPEG.

3.1 Background and History

The well-known JPEG standard is developed by JPEG (Joint Photographic Experts Group)

committee, which is founded in 1986 under the joint auspicesof ISO and ITU-T, and has

become the most popular image compression standard in past twenty more years. Almost

every image or video instrument supports JPEG standard. Despite the great success of

the JPEG image compression system, it has several shortagesthat become increasingly

apparent as the need for image compression is extended to emerging applications such as

medical imaging, digital libraries, Internet multimedia transmission, and so on.

In March 1997 a call for proposals was issued to the new standard—JPEG2000. In

November 1997, more than 20 algorithms were evaluated [22].Finally it included many

classic algorithms and became a “big” standard. Nowadays, JPEG 2000 refers to twelve

parts of the standard [15]:

• Part 1 Core coding system (intended as royalty and license-fee free — NOT patent-

free)

9

CHAPTER 3. JPEG2000 OVERVIEW 10

• Part 2 Extensions (adds more features and sophistication to the core)

• Part 3 Motion JPEG2000

• Part 4 Conformance

• Part 5 Reference software (Java and C implementations are available)

• Part 6 Compound image file format (document imaging, for pre-pressand fax-like

applications, etc.)

• Part 7 has been abandoned

• Part 8 JPSEC (security aspects)

• Part 9 JPIP (interactive protocols and APIs)

• Part 10JP3D (volumetric imaging)

• Part 11JPWL (wireless applications)

• Part 12ISO Base Media File Format (common with MPEG-4)

Part 1 (the core) is now published as an International Standard , five more parts (2-6)

are complete or nearly complete, and four new parts (8-11) are under development.

While the standard is well defined, why we need JPEG2000? There must be some

reasons to persuade us to use the new standard. There are several new features show that

why JPEG2000 could be the compression standard of the next generation [2]:

1. Superior low bit-rate performance—JPEG2000 offers good performance in very

low bit-rates compared to traditional JPEG.

2. Large dynamic range of the pixels—JPEG2000 is the only standard could conduct

the pixel values more than 16-bit precision; it is up to 38 bits;

CHAPTER 3. JPEG2000 OVERVIEW 11

3. Lossless and lossy compression—JPEG2000 provides lossless compression with

progressive decoding. Applications such as digital libraries/databases and medical

imagery can benefit from this feature.

4. Protective image security—the open architecture of the JPEG2000 standard makes

easy the use of protection techniques of digital images suchas watermarking, label-

ing, stamping or encryption.

5. Region-of-interest coding—in this mode, regions of interest (ROIs) can be defined.

These ROIs can be encoded and transmitted with better quality than the rest of the

image.

6. Robustness to bit errors—the standard incorporates a set of error resilient tools to

make the bit-stream more robust to transmission errors.

Because of the good design of JPEG2000, it could be used in a variety of applications

from professional medical images, Internet, wireless transmission, to low-end consumer

electronics.

3.2 JPEG2000 Compression Procedure

In this section, we discuss about the JPEG2000 Part1 standard, the core of JPEG2000.

We focus on the procedure of lossless compression of JPEG2000 since the lossless com-

pression could reserve more details for flexible utilization. The main components of the

coding procedure could be divided into four parts:pre-processing, discrete wavelet trans-

form, EBCOT Tier-1 andEBCOT Tier-2, as shown in Figure 3.1. We will discuss these

components in the following subsections.

CHAPTER 3. JPEG2000 OVERVIEW 12

Preprocessing
Tiling

DC level shi!

MCT

Discrete Wavelet Transform

(DWT)

Tier-1
Bit-Plane modeling

Arithme"c coding

Tier-2
Bit-stream organiza"on

EBCOT coding

Figure 3.1: The procedure of JPEG2000 lossless compression.

3.2.1 Pre-processing

The pre-processing state includes three passes: tiling, Direct Current (DC) level shift and

color transformation . In the first pass, tiling, we may partition the whole image into several

independent“tiles” , and these tiles could be encoded by the independent parameters in the

following procedures. This is useful when the compression hardware system has limited

memory. The tiling size theoretically could be any size but often 512x512 or bigger up to

the whole image size since small tiling size would lead to obvious edge effects [2].

After titling, we perform DC level shift to shift pixel values from unsigned value to

signed value in order to make the pixel values more balanced in the distance to“zero” ;

this leads more“zero” while quantization is performed and the compression ratio could

be higher. Finally, we make color transformation called Multi-component Transformation

(MCT) to transfer the color space of the image from RGB color space to YUV color space.

CHAPTER 3. JPEG2000 OVERVIEW 13

There are two kinds of MCT in JPEG2000 specification, which are Reversible Color Trans-

formation (RCT) and Irreversible Color Transformation (ICT). RCT is applied in reversible

coding and ICT is used in irreversible coding.

3.2.2 Discrete Wavelet Transform

The purpose of Discrete Wavelet Transform (DWT) is the same with discrete cosine trans-

form in traditional JPEG but in different coding system. It tries to divide high frequency

parts and low frequency parts of an input image so that we could adapt different strategies

in the following steps to increase compression ratio. The “low frequency” could be real-

ized that the values of two adjacent pixels of an image are similar. If the pixel values of

a small region are similar, this region would be “smooth” as we view. The low frequency

parts occupy the majority of a common natural image. On the other hand, “high frequency”

implies that there may exist a shape, edge, or line or concealmore details.

The technique of DWT in JPEG2000 is based on filters. There areone high pass filter

and one low pass filter in it. Low pass filter reserves low frequency data, which occupy

most parts of an general natural image. On the other hand, high pass filter reserves high

frequency data.

Two kinds of DWT filter are included in JPEG2000 standard: (9,7) and (5,3). The

number “9” means the length of low pass filter is 9 and the number “7” means the length of

high pass filter is 7. Since we focus on reversible coding, we just examine the (5,3) filter,

which is designed for reversible coding, in the following discussion.

The (5,3) DWT and its opposite version,inverse DWT, are illustrated in Figure 3.2 [22].

The left site of the Figure 3.2 is DWT (forward) and the right one is inverse DWT. Input

sequencesx(n) are conducted by low pass filterh0(n) and high pass filterh1(n) and then

followed by sub-sampling of factor 2 to get output data; we call these output data”DWT

coefficients”. On the other hand, these DWT coefficients could be reconstructed to original

input data by the inverse symmetric operation: inverse DWT.

CHAPTER 3. JPEG2000 OVERVIEW 14

Figure 3.2: (5,3) DWT (left) and inverse DWT (right).

(a)

(d)(c)

(b)

Figure 3.3: An example of discrete wavelet transform: (a) the original image, (b) after
1D-DWT computation in horizontal direction, (c) after 2D-DWT computation, (d) 2-level
DWT computation.

CHAPTER 3. JPEG2000 OVERVIEW 15

The DWT computation of JPEG2000 is 2D-DWT; it means we do the DWT on an

image from column by column to row by row. The ordering could be inverse from row

by row to column by column. The effects on an image before and after 2D-DWT could

be seen in Figure 3.3. Figure 3.3(a) is the original classic test patent: 512x512 gray-scale

Lena. Figure 3.3(b) shows that the input image is separated to low frequency in left side

and high frequency in right side after 1-D horizontal DWT computation; then we do the

DWT computation to separate high and low frequency data in vertical direction, as shown

in Figure 3.3(c). Furthermore, We could perform a two-levelDWT for the low frequency

data, as shown in Figure 3.3(d); it’s level 2.

The traditional DWT needs complex convolution computations and is not adapted in

JPEG2000 standard. JPEG2000 adapts a lifting-based DWT [12], which reduces signif-

icant memory footprint and computing complexity compared with traditional DWT. Fur-

thermore, it could run in place; this means no more other memory space is needed during

the computation, and the input data and the output data use the same memory space. The

lifting-based DWT is based on two steps:predictionandupdating. The Equation 3.1 shows

that how to make thepredictioncalculation.{s0} and{d0} means even and odd values of

input sequence, respectively.{d1} refers to the output of high pass coefficients. Theup-

dating procedure is shown in Equation 3.2; the output of low pass coefficients {s1} are

obtained by specific calculation of modified coefficients{d1} and input data{s0}. The

subscript “i” means the input number. The concept could be expressed by Figure 3.4 [22].

We could see the ordering that high pass coefficients and low pass coefficients are inter-

leaved generated.

d
1

i
= d

0

i
−

1

2
(s0

i
+ s

0

i+1) (3.1)

s
1

i
= s

0

i
+

1

4
(d1

i−1 + d
1

1) (3.2)

CHAPTER 3. JPEG2000 OVERVIEW 16

Figure 3.4: The ordering of high pass coefficients and low pass coefficients being gener-
ated.

3.2.3 EBCOT Tier-1 Coding

After DWT computation, the JPEG2000 compression enters theentropy coding,Embed-

ded Block Coding with Optimal Truncation (EBCOT) coding. EBCOT coding is divided

into two steps:Tier-1 andTier-2. Tier-1 coding divides the DWT coefficients to several

non-overlapping blocks and then encodes each of the blocks independently; we call these

blocks “codeblocks”. Besides codeblocks there are severalblocks defined hierarchically

for efficient coding in Tier-2. The whole data partition scenario could be illustrated in Fig-

ure 3.5. We see that the image is separated into sub-bands; then each sub-band is divided

into several precincts; then each precinct is divided into several codeblocks. The code-

block size could be any size but the power of 4. However, the size often is 32x32 or 64x64

because the performance is better [2].

Since the basic coding element is codebclock, a codeblock isencoded in the elements

of “bit-plane”. The three coding passes are performed to encode the bit-level data in a

bit-plane; the encoding ordering in a bit-plane is followedby scanning of 4 subsequent

bits as shown in Figure 3.6 [16]. The bit-plane coding is stared from the most significant

bit (MSB) to least significant bit (LSB) of the coefficients inthis codeblock. Actually, it

starts from which any bit in this bit-plane is significant. The “significant” means the first

CHAPTER 3. JPEG2000 OVERVIEW 17

sub-band

precinct

codeblock

Figure 3.5: The hierarchy of data partition of an image.

non-zero bit of a coefficient, which may be 32 bits or any others. Figure 3.7 [16] is an

example to show what is “significant”. The figure 3.8 [16] shows that the hierarchy of the

coding elements in a codeblock. We could see that the least basic element is “a bit”.

The three coding passes performed in a bit-plane are:

• Significant Propagation Pass (SPP):This is the first coding pass used in one bit-

plane except the first bit-plane of the codeblock. This coding pass is adapted if this

bit is a preferred bit, which means eight of its adjacent bitsare already in significant

state.

• Magnitude Refinement Pass (MRP):This coding pass is applied after the first “1”

bit of this coefficient has been encoded and the bit now is 1.

• Cleanup Pass (CUP):This coding pass is used when the bit is not encoded in SPP

CHAPTER 3. JPEG2000 OVERVIEW 18

Figure 3.6: The scan pattern of a codeblock in one bit-plane.

Figure 3.7: An example to show what is “significant”.

Figure 3.8: The hierarchy of bit-plane coding.

CHAPTER 3. JPEG2000 OVERVIEW 19

coefficient value

coding pass 7

cleanup 1+ 0 0 0

significance

refinement

cleanup

0

0

0 1-

significance

refinement

cleanup

0 1+

1 1

significance

refinement

cleanup

1+

0 1 1

Table 3.1: An example of the three coding passes being performed in every bit-plane.

and MRP except the first bit-plane. The first pit-plane startscoding from CUP.

Table 3.1 shows an example that how the 4 coefficients are encoded in every bit-plane.

The every bit-plane is encoded via three coding passes and the a bit is encoded in one of

the coding passes. Where a bit should be coded is following a sequence of conditional ad-

justments. The adjustments include four coding operations. When to use these operations

bases on some conditions are satisfied. The four coding operations are:

• Zero Coding (ZC):ZC encodes a bit according to that if the neighbors of the bit are

already in significant state. If one’s neighbors are alreadyin significant state, it is

very likely to be significant.

• Sign Coding (SC): SC records the sign information of a coefficient and its adjacent

4 coefficients (right, left, up, down).

• Magnitude Refinement Coding (MRC):MRC is applied after a coefficient is already

in significant state; in other words, there its first non-zerobit has already been coded.

• Run-Length Coding (RLC):RLC is used to encode the consecutive four bits in a

vertical scanning pattern; how many bits should be encoded depends on where the

first non-zero bit exists.

CHAPTER 3. JPEG2000 OVERVIEW 20

Since we know every bit-plane is coded in three passes with four operations, this com-

plicated mechanism will not be detailed discussed. The detailed procedures can be found

in [2].

After the three coding passes are generated, these coding passes are encoded using

binary arithmetic coding,MQ-coder. Arithmetic coding is a superior efficient coding ar-

chitecture compared to traditional Huffman coding in JPEG and can tackle binary input

data. It rescales probability interval when a input datum iscoming in according to the

appearing probability of the datum. The arithmetic coding applied in JPEG2000 is MQ-

coder. MQ-coder is a kind of adaptive arithmetic coding; it means that the encoding site

changes its probability prediction synchronizing with thedecoding site. The probability

prediction changes following the input data with look-ups to a fixed constant table. MQ-

coder divides the probability interval into two sub-intervals: more probable symbol (MPS)

and less probable symbol (LPS). The two sub-intervals indicate that the input symbol, 1 or

0, which is more probable to happen. If the input symbol is in the LPS interval, the output

codeword will be updated according to the estimation table.

3.2.4 EBCOT Tier-2 Coding

The purpose of Tier-2 coding is that how to efficiently organize the encoded data of Tier-

1 . The main works of Tier-2 are to represent the layer and block summary information

for each codeblock. A layer consists of consecutive bit-plane coding passes from each

codeblock in a tile, including all the sub-bands of the components in the tile. The block

summary information consists of lengths of compressed codewords of the codeblock, the

most significant magnitude bit-plane at which any sample in the codeblock is non-zero,

and the truncation point between the bit-stream layers among others [2]. Then, these infor-

mation are coded by Tag Tree Coding and then put into the bit-stream. These information

are important information for the reference of decoding cite.

Chapter 4

The Architecture of Analog Device
BF561

In this chapter, the core architecture of Analog Device’s Blackfin processor and its dual-

core version—BF561will be introduced.

4.1 Blackfin Core

Blackfin processors are a new breed of 16-/32-bit embedded processor designed specifi-

cally to meet the computational demands and power constraints of today’s embedded audio,

video and communications applications. Based on the Micro Signal Architecture (MSA)

jointly developed with Intel Corporation, Blackfin processors combine a 32-bit RISC-like

instruction set and dual 16-bit multiply accumulate (MAC) signal processing functionality

with the ease-of-use attributes found in general-purpose microcontrollers. This combina-

tion of processing attributes enables Blackfin processors to perform equally well in both

signal processing and control processing applications—inmany cases deleting the require-

ment for separate heterogeneous processors. This capability greatly simplifies both the

hardware and software design implementation tasks.

As shown in Figure 4.1, Blackfin core contains two 16-bit multipliers, two 40-bit ac-

cumulators, two 40-bit arithmetic logic units (ALUs), four8-bit video ALUs, and a 40-bit

21

CHAPTER 4. THE ARCHITECTURE OF ANALOG DEVICE BF561 22

Figure 4.1: Blackfin core architecture.

shifter, along with the functional units. The computational units process 8-, 16-, or 32-bit

data from the register file. The compute register file contains eight 32-bit registers. When

performing compute operations on 16-bit operand data, the register file operates as 16 inde-

pendent 16-bit registers. All operands for compute operations come from the multiported

register file and instruction constant fields. Each MAC can perform a 16- by 16-bit multi-

ply per cycle, with accumulation to a 40-bit result. Signed and unsigned formats, rounding,

and saturation are supported. The ALUs perform a traditional set of arithmetic and logical

operations on 16-bit or 32-bit data. Many special instructions are included to accelerate

various signal processing tasks. These include bit operations such as field extract and pop-

ulation count, divide primitives, saturation and rounding, and sign/exponent detection. The

set of video instructions includes byte alignment and packing operations, 16-bit and 8-bit

adds with clipping, 8-bit average operations, and 8-bit subtract/absolute value/accumulate

(SAA) operations. Also provided are the compare/select andvector search instructions.

CHAPTER 4. THE ARCHITECTURE OF ANALOG DEVICE BF561 23

For some instructions, two 16-bit ALU operations can be performed simultaneously on

register pairs [4].

4.2 Blackfin ADSP-BF561

ADSP-BF561 is a member of Blackfin processor family of products targeting consumer

multimedia applications. At the heart of this device are twoindependent enhanced Black-

fin processor cores that offer high performance and low powerconsumption while retaining

their ease-of-use and code-compatibility benefits. As shown in Figure 4.2, the two Blackfin

cores are connected via buses, which is a complicated bus system. In addition to L1 instruc-

tion SRAM and L1 data SRAM, there is a L2 SRAM works around halfspeed compared

to L1 SRAM and it could be accessed by both cores.

Figure 4.2: Block diagram of BF561 architecture.

CHAPTER 4. THE ARCHITECTURE OF ANALOG DEVICE BF561 24

4.2.1 Memory Hierarchy

Blackfin products support a modified Harvard architecture incombination with a hierar-

chical memory structure shown in Figure 4.2. Generally speaking, a hierarchical memory

architecture means there exists multi-level memory blocksand they run under different

speeds from fast to slow. The memory block near the processorcore often works on the

highest speed and we call it Level 1 (L1) memory. Following the principle, the follower

is L2, L3,... memory . A hierarchical memory structure is designed for cost and power

effective.

Level 1 (L1) memory of Blackfin BF561 operates at the full processor speed with little

or no latency. At the L1 level, the instruction memory holds instructions, the data memory

holds data, and a dedicated scratchpad data memory stores stacks and the information of

local variables.

L1 instruction SRAM consists of 32Kb SRAM, of which 16Kb can be configured as a

four-way set-associate cache. If we configure it as a generalinstruction SRAM, it could

be put not only instructions but also data. However, the dataput in the instruction SRAM

can be moved only by DMA and the core can not take the data from L1 instruction SRAM

directly.

L1 data SRAM consists of two banks of 32Kb each. Half of each bank is always

configured as SRAM while the other half can be configured as SRAM or a two-way set

associate cache. In addition, there exists a block of 4Kb L1 scratchpad SRAM, which runs

at the full speed but is only accessible as a data SRAM and cannot be configured as a cache

memory.

For safe memory access, the Memory Management Unit (MMU) provides memory

protection for individual tasks that may be operating on thecore and can protect system

registers from unintended access.

The ADSP-BF561 dual cores share an on-chip L2 memory system,which provides

CHAPTER 4. THE ARCHITECTURE OF ANALOG DEVICE BF561 25

high speed SRAM access with somewhat longer latency than theL1 memory banks. The

L2 memory is a unified instruction and data memory and can holdany mixture of code and

data required by the system. It could be only configured as SRAM and cannot configured

as a cache. On the other hand, it could be set tocache-ableto data cache; this means it

could be cached by the data cache. The total L2 SRAM size in BF561 is 128Kb.

The L1 instruction SRAM and data SRAM could be broken into 4Kbsub-banks, which

can be accessed independently by the DMA and the core simultaneously.

External (off-chip) memory is accessed via the External BusInterface Unit (EBIU).

This 32-bit EBIU provides a gluless connection to as many as four banks of synchronous

DRAM (SDRAM) and as many as four asynchronous memory devicesincluding flash

memory, EPROM, ROM, SRAM, and memory-mapped I/O devices. The PC133-complaint

SDRAM controller can be programmed to interface to up to 512 MBs of SDRAM.

4.2.2 DMA Support

To see the architecture of ADSP-BF561, we could easily be attracted by the two DMA

controllers. DMA is well known for efficient data movement, and exists not only in general

CPUs but also in DSP processors. The advantage of the DMA devices in BF561 is that

the buses are independent while connecting to internal L1 SRAM and L2 SRAM. This

is special because most DMA devices in other processors are designed connecting to the

main bus and share the bus access with processor cores and other devices connecting to the

bus; that’s why we say “cycle stealing”. However, “cycle stealing” doesn’t exist in BF561

due to the independent DMA accesses; this means the utilization of DMA on BF561 could

promote higher performance.

Since we say DMA accesses to internal L1, L2 SRAM could benefitfrom independent

buses, the access to external SDRAM is all controlled by EBIU. This seems to make no

big difference between core access and DMA access. However,the DMA access could be

more efficient since it works under burst read/write.

CHAPTER 4. THE ARCHITECTURE OF ANALOG DEVICE BF561 26

For different purposes, the DMAs on BF561 can be categorizedto three functions:

• Peripheral DMA (DMA): It is used to transfer data between peripheral devices and

internal L1, L2 SRAM

• Memory DMA (MDMA): It is used to transfer data between external SDRAM and

internal L1, L2 SRAM.

• Internal Memory DMA (IMDMA): It is used to transfer data between internal L1/L2

SRAM.

The Figures 4.3 shows the bus architectures of Blackfin BF561. we could see that there

are independent buses connecting to L1 SRAM and L2 SRAM. If wecan manipulate the

accesses by the DMA devices and the cores overlapping, the performance can be promoted.

CHAPTER 4. THE ARCHITECTURE OF ANALOG DEVICE BF561 27

Figure 4.3: Memory and bus architecture of BF561.

Chapter 5

Implementation and Optimization

5.1 Experiment Environment Setup

There are several kinds of developing tools for us to developour programs on BF561.

The official integrated tool is Visual DSP++, which is a integrated developing environment

(IDE) like ARM Developer Suite (ADS) in ARM-based environments. For more complex

applications, they also developed a lightweight real-timekernel called VDK, which has

many libraries for real-time applications for developers.

Instead of official tools we have another choice: GNU open-source project. In this

project, we could use uClinux and GCC toolchains on Blackfin system; all the toolchains

and uClinux are well supported by the community. uClinux is alightweight version of

Linux to support non-MMU processors.

We choose the open-source GNU project for our experimental environment for two rea-

sons. First, an open-source environment is more proper for academic researches. Second,

if we have Linux kernel support on BF561, we theoretically could transplant the codes

from any other Linux-based platform and could exploit the library supports from Linux

kernel; this is very convenient for us to develop our applications quickly since resources

for Linux-based systems are easy to find on the Internet.

For dual-core BF561, uClinux could run on only one core or both cores. If uClinux

runs on one core, the other core is treated as a device and could run programs through

28

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 29

driver supports. In addition to running on one core, uClinuxalso could run on both cores;

it is called“SMP-like” mode.

Why we say it’s“SMP-like” is that BF561 lacks of hardware cache coherency mecha-

nism; a“real” SMP must have hardware supported cache coherency mechanism. Hence,

cache coherency should be done by software mechanism when needed. This implicates

three significant features [5]:

• caches must be in write-through mode,

• more overhead is introduced due to software coherency mechanism, and

• all threads of a process are restricted to be executed on the same core.

Another problem is that the L1 SRAM owned by one core cannot beaccessed directly

from the other core so that L1 SRAM cannot be used in the kernel. Because it will cause

kernel panic while the kernel threads running on one core tryto access the kernel resources

put in L1 SRAM of the other core. This would reduce the optimization potential because

we cannot put critical system calls in the L1 SRAM to optimizeLinux kernel. The devel-

opments of user space applications also have to be taken carethat the user process runs on

a specific core if we try to put the data or instruction codes inthe L1 SRAM.

We finally configure the uClinux as SMP-like mode because a full Linux supported

environment gives us a consistent environment to develop applications. There are no needs

to load programs to the other core by special drivers.

5.2 Software-based JPEG2000 Implementation and Pro-
filing

There are several projects working on open-source JPEG2000codec. The most famous are

Jasper [18] and OpenJPEG [20].

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 30

Jasper is developed and maintained by its main author, Michael Adams, who is affil-

iated with the Digital Signal Processing Group (DSPG) in theDepartment of Electrical

and Computer Engineering at the University of Victoria. It is developed for the imple-

mentation of JPEG-2000 Part-1 standard (i.e., ISO/IEC 15444-1) and itself is a part of

JPEG-2000 Part-5 standard (i.e., ISO/IEC 15444-5).

OpenJPEG implements not only Part-1 standard but also many other features like JP2

(JPEG2000) and MJ2 (Motion JPEG2000) file formats, JPEG2000Interactive Protocol,

and so on. It’s developed and maintained by Communications and Remote Sensing Lab, in

the Universit catholique de Louvain (UCL).

With the comparison of two implementations, we choose OpenJPEG for our imple-

mentation for two reasons: the source code is easy to trace and the code partition is clear.

Since the source code of OpenJPEG is well written and portable, it’s not too hard to

port the code onto our platform. The uClinux is also easy to configure to SMP-like mode.

Figure 5.1 shows the execution time breakdown of JPEG2000 compression on BF561;

the input image is a 640x480 color image taken from OpenJPEG official site and the pro-

filing is subject to default setting: DWT level n=5, codeblock b= 64x64, lossless. We see

that EBCOT Tier-1 and DWT dominate the JPEG2000 compression; the two components

occupy 92% loading of the whole time. Our optimizations willbe focused on these two

parts because they are not only the hotspot of JPEG2000 compression but also potentially

parallel parts.

5.3 Overview of JPEG2000 Optimizations on BF561

5.3.1 Data Locality Optimization

After we finish kernel and JPEG2000 porting to our BF561 environment, where do we start

to optimize JPEG2000? As we know, image processing often divides an image (data) into

several blocks and in concept the block is a 2-D array. However, memory accesses are

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 31

EBCOT-Tier2

1%

EBCOT-Tier1

71%

DWT

21%

pre-processing

7%

Figure 5.1: Execution time breakdown of JPEG2000 compression on the BF561 processor.

practically 1-D; hence, it will have bad performance if we don’t carefully arrange the data

in proper location. A big problem is the cache-miss problem.There are many researches

in management of data locality in different design levels such as system-level, application-

level or compiler level [26] [6] [1] [10].

As we discussed in Section 4.2.1, there are a L1 instruction SRAM, a data SRAM and

a L2 SRAM companied with two DMA devices on the BF561 architecture. Now we focus

on the data SRAM. Some of the L1 data SRAM can only be configuredas general data

SRAM rather than a cache, and therefore there is no cache-miss problem. The data SRAM

works as fast as the core. This data SRAM is a precious resource for us to do the data

optimization. For convenience, we simplify the term “general data SRAM” to be “data

SRAM”.

The best scenario for the utilization of the L1 data SRAM is that we can put all data

in it to achieve best performance. However, this often doesn’t happen due to the limited

SRAM size. Hence, we only can move some of them into L1 SRAM; these may include

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 32

parts of the input data, output buffer, temporary data, constant data and so on.

On the other hand, we configure the parts that can be configuredas a cache to be

a cache because we know that this state-of-the-art mechanism could efficiently promote

the performance without any software overhead. This configuration is a good choice for

general utilization. However, the utilization of general SRAM depends on application

developers. Hence, the utilization of SRAM is an emphasis ofour optimization.

DMA is a technique designed for data moving and now almost exists in every modern

CPU. There are also DMA devices in BF561 and the amount is two.Different to many

other SOC and CPU designs, the two DMA devices in BF561 have independent buses and

can access the SRAM in one sub-bank while Blackfin core is accessing another. Each of

them has 16 channels, 4 of which could be used as Memory DMA (MDMA); it means that

we could use them to move data among L1 SRAM, L2 SRAM, and external memory.

As a result, we can move data into L1 data SRAM by DMA before they are needed;

then we move out these data after the processing is completed. Furthermore, it will be the

best if the data moving can be overlapped with the accesses from processor cores.

The hotspot instruction codes also can be put in the instruction SRAM like we do in

data. For the utilization of the instruction SRAM, GCC supports compiler intrinsics for

us to put specific procedures into L1 instruction SRAM. For instance, we can simply use

attribute ((l1 text)) to put one procedure into the L1 instruction SRAM while we are

writing source code. It is put after the definition of the procedure we want to put in the L1

instruction SRAM. The following is an example to show how to use the intrinsic:

void foo(int a) attribute ((l1 text));

The functionfoo(int a)will be allocated in the L1 instruction SRAM and the linker will

maintain the linking information for the call tofoo.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 33

5.3.2 Utilization of Two Cores

After the discussion of SRAM, we talk about the two cores of BF561. If we could put

parts of the calculating jobs onto the other core to be processed simultaneously, the per-

formance will be promoted significantly. It is widely known that there are two ways to

partition calculating jobs to multi-cores: task partitionand data partition. Task partition

means that many cores run different codes and the data are processed through these cores

like a pipeline. Data partition means that many cores run thesame code and the data are

partitioned to these cores to be processed.

Similar to the principle, David J. Katz and Rick Gentile, themembers of Analog De-

vices’ Embedded Processor Application Group, use MPEG-2 asan example to show the

two partition ways on Blackfin BF561 [14]. The first, as shown in Figure 5.2, is amaster-

slavemodel; it’s similar to “data partition”. In this model, the coding process is mainly

controlled in master core and it spills some data to be processing in the other core. The

advantage of this model is that we don’t need to change codes alot; the development proce-

dure is just similar to the development in one core. However,synchronization overhead is

needed and the slave core would not be fully loaded. As the example shown in Figure 5.2,

some components of the MPEG-2 compression are parallelizedto both cores and some are

not. Whether the components can be parallelized may depend on their algorithms. When

running the unparalleled components, the slave core is in idle state. In addition, the syn-

chronizations are needed after some components in order to make sure that the data for

their next components are ready.

The other programming model is apipelinedmodel; it’s similar to “task partition” and

some people call it “stream partition”. As shown in Figure 5.3, the compression procedure

is divided into several sub-procedures and then these sub-procedures are dispatched to two

cores. If the loading of two cores are balanced enough, the idle states happening in master-

slave model don’t happen here. However, the whole developing procedure needs to be

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 34

Figure 5.2: Master-slave model of MPEG-2 encoder on dual-core processors.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 35

Figure 5.3: Pipelined model of MPEG-2 encoder on dual-core processors.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 36

changed more and is not straightforward compared to which inmaster-slave model.

To consider these two models we choosemaster-slavemodel for several reasons: first,

it’s more scalable while the amount of hardware cores is changed; second, we could easily

increase or decrease the loading of the slave core if we need to assign other jobs to the slave

core; finally, JPEG2000 is hard to make balanced job partitions according to the profiling

results we made, which are presented in Chapter 5.1.

5.4 Optimization of DWT

5.4.1 Data Locality Optimization

As we described in Section 3.2.2, JPEG2000 uses 2-D DWT computation to transform

input image to high frequency and low frequency parts. The 2-D DWT computation is

shown in Figure 5.4; we perform DWT calculation on the input image line by line in the

horizontal and vertical direction, respectively.

Let’s take a close look at the dataflow of the DWT computation in Figure 5.5. Before

we perform one-line DWT calculation, we need to move the linedata into a buffer for the

processor core to do the calculation. Thanks to the well designed (5,3) lifting-based DWT,

it is a “in-place” calculation and we only need one buffer. In general case, processor itself

can do the data moving well and data cache can cache the subsequent data for potential

uses. Hence, it is easy to take the following data for processing in the high speed cache

memory if our data are continuous in the memory; in image processing, it means that the

data are from horizontal direction. However, this would suffer problems while reading

from vertical direction. Furthermore, it is wasted if we just ask the processor core to do the

data moving; it should focus on calculating jobs.

In general memory device, data are practically located and moved in 1-D mode even

though the high-level description is in 2-D mode. For this reason, we change our view

from 2-D to 1-D to see how data are moved into and out of the buffer. Figure 5.6(a) shows

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 37

.

.

.

. . .

1-D DWT

(a)1-D DWT in horizontal direction

(b)1-D DWT in vertical direction

1-D DWT

Figure 5.4: 2D-DWT computation.

the data moving scenario that how data are moved into the buffer from candidate line data

in the horizontal direction. We could see that it is continuous reading while data are read

to the buffer; this is the best model that cache can perform well.

Since the data is filled into the buffer, DWT computation can be performed to the data

in this buffer. As discussed in Section 3.2.2, the DWT computation produces DWT co-

efficients and the low frequency and high frequency coefficients are regularly interleaved.

After DWT computation, while the data are moved back, we haveto separate the low

frequency coefficients and high frequency coefficients and put them back to the correct

location. How data are moved back is shown in Figure 5.6(b). We see that high frequency

and low frequency coefficients are centralized to the start and the middle of the original

line data, respectively.

In the vertical direction, however, the candidate line dataare not continuous. As shown

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 38

buffer

Blackfin core

sta!c void dwt_encode_1(int *a, int dn, int sn, int cas);

data flow

data flow

Figure 5.5: Dataflow of DWT computation performed in one line.

in Figure 5.7(a), the data read from candidate line data are periodically separated by a fixed

stride; this is bad for cache to handle. On the other hand, similar to the data restoration in

the horizontal direction, we need to put the interleaved lowfrequency coefficients and high

coefficients back to the correct location. Where the data should be put back is shown in

Figure 5.7(b).

Through the observation and analysis, the actions of data moving, including data mov-

ing into and out of the buffer, which are performed in the horizontal and vertical directions,

can all be configured to be the jobs of DMA. The main reason about why DMA can per-

form these data moving is that these data moving are regular.Suppose one “data moving”

consists of moving of several data elements, if the elementsof the source data are regularly

placed in a fixed stride and their target location are also at afixed stride, we call the data

moving “regular” and it can be performed by DMA.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 39

buffer

candidate data in memory

(a) Buffer fill from candidate data before DWT

………

(b) Data restora!on from buffer

………

…

buffer

…

: low frequency data

: high frequency data

x : the horizontal length of image

y : the ver!cal length of image

……

……

……

candidate data in memory

Figure 5.6: The data moving flow in a horizontal line.

As a result, we can use DMA to move data into and out of the buffer and we just put

the buffer into the L1 data SRAM to be accessed in high speed clock rates. The dataflows

before and after our optimization are illustrated in Figure5.8. We add the cache into the

figure to show the specialty of our optimization. We can see that our optimization bypass

the cache mechanism.

Because of the frequent invocations of DMA operations, a lowlatency system call to

configure DMA controllers is essential. For this reason, we write a lightweight system

call instead of standard Linux I/O control driver and put it in the L1 instruction SRAM. In

addition, thanks to the problem that L1 instruction SRAM cannot be accessed by the other

core, the DMA system call is cloned to the L1 instruction SRAMof both cores in oder to

be accessed from both cores.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 40

buffer

(a) Buffer fill from candidate data before DWT

………

(b) Date restora"on from buffer

………

…

buffer

…

: low frequency data

: high frequency data

x : the horizontal length of image

y : the ver"cal length of image

……

……

……

candidate data in memory

candidate data in memory

… … …

… …

Figure 5.7: The data moving flow in a vertical line.

5.4.2 Utilization of Two Cores

5.4.2.1 Data Partition

After the discussion of optimization using DMA and internalSRAM, we discuss how to

partition the calculation jobs to the other core. As we mentioned in Section 5.3, we use

data partition to spread the half of the data to the other coreto speed up the calculation.

The fact that L1 SRAM cannot be accessed by the other core would still be a problem at

this moment. This enforces us to bind the user process to one of two cores; this means that

we should enforce the Linux kernel to schedule the process ononly one core. This could

be achieved by system callint schedsetaffinity(pidt pid, unsigned int cpusetsize,cpuset t

*mask). Another problem is that on BF561 a thread can only run on one core with its

process due to the lack of hardware cache coherency. As a result, we have to fork a new

process and bind it to the other core to help us share calculations. The new process is

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 41

buffer

Blackfin core

sta"c void dwt_encode_1(int *a, int dn, int sn, int cas);

dataflow

dataflow

cache buffer

Blackfin core

sta"c void dwt_encode_1(int *a, int dn, int sn, int cas);

DMA data moving

L1 data SRAM

DMA data moving

cache

(a) (b)

L1 data SRAM

Figure 5.8: Dataflow of DWT computation performed in one line: (a) before data locality
optimization (b) after data locality optimization.

generated after performingvfork()andexec()families.

The only parameter needed to pass to the new process is the address of the tile address

(which is the start address of the image in our scenario); it is put in shared L2 SRAM. L2

SRAM is now used as a shared memory for us to communicate between two cores. As

we discussed, the DWT performed in each line is independent;hence, we divide the line

data of the same direction at the same level into two groups: half front parts and half back

parts, and perform DWT on different cores as shown in Figure 5.9. Until the computations

of dispatched jobs at both cores are finished, the next stage,which may refer to different

direction or the next level, are not allowed to start; this means that the synchronization

is needed here to make sure both cores finish their jobs. We useshared variables for

synchronization; they are placed in shared L2 SRAM.

However, we find that the data partition to two cores is inefficient. The main reason is

that the loading of data transfer is heavy—more discussionswill be given in Section 6.1.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 42

.

.

.

1-D DWT

vfork()

sync . . .
1-D

DWT

sync

core A core B

.

.

.

.

.

.

Figure 5.9: The data partition to two cores.

Hence, we propose another method to partition jobs of DWT. This is discussed in the

following subsection.

5.4.2.2 Task Partition

Due to the heave loading in data transfer, we try to partitionDWT computations in another

way (we name two cores as CoreA and CoreB for discussion); we try to partition jobs

between memory transfers and DWT computations themselves.We ask CoreA to focus on

DMA control; CoreA is responsible to control DMA to move the data into L1 data SRAM

of CoreB, and CoreB focuses on the DWT computation but needn’t to care about the data

transfer. As discussed in Section 4.2.1, the data transfer using DMA control and core access

could be overlapped; this makes the memory/calculation partition possible. The scenario

can be shown in Figure 5.10. We finally sum up our optimizations with Algorithm 1 and

Algorithm 2, which show what CoreA and CoreB do, respectively. As we discussed above,

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 43

CoreA moves data and CoreB does the computations. For the cooperations of two cores, we

set a synchronization machanism to make sure that each DWT computation starts after the

completion of moving out of the old data and moving in of the new data. The experimental

results presented in Section 6.1 shows that the performanceof task partition is better than

that of data partition for the DWT process.

Core BCore A

External memory

control

data transferdata transfer

L1 data SRAM

bank 1

L1 data SRAM

bank 2

Figure 5.10: The memory/calculation partition to two cores.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 44

Algorithm 1: DWT: The workload of CoreA
Input : three components of the input image: Y, U, V
Output : DWT coefficients
for each component of the input imagedo

for each resolution leveldo
for each sub-banddo

for each 2 vertical lines of the input imagedo

move the old data out;

move the first line data into Bank-1 of data SRAM of CoreB;

sync1; //notify CoreB data in Bank-1 are ready;

move the old data out;

move the second line data into Bank-2 of data SRAM of CoreB

sync2; //notify CoreB data in Bank-2 are ready;
end
for each 2 horizontal lines of the input imagedo

move the old data out;

move the first line data into Bank-1 of data SRAM of CoreB

sync1;//notify CoreB data in Bank-1 are ready;

move the old data out;

move the second line data into Bank-2 of data SRAM of CoreB

sync2;//notify CoreB data in Bank-2 are ready;
end

end
end

end

Algorithm 2: DWT: The workload of CoreB
Input : three components of the input image: Y, U, V
Output : DWT coefficients

sync1;//wait Bank-1 data ready;

DWT 1D(bank-1);//perform DWT put in Bank-1;

sync2;//wait Bank-2 data ready;

DWT 1D(bank-2);//perform DWT put in Bank-2;

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 45

5.4.3 DMA Optimization

Because of the frequent invocations of DMA system calls, howto reduce the call latency

becomes an important issue. In this subsection, we discuss how to optimize DMA system

calls.

The data transfer will start after the DMA is well configured;the configuration is done

by user programs through a system call. If we return the system call just after the comple-

tion of configuration, we can do other things while data transferring. We just have to keep

in mind that we should compute the data after the data are really ready. The completion of

data transfer can be known by polling the completion register of DMA.

Figure 5.11 shows the latency comparison between the systemcall of DMA configu-

ration and data transfer. We can see that whatever the sizes of data to be transfered are, a

fixed period of time for configuration is needed. This fact implies that we have to make

the data size to be transferred in one DMA system call as largeas possible. This makes it

more possible to do other things while the data is transferring.

Another optimization strategy is that we can usedescriptor-modeDMA. The basic

method to configure DMA controllers is to fill the parameters into the control registers of

DMA controllers directly. However, every time when we need the next transfer, we have

to activate the system call once. The DMA controllers of BF561 provide a mechanism

to reduce the number of DMA system calls:descriptor mode. “Descriptor” means a data

structure put in the memory, which describes the DMA configuration. Then we just tell

the DMA controllers the address of the descriptor and the DMAcontrollers will fetch the

descriptor and configure itself; hence, we can quickly return back to our user program from

the system call. Furthermore, there is a special field in the descriptor structure which keeps

the address pointing to the next descriptor. This means we can put many configurations

in the memory and link them together if we could know the configurations of following

DMA operations, as shown in Figure 5.12. The DMA controllersautomatically perform

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 46

0

10

20

30

40

50

60

70

1K 2K 4K 8K 16K

DMA system call

DMA system call +data

moving

Figure 5.11: Latency of DMA transfer in continuous data.

Next_addr

Data

Next_addr

Data

Next_addr

Data

Descriptor

Figure 5.12: Linking of DMA despriptors.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 47

these DMA transfers.

Because of the convenience described above, we optimize ourDMA system calls using

the descriptor-mode DMA. Originally, we need three system calls for one DWT computa-

tion: data moving in, low frequency data moving out and high frequency data moving out.

Instead of direct DMA register filling, we write three descriptors for data moving and link

them together. Then, these data moving will be automatically performed with only one

system call and the system call is quickly returned because it only passes the address of the

first descriptor to the DMA controller. Our experimental results presented in Section 6.1

shows that the total data transfer time can be aggressively reduced due to the latency of

DMA configuration is reduced.

5.5 Optimization of EBCOT Tier-1

5.5.1 Data Locality Optimization

As we discussed in Section 3.2.3, we know the basic coding unit in Tier-1 iscodeblockand

every codeblock is coded independently. This gives us very good beginning to think the

optimization methods. We try the same strategy to put the data in the L1 SRAM to improve

performance.

Before the optimization, how do we decide codeblock size? Theoretically the code-

block size can be any number which is the power of 4. However, 32x32 and 64x64 are

often chosen according to practical experience [2]; OpenJPEG also only supports these

two sizes. The choice of the different sizes will affect the essential buffer size for code-

block data and total final codeblock numbers. According to our experiments, the coding

time of EBCOT Tier-1 under 33x32 and 64x64 is approximately the same; however, the

coding time in EBCOT Tier-2 under 32x32 is almost three timesthan under 64x64. The

main reason is that there are much more codeblocks that Tier-2 has to arrange into the final

bit-stream. As a result, we adapt 32x32 for the codeblock size in Tier-1 coding.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 48

Unlike DWT computation, the data for EBCOT Tier-1 computation are complex and

many constant data and intermediate buffers are needed. We detailedly trace the OpenJPEG

implementation of EBCOT Tier-1 and collect the data structures essential for the coding.

The essential data for Tier-1 coding can be categorized to several types according to their

functionality : input data (DWT coefficients), output buffer (the codewords generated by

MQ-coder), structures for handling EBCOT Tier-1 coding, and essential constant data. To

sum up the essential memory space for putting these data structures, we need to adjust

some of the data SRAM from a cache to a general data SRAM.

As we discussed in Section 4.2.1, the data SRAM is composed oftwo banks: bank-1

and bank-2. The half of bank-1 and the half of bank-2 can be configured as a cache, re-

spectively. There is no apparent difference in performanceunder our experimental scenario

while we configure the half of bank-2 as a cache or as a data SRAM.

After the adjustment of configurations, we can put all essential data structures into the

L1 data SRAM. We carefully arrange them explicitly in the L1 data SRAM and sum up

them as listed in the Table 5.1. The address of each data structure is free chosen. Only the

size is taken care. The overlapping of DMA operations and core accesses is not considered

here because that the space of SRAM is limited and the loadingof data moving is not

heavy.

After the data arrangement is completed, we discuss the utilization of the L1 instruc-

tion SRAM. The total instruction codes of EBCOT Tier-1 are too bulky to be put in the

instruction SRAM. Hence, we have to choose some of them to putin it. As we discussed

in Section 3.2.3, MQ-coder is used to encode each of the threeencoding passes after each

of them is generated. This module is a hotspot in Tier-1. Hence, we put the whole codes

of MQ-coder in the L1 instruction SRAM to achieve high performance with the compiler

intrinsics supported by GCC.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 49

Table 5.1: The data allocation of EBCOT Tier-1 in the L1 data SRAM.

Procedure name Address Size (byte) Func!on descrip!on

opj_t1_t *t1 0xff800000 40 (0x28) The struct to handle the

EBCOT-Tier1 coding

struct opj_mqc *mqc 0x ff800028 104 (0x68) The struct to handle the

MQ-coder

t1->data 0xff904000 16384

(0x4000)

To put the DWT coefficients,

which is the input data of

EBCOT-Tier1

t1->flags 0xff800090 8712

(0x2208)

The variables to record the bit

status using in bit-plane

coding

lut_ctxno_zc 0ff802298 1024

(0x400)

Related table for bit-plane

coding

lut_ctxno_sc 0xff802698 256 (0x100) Related table for bit-plane

coding

lut_spb 0xff802798 256 (0x100) Related table for bit-plane

coding

lut_nmsedec_sig 0xff802818 128 (0x80) Related table for bit-plane

coding

lut_nmsedec_sig0 0xff802898 128 (0x80) Related table for bit-plane

coding

lut_nmsedec_ref 0xff802918 128 (0x80) Related table for bit-plane

coding

lut_nmsedec_ref0 0xff802998 128 (0x80) Related table for bit-plane

coding

opj_mqc_state_t

mqc_states

0xff802f78 1504

(0x5e0)

The probability predic!on

table for MQ-coder

unsigned char

*output_data

0xff900010 8197

(0x2005)

The output data of

EBCOT-Tier1

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 50

5.5.2 Utilization of Two Cores

Now we discuss the utilization of two cores. Since we know that every codeblock is coded

independently, we dispatch these codeblocks to two cores tocompute without synchro-

nization until their dispatched jobs are finished. The implementation details are similar to

what we do in DWT; we usevfork() and exec()mechanisms and pass the parameters to the

other core via shared variables put in shared L2 SRAM. The parameters need to pass to

the other core are the address of tile, tile encoding handler, and a high level encoding han-

dler. Finally, we sum up our optimizations using pseudo codes. Suppose the two cores are

CoreA and CoreB, Algorithms 3 and 4 show the high level pseudocodes of Tier-1 coding

on CoreA and CoreB, respectively. The jobs of two cores are similar. The only difference

is that CoreA encode odd codeblocks and CoreB encode even codeblocks.

Algorithm 3: The workload of CoreA
Input : DWT coefficients
Output : MQ-coder codewords

allocate the structures for handling the Tier-1 coding;

for each component of the input imagedo
for each resolution leveldo

for each sub-banddo
for each precinctdo

for each odd codeblockdo

move the DWT coefficients into the L1 data SRAM;

encode codeblock;

move out the codewords generated by MQ-coder;

end
end

end
end

end

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 51

Algorithm 4: The workload of CoreB
Input : DWT coefficients
Output : MQ-coder codewords

allocate the structures for handling the Tier-1 coding;

for each component of the input imagedo
for each resolution leveldo

for each sub-banddo
for each precinctdo

for each even codeblockdo

move the DWT coefficients into the L1 data SRAM;

encode codeblock;

move out the codewords generated by MQ-coder;

end
end

end
end

end

5.6 Optimization Using Inline Assembly

Inline assembly is a technique for embedding assembly code into high level source codes

like C language. Why we need this technique is that sometimescompiler may generate

inefficient codes. We could write an inline function writtenin assembly to replace a critical

code fragment in order to achieve better performance—hand-written assembly code usually

have better performance than compiler-generated code. Inline assembly is commonly used

in Linux kernel; some hotspot system calls, ISRs or hardwarerelated critical codes are

directly written in assembly to achieve the best performance. Do we need to “reassemble”

assembly codes during the developments of user applications? In most scenarios, we don’t

think this is necessary.

As we know, RISC architecture is friendly for compiler designs. In addition, the re-

searches for compiler optimizations on RISC architecture have been very mature. We often

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 52

don’t “reassemble”assembly codes by hand because it’s a bulky work and we often might

obtain poor performance than compiler do. High level programmers just need to focus on

their application developments.

However, Blackfin core is a little different compared to general RISC architecture;

mathematic calculations and memory accesses can be performed simultaneously on Black-

fin.

Because of the complex architecture of Blackfin core, the compiler designs for Blackfin

architecture are a little difficult than for RISC general architecture. Hence, we are more

likely to reassemble assembly codes to run faster than compiler do. In the JPEG2000,

MCT, which is dedicated for color space transformation as described in Section 3.2.1, is

chosen to do the inline assembly optimization since it runs asmall piece of codes thousands

of times. This gives us a big chance to obtain high performance improvements.

Chapter 6

Evaluations and Discussions

In this chapter, we will evaluate the performance of our optimizations presented in Chap-

ter 5 and do some discussions to the results. The image Bretagne1.bmp taken from the

official website of OpenJPEG is used for evaluation. In addition, four popular image bench-

marks will be adapted to evaluate our optimizations. All ourexperiments are completed

on the development board: ADSP-BF561 EZ-KIT Lite, running on the uClinux operating

system which is configured in SMP-like mode.

6.1 Evaluations and Discussions of DWT

Table 6.1: DWT: The evaluation of performance improvementsof two optimizations: data
locality optimization and utilization of two cores.

Data locality op�miza�on Performance improvement

L1 data SRAM with DMA 65%

L1 instruc�on SRAM -2%

U�liza�on of two cores Performance improvement

Data par��on 8%

Data par��on with data locality

op�miza�on

-4%

Task Par��on (mem/cal par��on) 30%

53

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 54

This section we evaluate the performance of our optimizations to DWT, which are

proposed in Section 5.4. The first is the data locality optimization and the other is the

utilization of two cores.

Table 6.1 shows the performance improvements of the two optimizations with the

baseline configuration of -O3 optimized DWT running on single core.

As shown in the upper part of Table 6.1, we obtain 65% performance improvement

using the data locality optimization. We now further investigate how our optimizations

reduce the time consumption. As discussed in Section 5.4, wemove the data into the

buffer, and then do the 1-D DWT computation. Finally, we moveback the data from the

buffer.

Now we examine the time consumption of DWT in three parts: data transfer in the

vertical directions, data transfer in the horizontal directions and DWT computations them-

selves. As shown in Figure 6.1, before our data locality optimization, the data transfer in

the vertical directions occupies the most of time due to masscache misses. However, this

latency is apparently reduced after our data locality optimization has been applied. This

implies that we improve severe cache-miss problems. In addition, our optimization can

slightly reduce the computations themselves as well as horizontal data moving.

On the other hand, there is no improvement while we put the DWTcomputation code

in the L1 instruction SRAM. In fact, the performance looks worse (2% degradation(if we

do it. The reason is that the intrinsics GCC support under this development environment

could’t well support using L1 instruction SRAM; this will bediscussed in the Section 6.2.1.

After the discussion of L1 optimization, we evaluate the utilization of two cores. The

bottom part of Table 6.1 shows that the performance of the data partition is not good

whether the data locality optimization has been performed first or not. The reason is that

the loading of data transfer is too heavy. As shown in Table 6.2, we find that the whole

DWT computation procedure spends almost 4/5 of time in data transfer. Even after our

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 55

0

0.2

0.4

0.6

0.8

1

Data transfer

(Ver!cal)

DWT Computa!on Data transfer

(horizontal)

without data locality

op!miza!on

with data locality

op!miza!on

(normalized)

Figure 6.1: The analysis of time consumption in DWT before and after data locality opti-
mization.

optimization, the data transfer still occupy approximately 2/3 of time. We think this is an

important point why we cannot benefit from data partition to two cores. Another prob-

lem about why we cannot speed up the process is the synchronization problem. Every

time when synchronization is needed, we have to wait the slowcore to finish its jobs and

then we can keep on going. Because of the heavy loading of datatransfer,memory trans-

fer/calculation (mem/cal) partition, which is proposed in Section 5.4.2.2, is adapted to

promote the utilization of two cores.

Figure 6.2 shows that the time consumption of two cores working under mem/cal par-

tition. Due to the inconsistent completing time of two cores’ jobs, waiting for the synchro-

nization is necessary. This analysis can be a reference for further optimizations. We see

that the main idle time is when CoreB waits for CoreA to complete the data transfer in

the vertical direction. After our optimization using descriptor-mode DMA, the latency of

data transfer can be aggressively reduced about 10% compared to traditional register-mode

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 56

DMA.

Table 6.2: The loading comparison between memory transfer and computations in DWT.

 Data Transfer DWT computa!on

ver!cal 68.6% 11.3%

horizontal 9.8% 10.3%

(a)without DMA and L1 op!miza!on

 Data Transfer DWT computa!on

ver!cal 50% 17.9%

horizontal 15.1% 17%

(b)with DMA and L1 op!miza!on

The experimental results of the incremental optimizationsare illustrated in Figure 6.3.

The best speed-up can be achieved via the combinations of following optimizations: task

partition (mem/cal partition) to two cores, L1 data SRAM optimization and using the

descriptor-mode DMA. It can achieve totally up to 2.45x compared to the baseline, which

is the original OpenJPEG implementation with -O3 optimization under single core.

6.2 Evaluation and Discussion of EBCOT Tier-1

In this section we evaluate the performance of our optimizations to EBCOT Tier-1, which

are proposed in Section 5.5. The first is the data locality optimization and the other is the

utilization of two cores.

Table 6.3 shows the performance improvements of the two optimizations with the base-

line configuration of -O3 optimized EBCOT Tier-1 running on single core.

We see that the performance improvement of data locality is around 12%, which is not

as good as what we got in DWT. According to our analysis of the coding algorithm of

EBCOT Tier-1, the bottleneck of Tier-1 coding is the bit-level computations and complex

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 57

0

50000

100000

150000

200000

250000

300000

Idle-wai ng

Data transfer

DWT computa on

(nsecs)

Figure 6.2: The analysis of execution time of DWT using mem/cal partition.

1

1.65

0.98
1.08

1.58

2.15

2.45

0

1

2

3

baseline -O3 data L1 SRAM instruc!on L1

SRAM

data par!!on 2

cores

data L1 SRAM +

data par!!on 2

cores

L1 data SRAM +

mem/cal

par!!on 2

cores

L1 data SRAM +

mem/cal

par!!on 2

cores + DMA

op!miza!on

Figure 6.3: Speed-up of the proposed optimizations for DWT.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 58

Table 6.3: EBCOT Tier-1: The evaluation of performance improvements of two optimiza-
tions: data locality optimization and utilization of two cores.

Data locality op�miza�on Performance improvement

L1 data SRAM with DMA 12%

L1 instruc�on SRAM -8%

U�liza�on of two cores Performance improvement

Data par��on 7.4%

Data par��on with data locality

op�miza�on.

71%

control dependencies.

Bit-level calculation is a problem not only to DSP processors but also to general pro-

cessors. To speak in general,“processors”are not designed to conduct bit-level data; they

are designed to tackle data in“variable” level. This is difficult for us to do aggressive

optimizations. In addition, MQ-coder also needs to do the comparisons and jump opera-

tions frequently. These two reasons infer that why the data locality optimization is not so

obvious than in DWT.

On the other hand, we see that we cannot benefit from using the L1 instruction SRAM.

The performance is worser than we don’t do it. The main reasonis that the toolchains from

the board support package (BSP) only support compiler intrinsics to put “a procedure”

into the L1 instruction SRAM. This action would violently disturb the inter-procedural

optimizations of the compiler. Our experiments show that almost none of procedures can

benefit from being put in the L1 SRAM. Hence, this optimization is abandoned. How

compiler optimizations are disturbed is discussed in the Section 6.2.1.

As to two cores’ partition, as we discussed in Section 5.5, wedispatch the independent

codeblocks to both cores to promote the performance. As shown in Table 6.3, we found an

interesting phenomenon. We found that the performance promotion of two core’s utiliza-

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 59

tion with data locality optimization is much more than that without data locality optimiza-

tion. Table 6.3 shows that there is only 7.4% of performance improvement if we would not

perform the data locality optimization first. However, we get 71% of performance improve-

ment if we did that first. This can be explained that the data locality optimization reduces

the heavy loading of external memory accesses. As a result, the L1 data optimization is

not only an “additional” optimization but also a “must” optimization. This fact makes us

to take care that data locality optimization always has to bedone before consideration of

utilization of two cores.

The experimental results of the incremental optimizationsare illustrated in Figure 6.4.

We see that we can only apparently improve the performance bycombining the data local-

ity and data partition to two cores. The overall speed-up is around 1.89x.

1
1.12

0.92

1.074

1.89

0

1

2

baseline -O3 data L1 SRAM instruc!on L1

SRAM

data par!!on two

cores

data L1 SRAM +

data par!!on two

cores

Figure 6.4: Speed-up of the proposed optimizations for EBCOT Tier-1.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 60

6.2.1 The Disturbance of Compiler Optimizations due to Putting Pro-
cedures to the L1 Instruction SRAM

Since we got a bad performance by using GCC intrinsics to put procedures in the L1

instruction SRAM, we doubt that this optimization disturbsthe inter-procedural optimiza-

tions in compilers. To confirm our doubt, we write a very simple program to show that

how a GCC intrinsic, which arranges a specific procedure to beput in the L1 instruction

SRAM, disturbs the inter-procedural optimizations in compilers. The program is shown

in Figure 6.5. Themain() calls thefun a() and thenfun a() calls fun b(), and the input

variabled of value 0 will be passed tofun a() as the parameter. The value will be added by

one byfun a() and byfun b(), respectively, and then variablec will catch the return value;

so the final result isc = 2. Figure 6.6 shows the assembly that compiler translated. The left

side is the original code with -O3 optimization and the rightside is the optimized one by

adding the GCC intrinsic.

Originally, the compiler can smartly know the final results isc = 2; hence, the compiler

just returns the result “2” to the variablec and eliminates the call tofun a(). Furthermore,

fun a() itself is also been optimized to eliminate the call tofun b(). However, these op-

timizations are all disappeared when we putfun a() and fun b() into the L1 instruction

SRAM using the GCC built-in intrinsic: attribute ((l1 text)), which is added behind the

definition of a procedure. We found that the procedures put inthe L1 instruction SRAM are

categorized into the section:“.l1.text” . This is different from the common code section:

“.text” . This might be the reason why the existing inter-proceduraloptimizations cannot

be performed here.

Due to the severe disturbance of compiler optimizations, wefind that we cannot benefit

from utilizing the L1 instruction SRAM under this BSP.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 61

Figure 6.5: A simple program to show the disturbance of compiler optimizations due to
putting procedures to the L1 instruction SRAM.

6.3 Evaluation of Inline Assembly Optimization

The target we select for inline assembly optimization is MCT, as discussed in Section 3.2.1.

It’s a color space transformation performed in the pre-processing of JPEG2000. The MCT

source code is shown in Figure 6.7. It’s a loop with very shortcodes and the calculations

are also very simple . However, the loop is iterated more than200,000 times (if the input

image size is around 640x480). Hence, a small change will cause a big effect to the entire

performance.

Figure 6.8 shows the assembly produced by GCC. We can see thatthere are no parallel

executions and resisters are used conservatively. We now aggressively use more registers

than the compiler does. Hence, the memory operations, whichinclude memory loading

and memory restoration, are well parallelized with mathematic calculations as shown in

Figure 6.9. We call the instructions which are performed simultaneously “a parallel in-

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 62

Figure 6.6: The assembly codes of the simple test program in Figure 6.5. The left is the
original one; the other is the disturbed one.

struction” and a parallel instruction can be composed of twoor three instructions. The

latency of a parallel instruction is subject to the slowest instruction. The evaluation shows

that our optimization achieves about 75% of improvement compared to the unoptimized

one.

6.4 Overall Evaluation

In this section, we first do the comparison between the performance of the data cache and

our handmade data locality optimization. Data cache and ourdata locality optimization

both cache temporal data in the high speed internal memory. We will evaluate that if the

cache is necessary while the handmade data locality optimization is being applied. Then,

we evaluate the overall performance of the proposed optimizations presented in this paper.

Beside the image taken from OpenJPEG official website, another four popular standard

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 63

Figure 6.7: The MCT source code.

Figure 6.8: The assembly code generated by GCC.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 64

Figure 6.9: The assembly code we reassembled.

image testbenches are adapted to evaluate our optimizations.

6.4.1 Data Cache V.S. Handmade Data Locality Optimization

As we know, data cache automatically stores consecutively data into the high speed SRAM

for the potential use. On the other hand, our data locality optimization stores the potential

used data based on the understanding of the user program. We now do a comparison to

compare the performance between data cache and our data locality optimization in the two

parts of JPEG2000 compression: DWT and EBCOT Tier-1.

As shown in Figure 6.10, the time consumption can be reduced after the data cache is

turned on. In DWT, even our handmade optimization can be better than pure data cache

mechanism. However, the best performance can be achieved only by turning on the data

cache and further adding our handmade optimization.

6.4.2 Overall Results

After our optimizations, the whole procedure of JPEG2000 compression can be speeded

up around 1.92x. We choose a ARM-based embedded processor, Intel Xscale-PXA270,

for our comparison target because when BF561 was issued and available, PXA270 was a

famous and popular embedded processor. The PXA270 is based on ARMv5TE architecture

and works on 520MHz; the Blackfin BF561 works on 600MHz. Our results show that

after our optimizations, the performance to compress the 640x480 image, Bretagne1.bmp,

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 65

(nsecs)

0

5000000

10000000

15000000

20000000

25000000

DWT EBCOT Tier-1

No op!miza!ons

Data cache

Pure L1 data SRAM

Data cache + L1 data SRAM

Figure 6.10: The performance comparison between automaticdata cache and our hand-
made data locality optimization.

which is taken from OpenJPEG official website, is around 2.45x compared to that running

on the PXA270 with -O3 optimization, as shown in Figure 6.11.

In addition, we evaluate our optimizations using several standard image benchmarks:

airplane, baboon, Lena and peppers, as shown in Figure 6.12 [24]; the results are shown in

Figure 6.13. The experiment results show that our optimizations can be widely effective,

and the speedups are around 1.92x–2.04x.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 66

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

memory copy

pre-processing

DWT

EBCOT Tier-1

EBCOT Tier-2

(msecs)

Figure 6.11: Time consumption to compress a 640x480 image.

(a)airplane (b)baboon

(c)Lena (d)peppers

Figure 6.12: The standard image testbenches.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 67

airplane baboon Lena peppers

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Single core with O3 op!miza!on

flag

Dual core + -O3 + proposed

op!miza!ons

(msecs)

Figure 6.13: The overall performance evaluation of proposed optimizations on standard
image testbenches.

Chapter 7

Conclusion and Future Work

7.1 Summary

In this paper we transplant a JPEG2000 compression program onto the Analog Device

ADSP-BD561 platform and do the optimizations which focus ondata locality optimization

and jobs’ partition to two cores. We briefly summarize the experimental results:

• Putting intermediate data in the high-speed internal L1 data SRAM can efficiently

promote the performance.

• The utilization of two cores should be taken care about the ratio between memory

accesses and data computations.

The two lists of summarization above are not only useful on the Blackfin BF561 but also

valuable on other processors. However, the following listsare the specialty of BF561.

• Due to the lack of the hardware cache coherency mechanism, threads cannot be

scheduled to the other core. This fact leads that deep fine-grain parallelization to two

cores is not a good idea.

• Jobs’ partition to two cores should always be considered after the data locality opti-

mization using the L1 data SRAM.

68

CHAPTER 7. CONCLUSION AND FUTURE WORK 69

• Inline assembly can quickly benefit from the parallelization of memory accesses and

mathematical calculations.

To summarize, our proposed optimization methods for JPEG2000 compression on

Blackfin BF561 have a speed-up of 1.92x–2.04x compared to conventional single-core

execution with -O3 optimization.

7.2 Future Work

Our future work can be considered from three parts:

• The algorithm optimizations to EBCOT Tier-1—EBCOT Tier-1 occupies the most

part of time consumption due to the complicated bit-plane coding. We find that it

is potential to optimize the coding algorithm to reduce the time consumption. Some

data structures could be reused to save the memory space and access time. This

optimization needs to deeply understand the Tier-1 coding algorithms. Furthermore,

we can consider to integrate a dedicated hardware architecture to conduct the coding

of Tier-1. There are many researches in designing hardware architectures to speed

up the coding of Tier-1.

• The choices of coding parameters—The parameters to control JPEG2000 codec are

very complicated. We will research these parameters to understand how they affect

the coding time of the JPEG2000. In addition to the coding time, the parameters may

also affect image size, image quality and so on. To finely utilize these parameters

needs to really understand how they control the coding procedure of JPEG2000.

• Overcoming the problems about compiler optimizations—Although this is not a

easy work, however, if the compiler problems we encounteredin the experiments,

which are the disturbance of inter-procedural optimizations and the inefficient gen-

eration of parallel instructions, can be improved, the workload of high-level applica-

CHAPTER 7. CONCLUSION AND FUTURE WORK 70

tion developers can be reduced and the hardware components of BF561 can be fully

exploited with few changes in high-level source codes.

Our optimizations presented in this paper mainly focused onthe hardware-dependent

optimizations. On the other hand, future work will focus on “algorithm-dependent” opti-

mizations. If these two aspects of optimizations could be integrated, more speed-ups can

be achieved.

Bibliography

[1] M. J. Absar and F. Catthoor. Compiler-based approach forexploiting scratch-pad

in presence of irregular array access. InProceedings of the conference on Design,

Automation and Test in Europe - Volume 2, DATE ’05, pages 1162–1167, Washington,

DC, USA, 2005. IEEE Computer Society.

[2] Tinku Acharya and Ping-Sing Tsai.JPEG2000 Standard for Image Compression:

Concepts, Algorithms and VLSI Architectures. Wiley-Interscience, 2004.

[3] ADSP-BF561 — Blackfin symmetric multi-processor for consumer

multimedia. http://www.analog.com/en/processors-dsp/blackfin/adsp-

bf561/processors/product.html.

[4] Analog Devices, Inc.ADSP-BF561 Blackfin Processor Hardware Reference, Revi-

sion 1.2.

[5] Blackfin SMP like. http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:smp-

like.

[6] Arnaldo Azevedo and Ben Juurlink. An efficient software cache for h.264 motion

compensation. InProceedings of the 11th international conference on System-on-

chip, SOC’09, pages 147–150, Piscataway, NJ, USA, 2009. IEEE Press.

71

BIBLIOGRAPHY 72

[7] Mikel Azkarate-askasua. Jpeg2000 image compression inmulti-processor system-on-

chip. InJPEG2000 Image Compression in Multi-Processor System-on-Chip, Master’s

Thesis, Delft University of Technology, The Netherlands, 2008.

[8] Michael G. Benjamin and David Kaeli. Stream image processing on a dual-core

embedded system. InProceedings of the 7th international conference on Embedded

computer systems: architectures, modeling, and simulation, SAMOS’07, pages 149–

158, Berlin, Heidelberg, 2007. Springer-Verlag.

[9] Berkeley Design Technology, Inc.Choosing a DSP Processor. 2000.

[10] Francky Catthoor, Eddy de Greef, and Sven Suytack.Custom Memory Management

Methodology: Exploration of Memory Organisation for Embedded Multimedia Sys-

tem Design. Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[11] CH Chen. Implementation and optimization of jpeg2000 wavelet transform on adsp-

bf533 blackfin processor. InMaster’s Thesis, 2005. National Taiwan University of

Science and Technology Repository, 2005.

[12] Ingrid Daubechies and Wim Sweldens. Factoring wavelettransforms into lifting

steps.J. Fourier Anal. Appl, 4:247–269, 1998.

[13] Jun-Wei Gao and Ke-Bin Jia. Embedded video surveillance system based on h.264.

In Proceedings of the 2009 International Conference on Multimedia Information Net-

working and Security - Volume 01, MINES ’09, pages 282–286, Washington, DC,

USA, 2009. IEEE Computer Society.

[14] David J.Katz and Rick Gentile.Embedded Media Processing. Kluwer Academic

Publishers, 2005.

[15] The JPEG committee home page: JPEG2000. http://www.jpeg.org/jpeg2000/.

BIBLIOGRAPHY 73

[16] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen, and Liang-Gee Chen. Analysis and

architecture design of block-coding engine for ebcot in jpeg 2000.Circuits and Sys-

tems for Video Technology, IEEE Transactions on, 13(3):219 – 230, mar 2003.

[17] Peter Meerwald, Roland Norcen, and Andreas Uhl. Parallel jpeg2000 image coding

on multiprocessors. InJournal of Object-Oriented Programming, page 2. Society

Press, 2002.

[18] The jasper project home page. http://www.ece.uvic.ca/ mdadams/jasper/.

[19] Hidemasa Muta, Munehiro Doi, Hiroki Nakano, and Yumi Mori. Multilevel paral-

lelization on the cell/b.e. for a motion jpeg 2000 encoding server. InProceedings

of the 15th international conference on Multimedia, MULTIMEDIA ’07, pages 942–

951, New York, NY, USA, 2007. ACM.

[20] OpenJPEG library : an open source JPEG2000 codec. www.openjpeg.org.

[21] Rafael Palomar, José M. Palomares, José M. Castillo,Joaquı́n Olivares, and Juan

Gómez-Luna. Parallelizing and optimizing lip-canny using nvidia cuda. InProceed-

ings of the 23rd international conference on Industrial engineering and other appli-

cations of applied intelligent systems - Volume Part III, IEA/AIE’10, pages 389–398,

Berlin, Heidelberg, 2010. Springer-Verlag.

[22] Majid Rabbani and Rajan Joshi. An overview of the jpeg2000 still image compression

standard. InSignal Processing: Image Communication, pages 3–48, 2002.

[23] Hee Seo and Seon Wook Kim. Openmp directive extension for blackfin 561 dual core

processor. InComputer and Information Technology, 2006. CIT ’06. The Sixth IEEE

International Conference on, page 49, sept. 2006.

[24] Sipi image database. http://sipi.usc.edu/database/.

BIBLIOGRAPHY 74

[25] David S. Taubman and Michael W. Marcellin.JPEG 2000: Image Compression

Fundamentals, Standards and Practice. Kluwer Academic Publishers, Norwell, MA,

USA, 2001.

[26] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm.SIGPLAN

Not., 26:30–44, May 1991.

