U >, == Y)
B = 2 ~ &

FREmTaps (IT) 2 FFFAL B

JPEG2000 /B 35 & fE 4% o e 3 BLETE B 1 chi (e e id 1 4
£

Implementation and Optimization of JPEG2000 Compression on Dual-core
DSP Processors

e S R

RERE D PRLT R

i

JPEG2000 B 55 A e s e A SLRJE B ¢ a0 (T & VA7 g

Implementation and Optimization of JPEG2000 Compression on Dual-core
DSP Processors

) B R A Student : Po-Chiang Ho
R ELT EL Advisor : Dr. Yi-Ping You
Bz 2 =~ F
FTARERT AL UT) A EFFRL &5
e e
A Thesis

Submitted to.College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Industrial Technology R & D Master Program on
Computer Science and Engineering

July 2011

Hsinchu, Taiwan, Republic of China

P ER - FES D

JPEG2000 /47 . FE 1 e i3 B B 1 e

-\

g

g4 wiph do g R T L

=
|4
<k
(=

A=
5
R
o
g
&
|
‘-H&:

EP B &L

5 B_R R EgR B 3 adkd o Analog Device (ADI) A 37— i &0 Blackfin ze

1@ B —ADSP-BF561—* » #* 3 % P ek 35 o BF561 §_— $E 4k % Hcis 52 ﬁ-
(Micro Signal Architecture) s +% & Hic Bl B e SR B 5 gt 28 EHAR £ T JeRL- 281 S
BIHEMML - AAFEHme P P OpenJPEG OB RABIE Y BB
JPEG2000 /& &g efz 3¢] BFS61 1 o %3 B de st cnfd g & e o 7 vl i 1
3k o AP i i 2 A & AN (-)T E A GV o(2) 2 A RTS
B T o g 5 JPEG2000 B S5 ¢ 138 Bt E % ihd B35 —DWT
F- EBCOT Tier-1— k5 7 AP A4 DB d it 272 o pteb > AP A h~ P 2434 F
P gD R R E’v’ﬂFF“f‘iE 2 - F_GCC po22 st $Hig a3 B i 1 en T
B V- L GCCEEFraFengd hT(Tqps o AAPHFHRY > APFRI
REAN AR Sl riea S Fﬁ‘ﬁui Lis ¥ g s A S B PSR oS s R F
AP B G ERF S HR ME R g Ko AR T o SRR
NP G RFE B AP A iy o NP B F L SR AR B4R - B
Pos P FE 400 -03 i EE 0 T e BURAEE 1921 204 8 21 -

Fﬁ%%;:ﬁj : Blackfin » gyt FHEEREIR > BF561 > JPEG2000 » 1 =5 El » E5F -

Implementation and Optimization of JPEG2000
Compression on Dual-core DSP Processors

student : Po-Chiang Ho Advisors : Dr. Yi-Ping You

Industrial Technology R & D Master Program of
Computer Science College
National Chiao Tung University

ABSTRACT

Multi-core is the trend of future processor design. Along with this trend, Analog Device
(ADI) developed their latest Blackfin processor-ADSP-BF561-with a multi-core design.
BF561 is a dual-core, SMP-like DSP processor based an-micro signal architecture (MSA),
which is specialized for video processing and multimedia computations. In this paper we
propose several software-level optimizations to speed up a JPEG2000 compression program
ported from OpenJPEG project on a Blackfin BF561 processor. Two optimization methods,
data locality optimization and utilization of two cores, are performed on the two
heavy-loading stages of JPEG2000 compression: DWT and EBCOT Tier-1. Implementation
issues such as the disturbance to compiler optimizations when using GCC attributes and
inefficient generations of parallel instructions are discussed. In our experiments, we found
that we can only benefit from the utilization of two cores after the data locality optimization is
well performed because the data locality optimization reduces the heavy loading of accesses to
low-speed SDRAM. Four popular image testbenches are used to evaluate the efficiency of our
optimizations. The experiments showed that the optimizations have a speed-up of
1.92x-2.04x for the compression compared to the baseline with -O3 optimization flag running
on single core.

Keywords: Blackfin, DSP, BF561, JPEG2000, parallel processing, dual-core

HEE Fﬁ‘}ﬁ’:&%ﬁ:&ﬁ J#’ﬂ%lgﬁyfum 4@;;}1&@*4 * PR uf‘[E‘r‘:—ﬁiﬁif

Sail RS T V&?ﬁmﬂvﬂ:%“ ot R S %
B R AR - 7] R

BB BRIl S (T %lfﬁ PRI RV o RGBSR IEES Bl
zl“u’fﬁlfiﬁgl‘ﬁﬁBE’ﬁﬁ?ﬂ'—ﬁﬁﬁ#ﬁ’b Sl lﬁj;ﬁﬁdx T R S <
RGBEF VSR O B T R BRR) e PIREON BESE
PIRsf SO

BERIfY - 257 Eﬁf"ﬁﬁ@ﬁz pIL ﬁéﬁ?ﬁ?ﬁ o lﬁggﬁa]r L Pl B P
?E‘Eﬁ”l?ﬁfdu > PePIpD RIS ST A U -

3o i o BT SRR (AR IR R e L iﬁfE@F—*ﬁ"‘*\ o fa
PIHV o 5 > RLZ5 5 s [I

SENT S E R T A

i

Contents

1 Introduction

1.1 Overview

1.3 Problem Definition

1.4 Contribution

2 Related Work

3 JPEG2000 Overview

3.21
3.2.2
3.2.3
3.24

4.1 Blackfin Core

1
.................................. 1
1.2 Motivation. e 2
............................. 3
................................. 4
1.5 ThesisOrganization . « . « . v v vttt v 0 s 5
6
9
3.1 Backgroundand History 9
3.2 JPEG2000 CompressionProcedure 11
Pre-processing 12
Discrete Wavelet Transform 13
EBCOT Tier-1Coding 16
EBCOT Tier-2Coding i 20
4 The Architecture of Analog Device BF561 21
................................ 21
4.2 Blackfin ADSP-BF561, 23
Memory Hierarchy 24

4.2.1

5

422 DMASupport 25

Implementation and Optimization 28
5.1 ExperimentEnvironmentSetup 28
5.2 Software-based JPEG2000 Implementation and Profiling. 29
5.3 Overview of JPEG2000 OptimizationsonBF561 30
5.3.1 Data Locality Optimization. 03
5.3.2 Utilizationof TwoCores 33
5.4 Optimizationof DIWT e 36
5.4.1 Data Locality Optimization. 63
542 Utilizationof TWO COreS mrw .« « v v v v v v v i e e e 40
5421 DataPartition. oo 40
5.4.2.2 TaskPartition L. 42
5.4.3 DMAOptimization . ..« v 45
5.5 Optimization of EBCOT . Tier-1 . <o v o o oo oo o e . 47
5.5.1 Data Locality Optimization. 74
5.5.2 Utilizationof TwoCores 50
5.6 Optimization Using Inline Assembly 51
Evaluations and Discussions 53
6.1 Evaluations and Discussionsof DWT 53
6.2 Evaluation and Discussionof EBCOT Tier-1. 56

6.3
6.4

6.2.1 The Disturbance of Compiler Optimizations due toiRgtProce-

durestothe L1 Instruction SRAM 60
Evaluation of Inline Assembly Optimization 61
Overall Evaluation 62
6.4.1 Data Cache V.S. Handmade Data Locality Optimization 64

6.4.2 OverallResults

7 Conclusion and Future Work
7.1 SUMMary e e e e
7.2 Future Work

Vi

List of Figures

3.1
3.2
3.3

3.4

3.5
3.6
3.7
3.8

4.1
4.2
4.3

5.1

5.2
5.3
5.4

The procedure of JPEG2000 lossless compression. 12
(5,3) DWT (left) and inverse DWT (right). 14
An example of discrete wavelet transform: (a) the odgjimage, (b) after
1D-DWT computation in horizontal direction, (c) after 2DAIT compu-
tation, (d) 2-level DWT computation.. 14

The ordering of high‘pass coefficients.andlow pass caaite being gen-

erated. o e 16
The hierarchy of data partitionofanimage. 17
The scan pattern of a codeblock in one bit-plane. 18
An example to show what is “significant”. 18
The hierarchy of bit-planecoding. 18
Blackfin core architecture. 22
Block diagram of BF561 architecture. 23
Memory and bus architecture of BF561. 27

Execution time breakdown of JPEG2000 compression oBEI61 pro-

CESSOI. . . . o e e e e 31
Master-slave model of MPEG-2 encoder on dual-coreggms. 34
Pipelined model of MPEG-2 encoder on dual-core progesso 35
2D-DWT computation. o 37

Vil

5.5
5.6
5.7
5.8

5.9

5.10
5.11
5.12

6.1

6.2
6.3
6.4
6.5

6.6

6.7
6.8
6.9
6.10

6.11
6.12

Dataflow of DWT computation performed inoneline. 38
The data moving flow in a horizontal line. 39
The data moving flow in a verticalline. 40
Dataflow of DWT computation performed in one line: (a)dsefdata lo-
cality optimization (b) after data locality optimization. 41
The data partitiontotwocores. 42
The memory/calculation partitiontotwocores. 43
Latency of DMA transfer in continuousdata. 46
Linking of DMA despriptors. 46
The analysis of time consumption in DWT before and aftgadocality
optimization. L 55
The analysis of execution time of DWT using mem/cal garti 57
Speed-up of the proposed optimizations for DWT. 57
Speed-up of the proposed optimizations for EBCOT Tier-1. 59
A simple program to show: the-disturbance of compilerroations due

to putting procedures to the L1 instruction SRAM. 61
The assembly codes of the simple test program in FigireThe left is

the original one; the other is the disturbedone. 62
The MCT sourcecode. i,
The assembly code generatedby GCC./ 63
The assembly code we reassembled. 64
The performance comparison between automatic date eex our hand-
made data locality optimization. 65
Time consumption to compress a 640x480image. 66
The standard image testbenches. 66

viii

63

6.13 The overall performance evaluation of proposed opttions on standard

image testbenches. L

List of Tables

3.1

5.1

6.1

6.2

6.3

An example of the three coding passes being performeceny bit-plane.
The data allocation of EBCOT Tier-1 in the L1 data SRAM.

DWT: The evaluation of performance improvements of twbrizations:
data locality optimization.and- utilization of two cores.
The loading comparison between memory transfer and etatipns in
DWT. . . e e e
EBCOT Tier-1: The evaluation of performance improvetaehtwo opti-

mizations: data locality optimization and utilization ofd cores.

19

49

53

Chapter 1

Introduction

1.1 Overview

Digital images or videos need large amounts of space foagéoof the contents. For the
efficient utilization of memory and storage space, we neeambiopress them via reducing
spacial or temporal redundancy. Image (video) compressi@ndigital signal process-
ing technique developed to compressan image (video). Timpassion procedures have
heavy computation and calculation loading. In a desktofrenment, this is not hard be-
cause the computing power of modern CPUs often could affteddading. However, in
an embedded environment, power consumption often needs ¢orsidered since power
supply of many embedded systems come from batteries. Agtjgicspecific integrated
circuit (ASIC) is a good choice for speed and power consumnptnd the price are often
not expensive. DSP processors may be another flexible chwice they could run soft-
ware programs just like we run on desktop. Although the perémce are not good as
ASIC, DSP processors are convenient to change softwaregmsgo target specific appli-
cations and the performance on image compression are cétésr than general purpose
processors.

DSP processors are microprocessors designed to perfortal dignal processing, the
mathematical manipulation of digitally represented sign@igital signal processing is one

of the core technologies in rapidly growing applicationsarsuch as wireless communica-

1

CHAPTER 1. INTRODUCTION 2

tions, audio and video processing, and industrial con@plPowerful ALUs and Multipli-
ers are the basic characteristics of DSP processors amahtbgiory access often could be
parallel with mathematic calculations. Furthermore, sggdd@ardware components are de-
signed on them for accelerating digital signal processkegdubtract-absolute-accumulate
(SAA), multiplier-and-accumulation (MAC), and so on.

JPEG2000 [15] is a novel image standard proposed by JPEG itmato approach the
modern applications such as Internet, medical imagespwdaference and etc. Hence,
we do some researches to examine that how JPEG2000 coulit freme the architectures

of modern DSP processors.

1.2 Motivation

Moore’s law tell us that the number-of transistors that campiteon an integrated circuit
has doubled approximately every two years. The trend hasncea for more than half
a century. It will stop, however, eventually on a certaireleand cannot go on any more
since the atomic limit. In addition, there are two serioughpems while we try to put
more transistors on a chip: overheat and power consumpliberefore, processors are
designed multi-cores, which means to put one more cores ercbip. Hence, how to
divide calculating jobs to many cores becomes an importsuig.

To follow this trend, the newest DSP processors of Blackfimilig which are devel-
oped by Analog Device (ADI), are also designed multi-conat is ADSP-BF561 [3].

Blackfin 16/32-bit embedded processors are designed fawai flexibility and scala-
bility for convergent applications: multi-format audiageo, voice and image processing,
multi-mode baseband and packet processing, control mimggsand real-time security.
ADSP-BF561 is configured as a symmetric multiprocessingngement of two Blackfin
processor cores. Each is capable of operating at up to 600avidnas up to 2.6 MB of

on-chip SRAM memory.

CHAPTER 1. INTRODUCTION 3

Why we choose Blackfin? There are some reasons make it diggnBlackfin archi-
tecture is named micro signal architecture (MSA); it's @weloped by Intel and Analog
Device. Unlike very long instruction word (VLIW) architace, MSA mixes powerful
ALUs into RISC-like processors. This leads several adgedaFirst, RISC architecture
is known compiler friendly. Hence, compiler designs for M&# easier than for VLIW,
which is adapted by most DSP processors. In addition, thgmésw is straightforward,;
the two suites of development tools aren’t needed. Findilbyhardware designs are more
cost and power effective.

In recent years, surveillance cameras and automatic traffarders (ATR) are popular
and widely used in our daily life. To reach better comprassimeo quality, we need a
novel video compression standard.

JPEG2000, a new compression standard for still images,vsla@ed to overcome
the shortcomings of the existing JPEG standard, which rdstalized by Joint Technical
Committee on Information technology of the Internationag@nization for Standardiza-
tion (ISO)/International Electrotechnical CommissioB).

In JPEG2000 standard, Motion JPEG2000 has been standatdize a part of JPEG2000.
It could be used as video standard to achieve better videaygta widely uses include
cinema, surveillance, ATR and so on.

For the reasons mentioned above, we try to examine how JREGRZfitware based
compression could efficiently run on a dual-core BF561 taeehgood compression per-

formance.

1.3 Problem Definition

Since we know ADSP-BF561 is a dual-core processor, and uclaould run on both
cores like symmetric multi-processor (SMP). uClinux is ghtiveight version of Linux

working on processors with no memory management unit (MMid)tae trunks for BF561

CHAPTER 1. INTRODUCTION 4

are developed by the community. If we have full uClinux supgpon BF561, we have
affluent library supports from Linux. This makes easy for aigs$tablish our own image
compressing systems. In addition, abundant resources aimax also could be found on
the Internet.

However, there are still lacks of researches and refereaceiats to discuss the utiliza-
tion of two cores. We need to know if jobs’ partition to two esrin BF561 could as good
as in general SMP. If it works well, we are convenient to movesoftware development
procedures in a general SMP system to this SMP-like system.

For these reasons, we implement and optimize JPEG2000 d#ilBWM%e divide JPEG2000
into several components and do the parallelization on tbesgonents.

Our JPEG2000 compression program-would be expected tdytotahe from open-
source resources. To exploit'famous open-source. projemts the Internet, we are not
only easy to build our experimental environments but algeabk to learn the source
code implementations. Furthermore, they may be-allowedetodmmercial utilization;
this depends on their release Licenses. Our JPEG2000 cssimevould be focused on
lossless compression since it could conserve the detaifefable utilization.

Our optimization approaches would derivate from the cagsece of profiling, the
understanding of JPEG2000 algorithms, and hardware aothres; the optimization or-

dering would follow the principle: the efficient one, thegrone.

1.4 Contribution

In this paper, we implement and optimize the JPEG2000 Isssiempression under SMP-
like mode on Analog device BF561. Our optimizations focush@components of JPEG2000,
DWT and EBCOT Tier-1, which are the heavy loading and alsemil parallel parts of

the whole compression procedure. Our main contributiagtsrithe following:

e Discussion of open-source resource supports and hardeasgraints under full OS

CHAPTER 1. INTRODUCTION 5

supports on BF561 SMP-like environments.

e Implementation and evaluation of data locality optimiaatby using high-speed L1

data SRAM
e Implementation and evaluation of jobs’ partition to duale=

e Implementation and evaluation of the effectiveness ohassembly optimization

on JPEG2000.

1.5 Thesis Organization

This thesis is organized as follow. In chapter 2, the relatedk is introduced. In chap-
ter 3, we describe the overview of JPEG2000. In-chapter 4, agertbe the architecture
of Blackfin BF561, the target platform of this work, espelgian the memory architec-
ture and DMA supports. In chapter 5; we detailed discussrtipteémentations and our
optimization methods of JPEG2000 on BF561. In chapter 6eperimental results is
presented and the problems we encountered is discussedch@peer 7 concludes the

work and presents future work.

Chapter 2
Related Work

There are several researches about JPEG2000. Majif RadhaiRajan Johsi gave a very
good overview of JPEG2000 [22]; it's a good beginning to usti;nd JPEG2000. David
Taubman and Michael Marcellin have deeply discussed theryhef digital signal pro-
cessing techniques used in JPEG2000 [25]. Timku Achary@amgising Tsai detailedly
explained the specifications of JPEG2000 [2]. They focusethe specifications and im-
plementations. In addition, many good examples are induttes a very good reference
to understand the implementation details.of JPEG2000.

There are also many studies about JPEG2000 software imptatizas on different
processors. H. Mutat al. did implementation and parallelizations of JPEG2000 com-
pression on Cell/B.E [19]. They speeded up the JPEG2000dergdy parallelizations
using SPEs on the Cell/B.E. In addition, they did the syserallparallelizations by using
Cell/B.E blade servers. P. Meerwadtl al. evaluated parallelizations of JPEG2000 using
OpenMP and JAVA threads on SMP Intel Pentium Il Xeon running® MHz [17]. The
tile parallelization was abandoned here due to the artéfiects. The JAVA implemen-
tation was from JJ2000 and the OpenMP was adpated in the @mnepitation of Jasper.
The parallelization results showed that they could avoaheanissing greatly if the image
was read from the vertical directions. In addition, EBCO&rT1 was encoded by parallel

codeblocks. Azkarate-Askasua Mikel built a JPEG2000 cesgion system in a multi-

CHAPTER 2. RELATED WORK 7

processor system on FPGA using the commercial system-diagagin tool [7]. They used
OpenJPEG library to be the JIPEG2000 implementation andethit into several parts in
order to map them on to the design tool. System-level-ddsigis are used to reduce the
efforts of developers and speed up the time to market.

Discrete wavelet transform (DWT), which is an important gament of JPEG2000
compression, suffers memory uncontinuous reading prablehile using software im-
plementations. Dividing the image into pseudo small tikeshie solution used in [19].
However, in order to avoid edge effects, they have to makél#ésoverlapping. This work
needs large efforts. Putting the vertical lines togetherthen performing DWT to them
using JAVA threads is the solution used in [17]. However, wa'thave a JAVA environ-
ment and Linux threads cannot be scheduled to the other coB#5661. In our solution,
we analyze the model of uncontinuous memory accesses argidran theses accesses to
be the jobs of DMA controllers. Then, DMA controllers helpnsform these data to be
continuous data and put them in the high - speed 'SRAM for fagtsses. Our work can
efficiently eliminate the slow accesses to external SDRAM.

In addition, there are several with respect to Blackfin platfs. Michael Get al. put
data in shared L2 SRAM of BF561 and performed the data proggé®m both cores [8].
They showed that to put the data in the SRAM could only benedinfthe stream pro-
gramming model. The model means that the two cores do diffgpbs. Jun-Wei Gao and
Ke-Bin Jia established a H.264 based video surveillandesywith real-time compression
on a BF561 platform [13]. They briefly described five methausptimize the h.264 en-
coder: (1) allocating storage space , (2) issuing paraigtuctions ,(3) using special video
instructions ,(4) utilizing hardware loop ,and (5) chogsasuitable assembly instruction.
Hee Seo and Seon Wook Kim improved OpenMP performance on BBp6oving shared
data into shared L2 SRAM and further moving private data kit GRAM [23]. They fo-

cused on the fork/join model and put the data into L1 data SR&Ndossible as they can;

CHAPTER 2. RELATED WORK 8

only shared variables stayed in shared L2 SRAM. They shohegdthe power consump-
tion could be reduced by directly measurement using extemacemeters. C.H. Chen
showed that well-optimized Blackfin assembly code couldea&hhigh performance im-
provement compared to unoptimized one [11]. The assemidfaakfin architecture can
be parallelized under some restrictions. They used there#d reassemble the assembly
to speed up the discrete wavelet transform in JPEG2000.

The related work mentioned above include many aspects eéreises. Some of these
work mentioned that how they optimized their implementagion the Blackfin platform.

These work can be references for us to avoid going the wrolyg weour researches.

Chapter 3
JPEG2000 Overview

In this chapter, we will introduce the basic concepts of JPEIB and explain why it is

special and different from traditional JPEG.

3.1 Background and History

The well-known JPEG standard is developed by JPEG (Joirtoghaphic Experts Group)
committee, which is founded in 1986 under the joint auspafdSO and ITU-T, and has
become the most popular image compression standard invpestytmore years. Almost
every image or video instrument supports JPEG standardpifeethe great success of
the JPEG image compression system, it has several shottzgesecome increasingly
apparent as the need for image compression is extended tgiagnapplications such as
medical imaging, digital libraries, Internet multimediarismission, and so on.

In March 1997 a call for proposals was issued to the new stdrdIPEG2000. In
November 1997, more than 20 algorithms were evaluated [RiBRlly it included many
classic algorithms and becamelag’ standard. Nowadays, JPEG 2000 refers to twelve

parts of the standard [15]:

e Part 1 Core coding system (intended as royalty and license-fee-frdNOT patent-

free)

CHAPTER 3. JPEG2000 OVERVIEW 10

e Part 2 Extensions (adds more features and sophistication to ti&@ co
e Part 3Motion JPEG2000

e Part 4 Conformance

e Part 5Reference software (Java and C implementations are al@ilab

e Part 6 Compound image file format (document imaging, for pre-peess fax-like

applications, etc.)
e Part 7has been abandoned
e Part 8JPSEC (security aspects)
e Part 9JPIP (interactive protocols and APIS)
e Part 10JP3D (volumetric imaging)
e Part 11JPWL (wireless applications)

e Part 121SO Base Media File Format (common with MPEG-4)

Part 1 (the core) is now published as an International Stand@/e more parts (2-6)
are complete or nearly complete, and four new parts (8-ELyader development.

While the standard is well defined, why we need JPEG20007 eTimeist be some
reasons to persuade us to use the new standard. There ai@ sevefeatures show that

why JPEG2000 could be the compression standard of the ne&tajeon [2]:

1. Superior low bit-rate performance-JPEG2000 offers good performance in very

low bit-rates compared to traditional JPEG.

2. Large dynamic range of the pixets-JPEG2000 is the only standard could conduct

the pixel values more than 16-bit precision; it is up to 38 bit

CHAPTER 3. JPEG2000 OVERVIEW 11

3. Lossless and lossy compressieldPEG2000 provides lossless compression with
progressive decoding. Applications such as digital liesidatabases and medical

imagery can benefit from this feature.

4. Protective image security-the open architecture of the JPEG2000 standard makes
easy the use of protection techniques of digital images asastatermarking, label-

ing, stamping or encryption.

5. Region-of-interest coding-in this mode, regions of interest (ROIs) can be defined.
These ROIs can be encoded and transmitted with better ytiadih the rest of the

image.

6. Robustness to bit errors-the standard incorporates a set of error resilient tools to

make the bit-stream more robust to transmission errors.

Because of the good design of JPEG2000, it could be used inetyaf applications
from professional medical images, Internet, wirelessamaigsion, to low-end consumer

electronics.

3.2 JPEG2000 Compression Procedure

In this section, we discuss about the JPEG2000 Partl sthniter core of JPEG2000.
We focus on the procedure of lossless compression of JPEG00e the lossless com-
pression could reserve more details for flexible utilizatidhe main components of the
coding procedure could be divided into four pagise-processingdiscrete wavelet trans-
form, EBCOT Tier-1 andEBCOT Tier-2 as shown in Figure 3.1. We will discuss these

components in the following subsections.

CHAPTER 3. JPEG2000 OVERVIEW 12

input image

N
Preprocessing
9Tiling
2DC level shift
*MCT

J

Discrete Wavelet Transform
(DWT)

N —

Tier-1
¢Bit-Plane modeling
¢ Arithmetic coding

EBCOT coding
Tier-2
9Bit-stream organization

- J
J

compressed image

Figure 3.1: The-procedure of JIPEG2000 lossless compression

3.2.1 Pre-processing

The pre-processing state includes three passes: tilimgcDCurrent (DC) level shift and
color transformation . In the first pass, tiling, we may gaoti the whole image into several
independenttiles” , and these tiles could be encoded by the independent pananethe
following procedures. This is useful when the compressiamlvare system has limited
memory. The tiling size theoretically could be any size Hterm512x512 or bigger up to
the whole image size since small tiling size would lead toiobs edge effects [2].

After titling, we perform DC level shift to shift pixel valgefrom unsigned value to
signed value in order to make the pixel values more balanteke distance tézero”;
this leads morézero” while quantization is performed and the compression ratidd
be higher. Finally, we make color transformation called dlabmponent Transformation

(MCT) to transfer the color space of the image from RGB copace to YUV color space.

CHAPTER 3. JPEG2000 OVERVIEW 13

There are two kinds of MCT in JPEG2000 specification, whiehReversible Color Trans-
formation (RCT) and Irreversible Color TransformationT)CRCT is applied in reversible

coding and ICT is used in irreversible coding.

3.2.2 Discrete Wavelet Transform

The purpose of Discrete Wavelet Transform (DWT) is the saiitie dvscrete cosine trans-
form in traditional JPEG but in different coding system.ries to divide high frequency
parts and low frequency parts of an input image so that wedcadépt different strategies
in the following steps to increase compression ratio. Tle/‘frequency” could be real-
ized that the values of two adjacent pixels of an image ardasinif the pixel values of
a small region are similar, this region would be “smooth” aswew. The low frequency
parts occupy the majority of a commeon naturalimage. On therdtand, “high frequency”
implies that there may exist a shape, edge, or line or comecesd details.

The technique of DWT in"lJPEG2000 is based on filters. Theremeeigh pass filter
and one low pass filter in it. Low pass filter reserves low fesgry data, which occupy
most parts of an general natural image. On the other hantd,gdags filter reserves high
frequency data.

Two kinds of DWT filter are included in JPEG2000 standard7Y&nd (5,3). The
number “9” means the length of low pass filter is 9 and the nurfiianeans the length of
high pass filter is 7. Since we focus on reversible coding,usegxamine the (5,3) filter,
which is designed for reversible coding, in the followingalission.

The (5,3) DWT and its opposite versianyerse DWTare illustrated in Figure 3.2 [22].
The left site of the Figure 3.2 is DWT (forward) and the righeas inverse DWT. Input
sequences(n) are conducted by low pass filtég(n) and high pass filtek, (n) and then
followed by sub-sampling of factor 2 to get output data; wi tteese output datédDWT
coefficients” On the other hand, these DWT coefficients could be recortstiuo original

input data by the inverse symmetric operation: inverse DWT.

CHAPTER 3. JPEG2000 OVERVIEW 14

Figure 3.2: (5,3) DWT (left) and inverse DWT (right).

(c) (d)

Figure 3.3: An example of discrete wavelet transform: (&) ahiginal image, (b) after
1D-DWT computation in horizontal direction, (c) after 2DAO computation, (d) 2-level
DWT computation.

CHAPTER 3. JPEG2000 OVERVIEW 15

The DWT computation of JPEG2000 is 2D-DWT,; it means we do tNéTDon an
image from column by column to row by row. The ordering coudditiverse from row
by row to column by column. The effects on an image before dtet 2aD-DWT could
be seen in Figure 3.3. Figure 3.3(a) is the original clagstpatent: 512x512 gray-scale
Lena. Figure 3.3(b) shows that the input image is separatémt frequency in left side
and high frequency in right side after 1-D horizontal DWT gartation; then we do the
DWT computation to separate high and low frequency dataiitica direction, as shown
in Figure 3.3(c). Furthermore, We could perform a two-Idd&/T for the low frequency
data, as shown in Figure 3.3(d); it’s level 2.

The traditional DWT needs complex convolution computatiand is not adapted in
JPEG2000 standard. JPEG2000 adapts- a lifting-based DWTvhich reduces signif-
icant memory footprint and computing complexity comparethwraditional DWT. Fur-
thermore, it could run in place; this means no more other nmgisieace is needed during
the computation, and the input data-and the output-data essathe memory space. The
lifting-based DWT is based on two stegsedictionandupdating The Equation 3.1 shows
that how to make thpredictioncalculation.{s°} and{d’} means even and odd values of
input sequence, respectivelfid'} refers to the output of high pass coefficients. Tipe
dating procedure is shown in Equation 3.2; the output of low paséficants {s'} are
obtained by specific calculation of modified coefficiefit§ } and input data{s’}. The
subscript “i” means the input number. The concept could Ipgessed by Figure 3.4 [22].
We could see the ordering that high pass coefficients and &s8 poefficients are inter-

leaved generated.

1

d) = df = (50 + s0,) (3.1)
1

st =sY+ = (dl_| +di}) (3.2)

4

CHAPTER 3. JPEG2000 OVERVIEW 16

- Inputsequence

1
L . High-pass output

S e B e A - Low-pass output
1 1 1 1
So S Sa 53

Figure 3.4: The ordering of high pass coefficients and lovs gaefficients being gener-
ated.

3.2.3 EBCOT Tier-1 Coding

After DWT computation, the JPEG2000 compression enterefipy codingEmbed-
ded Block Coding with Optimal-Truncation (EBCOT) codiigBCOT coding is divided
into two steps:Tier-1 and Tier-2. Tier-1 coding divides the DWT coefficients to several
non-overlapping blocks and then.encodes each of the blodependently; we call these
blocks “codeblocks”. Besides codeblocks there are sewdwaks defined hierarchically
for efficient coding in Tier-2. The whole data partition sagn could be illustrated in Fig-
ure 3.5. We see that the image is separated into sub-bawetse#ith sub-band is divided
into several precincts; then each precinct is divided imteegal codeblocks. The code-
block size could be any size but the power of 4. However, theaiten is 32x32 or 64x64
because the performance is better [2].

Since the basic coding element is codebclock, a codebloghkasded in the elements
of “bit-plane”. The three coding passes are performed tm@adhe bit-level data in a
bit-plane; the encoding ordering in a bit-plane is followwdscanning of 4 subsequent
bits as shown in Figure 3.6 [16]. The bit-plane coding isestdrom the most significant
bit (MSB) to least significant bit (LSB) of the coefficientstims codeblock. Actually, it

starts from which any bit in this bit-plane is significant. eltsignificant” means the first

CHAPTER 3. JPEG2000 OVERVIEW 17

768

v

i
1] A 4 ;
: ! !
! i i
Codeblock i i E E ”
boundaries : + * ¥ !
| | 9 |10 |
i i sub-band
/ i E T
codeblock 718} | 12 i
""""""" !
Precinct ! ;
boundaries i ! v

\

Figure 3.5: The hierarchy of data partition of an image.

precinct

non-zero bit of a coefficient, which-may be 32 bits or any athdfigure 3.7 [16] is an
example to show what is “significant”. The figure 3.8 [16] slsdivat the hierarchy of the
coding elements in a codeblock. We could see that the least bl@ment is “a bit”.

The three coding passes performed in a bit-plane are:

¢ Significant Propagation Pass (SPP)Xhis is the first coding pass used in one bit-
plane except the first bit-plane of the codeblock. This cgdliass is adapted if this
bit is a preferred bit, which means eight of its adjacent &itsalready in significant

State.

e Magnitude Refinement Pass (MRPYhis coding pass is applied after the first “1”

bit of this coefficient has been encoded and the bit now is 1.

e Cleanup Pass (CUP)This coding pass is used when the bit is not encoded in SPP

CHAPTER 3. JPEG2000 OVERVIEW 18

le———— Codeblock width —

J l l - l Stripel
v vy v

r—
l l l > l Stripe2
\4 vy \4

Figure 3.6: The scan pattern of a codeblock in one bit-plane.

4
Samples

Sign bit 1 0 0
MSB —» | 0 0 1
0 0 1
0 0 0
Magnitude 1 0 0
bits 0 0 0
1 1 0 insignificant
1 ! 0 D significant
LSB —» | 0O 0 1

Figure 3.7: An example to show what is “significant”.

bit-planes in a strips in a bit-plane columns in a bits in a column
bodeblock stripe

Figure 3.8: The hierarchy of bit-plane coding.

CHAPTER 3. JPEG2000 OVERVIEW 19

coefficient value
coding pass nm 1 3
cleanup 1+ 0 0 O
significance 0
refinement 0
cleanup 0 1-
significance 0 1+
refinement 1 1
cleanup
significance 1+
refinement 0 1 1
cleanup

Table 3.1: An example of the three coding passes being peeiin every bit-plane.

and MRP except the first bit-plane. The first pit-plane staotfing from CUP.

Table 3.1 shows an example that how the 4 coefficients arededda every bit-plane.
The every bit-plane is encoded via three coding passes amal Iblit is encoded in one of
the coding passes. Where a'hit should be coded is followimgjaence of conditional ad-
justments. The adjustments include four coding operatidvizen to use these operations

bases on some conditions are satisfied. The four coding topesare:

e Zero Coding (ZC):ZC encodes a bit according to that if the neighbors of therbit a
already in significant state. If one’s neighbors are alrgadsignificant state, it is

very likely to be significant.

e Sign Coding (SC) SC records the sign information of a coefficient and its el

4 coefficients (right, left, up, down).

e Magnitude Refinement Coding (MRCMRC is applied after a coefficient is already

in significant state; in other words, there its first non-Zatdas already been coded.

¢ Run-Length Coding (RLC):RLC is used to encode the consecutive four bits in a
vertical scanning pattern; how many bits should be enco@épeémtdls on where the

first non-zero bit exists.

CHAPTER 3. JPEG2000 OVERVIEW 20

Since we know every bit-plane is coded in three passes withdperations, this com-
plicated mechanism will not be detailed discussed. Thelddtprocedures can be found
in [2].

After the three coding passes are generated, these codasggare encoded using
binary arithmetic codingMQ-coder Arithmetic coding is a superior efficient coding ar-
chitecture compared to traditional Huffman coding in JPE@ ean tackle binary input
data. It rescales probability interval when a input datunadming in according to the
appearing probability of the datum. The arithmetic codipgleed in JIPEG2000 is MQ-
coder. MQ-coder is a kind of adaptive arithmetic coding; @ans that the encoding site
changes its probability prediction synchronizing with ttecoding site. The probability
prediction changes following the input-data with look-upsatfixed constant table. MQ-
coder divides the probability intervalinto two sub-intets: more probable symbol (MPS)
and less probable symbol (LPS). The two sub-intervals atdithat the input symbol, 1 or
0, which is more probable to happen. If the input symbol ihmltPS interval, the output

codeword will be updated according to the estimation table.

3.2.4 EBCOT Tier-2 Coding

The purpose of Tier-2 coding is that how to efficiently organihe encoded data of Tier-
1. The main works of Tier-2 are to represent the layer andkosoenmary information
for each codeblock. A layer consists of consecutive biblaoding passes from each
codeblock in a tile, including all the sub-bands of the congrs in the tile. The block
summary information consists of lengths of compressed wamtds of the codeblock, the
most significant magnitude bit-plane at which any sampléhendodeblock is non-zero,
and the truncation point between the bit-stream layers grotrers [2]. Then, these infor-
mation are coded by Tag Tree Coding and then put into thetigigis. These information

are important information for the reference of decoding.cit

Chapter 4

The Architecture of Analog Device
BF561

In this chapter, the core architecture of Analog Device'adBfin processor and its dual-

core version—BF561will be introduced:

4.1 Blackfin Core

Blackfin processors are a new.breed of 16-/32-bit embeddsckpsor designed specifi-
cally to meet the computational demands and power consmafitoday’s embedded audio,
video and communications applications. Based on the Miagae® Architecture (MSA)
jointly developed with Intel Corporation, Blackfin process combine a 32-bit RISC-like
instruction set and dual 16-bit multiply accumulate (MA@r&l processing functionality
with the ease-of-use attributes found in general-purpaseocontrollers. This combina-
tion of processing attributes enables Blackfin processopetform equally well in both
signal processing and control processing applicationgrany cases deleting the require-
ment for separate heterogeneous processors. This cépapédatly simplifies both the
hardware and software design implementation tasks.

As shown in Figure 4.1, Blackfin core contains two 16-bit npligrs, two 40-bit ac-

cumulators, two 40-bit arithmetic logic units (ALUS), fo8+bit video ALUs, and a 40-bit

21

CHAPTER 4. THE ARCHITECTURE OF ANALOG DEVICE BF561 22

SEQUENCER

23
Nl
rle
N W
w|m
N|w
==
N|w
/
o
B>
@
o
\
{_
>
[n]
Q
\
N\

\

|

|

[

|

|

J

A Sy e ——
-
)

AUGN

r
1 I I I
o
o]
:]
=]
|
o
| o
1
|
e e s B e e e O

DECODE

LOOP BUFFER

\ -

UNIT

8|2(8|8(2|3|3|3

N o s e ey g o iy S iy S s i

| |

> ———— —— —— —— - DATAARITHMETIC INIT —=— —— —— —— —

Figure 4.1: Blackfin core architecture.

shifter, along with the functional units. The computatiomaits process 8-, 16-, or 32-bit
data from the register file. The compute register file costaight 32-bit registers. When
performing compute operations on 16-bit operand datagihister file operates as 16 inde-
pendent 16-bit registers. All operands for compute opanatcome from the multiported
register file and instruction constant fields. Each MAC canfigoen a 16- by 16-bit multi-
ply per cycle, with accumulation to a 40-bit result. Signad ansigned formats, rounding,
and saturation are supported. The ALUs perform a traditiseteof arithmetic and logical
operations on 16-bit or 32-bit data. Many special instargtiare included to accelerate
various signal processing tasks. These include bit opersmBuch as field extract and pop-
ulation count, divide primitives, saturation and roundiagd sign/exponent detection. The
set of video instructions includes byte alignment and pagkiperations, 16-bit and 8-bit
adds with clipping, 8-bit average operations, and 8-bitadyabsolute value/accumulate

(SAA) operations. Also provided are the compare/select\audor search instructions.

CHAPTER 4. THE ARCHITECTURE OF ANALOG DEVICE BF561 23

For some instructions, two 16-bit ALU operations can be qrened simultaneously on

register pairs [4].

4.2 Blackfin ADSP-BF561

ADSP-BF561 is a member of Blackfin processor family of praduargeting consumer
multimedia applications. At the heart of this device are imadependent enhanced Black-
fin processor cores that offer high performance and low poaesumption while retaining
their ease-of-use and code-compatibility benefits. As shawigure 4.2, the two Blackfin
cores are connected via buses, which is a complicated biessyk addition to L1 instruc-
tion SRAM and L1 data SRAM, there is a L2 SRAM works around lspked compared

to L1 SRAM and it could be accessed by both cores.

VOLTAGE IRQ CONTROL/ IRQ CONTROL/] 1.
REGULATOR WATCHDOG TIMER WATCHDOG TIMER
i 8 g

b~

Bmal{/}&g Bmal(/}zg e O
iy & S B

L2 SRAM HOAY
INSTRUCTION DATA INSTRUCTION DATA R il
MEMORY MEMORY MEMORY MEMORY

CORE SYSTEM / BUS INTERFACE IMDMA L

CONTROLLER
~ =
EAB L spoRT1 [P
DMA e
CONTROLLER1
32 P GPIO K=
[l DMA
BOOT ROM !

EXTERNAL PORT
FLASH/SDRAM CONTROL

i i g

Figure 4.2: Block diagram of BF561 architecture.

SPI =

| spomRTo [

mimers | P

CHAPTER 4. THE ARCHITECTURE OF ANALOG DEVICE BF561 24

4.2.1 Memory Hierarchy

Blackfin products support a modified Harvard architectureambination with a hierar-
chical memory structure shown in Figure 4.2. Generally kipgga a hierarchical memory
architecture means there exists multi-level memory blaokd they run under different
speeds from fast to slow. The memory block near the processeroften works on the
highest speed and we call it Level 1 (L1) memory. Following grinciple, the follower
is L2, L3,... memory . A hierarchical memory structure isigasd for cost and power
effective.

Level 1 (L1) memory of Blackfin BF561 operates at the full grssor speed with little
or no latency. At the L1 level, the instruction memory holdstructions, the data memory
holds data, and a dedicated scratchpad data-memory staoks sind the information of
local variables.

L1 instruction SRAM consists of 32Kh SRAM, of which 16Kb ca@ tonfigured as a
four-way set-associate cache. If we configure it/as a genestaliction SRAM, it could
be put not only instructions but also data.-However, the gdatan the instruction SRAM
can be moved only by DMA and the core can not take the data frbindtruction SRAM
directly.

L1 data SRAM consists of two banks of 32Kb each. Half of eachkba always
configured as SRAM while the other half can be configured asNRAa two-way set
associate cache. In addition, there exists a block of 4Kbckdtshpad SRAM, which runs
at the full speed but is only accessible as a data SRAM andtaerconfigured as a cache
memory.

For safe memory access, the Memory Management Unit (MMUyiges memory
protection for individual tasks that may be operating ond¢bee and can protect system
registers from unintended access.

The ADSP-BF561 dual cores share an on-chip L2 memory sysidnth provides

CHAPTER 4. THE ARCHITECTURE OF ANALOG DEVICE BF561 25

high speed SRAM access with somewhat longer latency thahltimeemory banks. The
L2 memory is a unified instruction and data memory and can &mdnixture of code and
data required by the system. It could be only configured asNsRAd cannot configured
as a cache. On the other hand, it could be seiathe-ablego data cache; this means it
could be cached by the data cache. The total L2 SRAM size ilbBF5128Kb.

The L1 instruction SRAM and data SRAM could be broken into 4b-banks, which
can be accessed independently by the DMA and the core simeolizly.

External (off-chip) memory is accessed via the External Busrface Unit (EBIU).
This 32-bit EBIU provides a gluless connection to as manyoas lbanks of synchronous
DRAM (SDRAM) and as many as four asynchronous memory devitasiding flash
memory, EPROM, ROM, SRAM, and memeory-mapped I/0O deviceg. HB133-complaint
SDRAM controller can be programmed to interface to up to SExMf SDRAM.

4.2.2 DMA Support

To see the architecture of ADSP-BF561, we could easily racéd by the two DMA
controllers. DMA is well known for efficient data movementgeexists not only in general
CPUs but also in DSP processors. The advantage of the DMAe®Rwm BF561 is that
the buses are independent while connecting to internal LANBRNd L2 SRAM. This
is special because most DMA devices in other processorsesigreed connecting to the
main bus and share the bus access with processor cores andexXites connecting to the
bus; that's why we say “cycle stealing”. However, “cycleadteg” doesn't exist in BF561
due to the independent DMA accesses; this means the ublizat DMA on BF561 could
promote higher performance.

Since we say DMA accesses to internal L1, L2 SRAM could befrefih independent
buses, the access to external SDRAM is all controlled by EBlkis seems to make no
big difference between core access and DMA access. HowbedDMA access could be

more efficient since it works under burst read/write.

CHAPTER 4. THE ARCHITECTURE OF ANALOG DEVICE BF561 26

For different purposes, the DMAs on BF561 can be categotizéaree functions:

e Peripheral DMA (DMA): It is used to transfer data between peripheral devices and

internal L1, L2 SRAM

e Memory DMA (MDMA): It is used to transfer data between external SDRAM and
internal L1, L2 SRAM.

¢ Internal Memory DMA (IMDMA): Itis used to transfer data between internal L1/L2
SRAM.

The Figures 4.3 shows the bus architectures of Blackfin BF&&Icould see that there
are independent buses connecting to'L1 SRAM and L2 SRAM. IEaremanipulate the

accesses by the DMA devices and the cores overlapping, tfeempance can be promoted.

CHAPTER 4. THE ARCHITECTURE OF ANALOG DEVICE BF561

PAB
% 16 SCL K DOMAIN

---------- MMRPORT/BUS [— — — — — — = — = = — = = — = = — — — — — — — —

! INTERFACE CCLKDOMAIN |
|
I
|
\] ' CCLK/2 DOMAIN :
\ MMR MMR :
I L2MEMORY :
| COREA + L1 COREB + L1 |
: MEMORY MEMORY |
! P D P D |
I
| ‘ i A CORE L2 sysL2 :
: 64 32 64 32 64 32 :
] A |
|
| PpPORT D PORT P PORT D PORT L1/L2 DMA/L2 :
, | INTERFACE INTERFACE INTERFACE INTERFACE INTERFACE INTERFACE
|
i A 1
! |
: 32 64 32/ 32/ 32 32 64 32 f32 (32 {64 164 [32 1f32 32
CORE ! I
AL2
CORE '
BL2 L |
]
|
DCB3 — 1
I IMDMA
DCB4 ————————— — T ———— — > !
A
EAB1 If “
— PAB
DCB1
DCB2
DEB1
DEB2 I]
Y Y A
PAB —>| EBIU PAB - DMAT1 PAB —-> DMA2
16 16 16
\ \
e DAB1 [32 DAB2 / 16
l /
PERIPHERAL PERIPHERAL
TO SDRAM/FLASH GROUP 1 GROUP 2

Figure 4.3: Memory and bus architecture of BF561.

Chapter 5

Implementation and Optimization

5.1 Experiment Environment Setup

There are several kinds of developing tools for us to develapprograms on BF561.
The official integrated tool is Visual DSP+#+, which'is a in@gd developing environment
(IDE) like ARM Developer Suite'(ADS) in ARM-based environnts. For more complex
applications, they also developed. a lightweight real-tkeenel called VDK, which has
many libraries for real-time applications for developers.

Instead of official tools we have ‘anather choice: GNU opeam® project. In this
project, we could use uClinux and GCC toolchains on Blackfsteam; all the toolchains
and uClinux are well supported by the community. uClinux iggatweight version of
Linux to support non-MMU processors.

We choose the open-source GNU project for our experiment@ament for two rea-
sons. First, an open-source environment is more propeicidanic researches. Second,
if we have Linux kernel support on BF561, we theoreticallyldotransplant the codes
from any other Linux-based platform and could exploit thedry supports from Linux
kernel; this is very convenient for us to develop our appitce quickly since resources
for Linux-based systems are easy to find on the Internet.

For dual-core BF561, uClinux could run on only one core ohhmires. If uClinux

runs on one core, the other core is treated as a device and rgulprograms through

28

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 29

driver supports. In addition to running on one core, uCliaiso could run on both cores;
it is called“SMP-like” mode.

Why we say it's'SMP-like” is that BF561 lacks of hardware cache coherency mecha-
nism; a“real” SMP must have hardware supported cache coherency mechdtésroe,
cache coherency should be done by software mechanism wiegeledhe This implicates

three significant features [5]:

e caches must be in write-through mode,
e more overhead is introduced due to software coherency meshaand

e all threads of a process are restricted to be executed omthe sore.

Another problem is that the L1 SRAM owned by one core cann@doessed directly
from the other core so that L1 SRAM cannot be used in the keBetause it will cause
kernel panic while the kernel threads running on one corttaccess the kernel resources
put in L1 SRAM of the other core. This would reduce the optatian potential because
we cannot put critical system calls in the L1 SRAM to optimizeux kernel. The devel-
opments of user space applications also have to be takethedtbe user process runs on
a specific core if we try to put the data or instruction codeh@Ll SRAM.

We finally configure the uClinux as SMP-like mode because laLinux supported
environment gives us a consistent environment to develplicapions. There are no needs

to load programs to the other core by special drivers.

5.2 Software-based JPEG2000 Implementation and Pro-
filing

There are several projects working on open-source JPEG2#r. The most famous are

Jasper [18] and OpenJPEG [20].

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 30

Jasper is developed and maintained by its main author, Michdams, who is affil-
iated with the Digital Signal Processing Group (DSPG) in Brepartment of Electrical
and Computer Engineering at the University of Victoria. dtdeveloped for the imple-
mentation of JPEG-2000 Part-1 standard (i.e., ISO/IEC 4844and itself is a part of
JPEG-2000 Part-5 standard (i.e., ISO/IEC 15444-5).

OpenJPEG implements not only Part-1 standard but also nthey features like JP2
(JPEG2000) and MJ2 (Motion JPEG2000) file formats, JPEG20t@&0active Protocol,
and so on. It's developed and maintained by Communicatind$emote Sensing Lab, in
the Universit catholique de Louvain (UCL).

With the comparison of two implementations, we choose OPE® for our imple-
mentation for two reasons: the source code is'easy to trattharcode partition is clear.

Since the source code of OpenJPEG is well'written and pestafd not too hard to
port the code onto our platform. The uClinux is alsoeasy tdigare to SMP-like mode.

Figure 5.1 shows the execution time breakdown-of JPEG200(@ression on BF561;
the input image is a 640x480 color.image taken from OpenJHE€ab site and the pro-
filing is subject to default setting: DWT level n=5, codelkdi= 64x64, lossless. We see
that EBCOT Tier-1 and DWT dominate the JPEG2000 compres#ientwo components
occupy 92% loading of the whole time. Our optimizations Wil focused on these two
parts because they are not only the hotspot of JPEG2000 esmipn but also potentially

parallel parts.

5.3 Overview of JPEG2000 Optimizations on BF561
5.3.1 Data Locality Optimization

After we finish kernel and JPEG2000 porting to our BF561 emrnent, where do we start
to optimize JPEG2000? As we know, image processing ofteddebvan image (data) into

several blocks and in concept the block is a 2-D array. Howewemory accesses are

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 31

pre-processing EBCOT-Tier2
7% 1%

DWT
21%

EBCOT-Tierl
71%

Figure 5.1: Execution time breakdown of JPEG2000 comprassi the BF561 processor.

practically 1-D; hence, it will'have bad performance if wend@arefully arrange the data
in proper location. A big problem is the cache-miss probl&inere are many researches
in management of data locality in different design leveldsas system-level, application-
level or compiler level [26] [6] [1] [10].

As we discussed in Section 4.2.1, there are a L1 instructiAN, a data SRAM and
a L2 SRAM companied with two DMA devices on the BF561 archiiiee. Now we focus
on the data SRAM. Some of the L1 data SRAM can only be configasedeneral data
SRAM rather than a cache, and therefore there is no cacheprablem. The data SRAM
works as fast as the core. This data SRAM is a precious resdarais to do the data
optimization. For convenience, we simplify the term “gelatata SRAM” to be “data
SRAM”.

The best scenario for the utilization of the L1 data SRAM @ttive can put all data
in it to achieve best performance. However, this often doésppen due to the limited

SRAM size. Hence, we only can move some of them into L1 SRAMséhmay include

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 32

parts of the input data, output buffer, temporary data, orislata and so on.

On the other hand, we configure the parts that can be confi;agea cache to be
a cache because we know that this state-of-the-art mechamsld efficiently promote
the performance without any software overhead. This cordigan is a good choice for
general utilization. However, the utilization of gener&/AVl depends on application
developers. Hence, the utilization of SRAM is an emphas@uofoptimization.

DMA is a technique designed for data moving and now almosigxn every modern
CPU. There are also DMA devices in BF561 and the amount is @iferent to many
other SOC and CPU designs, the two DMA devices in BF561 halep@ndent buses and
can access the SRAM in one sub-bank while Blackfin core issaaug another. Each of
them has 16 channels, 4 of which.could be used as Memory DMANMP it means that
we could use them to move data among L1 SRAM, L2 SRAM, and eatenemory.

As a result, we can move data into L1 data SRAM by DMA beforg thie needed;
then we move out these data after the processing is completethermore, it will be the
best if the data moving can be overlapped with the accessesdrocessor cores.

The hotspot instruction codes also ‘can be put in the instru@RAM like we do in
data. For the utilization of the instruction SRAM, GCC sugpaompiler intrinsics for
us to put specific procedures into L1 instruction SRAM. Fatamce, we can simply use
__attribute__ ((I1_text)) to put one procedure into the L1 instruction SRAM while we are
writing source code. It is put after the definition of the prdare we want to put in the L1

instruction SRAM. The following is an example to show how 8@ uhe intrinsic:
void foo(int a) __attribute __ ((11_text));

The functionfoo(int a)will be allocated in the L1 instruction SRAM and the linkedlwi

maintain the linking information for the call too.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 33

5.3.2 Utilization of Two Cores

After the discussion of SRAM, we talk about the two cores obBE. If we could put
parts of the calculating jobs onto the other core to be psembsimultaneously, the per-
formance will be promoted significantly. It is widely knowhnat there are two ways to
partition calculating jobs to multi-cores: task partitiand data partition. Task partition
means that many cores run different codes and the data aregsexd through these cores
like a pipeline. Data partition means that many cores rurstiiee code and the data are
partitioned to these cores to be processed.

Similar to the principle, David J. Katz and Rick Gentile, thembers of Analog De-
vices’ Embedded Processor Application Group, use MPEG-&hasxample to show the
two partition ways on Blackfin BE561 [14]. The first, as showrFigure 5.2, is anaster-
slavemodel; it's similar to “data partition™. In this model, the@ding process is mainly
controlled in master core and it spills some data to be pedcgsn the other core. The
advantage of this model is thatwe don’t need to change codéslae development proce-
dure is just similar to the development.in.one core. Howesygrchronization overhead is
needed and the slave core would not be fully loaded. As theapbeashown in Figure 5.2,
some components of the MPEG-2 compression are parallé¢tzacth cores and some are
not. Whether the components can be parallelized may depetiteo algorithms. When
running the unparalleled components, the slave core idénsiéte. In addition, the syn-
chronizations are needed after some components in ordeake sure that the data for
their next components are ready.

The other programming model ispgpelinedmodel; it’s similar to “task partition” and
some people call it “stream partition”. As shown in Figurg,3he compression procedure
is divided into several sub-procedures and then these sadegures are dispatched to two
cores. If the loading of two cores are balanced enough, thesidtes happening in master-

slave model don’'t happen here. However, the whole develppincedure needs to be

Master Processor Core

v

Format Conversion (top field)

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION

Slave Processor Core

v

Format Conversion (bottom field)

Motion Estimation (half-search point)

Motion Estimation (half-search point)

Motion Compensation

Motion Compensation

ve

Rate Contral
¢ L
L 4
DCT DCT
Quantization Quantization
v y
ZigZag & RLE ZigZag & RLE

.

De-Quantization

y

v

De-Quantization

iDCT

¥

.

iDCT

Uncompensation

s

Uncompensation

ve

DC Prediction

v

Entropy Coding

B

Encoded Stream

Figure 5.2: Master-slave model of MPEG-2 encoder on dusd-poocessors.

34

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION

Input Video Stream

| Fomat Conversion
| otion Estimation |

' Motion Compensation

-
Quantization

DC Prediction '
Entropy Coding _

Encoded Stream

Figure 5.3: Pipelined model of MPEG-2 encoder on dual-cooegssors.

35

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 36

changed more and is not straightforward compared to whichaster-slave model.

To consider these two models we choosaster-slavenodel for several reasons: first,
it's more scalable while the amount of hardware cores is gédnsecond, we could easily
increase or decrease the loading of the slave core if we peessign other jobs to the slave
core; finally, JPEG2000 is hard to make balanced job pamstexcording to the profiling

results we made, which are presented in Chapter 5.1.

5.4 Optimization of DWT
5.4.1 Data Locality Optimization

As we described in Section 3.2.2, JPEG2000 uses 2-D DWT ctatipn to transform
input image to high frequency and low frequency parts. THe RWT computation is
shown in Figure 5.4; we perform DWT calculation on the inpnage line by line in the
horizontal and vertical direction, respectively.

Let's take a close look at the dataflow of the DWT computatiofigure 5.5. Before
we perform one-line DWT calculation, we-need to move the tlata into a buffer for the
processor core to do the calculation. Thanks to the welbaesi (5,3) lifting-based DWT,
itis a“in-place” calculation and we only need one buffer. In general casegsswor itself
can do the data moving well and data cache can cache the sainsetata for potential
uses. Hence, it is easy to take the following data for prangdsa the high speed cache
memory if our data are continuous in the memory; in image ggsimg, it means that the
data are from horizontal direction. However, this wouldfsuproblems while reading
from vertical direction. Furthermore, it is wasted if wetjask the processor core to do the
data moving; it should focus on calculating jobs.

In general memory device, data are practically located aodechin 1-D mode even
though the high-level description is in 2-D mode. For thigs@n, we change our view

from 2-D to 1-D to see how data are moved into and out of thesbulfigure 5.6(a) shows

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 37

(b)1-D DWT in vertical direction

Figure 5.4: 2D-DWT computation.

the data moving scenario that how data are moved into thefuéfm candidate line data
in the horizontal direction. We could see that it is contimsioeading while data are read
to the buffer; this is the best model that cache can perforih we

Since the data is filled into the buffer, DWT computation carpkrformed to the data
in this buffer. As discussed in Section 3.2.2, the DWT corapah produces DWT co-
efficients and the low frequency and high frequency coefiisi@are regularly interleaved.
After DWT computation, while the data are moved back, we haveeparate the low
frequency coefficients and high frequency coefficients amdtipem back to the correct
location. How data are moved back is shown in Figure 5.6(l®.s&é that high frequency
and low frequency coefficients are centralized to the staiittae middle of the original
line data, respectively.

In the vertical direction, however, the candidate line @da¬ continuous. As shown

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 38

Blackfin core

static void dwt_encode_Xint *a, int dn, int sn, int cas);

Figure 5.5: Dataflow of DWT computation performed in one line

in Figure 5.7(a), the data read from candidate line dataeniedically separated by a fixed
stride; this is bad for cache to handle. On the other handlasito the data restoration in
the horizontal direction, we need to put the interleavedfleguency coefficients and high
coefficients back to the correct location. Where the datalshioe put back is shown in
Figure 5.7(b).

Through the observation and analysis, the actions of datémgancluding data mov-
ing into and out of the buffer, which are performed in the hontal and vertical directions,
can all be configured to be the jobs of DMA. The main reason alwby DMA can per-
form these data moving is that these data moving are redgslgapose one “data moving”
consists of moving of several data elements, if the elenwdritee source data are regularly
placed in a fixed stride and their target location are alsofexed stride, we call the data

moving “regular” and it can be performed by DMA.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 39

buffer x : the horizontal length of image

| y : the vertical length of image

candidate data in memory

(a) Buffer fill from candidate data before DWT

B : low frequency data
[: high frequency data

candidate data in memory

(b) Data restoration from buffer

Figure 5.6: The data moving flow in-a horizontal line.

As a result, we can use DMA to.move data into and out of the baifiel we just put
the buffer into the L1 data SRAM to be accessed in high spemkchtes. The dataflows
before and after our optimization are illustrated in Figbr@ We add the cache into the
figure to show the specialty of our optimization. We can se dlir optimization bypass
the cache mechanism.

Because of the frequent invocations of DMA operations, allency system call to
configure DMA controllers is essential. For this reason, weena lightweight system
call instead of standard Linux 1/O control driver and punitie L1 instruction SRAM. In
addition, thanks to the problem that L1 instruction SRAMmeatrbe accessed by the other
core, the DMA system call is cloned to the L1 instruction SRAMoth cores in oder to

be accessed from both cores.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 40

buffer x : the horizontal length of image

| y : the vertical length of image

B : low frequency data

[: high frequency data

] —Y " candidate data in memory

X

(b) Date restoration from buffer

Figure 5.7:The data moving flow in a vertical line.

5.4.2 Utilization of Two Cores
5.4.2.1 Data Partition

After the discussion of optimization using DMA and interisfRAM, we discuss how to
partition the calculation jobs to the other core. As we nwrgd in Section 5.3, we use
data partition to spread the half of the data to the other tmepeed up the calculation.
The fact that L1 SRAM cannot be accessed by the other corednatilil be a problem at
this moment. This enforces us to bind the user process tofdm@a@ores; this means that
we should enforce the Linux kernel to schedule the processmbnone core. This could
be achieved by system catit schedsetaffinity(pidt pid, unsigned int cpusetsize,cpatt
*mask) Another problem is that on BF561 a thread can only run on ame with its
process due to the lack of hardware cache coherency. As k4 iesthave to fork a new

process and bind it to the other core to help us share calwugat The new process is

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 41

Blackfin core

Blackfin core

static void dwt_encode_1(int*3, int dn, int sn, int cas); static void dwt_encode_1(int *a/int dn, int sn, int cas);

cache L1 data SRAM

Figure 5.8: Dataflow of DWT.computation performed in one li(e) before data locality
optimization (b) after data locality optimization.

generated after performindork() andexec()families.

The only parameter needed to pass to the new process is tresaadd the tile address
(which is the start address of the image in our scenariod;puit in shared L2 SRAM. L2
SRAM is now used as a shared memory for us to communicate betive cores. As
we discussed, the DWT performed in each line is independhemge, we divide the line
data of the same direction at the same level into two grougi§friont parts and half back
parts, and perform DWT on different cores as shown in Figu®e 8ntil the computations
of dispatched jobs at both cores are finished, the next stageh may refer to different
direction or the next level, are not allowed to start; thisamethat the synchronization
is needed here to make sure both cores finish their jobs. Weheed variables for
synchronization; they are placed in shared L2 SRAM.

However, we find that the data partition to two cores is ingffit The main reason is

that the loading of data transfer is heavy—more discussiolh®e given in Section 6.1.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 42

vfork()

Figure 5.9: The data partition to two cores.

Hence, we propose another method to partition jobs of DWTs Thdiscussed in the

following subsection.
5.4.2.2 Task Partition

Due to the heave loading in data transfer, we try to partid@iT computations in another
way (we name two cores as CoreA and CoreB for discussion);ryvtpartition jobs
between memory transfers and DWT computations themsalessk CoreA to focus on
DMA control; CoreA is responsible to control DMA to move thatd into L1 data SRAM
of CoreB, and CoreB focuses on the DWT computation but né¢dicare about the data
transfer. As discussed in Section 4.2.1, the data transfieg DMA control and core access
could be overlapped; this makes the memory/calculationtioer possible. The scenario
can be shown in Figure 5.10. We finally sum up our optimizaiaith Algorithm 1 and

Algorithm 2, which show what CoreA and CoreB do, respecyivAk we discussed above,

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 43

CoreA moves data and CoreB does the computations. For tipeens of two cores, we
set a synchronization machanism to make sure that each DWipwation starts after the
completion of moving out of the old data and moving in of thevmiata. The experimental
results presented in Section 6.1 shows that the perfornafrtesk partition is better than

that of data partition for the DWT process.

control

DMA controller 2N .

data transfer

data transfer

External memory

Figure 5.10: The memory/calculation partition to two cores

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION

44

Algorithm 1: DWT: The workload of CoreA

Input : three components of the input image: Y, U, V
Output: DWT coefficients

for each component of the input image

for each resolution levalo

for each sub-bando

for each 2 vertical lines of the input image

move the old data out;

move the first line data into Bank-1 of data SRAM of CoreB,;
syncl; //notify CoreB data in Bank-1 are ready;

move the old data out;

move the second line data into Bank-2 of data SRAM of CoreB

sync2; //notify CoreB data in Bank-2 are ready;
end
for each 2 horizontal lines of the input imade

move the old-dataout;

move the first line data into' Bank-1 of data SRAM of CoreB
sync1;//notify CoreB data in Bank-1 are ready;

move the old-data out;

move the second line.data:into Bank-2 of data SRAM of CoreB

sync2;//notify CoreB data in Bank-2 are ready;
end

end

end

end

Algorithm 2: DWT: The workload of CoreB

Input : three components of the input image: Y, U, V
Output: DWT coefficients

syncl;//wait Bank-1 data ready;
DWT_1D(bank-1);//perform DWT put in Bank-1;
sync2;//wait Bank-2 data ready;
DWT_1D(bank-2);//perform DWT put in Bank-2;

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 45

5.4.3 DMA Optimization

Because of the frequent invocations of DMA system calls, hmweduce the call latency
becomes an important issue. In this subsection, we disavgsdoptimize DMA system
calls.

The data transfer will start after the DMA is well configurége configuration is done
by user programs through a system call. If we return the systdl just after the comple-
tion of configuration, we can do other things while data tfamsig. We just have to keep
in mind that we should compute the data after the data arly realdy. The completion of
data transfer can be known by polling the completion regst®MA.

Figure 5.11 shows the latency comparison between the sysi#raf DMA configu-
ration and data transfer. We can see that whatever the diziegaoto be transfered are, a
fixed period of time for configuration-is needed. This fact iiepthat we have to make
the data size to be transferred in one DMA system call as Esg®ssible. This makes it
more possible to do other things while the data is transferri

Another optimization strategy is that we can wscriptor-modeDMA. The basic
method to configure DMA controllers is to fill the parameter®ithe control registers of
DMA controllers directly. However, every time when we nebd hext transfer, we have
to activate the system call once. The DMA controllers of BEpBovide a mechanism
to reduce the number of DMA system calliescriptor mode “Descriptor” means a data
structure put in the memory, which describes the DMA configjan. Then we just tell
the DMA controllers the address of the descriptor and the DddAtrollers will fetch the
descriptor and configure itself; hence, we can quickly rehack to our user program from
the system call. Furthermore, there is a special field in #@se@ptor structure which keeps
the address pointing to the next descriptor. This means weguaamany configurations
in the memory and link them together if we could know the canfidions of following

DMA operations, as shown in Figure 5.12. The DMA controllausomatically perform

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION

~
o

(2]
o

w
o

S
o

w
o

latency: ns

Figure 5.11: Latency of DMA transfer in continuous data.

20
) i
0 N
1K 2K 4K 8K 16K

Size of data to be transffered: bytes

B DMA system call

B DMA system call +data
moving

L

Next_addr

Descriptor /

Data

Next_addr

Data

1 Next_addr J

Data

Figure 5.12: Linking of DMA despriptors.

46

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 47

these DMA transfers.

Because of the convenience described above, we optimiZeMarsystem calls using
the descriptor-mode DMA. Originally, we need three systafltsdor one DWT computa-
tion: data moving in, low frequency data moving out and higdgfiency data moving out.
Instead of direct DMA register filling, we write three degtars for data moving and link
them together. Then, these data moving will be automayigadtformed with only one
system call and the system call is quickly returned becaus#y passes the address of the
first descriptor to the DMA controller. Our experimentaluks presented in Section 6.1
shows that the total data transfer time can be aggressigdlyced due to the latency of

DMA configuration is reduced.

5.5 Optimization of EBCOT Tier-1
5.5.1 Data Locality Optimization

As we discussed in Section 3:2.3, we know the basic codirtgrumier-1 iscodeblockand
every codeblock is coded independently.-This gives us veoddeginning to think the
optimization methods. We try the same strategy to put theeiddhe L1 SRAM to improve
performance.

Before the optimization, how do we decide codeblock size®orétically the code-
block size can be any number which is the power of 4. Howe@33 and 64x64 are
often chosen according to practical experience [2]; OpE@IRIso only supports these
two sizes. The choice of the different sizes will affect tissential buffer size for code-
block data and total final codeblock numbers. According toexgperiments, the coding
time of EBCOT Tier-1 under 33x32 and 64x64 is approximatbl same; however, the
coding time in EBCOT Tier-2 under 32x32 is almost three tirties under 64x64. The
main reason is that there are much more codeblocks thaTias to arrange into the final

bit-stream. As a result, we adapt 32x32 for the codebloakisiZier-1 coding.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 48

Unlike DWT computation, the data for EBCOT Tier-1 compudatare complex and
many constant data and intermediate buffers are neededetadiéedly trace the OpenJPEG
implementation of EBCOT Tier-1 and collect the data streegiessential for the coding.
The essential data for Tier-1 coding can be categorizedveraktypes according to their
functionality : input data (DWT coefficients), output buffghe codewords generated by
MQ-coder), structures for handling EBCOT Tier-1 codingd assential constant data. To
sum up the essential memory space for putting these datztsies, we need to adjust
some of the data SRAM from a cache to a general data SRAM.

As we discussed in Section 4.2.1, the data SRAM is composadoobanks: bank-1
and bank-2. The half of bank-1 and the half of bank-2 can bégued as a cache, re-
spectively. There is no apparent difference in performamcker our experimental scenario
while we configure the half of bank-2-as a cache or as a data SRAM

After the adjustment of configurations, we can put all esakdata structures into the
L1 data SRAM. We carefully-arrange them explicitly in the LAtal SRAM and sum up
them as listed in the Table 5.1. The address of each datdistus free chosen. Only the
size is taken care. The overlapping of DMA operations and agcesses is not considered
here because that the space of SRAM is limited and the loaafim;ta moving is not
heavy.

After the data arrangement is completed, we discuss theatidn of the L1 instruc-
tion SRAM. The total instruction codes of EBCOT Tier-1 are taulky to be put in the
instruction SRAM. Hence, we have to choose some of them tanptit As we discussed
in Section 3.2.3, MQ-coder is used to encode each of the #weeding passes after each
of them is generated. This module is a hotspot in Tier-1. ldene put the whole codes
of MQ-coder in the L1 instruction SRAM to achieve high perfance with the compiler
intrinsics supported by GCC.

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION

Table 5.1: The data allocation of EBCOT Tier-1 in the L1 daRAM.

*output_data

(0x2005)

Procedure name Address Size (byte) Function description
opj_tl_t*t1 0xff800000 | 40 (0x28) The struct to handle the
EBCOT-Tierl coding
struct opj_maqc *mqgc | Ox ff800028 | 104 (0x68) | The struct to handle the
MQ-coder
t1->data 0xffo904000 | 16384 To put the DWT coefficients,
(0x4000) which is the input data of
EBCOT-Tierl
t1->flags 0xff800090 | 8712 The variables to record the bit
(0x2208) status using in bit-plane
coding
lut_ctxno_zc 0ff802298 1024 Related table for bit-plane
(0x400) coding
lut_ctxno_sc 0xff802698 | 256 (0x100) | Related table for bit-plane
coding
lut_spb 0xff802798 | 256 (0x100) | Related table for bit-plane
coding
lut_nmsedec_sig 0xff802818 | 128 (0x80) | Related table for bit-plane
coding
lut_nmsedec_sig0 0xff802898 | 128 (0x80) Related table for bit-plane
coding
lut_nmsedec_ref 0xff802918 | 128 (0x80) Related table for bit-plane
coding
lut_nmsedec_ref0 0xff802998 | 128 (0x80) Related table for bit-plane
coding
opj_mqc_state_t 0xff802f78 | 1504 The probability prediction
mgqc_states (Ox5e0) table for MQ-coder
unsigned char 0xff900010 | 8197 The output data of

EBCOT-Tierl

49

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 50

5.5.2 Utilization of Two Cores

Now we discuss the utilization of two cores. Since we knovt évary codeblock is coded
independently, we dispatch these codeblocks to two coresrtpute without synchro-
nization until their dispatched jobs are finished. The im@atation details are similar to
what we do in DWT,; we usefork() and exec(inechanisms and pass the parameters to the
other core via shared variables put in shared L2 SRAM. Tharpaters need to pass to
the other core are the address of tile, tile encoding hanalher a high level encoding han-
dler. Finally, we sum up our optimizations using pseudo so&ippose the two cores are
CoreA and CoreB, Algorithms 3 and 4 show the high level psexgdtes of Tier-1 coding

on CoreA and CoreB, respectively. The jobs of two cores andasi. The only difference

is that CoreA encode odd codeblocks and CoreB-encode evebloo#s.

Algorithm 3: The workload of CoreA
Input: DWT coefficients
Output: MQ-coder codewords

allocate the structures for handling the Tier-1 coding;

for each component of the inputimade
for each resolution levado

for each sub-bando

for each precinctlo

for each odd codebloa#o

move the DWT coefficients into the L1 data SRAM;
encode codeblock;
move out the codewords generated by MQ-coder;

end
end
end

end

end

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 51

Algorithm 4: The workload of CoreB
Input: DWT coefficients
Output: MQ-coder codewords

allocate the structures for handling the Tier-1 coding;

for each component of the input image
for each resolution levado

for each sub-bando

for each precinctlo

for each even codeblodo

move the DWT coefficients into the L1 data SRAM;
encode codeblock;
move out the codewords generated by MQ-coder;

end
end
end

end

end

5.6 Optimization Using Inline Assembly

Inline assembly is a technique for embedding assembly addenhigh level source codes
like C language. Why we need this technique is that sometooegiler may generate
inefficient codes. We could write an inline function writi@rassembly to replace a critical
code fragmentin order to achieve better performance—hartten assembly code usually
have better performance than compiler-generated codeelatsembly is commonly used
in Linux kernel; some hotspot system calls, ISRs or hardwelaed critical codes are
directly written in assembly to achieve the best perforneamo we need to “reassemble”
assembly codes during the developments of user applic&ibmmost scenarios, we don't
think this is necessary.
As we know, RISC architecture is friendly for compiler desg In addition, the re-

searches for compiler optimizations on RISC architectaxestibeen very mature. We often

CHAPTER 5. IMPLEMENTATION AND OPTIMIZATION 52

don’t“reassemble”assembly codes by hand because it’s a bulky work and we ofigmt m
obtain poor performance than compiler do. High level progreers just need to focus on
their application developments.

However, Blackfin core is a little different compared to gethdrISC architecture;
mathematic calculations and memory accesses can be ped@imultaneously on Black-
fin.

Because of the complex architecture of Blackfin core, thepsmdesigns for Blackfin
architecture are a little difficult than for RISC generalkarecture. Hence, we are more
likely to reassemble assembly codes to run faster than denge. In the JPEG2000,
MCT, which is dedicated for color space transformation asdbed in Section 3.2.1, is
chosen to do the inline assembly eptimization since it ruisraall piece of codes thousands

of times. This gives us a big chance to abtain high perforrmamprovements.

Chapter 6

Evaluations and Discussions

In this chapter, we will evaluate the performance of ourmations presented in Chap-
ter 5 and do some discussions to the results. The image Bestagnp taken from the
official website of OpenJPEG is.used for evaluation. In addjtfour popular image bench-
marks will be adapted to evaluate our optimizations. All experiments are completed
on the development board: ADSP-BF561 EZ-KIT Lite, runnimgtioe uClinux operating

system which is configured in"SMP-like mode.

6.1 Evaluations and Discussions of DWT

Table 6.1: DWT: The evaluation of performance improvements/o optimizations: data
locality optimization and utilization of two cores.

Data locality optimization Performance improvement
L1 data SRAM with DMA 65%

L1 instruction SRAM -2%

Utilization of two cores Performance improvement
Data partition 8%

Data partition with data locality -4%

optimization

Task Partition (mem/cal partition) 30%

53

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 54

This section we evaluate the performance of our optiminatim DWT, which are
proposed in Section 5.4. The first is the data locality optation and the other is the
utilization of two cores.

Table 6.1 shows the performance improvements of the tworogdtions with the
baseline configuration of -O3 optimized DWT running on sengre.

As shown in the upper part of Table 6.1, we obtain 65% perfomaamprovement
using the data locality optimization. We now further invgate how our optimizations
reduce the time consumption. As discussed in Section 5.4mewxe the data into the
buffer, and then do the 1-D DWT computation. Finally, we mbeek the data from the
buffer.

Now we examine the time consumption of DWT in three partsadeinsfer in the
vertical directions, data transfer in the horizontal diiets and DWT computations them-
selves. As shown in Figure 6.1, before our data localityroj@ation, the data transfer in
the vertical directions occupies the most of time due to ntasbe misses. However, this
latency is apparently reduced after our data locality opzétion has been applied. This
implies that we improve severe cache-miss problems. Intiaddiour optimization can
slightly reduce the computations themselves as well agtioial data moving.

On the other hand, there is no improvement while we put the @@&fputation code
in the L1 instruction SRAM. In fact, the performance looksrsa (2% degradation(if we
do it. The reason is that the intrinsics GCC support underdevelopment environment
could’t well support using L1 instruction SRAM; this will lmkscussed in the Section 6.2.1.

After the discussion of L1 optimization, we evaluate thdizdtion of two cores. The
bottom part of Table 6.1 shows that the performance of tha gattition is not good
whether the data locality optimization has been performstl ér not. The reason is that
the loading of data transfer is too heavy. As shown in Tali?e we find that the whole

DWT computation procedure spends almost 4/5 of time in dataster. Even after our

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 55

(normalized)

1

0.8

0.6
B without data locality

optimization

m with data locality
optimization

0.4 -

0.2 -

Data transfer DWT Computation Data transfer
(Vertical) (horizontal)

Figure 6.1: The analysis of time consumption.in DWT beford after data locality opti-
mization.

optimization, the data transfer still occupy approxima®i3 of time. We think this is an
important point why we cannot benefit from data partitionvo tcores. Another prob-
lem about why we cannot speed up the process is the synchtimmzroblem. Every
time when synchronization is needed, we have to wait the stow to finish its jobs and
then we can keep on going. Because of the heavy loading otrdaisfer, memory trans-
fer/calculation (mem/cal) partitionwhich is proposed in Section 5.4.2.2, is adapted to
promote the utilization of two cores.

Figure 6.2 shows that the time consumption of two cores wgrkinder mem/cal par-
tition. Due to the inconsistent completing time of two cojebs, waiting for the synchro-
nization is necessary. This analysis can be a referencaiffttvek optimizations. We see
that the main idle time is when CoreB waits for CoreA to cortplie data transfer in
the vertical direction. After our optimization using daptor-mode DMA, the latency of

data transfer can be aggressively reduced about 10% codjparaditional register-mode

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 56

DMA.

Table 6.2: The loading comparison between memory trans@camputations in DWT.

Data Transfer DWT computation
vertical 68.6% 11.3%
horizontal 9.8% 10.3%

(a)without DMA and L1 optimization

Data Transfer DWT computation
vertical 50% 17.9%
horizontal 15.1% 17%

(b)with DMA and L1 optimization

The experimental results of the incremental optimizatenesillustrated in Figure 6.3.
The best speed-up can be achieved via the combinationsloifog optimizations: task
partition (mem/cal partition) to two cores, 1.1 data SRAM iaptzation and using the
descriptor-mode DMA. It can achieve.totally up to 2.45x camngal to the baseline, which

is the original OpenJPEG implementation with -O3 optim@aunder single core.

6.2 Evaluation and Discussion of EBCOT Tier-1

In this section we evaluate the performance of our optinonatto EBCOT Tier-1, which
are proposed in Section 5.5. The first is the data localityimapation and the other is the
utilization of two cores.

Table 6.3 shows the performance improvements of the twonigditions with the base-
line configuration of -O3 optimized EBCOT Tier-1 running ange core.

We see that the performance improvement of data localityoisrad 12%, which is not
as good as what we got in DWT. According to our analysis of theirg algorithm of

EBCOT Tier-1, the bottleneck of Tier-1 coding is the bitééeomputations and complex

CHAPTER 6. EVALUATIONS AND DISCUSSIONS

(nsecs)

300000
250000
200000
150000
100000
— H |dle-waiting
50000 |-
Data transfer
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ = DWT computation
A o 9 [N
%,/: /%Q ,%6‘)/ ,?%} O‘VC‘ O&C 0\,.0 G’J.
0, "o 0, 9 0, 0 ‘0, o
RS O 4 "4 b T L
%, o 7% O, 0. % Q}"
. %o, %y, %, s % %y, %
., Y\ Y U Y, %%y
Y S ‘Q), ‘Q), VY Q@ Q
% /Y .
Q)/b Q),@ 8‘7 s OO» 00» 0'7 o
v %6 Sy Co

Figure 6.2: The analysis of execution time.of DWT using mexhpartition.

2
1 I I
0

Figure 6.3: Speed-up of the proposed optimizations for DWT.

57

CHAPTER 6. EVALUATIONS AND DISCUSSIONS

58

Table 6.3: EBCOT Tier-1: The evaluation of performance ioyements of two optimiza-
tions: data locality optimization and utilization of twores.

Data locality optimization

Performance improvement

L1 data SRAM with DMA

12%

L1 instruction SRAM

-8%

Utilization of two cores

Performance improvement

Data partition

7.4%

Data partition with data locality

optimization.

71%

control dependencies.

Bit-level calculation is a problem not only to DSP procesdaut also to general pro-

cessors. To speak in genergrocessors” are not designed to conduct bit-level data; they

are designed to tackle data‘imariable” level. This is difficult for us to do aggressive

optimizations. In addition, MQ-coder also needs to do th@garisons and jump opera-

tions frequently. These two reasons-infer that why the datality optimization is not so

obvious than in DWT.

On the other hand, we see that we cannot benefit from usingltirestruction SRAM.

The performance is worser than we don’t do it. The main reastivat the toolchains from

the board support package (BSP) only support compilemsitts to put “a procedure”

into the L1 instruction SRAM. This action would violentlysdurb the inter-procedural

optimizations of the compiler. Our experiments show thatadt none of procedures can

benefit from being put in the L1 SRAM. Hence, this optimizatis abandoned. How

compiler optimizations are disturbed is discussed in thei@e6.2.1.

As to two cores’ partition, as we discussed in Section 5.5¢ispatch the independent

codeblocks to both cores to promote the performance. AssiWable 6.3, we found an

interesting phenomenon. We found that the performance @iomof two core’s utiliza-

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 59

tion with data locality optimization is much more than thatheut data locality optimiza-
tion. Table 6.3 shows that there is only 7.4% of performangaovement if we would not
perform the data locality optimization first. However, we &% of performance improve-
ment if we did that first. This can be explained that the datallity optimization reduces
the heavy loading of external memory accesses. As a rekall,X data optimization is
not only an “additional” optimization but also a “must” omiization. This fact makes us
to take care that data locality optimization always has toldmee before consideration of
utilization of two cores.

The experimental results of the incremental optimizatemesillustrated in Figure 6.4.
We see that we can only apparently improve the performanoeimpining the data local-

ity and data partition to two cores. The overall speed-upasiad 1.89x.

baseline -03 data L1 SRAM instruction L1 data partition two data L1 SRAM +
SRAM cores data partition two
cores

Figure 6.4: Speed-up of the proposed optimizations for EBT@r-1.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 60

6.2.1 The Disturbance of Compiler Optimizations due to Puting Pro-
cedures to the L1 Instruction SRAM

Since we got a bad performance by using GCC intrinsics to patgulures in the L1
instruction SRAM, we doubt that this optimization distuthe inter-procedural optimiza-
tions in compilers. To confirm our doubt, we write a very simmptogram to show that
how a GCC intrinsic, which arranges a specific procedure tpuben the L1 instruction
SRAM, disturbs the inter-procedural optimizations in caleng. The program is shown
in Figure 6.5. Thamain() calls thefun_a() and thenfun.a() calls fun_b(), and the input
variabled of value 0 will be passed tiwn_a() as the parameter. The value will be added by
one byfun_a() and byfun_b(), respectively, and then variakdevill catch the return value;
so the final resultis = 2. Figure 6.6 shows the assembly that compiler translatee |&th
side is the original code with -O3 optimization and. the rigitke is the optimized one by
adding the GCC intrinsic.

Originally, the compiler can smartly know the final resuts E 2; hence, the compiler
just returns the result “2” to the variabteand eliminates the call ttun_a(). Furthermore,
fun_a() itself is also been optimized to eliminate the callfom_b(). However, these op-
timizations are all disappeared when we furt a() andfun_.b() into the L1 instruction
SRAM using the GCC built-in intrinsic:_attribute__((I1_text)), which is added behind the
definition of a procedure. We found that the procedures piliar.1 instruction SRAM are
categorized into the sectiofill.text”. This is different from the common code section:
“.text”. This might be the reason why the existing inter-procedapgimizations cannot
be performed here.

Due to the severe disturbance of compiler optimizationdjmeethat we cannot benefit

from utilizing the L1 instruction SRAM under this BSP.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 61

int fun a(int u) _ attribute ((11 text));
int fun b(int u) // attributs ((11 text));

int fun b(int u)
int f£;

f=u+
return £;

int fun a(int u)
int £, g;
f=u+

g = fun b(f);
return g;

int main()

int ¢, d =

c = fun a(d);

printf ("the answer is %d\n"™, c);
return

}

Figure 6.5: A simple program to show the disturbance of céengiptimizations due to
putting procedures to the L1instruction SRAM.

6.3 Evaluation of Inline. Assembly Optimization

The target we select for inline assembly optimization is M&Jdiscussed in Section 3.2.1.
It's a color space transformation performed in the pre-pssing of JPEG2000. The MCT
source code is shown in Figure 6.7. It's a loop with very skodes and the calculations
are also very simple . However, the loop is iterated more 8t4hH000 times (if the input
image size is around 640x480). Hence, a small change wiflecalbig effect to the entire
performance.

Figure 6.8 shows the assembly produced by GCC. We can sdbdnaiare no parallel
executions and resisters are used conservatively. We ngresgjvely use more registers
than the compiler does. Hence, the memory operations, whathde memory loading
and memory restoration, are well parallelized with math@rzalculations as shown in

Figure 6.9. We call the instructions which are performedutiameously “a parallel in-

-text; j

.aligm 4
-global _fun h;
.type _fun_b, 3TT_FUNC;
_fun b:
nop;
LINE 0:
RO += 1;
UNLINE:
rta;
.3ize _fun b, .-_fun b
.align 4
.global fun a:
.type _fun_a, 3TT_FUNC;
_fun a:
nop;
LINE 0;
RO += Z;
UNLINK;
s
.gize _fun a, .-_fun a
.section .rodata.strl.d,"al3", @proghits, 1
2aligm 4
-LCO:
L3tring "the ansver iz sdvn"
- bext;
saligm 4
.global _main;
«Lype _main, STT_FUNC;
_main:

LINE 12;

R0 = [P3+.LCORGOTL7HA];
Rl =2 (X);

call _printf;

CHAPTER 6. EVALUATIONS AND DISCUSSIONS

.Zection Lll.text, "ax" Gprogbics
.align 4

.global _fun h;

.type _fun_b, STT_FUNC;

_fun_b:

nop;
LINE 0
RO 4= 1;
UNLINE:
rts;
.3ize _fun b, .- fun b
.align 4
.global fun a:
.type _fun_a, STT_FUNC;
_fun_a:

LINE 0;
RO 4= 1;
UNLINE;
Jump.1 _fun_h;
.gize _fun a, .-_fun a
.section .rodata.strl.4,"al3",@proghits, 1
Jalign 4
LLCO:
.string "the answer iz %d\n"
. bext;
walign 4
.global _main;
«Lype _main, STT_FUNC;
_main:

[--sp] = (p5:5)2

B3 = P3;

P3 = [P3+_fun_aBFUMNCDESC_GOTL7M4]:
LINE 12;

O = 0 (X

Pl = [P3]:

P53 = [P3+4];

call (Pl;:

Rl = RO;

R0 = [P5+.LCORGOT1TH4]:
P3 = P5;

call printf;

62

Figure 6.6: The assembly codes of the simple test-prograngur€6.5. The left is the
original one; the other is the disturbed one.

struction” and a parallel instruction.can be composed of tweéhree instructions. The
latency of a parallel instruction is subject to the slowastriuction. The evaluation shows
that our optimization achieves about 75% of improvementmanad to the unoptimized

one.

6.4 Overall Evaluation

In this section, we first do the comparison between the paidoce of the data cache and
our handmade data locality optimization. Data cache anddata locality optimization
both cache temporal data in the high speed internal memoeywWevaluate that if the
cache is necessary while the handmade data locality ogtimoizis being applied. Then,
we evaluate the overall performance of the proposed opditioizs presented in this paper.

Beside the image taken from OpenJPEG official website, @ndtur popular standard

CHAPTER 6. EVALUATIONS AND DISCUSSIONS

1 .13

2 P2 = R3;

3 Pl = [P4]

4 BP0 = [PZ]

5 FZ = R1;

& BS = [P2]:

7 P2 = Pl + PO;
8 P2 = P2 + (PS5 << 1)
9 RO = PZ;
10 P2 = R3;

11 RO »>x>x= 2

12 Pl -= P5;

13 BP0 -= P5;

14 R3 += 4;

15 [P2++] = RO;
1a P2 = R1;

17 R1 += 4;

18 [P2++] = P1;
19 .L7:

Figure 6.8: The assembly code generated by GCC.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 64

1 LOCOP_BEGIN LOOP

mnop || RO = [INO] |l R1 = [I1];

3 ES = RO - R1 (=) || R2 = [I2] |l nop:

4 E4 = R2 - R1 (=) |l [I2 +4+ MO] = RS || nop:

5 E3 = R1 << 0xn01 |l [I1 ++ MO] = R4 || nop:

=] E3 = R3 + RO;

7 E3 = R3 + RZ;

a8 R3 »»>= 0x02

9 [I0+4+MO]= R3

10 LOooP END LOGPE

Figure 6.9: The assembly code we reassembled.

image testbenches are adapted to evaluate our optimigation

6.4.1 Data Cache V.S. Handmade Data Locality Optimization

As we know, data cache automatically stores consecutialyidto the high speed SRAM
for the potential use. On the otherhand, our data localitymapation stores the potential
used data based on the understanding of the user-programowdma comparison to
compare the performance between data cache and-our ddttylopdmization in the two
parts of JPEG2000 compression: DWT and EBCOT Tier-1.

As shown in Figure 6.10, the time consumption can be reduitedthe data cache is
turned on. In DWT, even our handmade optimization can beeb#ian pure data cache
mechanism. However, the best performance can be achieWetyturning on the data

cache and further adding our handmade optimization.

6.4.2 Overall Results

After our optimizations, the whole procedure of JPEG200@mession can be speeded
up around 1.92x. We choose a ARM-based embedded procestrXscale-PXA270,
for our comparison target because when BF561 was issuedvaildlde, PXA270 was a
famous and popular embedded processor. The PXA270 is bagddMv5TE architecture
and works on 520MHz; the Blackfin BF561 works on 600MHz. Ouwguits show that

after our optimizations, the performance to compress tl@x480 image, Bretagnel.bmp,

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 65

(nsecs)
25000000

20000000

15000000

m No optimizations
M Data cache
Pure L1 data SRAM
M Data cache + L1 data SRAM

10000000

5000000 F——

DWT EBCOT Tier-1

Figure 6.10: The performance comparison between autordata cache and our hand-
made data locality optimization.

which is taken from OpenJPEG official website,is around 2 etimpared to that running
on the PXA270 with -O3 optimization, as shown in Figure 6.11.

In addition, we evaluate our optimizations using sevemhdard image benchmarks:
airplane, baboon, Lena and peppers, as shown in Figure 24);Zlje results are shown in
Figure 6.13. The experiment results show that our optinumatcan be widely effective,

and the speedups are around 1.92x—2.04x.

CHAPTER 6. EVALUATIONS AND DISCUSSIONS

(msecs)

5000
4500
4000
3500
3000
2500 B memory copy
2000 M pre-processing
= DWT
1500 W EBCOT Tier-1
1000 W EBCOT Tier-2
500
0
8 A
/Gc,(,f/,,] (2P 2
03 O3 et)
” S/,Ig/ ” dUg/
eqwb q”@
O'Of/},r
/gso,

(b)baboon)

7’ J b

(c)Lena (d)peppers

Figure 6.12: The standard image testbenches.

66

CHAPTER 6. EVALUATIONS AND DISCUSSIONS 67

(msecs)

5000

4500

4000

3500 -

3000 -
M Single core with O3 optimization

2500 - flag

M Dual core + -03 + proposed

2000 - optimizations

1500 -

1000 -

500 -

0 -

airplane baboon Lena peppers

Figure 6.13: The overall performance evaluation of prodaggtimizations on standard
image testbenches.

Chapter 7

Conclusion and Future Work

7.1 Summary

In this paper we transplant a JPEG2000 compression programtbe Analog Device
ADSP-BD561 platform and do.the optimizations which focuslata locality optimization

and jobs’ partition to two cores. We briefly summarize theezkpental results:

e Putting intermediate data in the high-speed internal Lh &RAM can efficiently

promote the performance.

e The utilization of two cores should be taken care about the etween memory

accesses and data computations.

The two lists of summarization above are not only useful aBlackfin BF561 but also

valuable on other processors. However, the following bBsésthe specialty of BF561.

e Due to the lack of the hardware cache coherency mechaniseads cannot be
scheduled to the other core. This fact leads that deep fene-garallelization to two

cores is not a good idea.

¢ Jobs’ partition to two cores should always be considerest #fie data locality opti-

mization using the L1 data SRAM.

68

CHAPTER 7. CONCLUSION AND FUTURE WORK 69

¢ Inline assembly can quickly benefit from the parallelizatid memory accesses and

mathematical calculations.

To summarize, our proposed optimization methods for JPBG2®mpression on
Blackfin BF561 have a speed-up of 1.92x—2.04x compared twectional single-core

execution with -O3 optimization.

7.2 Future Work

Our future work can be considered from three parts:

e The algorithm optimizations to EBCOT Tier-+-EBCOT Tier-1 occupies the most
part of time consumption due tothe complicated bit-plangirogp. We find that it
is potential to optimize the coding algorithm to reduce theetconsumption. Some
data structures could be reused to save the memory spaceceessdime. This
optimization needs to deeply understand.the Tier-1 codygrithms. Furthermore,
we can consider to integrate a dedicated hardware aralmiésict conduct the coding
of Tier-1. There are many researches in designing hardwahatectures to speed

up the coding of Tier-1.

e The choices of coding parametersThe parameters to control JPEG2000 codec are
very complicated. We will research these parameters torstaded how they affect
the coding time of the JPEG2000. In addition to the codingfithe parameters may
also affect image size, image quality and so on. To finelyzetithese parameters

needs to really understand how they control the coding piuresof JPEG2000.

e Overcoming the problems about compiler optimizatier<hough this is not a
easy work, however, if the compiler problems we encountergtie experiments,
which are the disturbance of inter-procedural optimizagiand the inefficient gen-

eration of parallel instructions, can be improved, the Wwaa#l of high-level applica-

CHAPTER 7. CONCLUSION AND FUTURE WORK 70

tion developers can be reduced and the hardware comporfd@f$61 can be fully

exploited with few changes in high-level source codes.

Our optimizations presented in this paper mainly focusetherhardware-dependent
optimizations. On the other hand, future work will focus @igbrithm-dependent” opti-
mizations. If these two aspects of optimizations could begrated, more speed-ups can

be achieved.

Bibliography

[1]

[2]

M. J. Absar and F. Catthoor. Compiler-based approachekmioiting scratch-pad
in presence of irregular array access. Piroceedings of the conference on Design,
Automation and Test in Europe - VolumdJATE "05, pages 1162-1167, Washington,
DC, USA, 2005. IEEE Computer Society.

Tinku Acharya and Ping-Sing TsaldJPEG2000 Standard for Image Compression:
Concepts, Algorithms and VLSI Architectur®diley-Interscience, 2004.

[3] ADSP-BF561 — Blackfin = symmetric /- -multi-processor for somer

multimedia. http://www.analog.com/en/processors-tgpckfin/adsp-

bf561/processors/product.html.

[4] Analog Devices, Inc. ADSP-BF561 Blackfin Processor Hardware Reference, Revi-

[5]

sion 1.2

Blackfin SMP like. http://docs.blackfin.uclinux.org/kiu.php?id=linux-kernel:smp-
like.

[6] Arnaldo Azevedo and Ben Juurlink. An efficient softwarche for h.264 motion

compensation. IfProceedings of the 11th international conference on System

chip, SOC’09, pages 147-150, Piscataway, NJ, USA, 2009. IEE&sPre

71

BIBLIOGRAPHY 72

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Mikel Azkarate-askasua. Jpeg2000 image compressionliti-processor system-on-
chip. INnJPEG2000 Image Compression in Multi-Processor Syster@top-Master’s
Thesis, Delft University of Technology, The Netherland3)&.

Michael G. Benjamin and David Kaeli. Stream image preoes on a dual-core
embedded system. Iroceedings of the 7th international conference on Embedde
computer systems: architectures, modeling, and simulaB&AMOS’07, pages 149—
158, Berlin, Heidelberg, 2007. Springer-Verlag.

Berkeley Design Technology, In€hoosing a DSP Processa200Q

Francky Catthoor, Eddy de Greef, and Sven Suyt&kstom Memory Management
Methodology: Exploration.of Memory Organisation for Emtded Multimedia Sys-

tem Design Kluwer Academic Publishers, Norwell, MA, USA, 1998.

CH Chen. Implementation and optimization of jpeg20CG8/elet transform on adsp-
bf533 blackfin processor.- INaster’'s Thesis, 2005. National Taiwan University of

Science and Technology Repositd?§05.

Ingrid Daubechies and Wim Sweldens. Factoring waveketsforms into lifting

steps.J. Fourier Anal. Appl4:247-269, 1998.

Jun-Wei Gao and Ke-Bin Jia. Embedded video surveiltasystem based on h.264.
In Proceedings of the 2009 International Conference on M@tira Information Net-
working and Security - Volume OMINES ’'09, pages 282-286, Washington, DC,
USA, 2009. IEEE Computer Society.

David J.Katz and Rick GentileEmbedded Media Processindluwer Academic

Publishers, 2005.

The JPEG committee home page: JPEG2000. http://wwg.grg/jpeg2000/.

BIBLIOGRAPHY 73

[16] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen, and Li&®e Chen. Analysis and
architecture design of block-coding engine for ebcot irgj@800. Circuits and Sys-

tems for Video Technology, IEEE Transactions b3(3):219 — 230, mar 2003.

[17] Peter Meerwald, Roland Norcen, and Andreas Uhl. Rargdeg2000 image coding
on multiprocessors. Idournal of Object-Oriented Programmingage 2. Society

Press, 2002.
[18] The jasper project home page. http://www.ece.uvicradadams/jasper/.

[19] Hidemasa Muta, Munehiro Doi, Hiroki Nakano, and Yumi MoMultilevel paral-
lelization on the cell/b.e. for a motion jpeg 2000 encodiegver. InProceedings
of the 15th international conference on Multimed@ULTIMEDIA '07, pages 942—
951, New York, NY, USA, 2007.ACM.

[20] OpenJPEG library : an open source JPEG2000 codec. wwewjpeg.org.

[21] Rafael Palomar, José M. Palomares, José M. Casfilaquin Olivares, and Juan
Gobmez-Luna. Parallelizing and optimizing lip-canny wsihvidia cuda. IrProceed-
ings of the 23rd international conference on Industrial Exegring and other appli-
cations of applied intelligent systems - Volume PartIHA/AIE’'10, pages 389-398,
Berlin, Heidelberg, 2010. Springer-Verlag.

[22] Majid Rabbani and Rajan Joshi. An overview of the jpe@f26till image compression

standard. IrSignal Processing: Image Communicatipages 3—48, 2002.

[23] Hee Seo and Seon Wook Kim. Openmp directive extensiobléxkfin 561 dual core
processor. IlComputer and Information Technology, 2006. CIT '06. ThehSXEE

International Conference qipage 49, sept. 2006.

[24] Sipiimage database. http://sipi.usc.edu/database/

BIBLIOGRAPHY 74

[25] David S. Taubman and Michael W. MarcellidPEG 2000: Image Compression
Fundamentals, Standards and Practig@uwer Academic Publishers, Norwell, MA,

USA, 2001.

[26] Michael E. Wolf and Monica S. Lam. A data locality optiomg algorithm SIGPLAN
Not., 26:30—-44, May 1991.

