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以實驗為依據對隨機線性網路編碼非均等抹除保護能力之探討 

 

學生：柯子東              指導教授：邵家健  博士         

 

國立交通大學 

電機資訊國際學位學程 

摘 要 

關鍵詞：實做網路編碼，分離矩陣，非均等抹除保護。 

在這篇論文中，我們將探討如何使用線性的隨機網路編碼技術 (Random Linear 

Network Codes, RLNC) 如何達成非均勻的資料抹除保護機制 (Unequal Erasure 

Protection, UEP)。在眾多的資料流中，有些子分流與其他的相比之下有較高的

優先權。為了對這些相對較重要的分流有比較安全的保護機制，必須要選擇性

停止某些網路中的傳輸中繼端點的資料傳輸。這個編碼方式可量化為分離矩陣

(Separation Vector)；並在實驗中更進一步採用一夠大的整數有限域來提升解碼

的成功率，而產生並推導這些編碼方式的可行性可透過圖型理論來解決。 

除此之外，此研究的最大貢獻是以 Java 語言實做出 UEP-RLNC 的資料傳輸系統。

並設計實驗模擬網路中有可能遇到的傳輸問題如封包遺失，觀察此編碼方式如

何能面對常遇到的傳輸問題。實驗結果主要為顯示在網路環境不穩定的情景下，

網路終端的接收點收錄並成功解碼封包所占的比例。 
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Unequal Erasure Protection Capability of Randomized 

Linear Network Codes - an Empirical Study. 

 

Student: Nicolas Claude                 Advisor: Dr. John Kar-kin Zao 

   

EECS International Graduate Program   

National Chiao Tung University 

Abstract 

 

Keywords: Practical Network Coding, Separation Vector, Unequal Erasure Protection. 

We investigate in this thesis how Random Linear Network Codes can achieve 

Unequal Erasure Protection. In many data streams, some layers of data have priority 

over the others. In order to enhance protection of particular layers with RLNC, we 

need to nullify local encoding coefficients at some specific nodes. The resulting 

coding schemes can be quantified by using Separation Vector. Furthermore, granted 

a finite Field large enough to have high theoretical decoding probability, evaluating 

and generating those coding schemes can be achieved using Graph Theory. Besides 

this model, our main contribution is an actual implementation of UEP-RLNC in JAVA. 

Some simulations were performed to verify the validity of our UEP mechanism as 

well as its quantification. The results obtained show the profiles of retrieval rate with 

respect to packet error loss for both hotspot losses and background losses scenarios.  
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Chapter 1 Problem Statement 

1.1 Motivation 

Unequal Erasure Protection (UEP) is a widely used feature in the field of scalable data 

multicast. It grants some of the symbols a higher chance to be retrieved at the destinations 

by prioritizing data layers according to their utility value.  

Network Coding (NC), a recent breakthrough in the field of information theory, seems to be 

particularly well adapted to provide UEP. The idea at the origin of NC is that information 

shouldn’t be treated as a parcel. So far, we were only applying coding mechanisms at the 

source and the final destination of a packet and treating packets in between following the 

inherited “store and forward” principle *1+. Actually, it can be processed at any hop between 

the source and the destination. By doing so, we significantly improve the efficiency of 

transmission by combining packets together.  

1.2 Objectives 

The purpose of this research is to enable UEP thanks to Network Coding. By investigating 

these two cutting edge topics together we aim at producing a practical application that 

shows both NC advantages and UEP capabilities. In other words, we want to generate, 

assess, and implement coding schemes that enable UEP in some small networks. 

1.3 Research Approach 

Combining Random Linear Network Coding (RLNC) and UEP can only be done by introducing 

specific coding schemes. Some prior work [4] was done to determine the best coding 

schemes for a specific topology. However, our work differs from that one since we plan to 

investigate UEP properties of Network Codes. In that sense, we have a broader approach 

that consists in taking into account unequal survivability of data to failures in addition to the 

size of the finite field or the rank of the global encoding kernels. 
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Our work is based on RLNC [2] and its practical implementation [3]. We assume that given a 

big enough finite field, the issue of finding an optimal coding scheme is equivalent to a 

graph problem. In order to assess that optimality, we introduce the concept of Separation 

Vector that is well known for usual channel coding but has not yet been used with Network 

Coding. 

1.4 Thesis Outline 

The rest of this thesis is organized as follows: we will review Network Coding, and 

Information Flow decomposition (a recent breakthrough in this field) in Chapter 2. Chapter 3 

presents the definition of UEP, the concept of coding rule, and our mean of quantifying UEP 

capabilities: separation vector. In Chapter 4, we introduce the implementation of UEP-RLNC 

and the platform we use to simulate the experiments described in Chapter 5. Finally, 

conclusions and future work are summarized in Chapter 7. 
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Chapter 2 Background 

 

We present in this chapter the concepts of NC, RLNC, and Information flow decomposition, 

one of the latest breakthroughs in this field. 

2.1 Network Coding 

2.1.1 Basic Concept 

The basic concept of Network Coding is that we consider packets that can be combined 

together at any hop of the path from the source to the destination. The combination of 

packets can be performed in many ways but in the context of Linear Network Coding, 

packets are linearly combined together.  

 

Figure 2.1. Example of Packet Combination in Butterfly Network 

In Figure 2.1, the node A (source) tries to send two symbols    and    to the nodes D and E 

(sinks). The node F mixes the two symbols it just received.  The resulting symbol is noted 
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       . If we assume that each link has a capacity of transmitting one symbol per unit of 

time, the multicast rate is then two symbols per unit of time. Without network coding, it 

would have been impossible to transmit the two symbols on the bottleneck between F and 

G. So the multicast rate would have been only one symbol per unit of time. 

2.1.2 Main Theoretical Result 

In Figure 2.1, we could achieve the multicast rate of two symbols per unit of time thanks to 

Network Coding. From a naïve perspective, we could say that Network Coding enables all 

receivers to use all of their possible paths from the source simultaneously.  

This example illustrates the main theoretical result on Network Coding that can be extended 

to any acyclic network:  

For the unicast case, the famous max-flow min-cut theorem [1] states that a source node   

can send information through a network (V, E) to a sink node   at a rate ω determined by 

the min-cut value separating   and  . 

In the multicast case, the upper bound for the achievable transmission rate is the minimum 

of the maximum flow for each sink. We note it  

                     

where: 

   is the set of receiver nodes in the graph 

   is the source node considered 

   is the destination 

In general , the multicast rate of ω suggests the existence of ω non-intersecting paths from 

the source to each sink, which are called edge-disjoint paths in [2], although the paths 

destined to different receivers may share some edges. It was proved in [3] that reliable 

multicast at a rate equal to the upper bound  , can always be achieved in any network 

using network coding. Therefore, we can always benefit from the possible advantages of 

Network coding described in [4] : increased bandwidth, robustness to dynamical changes of 
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topology,  minimizing energy per bit for wireless communications, minimizing delay, 

enhanced security. 

In contrast, most of the time traditional routing cannot reach the upper bound  . Even 

when it can, working out the multicast trees (Steiner trees) that achieve that rate is a NP-

hard problem. 

2.1.3 Random Linear Network coding (RLNC) 

It was proved in [5] that linear network coding is sufficient to achieve the multicast rate in 

any acyclic network. Furthermore, deterministic polynomial time algorithms and even faster 

randomized algorithms were found in [6] for directed acyclic graphs with edges of unit 

capacity. Some codes that are tolerant to edge failures were designed. These results are 

very interesting since RLNC can achieve the highest multicast rate with reasonable 

calculation time. 

2.1.3.1 Local and Global Encoding Vectors 

Whenever a packet p reaches a specific node e, the packet p is a linear combination of the 

original packets. The coefficients with which you can express the packet received in function 

of the original packets from the source constitute the global encoding vector. These 

coefficients are the result of every mixing that occurs at each hop of the packet.  

      ∑      

 

   

 

where: 

   ⃗⃗ ⃗⃗     [         ] is the global encoding vector at the node e for the packet p. 

       is the coded value received at the node e with the packet p. 

After receiving a certain number of packets m, the node e generates a Local Encoding 

Vector   ⃗⃗    . This vector contains the coefficients that this specific node will use to combine 

the k packets it just received in order to generate a new packet j and to send it to the next 

hop f. 
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  ⃗⃗     [           ] 

So one of the packets (say the jth) received by the next hop (g) will be: 

        ⃗⃗     [
     

 
     

]  ∑          

 

   

  

If we try to express [
     

 
     

] in function of    [

  

  

 
  

], we obtain: 

[
     

 
     

]  [

             

             

    
             

] [

  

  

 
  

] 

where: 

[

             

             

    
             

]  [

  ⃗⃗⃗⃗    

  ⃗⃗⃗⃗    
 

  ⃗⃗ ⃗⃗  ⃗   

]       

      is the matrix composed of the global encoding vector for each of the m packets that 

arrived at the node e. This matrix      is composed of rows that come from the different 

matrices of the predecessors of e. Note that without this matrix, it is impossible to retrieve 

the initial value   . 

We also define the Local encoding kernel and global encoding kernel as the juxtaposition of 

respectively the local encoding vectors and the global encoding vectors at a node. 

2.1.3.2 Packet Tagging 

In order to facilitate the decoding of the final GEK matrix, we tag each packet with the 

coefficients of its own global encoding vector.  This procedure was first used in [7], under 

the name “packet tagging”. 
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At the source, instead of combining only a set of symbols    [

  

  

 
  

] , we juxtapose it to 

   and send this resulting matrix  one line (= one datagram) at a time: 

          [

      

      

     
      

] 

After a certain number of hops, m different packets will arrive at the node e. So the content 

of the buffer at the node e will be: 

     

[
 
 
 
                  

                  
     

                  ]
 
 
 
 

This is due to the fact that the unit vectors will go through the exact same path that the rest 

of the packets. Thus, it will undergo the same combinations. After extracting the different 

information from this last matrix, we obtain the equation:  

              

     [

             

             

    
             

] ;    [

  

  

 
  

] ;       [

     

     
 

     

]  

where for any packet i that was received by the destination:  

        is the coded value received. 

   ⃗⃗  ⃗    [         ]  is the global encoding vector at the destination for the ith 

packet. 

We need to solve the above system for the destination to get the original symbols that the 

source coded and sent. Therefore,     is the unknown. Finding the solution of this linear 

equation system leads to finding the original values. 
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2.1.3.3 Random Encoding and Invertibility 

The key idea in Random Linear Network Codes is that the Local Encoding Vectors have to be 

chosen randomly among the finite field, independently between nodes and following a 

uniform law. This approach enables [4] to provide us with a lower bound on the invertibiliy 

probability of the global encoding kernel: 

                        
 

 
 

where: 

 E is the number of edges in the network, 

 F is the size of the Galois field in which you choose the coefficients. 

    is the global encoding kernel at the sink t 

The finite field has to be big enough for a given    to have a high invertibiliy probability. But 

on the other hand, bigger Finite field would lead to bigger overhead. Thus, this parameter 

has to be chosen carefully.  

Although RLNC can already achieve the maximum throughput for a multicast session, very 

little work has been done on creating optimal network codes with respect to UEP. 

2.1.3.4 Data Protection of RLNC 

A trivial approach is to achieve UEP through basic redundancy. By sending multiple 

combinations of the same packets over edge-disjoint paths, you can improve the protection 

of original packets. This technique is the key idea in the approach in [8]. This protection is a 

advantages drawbacks 

No need for an optimal coding scheme since 

this one performs very well in average 

Efficient in average only: Certainly can 

perform better (size of the Finite field, …) 

Decentralized : if you can propagate the 

coefficients 

Doesn’t prioritize data 

Easy to make use of it  

Table 2.1: Advantages and Drawbacks of RLNC 
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built-in feature of RLNC but it has two major drawbacks. Firstly, sending redundant packets 

is very costly in terms of network resource. Secondly, all packets have the same protection 

level. It is impossible to prioritize certain data stream over the others with such a trivial 

technique. 

2.2 Information Flow Decomposition 

Thanks to [9], we can turn an algebraic problem into a graph problem. This result is of 

utmost importance since we can try new approaches to solve the thorny problem of optimal 

coding schemes.  Hence, we explore here a decomposition model of the information flow 

spread through the network.  

Let         be a given topology graph. The definition of Line Graph is:  

  ⋃  (     )
     
     

  

where  (     ) is the Line Graph of the path from source Si to the receiver Rj. In other 

words,  (     ) is the graph with vertex set          in which two vertices are joined if and 

only if they are adjacent as edges in the path (     )  

 

Figure 2.2: Graph Transformation from the Topology Graph (a) to Line Graph (b) 
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Definition of Subtree Graph: 

On the line graph, we can identify some Subtrees inside which the same information will be 

propagated. Therefore, we can consider the corresponding Subtree Graph          . 

In  , each Subtree corresponds to either a source Subtree or a coding Subtree. The coding 

Subtrees are the Subtrees where the root receives multiple inputs, the source Subtree is 

rooted at a source node. These nodes are where the network coding encoding operations 

actually take place. In fact, all the other nodes merely relay the information they received. 

Thus, by considering the Subtree graph instead of the topology graph or the line graph, we 

can: 

 Generalize NC behavior to several different topologies. 

 Identify the real amount of coding points needed. 

 Reduce the size of the alphabet (Galois Field). 

 

Figure 2.3: Subtree Decomposition from Line Graph (a) to Subtree Graph (b) 
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Definition of Minimal Subtree Graph: 

 A Subtree graph is called minimal with the multicast property if removing any edge would 

violate the multicast property. 

Identifying a Minimal Subtree Graph before multicasting may allow us to reduce the 

number of coding points further down and thus to use less network resources. Furthermore, 

such graphs have some structural properties, which can be exploited to derive several 

theoretical results. 

Properties: 

For a Minimal Subtree Graph, the following holds: 

1) A valid network code where a Subtree is assigned the same coding vector as one of 

its parents does not exist. 

2) A valid network code where the vectors assigned to the parents of any given Subtree 

are linearly dependent does not exist. 

3) A valid network code where the coding vector assigned to a child belongs to a 

subspace spanned by a proper subset of the vectors assigned to its parents does not 

exist. 

4) Each coding Subtree has at most h parents. 

5) If a coding Subtree has p parents, then there exist p vertex-disjoint paths from the 

source nodes to the Subtree. 

These properties are very interesting because they impose strong limits on the choice of 

coding scheme. Hence, they reduce the number of candidate coding schemes that we 

consider and try to evaluate.  
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Chapter 3 Achieving UEP Thanks to RLNC 

We first clarify what UEP means in the context of RLNC and see how we can achieve it. 

3.1 General Approach  

The work done for this thesis was part of a common effort among the team composed of Pr. 

John K. Zao, Pr. Chung-Hsuan Wang, Dr. Yao Chien, Kuo-Kuang and me. This section 

briefly presents their work which is necessary to explain clearly the issue tackled here. 

We divide the problem in two. First we consider the issue of finding optimal repartition of 

symbols to the physical source nodes (dispatching) and then we consider the issue of 

transporting and mixing those symbols over the network (transmission). 

 

Figure 3.1: Dispatching and Transmission Processes 
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In Figure 3.1, three sources want to multicast one symbol each to the two sinks. The 

symbols are A, B and C. These sources are connected to 3 relay nodes as showed on the 

topology graph on the left. We model the problem as it is depicted in the diagram on the 

right. The source nodes become relays for the symbols that they receive from a virtual 

source. The coding rules at that virtual source dictate the initial symbols that will be injected 

in the network. Since this work is practical, we focus on the transmission problem while 

some other researchers are now investigating the dispatching one.  

For the following section we will consider the dispatch matrix to be the identity matrix. In 

other words, each source will propagate one original symbol only. This choice allows us to 

focus on the second problem. 

3.2 Unequal Erasure Protection (UEP) 

We model the entire problem as a network topology made of nodes and imperfect links. 

The nodes are either sources nodes, relay nodes or receiver nodes (sinks). Source nodes 

inject in the network a set of specific symbols, or codewords. The choice of these 

codewords is not unique and affects greatly the UEP properties. Then, at a given time, we 

can identify a failure pattern. This failure pattern is merely the set of links in the network 

that are facing a failure at a given time.  All these parameters are basic components of every 

network environment. On top of that, we have to consider the parameters of Network 

Coding. These are the sets of local encoding vectors in each source and relay nodes. 

These parameters are necessary to fully grasp what UEP means. Although they all greatly 

influence the set of symbols that will be decoded at each sink we can only control the 

codeword assignment and the local encoding vectors. The others are a network constraint 

that we have to overcome.  

To retrieve prioritized information, we have to produce a coding scheme that will guarantee 

the crucial information to be multicast while some other users will have supplementary data 

due to their relative high available resources.   

In order to do so, we can then identify at least three different types of UEP. 
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 Between symbols: at a given sink, some symbols will be more protected than the 

others. Some may even not be accessible from the start (before any failure occurs). 

 Between different sinks: different receiver nodes can have very different protection 

levels for the same symbols. In that case, we need to find a tradeoff among all 

receivers to achieve the maximum overall quality through the network. This issue is 

particularly well explained in [10]. 

 According to different failure patterns: Due to the topology, all the links do not have 

the same importance for each receiver and/or codeword. A link that is directly 

connected to a sink    will have a major impact on the performance of that node. But 

little on the performance at other sinks. On the contrary, if a backbone link fails, 

most sinks will suffer from it. The distance from each link to every sink is an intuitive 

parameter of the importance of each link in the network. 

3.3 Coding Rules 

We introduce the concept of coding rule. We can see this mechanism as a relationship 

between multiple input (the combining packets), and only one output (the result of the 

combination). In that case, the problem of designing a routing scheme for NC can be seen as 

a generalization of routing. Indeed, current routing matches one incoming packet to one 

outgoing packet (one to one). In the case of UEP-RLNC, we need to make multiple incoming 

packets combine into only one outgoing one (many to one). Here, routing packets and 

combining packets are actually the same operations. Thus, combining or routing rules refer 

to the same operation. While traditional routing only focuses on taking the least costly 

(often shortest) path, our routing schemes can achieve more by: 

 Making the most of the bandwidth available in the network (NC feature) 

 Prioritizing packets (for UEP) 
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Figure 3.2: Traditionnal Routing vs NC Transmission at Local Scale 

These coding rules define what shall be the input of the combination for each packet 

transmitted over the outgoing links. Each rule is specific to a unique outgoing link. Thus, we 

define a set of coding rules at each node. Note that this technique is equivalent to negate 

existing physical links, or to sacrifice some packets. Indeed, some packets are not 

propagated further down to the sinks. 

The way to achieve this through network coding is for the node to voluntarily turn some of 

its local coefficients to zero. Consequently, that node makes sure that the most critical piece 

of information won’t be polluted by less important ones in the later part of the network. 

Note that unlike in [6], this approach requires a centralized knowledge of the network. This 

knowledge grants the necessary authority to efficiently set these coefficients to zero. Also 

note that the procedure of defining what coefficient should be nullified is costly, thus we 

only consider the case of static network codes. In other words, the coefficients that are non-

zero will follow the RLNC rules. They will be randomly chosen at each packet combination. 

But the nullified coefficients won’t change over time. 
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Methods to generate coding schemes are extremely hard to find. Indeed, finding one 

combines the difficulties of finding optimal multicast trees (traditional routing) with the 

complexity of assessing each coding scheme. Consequently, we currently do not know how 

to generate optimal UEP coding schemes. Nonetheless, we showed that given a sufficiently 

large finite field, the solvability problem of a coding scheme can be reduced to a graphic 

problem. Thus, the solutions can be found using well known algorithms. 

3.4 Assessing UEP Capabilities of Network Codes 

3.4.1 Separation Vector of Network Codes 

Definition of Separation Vector with respect to one sink    : we note        the Separation 

Vector of a sink node    with respect to the   source symbols           . 

       (   
        

          
    ) 

where     
     is the highest number of link failures that may occur on the network so that 

the sink    can still retrieve the symbol   . 

In our efforts to assess the UEP capabilities of a Network Code, we use separation vector as 

a way to quantify UEP. The separation vector guarantees a certain level of performance by 

always considering the worst case scenario for each erasure it takes into account. 

It also perfectly conforms to the fact that, in practice, it is unfeasible to change the coding 

scheme every time there is a link failure. Thus, we limit our study to static network Codes. 

And we will use the separation vector to assess the protection of each of the symbols for a 

given coding scheme. 

Working out this separation vector requires a lot of processing power since it involves a 

combinatorial search but once again, it can be turned to a pure graphic problem where 

famous algorithms can be used. 
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3.4.2 Extended Theorem 

We propose hereafter an extension of the structural properties in [7]. 

Proposition: 

For a Minimal Subtree Graph that has h source nodes and N receiver nodes, the following 

holds: 

1. Each coding Subtree   in   has at most            parents. 

2. Each coding Subtree   in   has at most   children. 

Proof: 

Let         be a minimal Subtree graph with h source nodes and   receiver nodes. 

Consider a coding subtree   of  , it is shown in [3] that   has at has at most   parents. 

1. Let’s prove by contradiction that the number of parents of   is at most    

when    . By definition,   can be seen as the union of   sets of paths,        , 

where each set consists in   vertex-disjoint paths from the source nodes to a 

receiver node   , where      . Suppose that a given   has more than   

parents. From Theorem 3.5 (5) in [3], there exist at least     vertex-disjoint paths 

from the source nodes to  . Therefore, at least two of these paths belong to a same 

set of paths   , where      . And these two paths share   as a common vertex. 

That contradicts the definition of  . We conclude that   has also at most   parents.  

Q.E.D. 

2. Let’s prove by contradiction that     has at most   children. By definition,   can be 

seen as the union of   set of paths,        , where each set consists in   vertex-

disjoint paths from the source nodes to a receiver node   , where      .  

Suppose that   is a coding subtree in   that has more than   children. From [3], 

there exist at least     vertex-disjoint paths from   to the receiver nodes. 

Therefore at least two of these children belong to a same set of paths    , for some 

     . And these two paths share   as a common vertex. That contradicts the 

definition of  . We conclude that   has at most   children. 
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Q.E.D. 

This proposition reduces dramatically the number of Minimal Subtree Graphs that one has 

to assess while investigating the different minimal coding schemes. Moreover, in the 

general case, it sets a bound on the size of the local encoding vector.  

 

The above proposition can help us to enumerate Minimal Subtree Graphs that one has to 

assess while investigating the different minimal coding schemes. Moreover, in the general 

case, it sets a bound on the size of the local encoding vector. 

3.4.3 Illustrative Example: Complete Analysis of Case 3-Sources-2 Receivers 

A great number of topologies can be represented by a single Subtree Graph. This innovative 

approach differs from previous work such as in [11] and [12] since we try to obtain an 

exhaustive list of Minimal Coding graphs for a given number of sources and receivers. By 

doing so, we look for equivalent classes of coding schemes with respect to UEP properties 

regardless of the actual network topology. 

We focused our efforts on the simplest example to illustrate UEP multicast. In order to have 

multicast, we need at least 2 receivers. And in order to have reasonable scalable data, we 

need to have at least 3 different symbols. We assume that each of these symbols is the 

result of a dispatching mechanism. 

According to the limits on the number of incoming and outgoing edges for each Subtree as 

well as the structural properties stated in [7], we could narrow down the number of possible 

Subtree topologies to 4 equivalent classes.  

We use these 4 classes as starting points. We iteratively trigger disappearance of links on 

the Subtree graph which is equivalent to the nullification of local coefficients. This work 

reflects the possible coding schemes that one may choose by reduction of Minimal Subtree 

graphs.  
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Table 3.1: Exhaustive List of Minimal Subtree Graph for 3-Sources-2-Receivers 

 C=1 C=2 C=2 C=3 

K
=0

     

   1 =    2 = (1,1,1)    1 =    2 = (1,1,1)    1 =    2 = (1,1,1)    1 =    2 = (1,1,1) 

K
=1

 

 

   

   1 = (1,1,1) 
   2 = (2,0,1) 

   1 = (1,1,1) 
   2 = (0,2,2) 

   1 =  1,1,1  
   2 = (0,2,2) 

   1 = (2,0,0) 
   2 = (1,1,1) 

 

   

   1 = (2,0,0) 
   2 = (1,1,1) 

   1 = (2,0,1) 
   2 = (1,1,1) 

   1 = (1,1,1) 
   2 = (0,1,1) 

  

  

    1 = (1,1,1) 
   2 = (0,1,2) 

   1 = (1,1,1) 
   2 = (0,2,1) 

  

 

 

     1 = (1,1,0) 
   2 = (1,1,1) 

 

K
=2

 

 
 

  
    1 =  2,1,0  

   2 = (1,1,1) 
   1 =  1,1,1  
   2 = (0,0,3) 

   1 =  2,2,0  
   2 = (1,1,1) 

 

 

   
    1 =  1,1,1  

   2 = (0,1,2) 
   1 =  2,0,0  
   2 = (0,1,2) 

   1 = (2,1,0) 
   2 = (1,1,1) 

 

   
    1 =  2,2,0  

   2 = (0,2,1) 
   1 =  2,1,0  
   2 = (1,1,1) 

   1 =  2,0,1  
   2 = (1,0,2) 
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 Rectangles ( ) represent Subtrees. The three at the top are the Sources 

Subtrees. 

 Triangles ( ) represent physical links to Sink 1. 

 Circles ( ) represent physical links to Sink 2. 

 K is the number of coefficients that we sequentially set to zero. 

 C is the number of Coding Subtrees in the initial Minimal Subtree Graph. 

      and      are the separation vectors associated to Sink 1 and Sink 2 respectively. 

We manually generated and assessed all possible coding schemes for a minimal 

configuration of 3 sources and 2 receivers. Each of them is represented in Table 3.1. Table 

3.1 also shows the derived coding schemes after setting K coefficients to zero. Note that the 

edges on this graph can be seen as the coefficients of the Local Encoding Vector. They are 

directed from top to bottom. 

After setting a coefficient to zero (i.e. deleting an edge on the Minimal Subtree Graph), we 

merge the Subtrees in order to respect the definition of a Subtree Graph. We observe an 

evolution from Minimal Subtree Graphs where the multicast capacity is achieved to 

configurations where a trade-off between performance and protection is found. This 

illustrates the use of the separation vector to efficiently evaluate these two parameters at 

once. 
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Chapter 4 Implementation 

 

This thesis is first and foremost a practical one that aims at investigating concrete and 

applied aspects of Network Coding. Therefore, the main piece of work consists in a 

prototype implementation of UEP-RLNC based on [4]. 

4.1 From Existing Code 

We used an implementation of NC coding done for the Project FRANC [13] as a starting 

point. This open-source application was initially designed to implement a bulletin board (a 

chat on which every user communicates with every other node). We used it as a framework 

to implement some missing features (e.g. generations) as well as some more problem-

specific functions (simulated packet loss, coding rules…). Table 4.1 summarizes the added 

functionalities. 

Old features New/modified features 

Finite field operation Packet handling depending on the roles of the nodes 

Packet combination methods Generations (tagging, sorting, updating, flushing) 

Decoding methods Internal structure(multiple input buffers) 

 Enabled any topology 

 Encoding scheme (coding rules) 

 Multiple Communication threads 

 Packet loss 

 Enabled Inter machine communication 

 Improved modularity 

Table 4.1: Old vs New Features 
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The program consists in five packages containing 37 classes in total, illustrated in Figure 4.1. 

 

Figure 4.1: Classes Overall View 

4.2  Galois Library 

The class NCoperation from NetworkCoding package takes care of the packet wise addition, 

subtraction and multiplication required by the NCencoder and NCdecoder. 

This class uses a library for finite field operation: GALOISFIELD 

 This Package is written by Jan Struyf 

 URL: http://ace.ulyssis.student.kuleuven.ac.be/~jeans 

 EMail: jan.struyf@student.kuleuven.ac.be 

 Post: Jan Struyf, Hoogstraat 47, 3360 Bierbeek, BELGIUM 

 

 You can do anything with it, if you leave this comment field 

unmodified. 

 

This library lets the user choose the size of the field and other parameters. As previously 

seen, the choice of the size of the finite field is of upmost importance when we rely on 

RLNC. In our implementation, we consider a field of size 28. The main reason of this choice is 

to find a compromise between linear dependency and processing time. 

According to the previous formula in Section 2.1.3.3, we can then simulate networks that 

around 20 nodes with an average decoding success probability of 0.92. This choice seems 

realistic in order to run simulations of rather small networks. 
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4.3 Data Structure Package 

In order to combine packets together, the data partition has to be done with great care. 

Besides the usual partition into packets, we define what we will refer to as blocks. These are 

the addition of packets that were encoded together. 

The size of the block is a key parameter that has to be finely tuned in order to find a tradeoff 

between large and small blocks: 

 Having large blocks leads to enhanced protection but also higher processing cost 

during the coding and decoding steps. 

 Having small blocks leads to the opposite statement. 

The original file is fragmented into blocks and packets. These packets can contain a lot of 

symbols. The numbers of packets per block and the number of blocks are parameters of the 

system. 

4.3.1 Coefficient Element 

 

Figure 4.2: Coefficient Element 

In Figure 4.2, a coefficient element is composed of a coefficient and a packet identifier. The 

size of the coefficient is equal to the size of the Finite Field. The packet identifier is 

necessary to determine whether two coefficients are the same or not. This is critical at the 

sinks when we try to decode the information with a set of linearly independent coefficient 

elements. 
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4.3.2 Packet 

 

Figure 4.3: Packet 

First, we notice in Figure 4.3 that the number of coefficients in a packet may vary. The 

number of packets in a buffer when a transmission opportunity occurs changes over time. 

Thus, different amount of packets can be involved in the combination. The maximum 

number of coefficients involved is a multiple of the size of the generations. 

Following the packet tagging mechanism, we store each coefficient element in the packet. 

These coefficients will be encoded at each hop. We also need to add a generation tag to 

survive asynchronous transmissions. The packet is tagged at the source and this field will 

remain the same until the packet reaches its destinations. 

The payload consists of the actual data transmitted. Its size (Max Data Unit) can be changed 

as long as an entire packet can fit in a UDP packet. In our case, we are not interested in 

transporting a lot of data so the MDU is rather small. And we measure the number of 

packets transmitted rather than the transferred amount of data. 

payload

Nb of 
coef

Coef elt 
1

…
Coef elt 

2
Coef elt 

3
Coef elt 

n
Generation 

Tag

MaxDataUnit (MDU=100 bytes)

4 bytes 1 byte
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4.3.3 Buffer 

 

Figure 4.4: Buffer 

The buffer, Figure 4.4, is merely a linked list of packets that is sorted according to the 

generation tags of the packets inside it. A vital feature is to keep track of the received 

coefficient elements at the sinks. This is performed through the update of a mapList. The 

mapList makes sure that we do not mix the coefficients after some step of the Gaussian 

elimination were performed. 

4.4 MyThreads Package 

This package contains very simple classes that all inherit from the standard Thread class. 

They allow asynchronous transmission with UDP datagram sockets. Table 4.2 summarizes 

each of these classes. 

Table 4.2:  Summary of Threads Used in Application 

To support generations, we need to keep track of the current generation at each node. That 

is also true for the source. Thus, we have a unique ClockThread inside the network. This 

thread will send ticks to each node in the network through a GenerationUpdateEvent. This 

0…0

0…0

0…0

0…0

payload

payload

payload

payload

Coef elt1 .. n

coefList.size bytes

(mapList.size - coefList.size) bytes

MDU bytes

Nb of 
coef

Nb of 
coef

Nb of 
coef

Nb of 
coef

Coef elt1 .. n

Coef elt1 .. n

Coef elt1 .. n

 Location Number Goal 

Receive Thread in each node one per incoming link trigger packet reception 

Send Thread in each node one per outgoing link trigger packet combination and transmission 

Clock Thread in the 

Topology class 

unique send clock ticks to every node to let them 

synchronize their generation update 
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event will update the value of the current generation based on the generation tag of the 

majority of packets stored. It will also trigger the flushing of the input buffer to get rid of 

packets that belong to old generations. This policy is important in terms of performance and 

robustness. So we discard some of the packets in the input buffers and increase the current 

generation value. The new value is the value of the majority of packets in the input buffers. 

4.5 Network Coding Package 

The most important class of this package is NCmodule. It performs the packet handling. 

Arriving and outgoing datagrams go through the NCadapter which is converting datagram 

packets to NCdatagram and vice versa.  

4.5.1 Packet Handling 

In practice, network coding has to face the problem of asynchronous transmissions over the 

internet. But buffering techniques can solve this problem. 

 

Figure 4.5: Buffering at a Node 

Asynchronous reception: jitter, loss, variable rate Asynchronous transmission

Arriving packets from link1

Arriving packets from link2

Arriving packets from link3

Input Buffer 1

Input Buffer 2

Input Buffer 3

Random 
combination

Mask NC encoder

NC encoder

Packet generation triggered by 
a transmission opportunity
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First, we need to introduce the concept of generations presented in [4]. These generations 

consist in a certain numbers of packets. These packets need to be decoded together to 

retrieve the original block of source symbols. Thus, we tag each packet with a generation 

number (represented by a color on the above Figure 4.5).  

Unlike in [6], we cannot consider a single buffer for all outgoing edges of a given coding 

point. In our case, coding rules apply to a specific outgoing link. So we now have to 

differentiate each outgoing link and assign one buffer to it. Therefore, each incoming link 

has a dedicated input buffer. 

Inside each of these buffers, we follow the procedure described in Practical Network Coding 

(sort packets according to their generation number, enforce a flushing policy, etc.).  

4.5.2 Encoding 

Each outgoing link has a dedicated encoder. When the encoders are created, they follow 

coding rules. These rules are represented as a binary mask. In Figure 4.5, if the first outgoing 

link was to combine packets from all input buffers while the second one only cares about 

the last input buffer. In this case, the corresponding masks would be: “111” and “001”. 

Whenever a transmission opportunity occurs, the corresponding NCencoder generates non 

zero random coefficients (a local encoding vector) to encode the packets of the current 

generation inside the authorized input buffers. The operation of combining them according 

to these random values creates an outgoing packet. 

4.5.3 Decoding 

Decoding is only performed at the sinks, inside the NCmodule class. Instead of input buffers, 

sinks have a decoding buffer and a decoded buffer. 
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Figure 4.6: Decoding Mechanism 

If we see the problem as a linear system to be resolved as follows: 

{

                         

                         

 
                         

 

Where n is the number of unknowns which corresponds to the size of a block.  

Since each packet carries one line of the final equation system, one step of the Gaussian 

elimination can be performed each time a packet is received (earliest decoding). Of course, 

the final system can only be solved when the node received to adequate number of packets 

so all packets within the same block will be decoded at the same time. 

4.6 Simulation Package 

4.6.1 Nodes 

Each node has a role. It can be a “Source”, a “Relay” or a “Sink”. Source generates data and 

then sends them out to relay nodes. The relay nodes merely transmit the data without 

accessing it and the Sink only consumes data. Here is a more specific description of each of 

these nodes. 

NCmodule

NCdecoder

Decoding buffer Decoded buffer

Incoming 
NCdatagram Deliver to 

Application layer

Once a generation has been decoded, 
add the NCdatagram to decoded buffer

NCoperations
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4.6.1.1 Source Node 

 

Figure 4.7: Source Inner Structure 

Data input (in red): Generate a dummy text file. 

1. Pass it the input buffer, one file per buffer. 

Sending data (in orange): 

1. At a given rate (parameter), the sendThread will trigger the generation of a packet to 

the adapter. 

2. NCadapter forwards the request to the NCmodule. 

3. The NCmodule generates the new packet by combining the content of its input 

buffer and passes it the NCadapter. 

4. The NCadapter transforms the NCdatagram to a generic datagram packet, and sets 

the destination field before passing it to the socketInterface. 

5. The socketInterface sends the datagram packet through the datagram socket. 

SocketInterface

Source

NCadapter

NCmodule

SendThread

1

1
2

3

4

5

Outgoing Datagram packet 
through Datagram Socket
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4.6.1.2 Relay Node 

 

Figure 4.8: Relay Inner Structure 

The relay nodes receives the data from a receive thread. 

Receive data (in red): 

1. A datagram packet arrives through datagram socket. 

2. It goes through the socketInterface. 

3. It is passed to the NCadapter that transforms the packet into a NCdatagram. 

4. The new NCdatagram is passed to NCmodule and stored in the input buffer that is 

dedicated to the incoming link from which the packet just arrived. 

SocketInterface

Relay Node

NCadapter

NCmodule

receiveThread

SendThread

1

Incoming Datagram packet 
through Datagram Socket

2

3

4 1
2

3

4

5

Outgoing Datagram packet 
through Datagram Socket
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4.6.1.3 Sink 

 

Figure 4.9: Sink Inner Structure 

Data retrieval (in orange):  

1. The sink receives data, and stores it in its decoding buffer. Whenever a generation is 

successfully retrieved it is written in a file and stored in decoded buffer. 

4.6.2 Filters 

Unlike most previous work on the subject, we assume each edge in the topology graph has a 

failure probability. Whenever a failure happens, the symbol that was being transmitted on 

the link disappears (the corresponding output of the link is nothing). Therefore, it is 

impossible for a node to detect whether a failure occurred or not. In that sense the physical 

links are actually intermittently disappearing.  In order to simulate these losses on a single 

machine, we use simple objects called filters. 

Since all nodes use datagram sockets to communicate, these filters intercept packets 

between two datagram sockets and drop packets according to the failure probability of the 

simulated link. The dropped packets are discarded while the others a forwarded to the 

node. 

SocketInterface

Sink

NCadapter

NCmodule

receiveThread

1

Incoming Datagram packet 
through Datagram Socket

2

3

4

1
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These objects are outside the nodes so they can easily be removed if future users want to 

test the application on different physical nodes. Furthermore, we can easily introduce delay 

in these filters to make the simulation more realistic. 

Filters use Receive threads that are similar to the one inside the nodes. 
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Chapter 5 Experiments 

 

We conducted different experiments to exhibit the different UEP capabilities of coding 

schemes found in Chapter 3. To limit the number of devices required for the simulation, we 

used the basic simulation platform that comes along the application. Therefore, all the 

experiments were run on a single physical node. The three symbols from the coding 

schemes are changed to three different files.  

5.1 Simulated Topology and Parameters 

We consider coding schemes from the 3-sources-2-receivers example. These coding 

schemes can be implemented using coding rules. In other words, if an arbitrary network 

topology contains three sources and two receivers, we can always match the topology to 

one of the Subtree Graphs from Table 3.1. Figure 5.1 represents the network topology that 

we simulated with the parameters from table 5.1. 

 

Figure 5.1: Simulated Topology 

Source

Relay1

Sink1 Sink2

Relay3Relay2

Relay4 Relay5

Relay6 Relay7

Relay9

Relay10



 

34 

 

 

Parameter Description Value 

HCL (Hard Coding Coefficient) Number of packets per generation 10 

MCLU Maximum number of packets mixed together 40 

MDU (Maximum Data Unit) Number of bytes contained in the payload of  
NCdatagram 

100 

Rate Rate of the links throughout the network 30 ms 

Failure probability Packet loss rate on imperfect links varies 

Generation refresh rate Rate followed by the clock thread to trigger 
generation update 

2500 ms 

File length Number of generations in file 30 

Table 5.1: Simulation parameters 

5.2 Simulation 1: Evaluation of Coding Schemes 

 We now consider the coding scheme presented in Table 5.2 which derives from the 

maximal configuration after we nullified two links by enforcing coding rules. 

Subtree Graph Coding Scheme 

 

 

             

             

 
Table 5.2: Coding Scheme for Failure Pattern Evaluation 

Source

Relay1

Sink1 Sink2

Relay3Relay2

Relay4 Relay5

Relay6 Relay7

Relay8

Relay9

1
2

3

1 2 1 2 3
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Table 5.3: Assessed Failure Patterns 

In Table 5.3, we observe that for any layer received by S2, it is possible to find a link failure 

that causes the loss of that layer. On the contrary, layer 1 is always retrieved by S1. Note 

that for an arbitrary layer, we can always find two link failures that would cause the loss of 

that layer for both Sinks. Thus, this experiment demonstrates the validity of the separation 

vector values as well as the model that we use for the evaluation of the UEP capabilities for 

a variety of failure patterns.  

Furthermore, we can sort the previous result in order to categorize links depending on their 

topological location: 

Category Consequence when link fails 

Inter Subtree links 

 

Migrate from one coding scheme to another 

Intra Subtree 

bottleneck links 

 

Damage both sinks by cutting one path to each sink 

Intra Subtree links 

connected to a sink 

Damage one sink only, but severely 

Table 5.4: Categories of Links 

 

5.3 Simulation 2: Hotspot 

For the following simulations, we choose the coding scheme from table 5.2 and evaluate its 

average performance. Unlike the previous experiment where the network was lossless, we 
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now introduce erasures on it. We specifically want to simulate hotspot situations. In order 

to do so, we add a packet loss rate to a unique link. We choose to evaluate two hotspot 

situations corresponding to the diagrams number (9) and (10) from Table 5.3. Diagram (10) 

belongs to the bottleneck category while Diagram (9) is directly connected to Sink 1. 

In the following graphs, we plot the retrieval rate of the layer i at the Sink j which is the ratio 

of decoded packets from layer i at the sink j over the number of source packets from layer i 

(simulation parameter). 

 

Figure 5.2: Sink1 Facing Bottleneck Hotspot (Diagram (1) from Table 5.3) 
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Figure 5.3: Sink2 Facing Bottleneck Hotspot (Diagram (1) from Table 5.3) 

Figures 5.2 and 5.3 show that losses over a bottleneck damage both sinks. More accurately, 

Sink 1 and Sink 2 lose layer 3 and 1 respectively as the packet loss rate increases. The 

retrieval rates remain unchanged for all other layers. 
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Figure 5.4: Sink1 Facing Hotspot on Direct Link (Diagram (2) from Table 5.3) 

 

Figure 5.5: Sink1 Facing Hotspot on Direct Link (Diagram (2) from Table 5.3) 
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Figures 5.4 and 5.5 show that losses over a link directly connected to Sink 1 damages it 

heavily but has no consequence on the other sink. More accurately, Sink 1 loses layer 2 as 

the packet loss rate increases. The separation vector for layer 1 guarantees full retrieval of 

that layer at Sink1.  Retrieval rates remain unchanged for Sink 2.  

For the last simulation of this section, we choose to change the coding scheme to better 

illustrate the migration between coding schemes. 

Figure 5.6 illustrates migration #1. 

 

Figure 5.6: Migration #1 from Coding Scheme (a) to Coding Scheme (b) 

 

Figure 5.7: Sink1 migration #1 
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We note that the migration #1 causes Sink1 to lose layer2 while Sink1 is not affected (chart 

not present here).  

Figure 5.8 illustrates migration #2. 

 

Figure 5.8: Migration #2 from Coding Scheme (a) to (c) 

 

 

Figure 5.9: Sink 1 migration #2 
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shows a counter intuitive behavior. After an expected decreasing phase, the retrieval rate 

increases again to finally reach its initial level of 1. 

The area corresponding to packet loss rates between 0.4 and 0.8 show extremely bad 

performances. This area corresponds to the maximum pollution generation. Since the 

transmission of packets from layers 2 half of the time, the remaining packets represent 

pollution for the retrieval of packets from layer 3. As the packet loss rate increases more, 

the number of polluting packets from layer 2 decreases, thus leading to an improvement of 

the retrieval of the layer 3.  

5.4 Simulation 3: Background Erasures 

This experiment aims at showing the UEP capabilities of the different layers with respect to 

background erasures. To simulate these erasures, we add a packet loss rate on every link of 

the topology. This is the second typical erasure pattern that we can find in reality.  

 

Figure 1010: retrieval rate at Sink1 (background losses) 
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Figure 11.11: retrieval rate at Sink2 (background losses) 
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Figure 5.12: Topology (a) 

 

At a given Sink j, for a received layer i, we define        as follows: 

       
      

       
 

Where:  

        is the observed retrieval rate of layer i at Sink j. 

         is the theoretical retrieval rate of layer i at Sink j for topology (a). 

               

   is the packet loss rate on every link. 

 k is the number of links in the path from Source i  to Sink j. 

Source
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R4 R’4

R5 R’5R8

S1 S2

R9

R7

R6 R’6

R’7

R’8

R’9



 

45 

 

 

Figure 5.13: Sink 1 after background losses 

 

Figure 5.14: Sink2 after background losses 
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Figures 5.10 and 5.11 represent the ratios        for        and       . We observe that 

the resistance of coding scheme 1 to background error losses is significantly lower than the 

resistance in topology (a), since          . 

This attempt to normalize the retrieval rate does not help us to draw any further 

conclusions since the curves are extremely similar to Figure 5.10 and Figure 5.11.  
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Chapter 6 Conclusion 

6.1 Contributions 

First, we used the proposed extension of the structural properties of Minimal Subtree 

Graphs, to derive an exhaustive list of “minimal” coding schemes for the modest 

configuration of 3-sources-2-receivers.  

Since this work is first and foremost a practical one, the most important contribution is an 

actual implementation of UEP-RLNC. Along this application, we developed and tested a 

simple simulation platform that will enable future users to investigate how to achieve high 

multicast performances for different kinds of bit streams. 

These tests confirmed the validity of our prior work and revealed the profiles corresponding 

to the different packet loss rates. Since these profiles cannot be theoretically obtained yet, 

this practical approach shows some valuable results that need to be compared with the 

future theoretical models to come. 

6.2 Future Work 

The results we obtained can be used to confirm the validity of a theoretical model of UEP-

RLNC when it is created. Furthermore, from a practical perspective, our UEP-RLNC 

application and its associated simulation platform should be tuned and used to run some 

more experiments on scalable data such as video streams. 

The next step of the project should include an algorithm to assess separation vector for any 

given coding scheme and another algorithm to generate more coding schemes. These 

results could be used to generate an optimal coding scheme for an arbitrary topology. 
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