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快取分區模式效能改進的方法 

 

學生：戴彼德         指導教授：鍾崇斌  博士 

國立交通大學資訊科學與工程研究所碩士班 

 

摘要 

當越來越多處理器共享一個快取時，會使得處理器之間對於快取資源的競爭更加劇烈，

進而影響個別單一程序的效能。 快取分區方法是一個可以降低程序間互相競爭的方法，

其通常將快取分割給各個處理器單獨使用，然而此方法在程序不平衡的存取快取時，

會造成快取分區利用率不佳的問題。針對此問題，我們提出兩個方法做改善:1. 額外

增加一塊共享分區供所有處理器共同使用 2. 針對每一個處理器，給予不同的索引方式。

另外，我們針對所有分區，在一般常用於減少失誤的方法下(可變動區塊大小、可變動

關聯度、改變替代策略)進行討論。 
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Techniques to Improve the Performance of Cache Partitioning 

Schemes 

 

Student：Peter Deayton Advisor：Professor Chung-Ping Chung 

 

Institute of Computer Science and Engineering  

National Chiao-Tung University 

 

Abstract 

As the number of processors sharing a cache increases, misses due to destructive 

interference amongst competing processes have an increasing impact on the individual 

performance of processes. Cache partitioning is a method of allocating a cache between 

concurrently executing processes in order to counteract the effects of this inter-process 

interference. However, cache partitioning methods commonly divide a shared cache into 

private partitions dedicated to a single processor, which can lead to underutilized portions of 

the cache when processes access sets in the cache non-uniformly. Two techniques are 

proposed designed to take advantage of this non-uniformity - the creation of an additional 

shared partition able to be shared amongst all processors and alternate cache set indexing 

functions for each core. Also discussed is the application of general miss reduction 

techniques (variable block size, variable associativity, and changing replacement policies) 

on a per-partition basis. 
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I. Introduction 

With multi-core processors now the norm, the number of processors simultaneously 

sharing a shared cache has increased. This can result in an increase in the number of 

inter-process conflict misses within the shared cache and hence result in poor overall system 

performance. When using the LRU replacement policy this poor performance can be 

exacerbated due to the LRU replacement policy’s demand approach to cache block selection, 

in which applications that have a high demand for unique cache blocks and poor temporal 

locality (for example, those that stream data) are allocated a larger portion of the cache than 

applications that have a lower demand for unique cache blocks but stronger temporal 

locality.  

Cache partitioning is a method designed to avoid this destructive interference between 

applications by restricting the amount of cache applications can use. Generally, cache 

partitioning methods assign each application a dedicated private partition, in effect dividing 

the shared cache into a number of private caches. Whilst eliminating inter-process conflict 

misses, the effective cache capacity for each process is decreased, potentially increasing the 

number of capacity misses. Partition sizes are often adjusted dynamically based on a cost 

function with an objective such as improving the miss rate [1], IPC [2] or fairness [3]. The 

unit for partitioning can vary, with granularities ranging from line [4] to way (either through 

using fixed ways [5] or adjusting the replacement policy [1]) to set based [6]. The focus of 

this paper is on improving cache partitioning methods using a way granularity that solely 

allocate private partitions. Our goal is to propose improvements to these private partitioning 

schemes and determine areas for future research.  

We propose two techniques to improve the performance of these cache partitioning 
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methods, both based on the fact that not all blocks in a cache are used uniformly, 

particularly during a given repartitioning period since it is relatively short (five million 

cycles in some methods).  

The first technique (Set Utilization Based Cache Partitioning) is to create a shared 

partition in addition to the private partitions. After a processor has been allocated its private 

partition, information from a monitoring circuit is used to determine which ways in the 

allocated partition are underutilized. As the chance of inter-process conflict misses is low in 

these underutilized areas, they are then shared with the other processors. The threshold for 

sharing a way can be determined statically or dynamically and we propose methods for both. 

When used in conjunction with a way-based cache partitioning method that monitors the 

stack distance information of individual processors, our method requires an additional 

storage overhead of 64 bytes per core for a 16-way set associative cache with 32 sets 

monitored regardless of cache size and minimal (one cycle) if any increase in cache access 

time.  

The second technique (Alternate Per Core Indexing Functions) is to apply an alternate 

cache set indexing function for each core connected to the cache, designed to reduce 

conflicts between applications that have similar set access patterns. These functions can be 

selected either randomly or dynamically adjusted by detecting if the cache set accesses are 

balanced across all sets.  

In addition, we discuss modifications required to apply techniques used to reduce the 

miss rate of a private cache on a per partition basis. These techniques include changing the 

block size, changing the associativity, and changing the replacement policy.  

This paper contributes two methods for improving private cache partitioning schemes. 

The first, the partitioning of a cache into private and shared partitions based on the number 
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of unique sets accessed is a measure we are unaware of being used in other related work. 

The first method is targeted at systems where the number of cores is lower than the 

associativity of the cache, enabling each core to be allocated a minimum of one way each. 

As a result, scalability is limited as the number of cores sharing a cache is increasing faster 

than the associativity of the cache. The second is the proposed alternate cache indexing 

functions for each core. While related work generally aims to minimize the number of 

conflict misses in a cache, the indexing function is identical amongst all cores in a system.  

The paper is divided into six sections. The first serves as an introduction to the topic and 

research. Background and rationale to the methods is then detailed followed by detailed 

descriptions of the two methods along with other complimentary miss reduction techniques. 

Related work is then covered and compared with our two methods. Future work and 

opportunities for further research are discussed and lastly a conclusion is presented. 
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II. Background 

To determine how to better partition a cache, we analyze the cache access patterns of an 

application over time. Given a way-based partitioning method and the LRU replacement 

policy, looking at the LRU stack distance hit counts of an application is useful in 

determining what the effect of allocating a certain number of ways to an application would 

be [7]. Figure 1 shows the average number of hits per stack distance position in a 1MB 

16-way set associative L2 cache per five million simulated cycles over one billion simulated 

cycles for the gzip benchmark from the SPEC CPU2000 benchmark suite. Five million 

cycles were chosen as it is the suggested repartitioning period as discussed in [1] and [8].  

 

Figure 1: Average number of hits per stack distance position in a 1MB 16-way set 

associative L2 cache per five million simulated cycles over one billion simulated cycles for 

the gzip benchmark 

For this benchmark, as the number of ways allocated (increasing stack position) 

increases, the number of hits steadily decreases, i.e. there is a diminishing benefit from 

allocating more ways in the cache to the application. However this figure does not describe 
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accurately the distribution of the hits within the cache. Figure 2 shows the average number 

of hits per stack distance position for each set in the cache for the same parameters. We take 

note of two things. The first is that for a given stack distance position not all sets are 

accessed uniformly, particularly between stack distances six to eight. If a partitioning 

scheme that allocates only private partitions allocated the gzip benchmark eight ways, there 

would be an amount of space wasted. The second thing to note is that set accesses are 

somewhat clustered, with relatively fewer hits around set 300 compared to set 500. These 

two observations present opportunities for improvement of a cache partitioning scheme that 

allocates private partitions only.  

 

 

Figure 2: Average number of hits per stack distance position for each set in the cache for 

the gzip benchmark 
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To see how prevalent this non-uniformity of set accesses is, we observe the average 

percentage of total sets accessed per stack distance position for a number of applications. 

Figure 3 shows this information for a five million cycle period averaged over one billion 

cycles for a number of selected SPEC CPU2000 benchmarks. We find the utilization of 

cache sets varies greatly between both applications and stack distance positions. If two 

processes share a way and the utilization of a given process’s stack position for that way is 

low, the chance of accesses between processes conflicting is low. Sharing this way should 

be able to decrease the number of capacity misses and have little to no effect on the number 

of inter-process conflict misses of processes sharing the way. Our first method is based 

upon this principle. If a way allocated to a process is underutilized, it is shared with other 

processes. This creates two types of partitions - private and shared. 

 

Figure 3: Average cache set utilization for the gzip, galgel, wupwise, and art benchmarks. 

The y-axis represents the average percentage of sets used. 
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Although the chance of conflicts between two processes in the shared partition should 

be low, this may not be the case when the set accesses are non-uniform. If the set accesses 

are similarly clustered for two applications, inter-process conflict misses will increase. The 

gap benchmark is an example of these clustered set accesses. Figure 4 shows the average 

number of hits per stack distance position for each set in the cache.  

 

Figure 4: Average number of hits per stack distance position for each set in the cache for 

the gap benchmark 

If two copies of this benchmark were run concurrently with a shared partition, there 

would be a large number of conflict misses around the sets numbered 500 (this would also 

be the case when there is no partitioning scheme). To counteract this, individual set index 

functions for each process can be used. By changing the set index function for one of the 

gap processes, there should be a reduction in the number of inter-process conflicts. We 
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propose using two modifications to the traditional cache set indexing function (the address 

modulo the number of sets) - inverting all index bits, and addition modulo the number of 

sets on the index. If the index bits were inverted, the higher numbered sets become the 

lower numbered sets. For two copies of the gap benchmark running concurrently, this 

would result in a marginal difference in the number of inter-process conflict misses, 

however may be beneficial for other applications with different access patterns. If an 

addition were performed on the set index (for example 512 (half the total number of sets)) 

for one copy of the gap benchmark that is running concurrently, the accesses near set 500 

would move to set 0, decreasing the number of misses due to conflicts with the other copy 

of the gap benchmark. 
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III. Proposed Modifications 

3.1 Set Utilization Based Cache Partitioning 

3.1.1 Partitioning Algorithm 

The overall framework of the proposed method for a dual core system is shown in 

Figure 5.  

 

Figure 5: Design overview of proposed shared partitioning method for a dual core system, 

showing additional structures required.  

Each processor has private L1 instruction and data caches that are connected to a shared 

L2 cache. A dynamic private partitioning scheme will add a monitoring circuit to gather 

stack distance information and hardware to calculate the partition sizes. Each processor is 

connected to a monitoring circuit. The monitoring circuit gains hit information for each 

processor as if the entire L2 cache were private to it. One possible implementation of this 

monitoring is to create what is termed an Auxiliary Tag Directory (ATD) [8]. The ATD is a 
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copy of the shared cache containing the tags but does not contain the actual cache block 

data. The private partitioning algorithm allocates all the ways in the L2 cache between each 

processor. Note that the ATD is used to gather stack distance information dynamically. A 

static partitioning method would require a similar structure to perform the same function 

using memory access profile information of an application. The proposed method adds 

hardware to calculate the size of the shared partition. The shared partitioning algorithm 

takes the private partition size information along with the stack distance information and 

determines which allocated ways can be shared. For systems with more than two cores, the 

L1 caches are connected to the shared L2 cache and an additional hit monitor which is 

connected to the partitioning algorithms.  

3.1.2 Private Partition Size Determination 

In general, any way-based partitioning algorithm (static or dynamic) that completely 

allocates all ways in a cache can be used to determine the private partition sizes. In our 

experiments, we use the Utility-based Cache Partitioning (UCP) partitioning algorithm to 

determine the sizes of the private partitions. This dynamic partitioning algorithm aims to 

maximize the total reduction in cache misses. Further details on the algorithm can be found 

in [8]. Although the UCP method is used, our method is complimentary to other partitioning 

algorithms with alternate cost functions (for example based on fairness [3]). 

3.1.3 Shared Partition Size Determination 

The shared partitioning algorithm determines which allocated ways are amenable to 

sharing. The first step is to detect the usage of a stack distance in a set. If the hit monitors 

monitor the number of hits per stack distance position for each set, no additional hardware 

is needed. However if there is a global stack distance position hit counter for all sets, 

additional hardware is required. An additional used bit for each stack distance position for 
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each set can be added. The number of sets used is then the total number of used bits set for a 

given stack distance. If the total number of sets used is below a threshold, the way is 

considered underutilized. 

3.1.4 Sharing Threshold Determination 

The threshold for determining whether a way in a private partition should be shared or 

not can be determined either offline or dynamically. Offline determination requires 

simulation of a system running a number of different benchmark sets with different 

thresholds. The threshold that provides the best average performance can then be chosen. 

While this method can make the hardware implementation simpler, it cannot adjust to 

changes in program behavior.  

Dynamically determining the sharing threshold will increase the hardware cost, but 

should be able to provide better performance. The algorithm for determining the sharing 

threshold is based on observing the past trend in the overall miss rate of the shared cache for 

different threshold values. Both previous and current miss rates for different thresholds are 

kept. If the first threshold is lower than the second threshold and has a higher miss rate, this 

indicates increasing the threshold may be beneficial so the next threshold chosen is higher 

than the second threshold. Similarly, if the miss rate of the first threshold is less than the 

second threshold, it indicates decreasing the threshold may be beneficial so the next 

threshold chosen is lower than the first threshold. This is shown diagrammatically below in 

Figure 6. 
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Figure 6: Dynamic sharing threshold determination. 

The choice of how much to increase or decrease the sharing threshold is a parameter that 

can be decided by the implementer. Too fine a granularity will result in slow adjustment to 

any changes in the behavior of the applications in the shared partition. 

3.1.5 Sharing Granularity of Shared Partition 

Once an allocated way has been determined as underutilized and to be shared, the 

question arises of which processes to share the way with. Two options are presented.  

The first is that the newly shared way can be shared amongst all other processes, termed 

the ShareAll algorithm. This provides a potential decrease in capacity misses amongst all 

processes, however at the expense of a potential increase in inter-process conflict misses, 

with the likelihood of inter-process conflict misses increasing as the number of processors 

sharing the cache increases. The implementation for this method is straightforward and only 

requires the total size of the shared partition to be tracked (this can be further optimized to 

only track the sizes of the private partitions).  

Pseudo code for this method is shown below in Algorithm 1. For each private partition, 

the utilization of each allocated way is compared to a threshold for sharing. If it is below the 

threshold, the way is shared, otherwise no further ways from that partition are shared. 

Allocated ways are shared in order from least recently used to most recently used. This is 



 

13 

 

due to the LRU replacement policy obeying the stack property, meaning accesses that hit in 

a private partition will not hit in the shared partition. 

Algorithm 1 ShareAll algorithm 

    foreach core do: 

        foreach allocated_way from LRU to MRU do: 

            if(number_of_used_sets < threshold) 

                private_partition[core] -= 1 

                shared_partition += 1 

            else 

                skip this core 

The problem with the first method is that we may not want to share a way with all cores 

if the combined set utilization is too high. It may be better to share the way with a subset of 

cores. The second method makes two adjustments - the use of combined set utilization in 

sharing determination, and the sharing of a to-be-shared way with a selected number of 

other processors. We term this method the ShareSubset algorithm.  

The implementation of this method is more complex and complicated as a result of two 

problems. The first is the selection of cores to share the way with. To optimally assign the 

cores is a form of the 0-1 knapsack problem and requires a dynamic programming approach 

to calculate the optimal solution. In order to reduce calculation time, it is possible to use a 

heuristic and take a greedy approach to core selection. Cores can be ordered based on the 

optimization goal of the private partitioning algorithm (e.g. benefit gained from an 

additional way) and selected until a core would exceed the combined set utilization 

threshold.  

The second problem is that as the number of cores sharing the cache increases, the 

number of partitions increases exponentially (at a rate of 12# cores ). Partition here is 
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defined as a part of the cache that is only allowed access by a subset of cores. Storing the 

partition sizes and also determining which blocks belong to each partition is not scalable so 

it is possible to use an approximation able to scale with a large number of cores. Instead of 

multiple different combinations of shared partitions, a single shared partition can be created. 

This single shared partition only allows each core to use a limited number of ways in it. 

This reduces both partition size storage overhead and simplifies the modifications required 

to the replacement policy (further details provided in below in the Augmented LRU Policy 

section).  

Pseudo code for this method is shown in Algorithm 2. Similar to the ShareAll method, 

the utilization of each allocated way from the LRU allocated way to the MRU allocated way 

is compared to the threshold. If underutilized, the way is transferred to the shared partition, 

with the number of ways in the shared partition that the originating core is allowed to use 

increased. Then ways from other cores that can be shared in this position are ordered in 

terms of the optimization goal. The newly shared way is shared with other cores until the  

Algorithm 2 ShareSubset algorithm 

    foreach core do: 

        foreach allocated_way from LRU to MRU do: 

            if(number_of_used_sets < threshold) 

                private_partition[core] -= 1 

                shared_partition[core] += 1 

                corelist = get list of cores ordered in benefit from additional way 

                foreach toCore in coreList do: 

                    if(combined_usage < threshold): 

                        shared_partition[toCore] += 1 

            else 

                skip this core 
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total utilization reaches a threshold, after which the chance of conflicts is established as too 

great. This method requires storage of both the private partition sizes and number of blocks 

that can be used in the shared partition for each connected core. 

3.1.6 Augmented LRU Policy 

As with other way-based cache partitioning methods, the standard LRU policy is also 

augmented to support our method. Each cache line in the shared cache has an additional tag 

representing which processor it belongs to (one bit for a cache shared between two 

processors). This is used to determine how many blocks are allocated in a set to each 

processor. This owner tag is already necessary for a private partitioning method that 

modifies the replacement policy to enforce the partition sizes. On a cache miss the LRU 

block needs to be chosen whilst keeping the partitioning constraints. Roughly speaking, if 

any processors have too many blocks (greater than the combined size of the private and 

shared partitions) the LRU block from them is chosen for eviction. If not, then the LRU 

block of the shared partition is chosen for eviction. If there is no shared partition (i.e. the 

cache utilization for each way is high), then the LRU block of the private partition is then 

chosen. In addition, a lazy repartitioning method [8] is used to evict cache blocks on 

demand rather than evicting all blocks belonging to a processor that are over its newly 

allocated limit. 

3.1.7 Storage Overhead 

The additional hardware requirements are minimal given a private partitioning algorithm 

that already uses an auxiliary tag directory. There are two main sources of overhead - the 

monitoring circuit and the modifications to the shared cache. If stack distance position hit 

counters per set are available, no additional storage overhead is required for the monitoring 

circuit. If not, and using the UCP method as an example, for a 32-bit system the UCP 
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method requires an additional storage overhead of 1920 bytes per core for a 1MB 16-way 

cache with 32 sets monitored. Our method needs to add an additional bit for each stack 

position monitored, and with 32*16 blocks monitored, 64 additional bytes are needed for 

storage per core, a 6.67% increase over the UCP method and increase of 0.006% of the total 

cache size per core. For additional cores, this number is multiplied by the total number of 

cores. 

The storage overhead for modifications to the shared cache consists of the additional 

owner tag needed for each block. For a 16-way set associative cache with 1024 sets shared 

between two cores, an additional bit is required per block thus the overhead would be 2048 

bytes. This overhead is proportional to the number of blocks in the shared cache and the 

base-two logarithm of the number of cores sharing the cache. This owner tag may originally 

be required by the private partitioning method so there would be no additional overhead 

from our proposed shared partitioning method. 

3.1.8 Effect on Latency 

The effect of the proposed shared partitioning method on the latency of the system has 

two major sources - that of the partition determination, and that of the enforcement of the 

partition constraints.  

Although partition determination is not on the critical path of a cache access, it is limited 

by the repartitioning period as it must complete before the partitions are changed again. As 

the repartitioning algorithm is composed mainly of additions, subtractions, and comparisons, 

the latency of the algorithm is predicted to be within the repartitioning period. 

Partition enforcement is done through the augmented LRU policy, and thus falls on the 

critical path of a cache access. For any cache access (be it a hit or miss), the latency will 

increase slightly due to the additional core tag comparison required, but which most likely 
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can be masked within the existing latency or requiring only one extra cycle. This is shown 

below in Figure 7. 

 

Figure 7: Cache organization when accessing the cache. Red/bolded parts indicate 

additional structures required by partitioning methods that impact the cache access time. 

On a cache miss, the latency for choosing the block to evict is increased, however this 

computation can be performed whilst the new block is being fetched from the next level of 

the memory hierarchy, hiding the increased latency.  

3.2 Alternate Per Core Indexing Functions 

Two modifications to the traditional address mapping function (the address modulo the 

number of sets) are proposed - inverting all index bits, and addition modulo the number of 

sets on the index. Each core is able to have its own individual indexing function, in a 

combination of inverted/non-inverted index bits and addition modulo the number of sets of 
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the index. These modifications are chosen so as to be low cost and low latency and also to 

preserve the clustered nature of any accesses. Bit inversion requires one level of NOT gates, 

while if the addend is chosen judiciously, the addition can be performed on the higher order 

bits only. For example, if there are 1024 sets, to add 512 only requires inverting the most 

significant bit of the index. To add 256 would require one XOR gate and one NOT gate for 

the two most significant bits of the index respectively (a two-bit adder).  

One benefit of using a combination of bit inversion and addition is that it is generally 

scalable to any number of cores, although there may be effects on latency.  

3.2.1 Indexing Function Determination 

The choice of indexing function for each core is important to ensure performance does 

not deteriorate compared to the traditional address mapping function. One option is to 

randomly select index functions for core. This would require a large number of simulations 

to find a combination of index functions that perform well on average. 

Another option is to dynamically adjust the index functions. The goal of the index 

function is to balance the accesses to cache sets to reduce inter-processor conflict misses. 

Therefore a measure of balance in the cache is needed. If the cache is out of balance, the 

index function of a core can be changed to attempt to improve the balance. To measure the 

balance we introduce two counters per core. Using the stack distance information from the 

private partitioning method, it is possible to detect the number of unique accesses per set 

and stack distance position. The counters determine whether the cache accesses are “top 

heavy” or “bottom heavy”. The counters increment when stack distance positions in higher 

numbered sets that have not been accessed before are accessed. Similarly they decrement 

for lower numbered sets. Therefore if an application has a lot of accesses in the top half of 

the cache, the counter will be positive, while a lot of accesses in the bottom half of the 
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cache will mean the counter is negative. The counters for two or more cores are then added 

together. If the result is close to zero, the accesses in the cache are predicted to be balanced 

and no adjustment of the indexing functions is necessary. If the result is either positive or 

negative, then an indexing function should be changed and the result compared to zero 

again. This is repeated until the best balance is found. Note that this may continue for a long 

time depending on the number of different indexing functions so a limit to the number of 

combinations searched can be used. 

One thing of note is that balancing a private partitioning scheme will have no effect 

since there is no sharing of the cache (in actuality it may since repartitioning can be lazy 

resulting in temporary shared parts). This means the balance counters should just be applied 

to the shared part of the partition. Also, this means that the balance counters are applicable 

to shared caches with no partitioning (the size of the shared partition is the entire cache). 

3.2.2 Dynamic Adjustment of Indexing Functions 

A problem encountered when changing the index function for a core is that data placed 

in sets using the previous indexing function will no longer be able to found. Also, when 

searching for a block the address will be reconstructed incorrectly and can result in a hit 

when there should be a miss. One simple solution to this is to invalidate all the blocks using 

the previous indexing function when changing index functions. This solution increases the 

number of misses and lowers performance. 

A better solution is to keep the data using the old index function in place, and use both 

index functions when looking for a match. To correctly reconstruct the address, each block 

can have an additional index function tag to indicate which index function was used. This 

increases storage overhead and can impact latency through the additional check for the 

correct index function tag.  
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If there are a large number of index functions it is impractical to search for blocks using 

all of them as it will consume too much power. Instead only recently used indexing 

functions can be searched - perhaps the current and the past or past two index functions. 

One other issue that exists and becomes more obvious when not using all the past 

indexing functions is that data indexed by an indexing function not used anymore is unable 

to be found even though it is still in the cache. To solve this, when blocks are found using 

the old index function, they can be moved to the MRU position of the new set, and the LRU 

block of the new set moved to the LRU position of the old set.  

3.2.3 Storage Overhead 

If dynamic index function determination is used, an index function tag is required for 

each block in the cache, so if there are four different index functions and a 16-way set 

associative cache with 1024 sets (16384 blocks in total) the storage overhead would be 4096 

bytes. In addition, balance counters are needed per core. These can be saturating counters so 

do not need to be large - perhaps between 1-2 bytes meaning 2-4 bytes overhead for the 

balance counters per core. 

3.2.4 Effect on Latency 

The alternate indexing function is chosen so as to require a minimal number of 

additional gates to implement and thus should be within a one cycle time envelope for an 

access. Also, as the shared cache is most likely second level or higher, even if the access 

time increases, it can be speculatively accessed during the first level cache access hiding 

any increased latency. 

The determination of the index functions is not on the critical path of a cache access and 

can thus be performed in parallel. It does however need to provide the new index functions 

in a timely manner so cannot have too large a latency. When adjusting the index function 
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for a partition there may a slight delay as a multiplexor chooses the output of the correct 

index function to pass to the tag and data arrays. This will not affect the critical path as the 

additional delay will be too small to notice. 

3.3 Other Modifications 

Since a private partitioning scheme splits the cache into private partitions, only 

intra-processor misses occur. As such we can apply standard techniques to reduce the miss 

rate of a cache on a per-partition basis. Such techniques include varying the block size, 

varying the associativity, and changing the replacement policy. 

3.3.1 Per-Partition Variable Block Size 

Varying the block size can result in a decrease in compulsory misses for an application, 

but needs to be balanced with the increase in conflict and capacity misses. A brief overview 

of various methods to detect the appropriate block size is presented. One method is to have 

an external monitoring circuit (functionally identical to the cache but not containing data) 

snooping cache accesses calculating miss rates using different block sizes. Applied on a per 

partition basis, copies of each of these monitors will be needed for each partition, linearly 

increasing overhead.  

Another option would be to have in cache monitoring, reserving certain sets in the 

shared cache for particular core and block size. This is not very scalable as a large number 

of sets will be needed for increasing numbers of cores and possible block sizes.  

A third alternative would be to store a number of accessed addresses per core and get the 

number of hits for that address if the block size were varied. This is lower overhead than 

making a copy of the cache and able to scale with the number of partitions. However the 

issue is it does not take into account the effect of replacement policy. One way to deal with 
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that would be to remove the address from the address list when the block is evicted from the 

cache. However when the block size monitored is larger than the current block size, the 

address may be in the cache but could not fit if the block size were larger. For this case the 

predicted number of hits would be incorrect. 

The block size can be adjusted either periodically or based on event. Such an event 

could include when the cache is repartitioned or when the monitored miss rate differential 

between the current block size and a monitored block size is greater than a threshold. 

The biggest question related to variable block sizes is how they can be implemented, 

and if the cache can support that implementation on a per-partition basis or it can only work 

globally across the whole cache. Since the cache size is conceptually fixed (only changed 

on repartition and not by the variable block mechanism) to change the block size requires 

either a change in the number of sets or a change in associativity.  

Conceptually combining two sets into one set will double the block size. This can be 

implemented with low cost by fetching multiple sequential blocks per memory request and 

putting them in different sets. This means block size can be adjusted using integer multiples 

of the minimum block size. It will however increase the number of memory requests, 

impacting performance. One issue is that the index function is unaware of the change in 

number of sets and may index into the middle of a large block. Physically the number of 

sets in the cache can stay the same, but the index function can be modified to ignore (set to 

0) lower order bits when the block size increases, counteracting this issue. If the lower order 

bits are ignored this means the block size must be a power of two, which it commonly is 

anyway.  

This method for varying the block size is easily adapted to a per partition basis. Each 

partition is associated with a block size, with the index function changing based on the 
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partition’s block size. This may slightly affect the time to index a function since a lookup is 

needed. The stored block size is also used to determine how many blocks to sequentially 

fetch from the next level of the memory hierarchy. When repartitioning and combining 

partitions with different block sizes, nothing needs to be done as blocks will be overwritten 

on demand and are still able to be accessed by either core with their different index 

functions. 

Changing the associativity is conceptually similar. The underlying structure of the cache 

in terms of number of sets and blocks and ways remains the same, it is the unit of 

addressing that changes. Conceptually, ways are combined to increase the block size. This 

can be done by again fetching multiple blocks on a miss, however this time the fetched 

block go in the same set so multiple blocks need to be evicted. Eviction needs extra time to 

find the correct block to evict and then use this to find the additional blocks that need to be 

evicted. This can be performed in parallel to evicting the first block and fetching the next 

block so has no impact on latency. Apart from this, there are no other major modifications 

needed compared to the original cache structure. Block size per partition is stored and used 

when fetching and evicting a block. Combining partitions with two different block sizes 

may cause an issue with choosing which blocks to evict and put in the cache since the 

number of blocks in a set may not be a power of two. This requires extra logic to deal with 

the situation. 

3.3.2 Per-Partition Variable Associativity 

Varying the associativity can result in a change in the number of conflict misses for an 

application. Methods to detect the desired associativity are similar to that detecting the 

desired block size. Again, an external monitoring circuit (functionally identical to the cache 

but not containing data) snooping cache accesses calculating miss rates using different 

associativities. In-cache monitoring, reserving certain sets in the shared cache for particular 



 

24 

 

core and associativity. This is not as practical unless the associativity is reduced and not 

increased from the baseline associativity. Similar to varying the block size, associativity can 

be adjusted either periodically or based on event.  

Since the cache size is conceptually fixed, varying associativity can be achieved by 

either changing the block size or changing the number of sets. Changing the block size and 

associativity was described previously - combine ways. This only works to decrease the 

associativity from the baseline.  

Changing the number of sets however, can both increase and decrease associativity. As 

partitions do not necessarily have an associativity that is a power of two, it is easiest to 

restrict changes in the number of sets in a partition to halving and doubling. This will 

double/halve the associativity of the partition respectively. Physically the cache will 

maintain the same structure, but conceptually the number of sets changes. This requires 

changes in both the index function and replacement policy to support. When increasing 

associativity, the number of LRU bits changes so the replacement policy must deal with this 

(perhaps by randomly choosing the LRU block of one of the sets). When looking for a hit or 

block to evict, the index function must search two or more sets - done by searching all 

combinations of the LSBs of the index that change. When decreasing the associativity, 

blocks that conceptually are in different sets share the same physical set. The replacement 

policy must deal with this by ensuring the correct blocks are evicted by checking the LSBs 

of the address tag. The biggest issue is what to do with existing data when increasing or 

decreasing the number of sets. The easiest way is to invalidate any of the data in the 

conceptually new portions. The data could be kept, however requires a large overhead to 

adjust and find data that can exist in new location (able to be found and will not incorrectly 

cause a hit).  

Applying varying associativity by changing the number of sets is able to be applied on a 
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per-partition basis, as combining partitions with different associativities is similar to 

changing the associativity. The partitions can first match their associativity, then one 

partition readjust their associativity back with a different partition size. 

3.3.3 Per-Partition Replacement Policies 

Changing the replacement policy can result in a decrease in the number of conflict 

misses, specifically replacement misses. When implementing on a per-partition basis, 

partitions with different replacement policies can be combined at any time so the 

replacement policies need to be active concurrently and updating any tags needed for all 

accesses. On a miss, each replacement policy will select a block to evict and the final block 

to evict is chosen which replacement policy is currently in use by the partition. This means 

the replacement policy tags can not be reused increasing hardware cost. Also since all 

replacement policies are run concurrently for each access, power is increased. 

Selection of the replacement policy to use can also be done in a similar fashion to the 

past two methods - having an external monitor with different replacement policies or an 

in-cache monitor. Miss rates can be recorded and replacement policy selection based on 

this. 
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IV. Related Work 

4.1 Cache Partitioning 

Cache partitioning as a research topic saw an increase in interest with the rise of chip 

multi-processors. A number of different methods have been proposed, with a large 

proportion using way-based partitioning. 

Dynamic Partitioning of Shared Cache Memory [1] is a way-based partitioning method 

to dynamically reduce the total number of misses for simultaneously executing processes. 

Cache miss information for each process is collected through stack distance counters 

(termed marginal gain counters) and a greedy algorithm used to determine a new partition 

size. Of note is the rollback mechanism, where the performance of the current and previous 

partition sizes are compared and the better one chosen for the next partition size. 

Limitations of this method is include the fact that separate hit counters are not kept for each 

core making miss prediction less accurate and the limited scalability to four or more cores. 

Utility Based Cache Partitioning [8], the example method used for determining the 

private partitions in this paper, allocates ways amongst the cores based on maximizing the 

reduction in misses. This is computed through stack distance counters and alternate tag 

directories enabling the effect of various cache partition sizes to be determined 

simultaneously. The method however is not able to adequately adjust to situations where 

having no explicit partitioning policy performs well (applications with a low number of 

inter-process conflict misses running concurrently). 

Cooperative Cache Partitioning [9] is another way based partitioning method designed 

to deal with thrashing threads. It uses Multiple Time-sharing Partitions to share a large 
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partition between multiple thrashing threads, giving each thread the entire partition for a 

portion of the repartitioning period. This combined with the Cooperative Caching [10] 

method provides an improvement in performance, particularly Quality of Service. This 

scheme is also compatible with our proposed shared partitioning method and we anticipate 

additional improvements in performance if used together. 

Adaptive Shared/Private NUCA Cache Partitioning [11] is a method similar to our 

proposed shared partitioning method that divides a cache into shared and private partitions. 

The difference lies in the method for determining the size of the partitions. In this method 

shadow tags are used, however only one way is reallocated per repartitioning period, 

meaning the method is unable to adjust quickly to changes in working sets unlike our 

method which can make larger changes in partition sizes. Additionally, cache misses are 

used as the determinant for when to repartition the cache, meaning applications with a large 

number of cache misses yet no change in their working sets will cause unnecessary 

repartitioning.  

The reconfigurable cache mentioned in [12] describes a similar, albeit more simplified 

method of cache partitioning. They focus more on the hardware requirements and feasibility 

of implementing cache partitioning. Differences with the proposed cache partitioning 

method include the use of software vs. hardware for partition size determination, cache 

scrubbing vs. lazy repartitioning, and the use of L1 vs. a cache explicitly shared between 

multiple cores. 

Peir et al. [13] describe a dynamic partitioning technique for a direct-mapped cache in 

which partitioning is done by grouping sets (termed a group-associative cache). In addition, 

underutilized cache blocks are detected based on the recency of their use (to attempt to 

implement a global LRU scheme) and prefetched data is placed in those blocks in the hope 

of increasing their utilization. This method of underutilization detection is somewhat similar 
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to our proposed method, but operates on a direct-mapped cache using what would be 

classified as a set-based granularity if the associativity were increased.  

Adaptive set pinning [14] can be thought of as cache partitioning using a set granularity. 

Sets are allocated to processors based on the frequency of accessing a particular set, with 

each set having an owner. This scheme is more scalable than way based partitioning and our 

proposed method may be able to be extended to complement set pinning by detecting 

underutilized ways within allocated sets that can be shared.  

Recent work has noted the poor scalability of having separate monitors for each core 

and methods have been proposed including In-Cache Estimation Monitors [15] and 

set-dueling [16] to eliminate the need for separate monitors. A number of sets in the cache 

are dedicated to a particular core from which the monitored statistics can be gathered. These 

methods improve in effectiveness as the cache size increases while associativity remains 

constant, as there are a larger number of sets and less reduction in effective cache capacity 

per core. These methods are compatible with our proposed method and can also be adjusted 

to help in the monitoring of set usage, helping reduce the overhead of our proposed method. 

4.2 Cache Indexing Functions 

Previous research on cache indexing functions has generally not focused on the 

interaction between processes in a shared cache and has focused on reducing conflict misses 

within a single process.  

Rau [17] discusses the calculation of the index as the address modulo an irreducible 

polynomial. However Gonzalez et al. [18] show that there is a marginal advantage to 

choosing a polynomial mapping scheme over their own simpler bitwise XOR mapping.  

Kharbutli et al. [19] propose a fast implementation of an index function that uses the 
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address modulo a prime number.While improving performance, they recognize that the 

hardware cost and increase in delay means it is more suitable for higher level caches. 

Zero Cost Indexing for Improved Processor Cache Performance [20] describes a 

heuristic to select address bits for the index given a program trace. For no cost (just 

selecting different bits for the index) it is able to reduce the miss rate, however requires a 

program trace, making it unsuitable in general for other applications. 

In a similar manner, Vandierendonck and De Bosschere [21] present an algorithm to 

determine the optimal XOR function that will minimize misses for a given program trace 

finding that XOR based functions provide the best reduction in misses of the index 

functions surveyed.  

While these techniques propose individual index functions per application, they do not 

address the case of a cache shared between multiple applications. 

 



 

30 

 

V. Future Work 

Results for the individual methods and the methods combined have not been collected 

yet. The results can be gathered by simulation. Simulation can be performed using a full 

system simulator that is able to accurately simulate a multi-core processor and related 

subsystems including the cache and memory system. 

One other technique to improve partitioning not described in detail here is partition size 

prediction. Cache partitioning methods generally collect runtime information on 

applications executing, making partitioning decisions on this information assuming past 

behavior will be a good indication of future behavior. As programs generally go through 

phases during execution in which memory accesses are quite similar, one could detect these 

phases and associate them with a partition size, similar in principle to a branch history table. 

In this way, instead of having a fixed repartitioning period, repartitioning would occur upon 

detection of a change in the execution phase of an application.  
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VI. Conclusion 

Previous cache partitioning methods ignored the effect of the non-uniformity of cache 

set accesses upon the effectiveness of partitioning decisions. We proposed two methods to 

take advantage of this non-uniformity - the creation of a shared partition and individual 

cache indexing functions for each core. Also discussed was how varying block size, varying 

associativity, and changing the replacement policy can be applied in a private partitioning 

scheme. These techniques in both isolation and used in combination should be able to 

provide an increase in performance of private partitioning schemes. Investigation of actual 

performance of these techniques remains future work. 
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