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Abstract

Due to the limitation on the size of an optical integrated circuit, the circuit topology
should be simplified However, to have an efficient transmission for the signal, a good design
with transition structures becomes important gradually In light of its unique and complex
theoretical basis required, in this thesis, we present an systematical analysis for a class of
transition structures by the rigorous mode matching method In order to simply our
sophisticated problem, we insert the overall structure into an oversized metallic parallel-plate
waveguide Furthermore, we separate the distance of the parallel-plate waveguide far enough
to approximate the practical case Finally, in the chapter 3, we illustrate several typical
transition structures, and the numerical data we obtained later can be developed as a guideline
while designing them From these figures, we can easily get the size of the structure with the

desired transmission efficiency
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Chapter 1

Introduction

(D

An optical integrated circuit (OIC) contains various types of components, such as
diffraction gratings, dielectric waveguide, laser diode and etc Such that there are many
interfaces present in the circuit In general, the interface between two components (or devices)
exhibits the structure of discontinuity As we have known, these discontinuities will cause
enormous power leakage and reflection while wave propagating through them Moreover, due
to the compact size of the OIC, such a leakage will cause more serious crosstalk between
neighboring components than before, and degrade system performance Besides, the high
insertion loss due to a strong reflection from discontinuities will further reduce the

performance of the system

In order to reduce the reflection caused by the junction discontinuities, the components
are usually connected by smooth transition structures, such as a bended or a crack which may
be considered as nonuniform waveguides Therefore, It is important to know how to design an
optimal transition structure to reduce the power reflection and enhance the transmission
efficiency We have extensively surveyed the guiding characteristics of uniform and
nonuniform dielectric waveguides [1-6] We found that although transition structures have
been studied [7] , but the profiles are limited to some specific patterns Therefore, in this

thesis, we will analyze a variety of the transition structures to systematically understand the



physical picture of wave scattering from a discontinuity and to obtain the criterion for

engineering design

Some typical transition structures are shown in Figl.1 The structure in Figl.1 (a) shows
a transition between two nonaligned identical waveguides, where the thickness of the
waveguide is kept at a fixed value throughout the entire structure The structure in Figl.1 (b)
shows a transition in a perturbed waveguide having a section with different thickness
throughout the entire structure The structure in Figl.1 (c) shows a transition between two
uniform waveguides with different thickness, and the structure in Figl.1l (d) shows a

transition of a bended waveguide with symmetric profile
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It is not easy to obtain the chose-form solution for the scattering characteristics of the
nonuniform open dielectric waveguides, even for simple geometrical structure Therefore, we
must take advantage of approximate procedure In this thesis, the rigorous mode matching
method was employed to deal with waveguide transition structure Wherein, the scattering
characteristic of waveguide modes by the structures having many discontinuities was carried

out by computer numerical simulation



Chapter 2

Method of Analysis

In order to simplify our analysis, we carry out two procedures here First, we use the
staircase approximation as shown in section 2.1 After putting the structure inside an
over-sized parallel-plate waveguide, we have the complete set of modes in any region Second,
we analyze the problem by using the mode matching method, and thus the equivalent
transmission-line network representation is obtained, which is the kernel of the entire
analysis  Furthermore, the amplitudes of forward wave and backward wave in any region are
determined by solving the voltage and current amplitudes in the transmission-line equations
Once they are determined, the reflection and transmission efficiencies of each mode can be

understood immediately, and thus the problem is totally resolved

2.1 Staircase approximation

From Fig 2.1, we can observe that we use the staircase approximation to approximate a
continuous profile As shown in this figure, such an approximation yields the structure
containing three uniform layers for each partition denoted by dash lines Here, we use
“region” to represent any partition in the structure, as is region A and region B shown in this

figure



When we put the structure into an oversize parallel-plate waveguide, a complete set of
modes for each region can be well established, and thus a basic equivalent network will be
developed for a junction between any two adjacent regions [8-9] Therefore, for the entire
structure, we can cascade these basic unit cells to form an overall equivalent network as is
described clearly later with mode matching method in section 2.2  Evidently, if we minimize
the step size, the approximated structure will approach the practical one Having such an
approximation, we can not only simplify the mathematical analysis but also easily interpret

the physical phenomenon of the results obtained in the next chapter

Fig 2.1 Staircase approximation of an arbitrary continuous profile

2.2 Mode matching method

In this section, we will introduce the procedures of the mode matching method in dealing
with the problem described in the previous section First, we want to find the eigen modes for
a prescribed layered structure  Second, once the eigen modes are determined, the relationship
between the mode amplitudes for the two adjacent regions could be determined Finally, we
will assess the magnitudes of the voltage and the current for each mode in each region by

using the transfer matrices



2.2.1 Transverse-resonance technique

By imposing the condition of transverse resonance along the y direction while wave

propagates in the z direction, we could set up an equation to solve the propagating

wavenumber k, and the corresponding mode function ¢(y) Where k, is defined as

2 : N . .
i cq »and &y is the effective dielectric constant A transverse equivalent network for a

parallel-plate waveguide containing three uniform layers is shown in the Fig 2.2 For TE
mode, the wavenumber and the characteristic impedance along the y direction can be

defined as below

2
="~ 6 (=) (2-1)

O
Z y = k—o (2'2)

y

Where A is the wavelength , ¢, is the relative dielectric constant for each uniform layer

(i=dora) Moreover, the condition of the resonance is defined as below

Zyp+Zg=0 (2-3)
Where Z, and Z, are defined as the input impedance looking upward and downward

from the reference plane For a given set of the structure parameters and the operating

wavelength, by evaluating equation (2-3), we can easily determine the effective dielectric

constants in the structure

PEC

dielectric K || || da
___________________ +4———L reference plane

layer ke || ] d2

Zdn
K d,

PEC

Fig 2.2 Equivalent transmission-line network for a parallel-plate waveguide containing three uniform layers



Once the roots were found, we could determine the corresponding eigen function,

namely mode function ¢(y), distributed in the cross section For TE mode, we can know that

the mode function relates to E, or H, and could be written as below

Z, oA psink,, ,y+6, ) for general layer

. 2-4
Z o oa A e SIN(K,, g (h-y))  for the last layer (2-4)

¢n(y)={

Where n denotes the n"™ mode, p represents the p™ layer, A,,and @, , are the

amplitude and phase of the n"™ mode field distributed in the p™ layer, Z,,and k,are

the characteristic impedance and the wavenumber along the y direction as described

previously , h is the distance between two PEC, and we assume that there are nd layer in

one region

The next step is to find the value of A jand g,  in each layer Because of the
vanishment for the tangential electric field at the surface of the PEC (E, =0 at y=0 and
y=h), the ¢, (y) for the first layer has the form as shown in (2-4) with vanishing 4, ,

Furthermore, we set the value of A , in the first layer to be one By the electromagnetic

boundary condition, that is, the tangential field components must be continuous at the

interface between two adjacent dielectric layers, the general solution for the argument 6, |

and the amplitude A, , could be obtained, written below:

-1 Zyn,p
0, =tan~| ———tan(k,, D, +6, ) |-k, ,.D, (2-5)
yn,p+l
cos(k, D +6
An,p+1 = An,p ( ne_? n'p) (2-6)
cos(ky, 1Dy + 6, 5.1)

COS(kyn,nd—and—l + en,nd—l)
COs(kyn,nd dnd )

and the last layer A (2-7)

n,nd = n,nd-1



Where p ranges from one to nd By progressively matching the field quantity at the
interfaces, we could resolve the unknown A's and &'s in each region, and thus the mode

function in the transverse plane for each mode can be totally determined

Since the eigen function ¢, (y) satisfies the Sturm-Liouville differential equation and

the prescribed boundary condition, they should satisfy the orthogonal relation given below:

(8" WO (1)) = 81 (2-8)

Where i denotes the i™ region, m and n represent different mode indices, w(y) is the
weighting function corresponding to Sturm-Liouville differential equation For TE mode, the
weighting function is defined as below

w(y) =1 (2-9)

After normalizing each ¢, (y), we can plot them as shown in the Fig 2.3 Here, we
demonstrate a three uniform layers structure and plot the tansverse electric field distribution
for the first six modes As shown in this figure, the field, or power density, is guided in the
dielectric layer when the corresponding root is greater than unity Such a hind of mode can be
regarded as surface wave in dielectric waveguide since the field component is decaying at the
surrounding medium, such as air On the contrary, those with effective dielectric constant
smaller than unity mean that the wave is propagating in all regions, that is, they exhibit

sinusoidal variation in each constituent region
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E PEC
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Fig 2.3 Transverse fields in a three uniform layers structure for one TE mode

2.2.2 Electromagnetic boundary conditions

After obtaining the eigen modes distributed in a multilayered structure, we shall
formulate the boundary value problem along the direction of wave propagation in order to
determine the relationship of mode amplitudes at the interface between two adjacent regions
Referring to Fig 2.4 (a), the two regions on the both sides of the discontinuity are
characterized by different distributions of the dielectric constant and a junction discontinuity is
at z=1z, According to the principle of separation variable, the tangential E and H fields

Y
regionl f region 2

&(y) I £,(Y)
@ ! ]
z Wzt
o1 %o
IL
Vl(l) (z,) I: i — V1(2) (25)
12(27) —«:»—i— {—«:»— 12(z;)
Vi (z) — 4 —r——— V)
19(zy) ——F— — T+ 19(z)
| |
(b) — '—«:»—I
! !
Z, L

Fig 2.4  (a) A step discontinuity between two adjacent regions

(b) Equivalent network



could be expressed as the superposition of eigen modes in each region, which yields:

EY =2 47 (yV,(2) (2-10)
HO =3 g0 (10 (2) (2-11)

Where the amplitudes function in z direction, V's and |'s, characterized as voltage and
current waves, satisfy the transmission-line equation along z direction as depicted in Fig 2.4

(b), written as:

(i)

Yo @ __je0z010() (-12)
dz
(i)

S8 v v o) (2-13)
VA

Where V. 7(z) and 1{7(z) consist of both forward and backward propagating waves, k"
is the propagating wavenumber defined in the section 2.2.1, Z® (_ ) is the characteristic

impedance (or admittance) along the z direction defined as below [10] (Appendix 1)

z0 = % for TE mode (2-14)

By imposing the boundary condition at the interface, the tangential electric and magnetic field

components must be continuous at z=1z, From (2-10) and (2-11), we have

i ¢n“’(y)vn‘”(za)=nzz SOV () for E, (2-15)
Z S (IO (25) = Z SOWNIP @) for H, (2-16)

Where z35 =z,+Az, and Az approaches to but not equal to zero, n, and n, denote the

number of the modes employed in regionl and region2, respectively By multiplying

10



equations (2-15) and (2-16) with ¢ (y) at the both sides and taking the overlap integral for

the variable y fromzeroto h, we have

> VO (25) (85 ()| 4% (v)) -y V2 (25) (88 ()] () (2-17)
> 1) () ¢S>(y)>=:n2 12 (25) (85 ()] 42 () (2-18)

By invoking the orthogonal relation for the eigen mode, the above equations can be written

as.
VO(z5) =3 V(2 (2-19)
=1
19(z5) =3 19@)pm (2-20)
n=1

Von = (89(Y)

87 (y)) (2-21)
Where m ranges from one to n, , n runs from one to n,, y., represents the coupling

between m™ and n™ mode in respective region The above linear system of homogeneous

equations can be rewritten in the vector-matrix form, given below:

V, =9V, (2-22)

, =91, (2-23)

Where R is defined as coupling matrix with its element » . , V's and I's are the
voltage and current vectors with their mode amplitude filling in the entries By multiplying
equations (2-15) and (2-16) with 4% (y) at both sides and taking the overlap integral

incorporated with the orthogonal relation, we obtain the similar matrix equations given below:

V, =RV, (2-24)

11



I, =R"1, (2-25)

Where the superscript T denotes the transpose of the coupling matrix R

After obtaining the coupling matrix between any two adjacent regions, we could
further check the accuracy of these matrices [3] If the coupling matrix is not accurate,
the condition of power conservation will not be present and some errors will occur

Substituting (2-24) into (2-22) or (2-25) into (2-23), we have the unitary condition:

RR" =1 (2-26)

Where | is the identity matrix In general, (2-26) may be considered as an criterion to see

whether the coupling matrices are accurate or not in the numerical computation

2.2.3 Input-output relation

From the previous section, we have obtained the coupling matrix between two adjacent
regions, each of which contains multiple uniform layers In this section, we will introduce a
procedure to deal with the wave propagation through multiple discontinuities by using the
input-output relation at the discontinuity and wave transition in a uniform waveguide Once
the relationship described previously is obtained, we have a good position in figuring out the

field components everywhere in the structure

Fig 2.5 (a) shows a parallel-plate waveguide filled with nonhomogeneous dielectric
medium Since the dielectric medium is piecewise constant, we could partition them into three
regions, which are denoted by i—1 , i and i+1, respectively Besides, there are two

12



interfaces characterizing the discontinuities of the structure, which are z=2z,, and z=1z,,

respectively Based on the mode matching method described in the previous section , the

transmission-line network in the uniform waveguide and the transformer bank at the

discontinuities could be drawn as depicted in Fig 2.5(b)

PEC
regioni-1 regioni regioni+1 vy
(i+1)
i &
(a) £09(y) e¥(y) )
— ti_l ti ti+1 z
i, T gy

Vi () Vv, (z7,) V9 (z)) V0 (2
s e O N oy S
—_ T
(b) () 19(z) () 199 (z7)
Vi (zy,) vOE)  VPz) Vi(z)
s e e B [ o E—
e s = e e T [ o E—
PG 0@ 10E) i heE)

_ + —
Zi—l Zi—1 Z; I

Fig 2.5 Equivalent network for a staircase structure
(a) Three regions

(b) Equivalent network

Here, we assume that the structure infinitely extends at the right hand side of Fig 2.5 (a),

or the input impedance of each mode in the i+1"region is known Thus, the input

impedance matrix contains each mode in that region is assumed to be Z,(z) Where

Z, (z;) is a full matrix, which may include the mutual coupling effect due to waveguide
modes in the present of discontinuities

After the input impedance matrix in the i+1" region at z =2z was given, we could

13



further transfer it from the right hand side of the interface, z =z, to the left one Since the

voltage and current waves in the region i and i+1 satisfy the relationship given in

equation (2-22)~(2-25), we could obtain the input impedance matrix looking seen into the

i+1" regionat z=z ,which is given below:
Z, =RZ;R' (2-27)

In the previous section, we have transformed the input impedance matrix from the output
region to the input region through a discontinuity by using the input-output relation of that
discontinuity Thus, in the next step, we should tackle the problem of wave transition in a

uniform waveguide (in the i™ region) There are two problems to be handled, which are the

input impedance matrix looking seen into the interface at z =2z, and the transform matrix

for the electric and magnetic fields from the output to the input interfaces of the finite section

of waveguide (i"™ region)

In a uniform waveguide, the voltage and current waves for each mode could be grouped

into the vectors, which are given below:

V(2) =V, (@), (2-28)

1@) = 11,2}, (2-29)

For a finite length of transmission line, the voltage and current waves contain those of

forward and backward propagation ones, which could be written as:
V(z)=e""a+e’b (2-30)
1(2)=Y[e"=a-e™b] (2-31)

Where the matrix e ** is a diagonal matrix with its diagonal element representing the

propagating constant along z direction for each mode, a and b are the amplitude vectors

14



consisting of each forward and backward propagating modes Besides, Y is the admittance
matrix, each element representing the characteristic admittance of mode in the transmission
line

Once the impedance matrix at the output of the transmission line is determined, we could

further obtain the relationship between the forward and backward propagating amplitudes

vectors a and b bothat z=2z and z=z ,, whichis given below:
Fou = (ZY; + D) 7(Z5Y - 1) (2-32)

C=e i el (2-33)

out

Where T',, and I' represent the reflection matrices at z=2z, and z=z’, Then, the

out
input impedance matrix looking to the right at z=2z', is determined by the impedance

transform technique as:
Zr=(1+D)(1-1)"Z, (2-34)

From the mention above, the input-output relation for waves at the discontinuities and in
each uniform waveguide are determined, we could sufficiently employ the equations
(2-27),(2-32)~(2-34) to calculate the input impedance matrix from the last region to the first
region Besides, the electric field components in each section could also be obtained by using
the transfer matrices In detail speaking, if the input impedance matrix at the input interface is

given as Z thus we have the relationship between the forward and backward waves,

in

which are written as :

b=T a (2-35)

Lo =(Z Y+ D) 7HZ,Y, - 1) (2-36)
Where the T represents the reflection matrix at the input surface, a and b are those

containing amplitudes of each waveguide mode Once the incident waveguide mode, a , are

15



determined, the reflected amplitudes for each mode shall be totally understood in equation

(2-35) Thus, the voltage at the input surface could be given below:
V() =(I+TI})a (2-37)

Moreover, the voltage vector at the output surface could be obtained by the transfer matrix of

each finite section and we assume that there are N basic units, which yields:
N
V() {HTi (t;) V(0) (2-38)
i=1
Where V(?) is the voltage vector at the output surface (z=/¢), T, is the transfer matrix

consists of a step discontinuity and a uniform waveguide of thickness t, Moreover, the

input-output relation in a uniform waveguide is given below (Appendix 2):
V(z)=(+T, e " "(1+1)*V(z,) (2-39)

In a word, by using the input-output relations for the discontinuity and uniform
transmission line, we could simply figure out the electric field everywhere Thus, the
scattering characteristics of waveguide mode by an arbitrary nonhomogeneous structure could

be understood by the procedures given in the previous paragraph

After determining the voltage and the current vectors in the input and output regions, we
must check the principle of power conservation This is the criterion to see whether the
voltage and the current matrices are accurate or not If the power is not conserved, the
solution to this problem is not accurate By using the Poynting theorem, the formulation of the

power conservation is shown as below:

16



Ny

zYo*(l)} = Z ReDVn(,:A)‘ZYo*(M)} (2-40)
n=1

> RO |- Refvs

n=1 n=1

From the equation above, we can observe that the incident real power is equal to the sum of
reflected and transmitted powers In a word, the two factors affecting the power conservation
are: (1) the eigen function in the transverse direction should form a complete set, and (2) the
dispersion roots should be figured out rigorously Fig 2.6 depicts the power conservation
check versus a range of the wavelength for a specific structure As shown in the figure, the

power conservation is very good for a wide frequency band

After the power conservation is checked successfully, the next step is to check whether
the tangential electric and the magnetic fields are continuous at the discontinuity We have
plotted the tangential electric and magnetic components in the respective region at the
interface Fig 2.7 (a) is the structural configuration and parameters of a junction discontinuity,
wherein the two dielectric stabs have different thickness, however, they are infinitely
extending Fig 2.7 (b) and (c) depict the tangential electric and magnetic field components,
respectively The two figures exhibit the good agreement in the field continuity and prove the

accuracy of the computational method in this thesis

Y /N
I
: /N
|
g | 124 ;2 0.24 h=21
|
K | 0.91

0424 |
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| Z
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TE mode power conservation check plot

power consen ation index

(b)

Fig 2.6  Power conservation check of one specific structure for TE mode
(a) A specific structure consists of two regions

(b) The power conservation check versus 1/ A

Y/\
|
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X | 094
044 | <4
T 7
| Z
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Electrical Field , Magnetic Field
12 wlZ C
®  § g (©)
> >

0 04 12 16 0
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Fig 2.7 Tangential E and H fields on the both sides of the interface for TE mode
(a) A specific structure consists of two regions
(b) The absolute value of the tangential electrical fields on the both sides at the junction discontinuity

(c) The absolute value of the tangential magnetic fields on the both sides at the junction discontinuity

18



Chapter 3

Numerical Results and Discussions

In this chapter, we will illustrate several typical transition structures which are often
used in the optical circuits design  As is found in these figures, we plot the normalized power
transmission versus a certain range of the transition length, and thus we can realize how long
the transition length will be with the desired efficiency Moreover, the power conservation is
between 0.99990 and 1.00009 for most of the computing points  Finally, we will interpret the
phenomenon existing in these figures with physical concepts, such that we can make sure the

results we obtained are reasonable and acceptable

From Fig 3.2, we can easily observe that the results for these two cases will converge

while h> 7t , where t,, is the thickness of the most thickest region in the structure

Therefore, in the following analysis, we separate the distance of the parallel-plate waveguide

larger than 8t,,, to approximate the practical situation Furthermore, for a certain T, we

also test how many steps or basic units are needed to approximate the continuous profile of

the transition structure As is found in Fig 3.3, the number of the steps for a certain T is at

least 4 x% to receive the convergent result

Consider the first case of transition for a step discontinuity between two uniform

19



waveguides with different thickness as shown in Fig 3.4 The first surface wave mode (TE,)
Is fed from thick waveguide into thin one which is placed on the bottom of the structure

Moreover, there is only one surface wave mode existing in the thin waveguide Here, we
illustrate six different value of t, and Ah represents the distance between t, and t, We
observe that as Ah is greater, a longer transition length (T ) is needed to transmit over 95%

incident power successfully, such as T >0.754 for t =044 and T >354 for
t, =0.84 The interpretation is that as Ah is increasing, for a fixed number of steps (N.),
the variation of the characteristic impedance (AZ ) along the z direction between adjacent

regions is increasing as well, thus we will have a worse transmission at the discontinuity as

shown in Fig 3.1 Where Z and k denote the characteristic impedance and the

. . T .
wavenumber along the z direction , =TE represents the length of one region (step)

c

AZ, AZ,

Zl ZZ Z3 ZN
1 R T |
——— R— | —

kl kz ks ch

T T T T

NC NC NC N_C

Fig 3.1 The equivalent network of the transition structure

Fig 3.5 shows the same condition with Fig 3.4 for greater Ah for all cases With the

same interpretation above, as is expected, the transmission is worse than in Fig 3.4 and a

longer T is needed to receive the same desired transmission efficiency

Fig 3.6 depicts the condition that the thin waveguide is placed in the central of the
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structure  For all cases, we can observe that the transmission is better than previous figure

The interpretation is that, as the thin waveguide is closer to the central of the structure, AZ

is smaller between adjacent regions, such that the transmission is better at the discontinuity

Fig 3.7 depicts another case of transition for a step discontinuity between two uniform
waveguides Compared with Fig 3.4, we can observe that the transmission in Fig 3.7 is much
better while TE, is fed from thin waveguide into thick one The interpretation is that there
are more than one surface wave mode existing in the thick waveguide, and thus the magnitude
of coupling is much stronger at the discontinuity Fig 3.8 depicts the same condition with Fig
3.7 for asmaller t; As is expected, with larger Ah for all cases, the transmission is worse

than in Fig 3.7 and the interpretation has been mentioned in the third paragraph

Fig 3.9 shows the transmission characteristics of bended waveguides with two different

cases The profile of the transition region is formulated by the following equation:

y = tanh( )xal (4-1)

X
0.91024T
Where T represents the transition length, al represents the distance between the two
waveguides axes Obviously observed from (a) and (b), the transmission is worse while the
distance between the two waveguides axes is longer Another phenomenon is that the
transmission of the thick case is better than the thin one The interpretation is that the number

of the surface wave modes in the thick case is more than the thin one, thus the coupling is

stronger at the discontinuity and a better transmission will be obtained

Fig 3.10 shows the transmission characteristics of another bended type waveguide with

two different thickness The number of the surface wave modes are one and two for t=0.14
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and t=0.351, respectively The profile is symmetric and the left half of the transition region

is formulated by the following equation:
X
y = tanh(?) X A (4-2)

Where T and A represent the transition length and the operating wavelength Observed
from this figure, with the same interpretation mentioned in the previous paragraph, the

transmission is better for the thick case than for the thin one

Fig 3.11 shows the transmission characteristics of the perturbed waveguide with three
different cases From this figure, we can observe that as the lower bound of the transition

region is more flat, the transmission is better

Fig 3.12 shows the transmission characteristics of a crack waveguide with three
different cases From this figure, we can observe that , when T =0, the transmission is worse
while the length of S is longer, such as B, =0.58 for S=0.64 and P, =0.52 for
S=124 As is found, the transition length is at least 34 for over 95% power can be
transmitted successfully for these three cases Fig 3.13 shows the same condition with Fig
3.12 for a deeper crack waveguide As is expected, the transmission is worse and the
transition length is longer than Fig 3.12 for the same desired transmission efficiency An
interesting phenomenon can also be observed from Fig 3.12 and Fig 3.13 that, while the
transition length is greater than about 1.54, the curves in both figures will get very closely to
each other The interpretation of such a phenomenon is listed as below First, we can divide
the crack waveguide in Fig 3.12 into two half parts, the left half side is the same with the Fig

3.4, and the right half side is the same with the Fig 3.7 From Fig 3.7, we can easily observe
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that, for t, =0.84, over 99% power can be transmitted while the transition length is greater
than 1.54 Therefore, while T >1.51, the curves in Fig 3.12 for all cases are dominated by

Fig 3.4, such that these different cases can be seen as the similar ones
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Nonidentical Waveguides : h test

N

Converge

Normalized Power Transmission
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Fig 3.2  Test the separation distance of the parallel-plate waveguide to pursue the convergent result
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Nonidentical Waveguides : staircase test

01 PEC

T/A

Fig 3.3  Test N_ to pursue the convergent result
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Fig 3.4  Transmission through two uniform waveguides with different thickness: Thick to Thin

The thin waveguide is placed on the bottom of the structure  t, = 0.24

TE mode, P =1, e=4
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Nonidentical Waveguides : Thick to Thin
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Fig 3.5  Transmission through two uniform waveguides with different thickness: Thick to Thin
The thin waveguide is placed on the bottom of the structure  t, = 0.14
TE mode, P =1, e=4
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Nonidentical Waveguides : Thick to Thin
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Fig 3.6  Transmission through two uniform waveguides with different thickness: Thick to Thin
The thin waveguide is placed in the central of the structure t, = 0.14

TE mode, P =1, e=4
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Nonidentical Waveguides : Thin to Thick
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Fig 3.7  Transmission through two uniform waveguides with different thickness: Thin to Thick
The thin waveguide is placed on the bottom of the structure  t, =0.24

TE mode, P =1, e=4
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Fig 3.8  Transmission through two uniform waveguides with different thickness: Thin to Thick
The thin waveguide is placed on the bottom of the structure  t, =0.11

TE mode, P =1, e=4
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Chapter 4

Conclusion

To sum up, we have formulated a systematic way to analyze any type of the transition
structure by using the staircase approximation and the mode matching method In the process
of the analysis, by separating the distance of the parallel-plate waveguide far enough and
adopting sufficient number of steps, we can receive the corresponding results which are
expected approaching the practical situation

From the previous chapter, we have surveyed a large class of transition structures while
the first surface wave mode is incident form the left With the extensive numerical results, we
can easily observe that we need a longer transition length to receive the desired transmission
efficiency while the variation of the structure is getting greater Moreover, as the number of
the surface wave modes in the dielectric waveguide is greater, the coupling is stronger at the
discontinuity  Above all, from these figures, we have developed a useful criterion to design

the transition structures with the desired transmission efficiency
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Appendix

Appendix 1: The characteristic impedance along the Z direction

for TE mode

From reference [10], we can receive the relationship between the transverse E and H fields as

shown in below:

V.
62, (0y) = oull + =) (0 ) x20) (1)
V.,
kiYihi(xy) = wso«s‘(y)(l_+k2 ( )) (2o x€i(x,¥)) (2)
Where i represents the i™ mode, S(X' y) and ﬁ(x, y) represent the transverse

distribution of the transverse electric and magnetic components For TE mode, the transverse

field components are listed as below:

Ei =& (Y)V; (2) 3)
Hyi =9, (y)li (2) (4)
Hzi _ 1 d¢| (y)vI (Z) (5)
— jou, dy
Substituting (3)~(5) into (2), we can receive:
0° o° d? 0°
87&+@b axay&ﬂ“yb
KYid (¥)Yo = @£,6(Y)[(Xo Xo + Yo Yo) + ( Ce(y) Xo + Koy) Yol-
(2o % ¢ (¥)%o) (6)
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From the equation above, we have two relations:

L k24, (Y)%, = oud; (¥)X

0°¢: (y)
ayZ

kse(y)

From relation 1, we can determine the characteristic impedance for TE mode along the z

2. 5Yi4, (¥)Yo = 0&,6(Y)(#, (¥)Yo) +( Yol

direction as below:

z, =22 (7)
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Appendix 2: The input-output relation in the uniform waveguide

PEC
regioni-1 regioni regioni+1l vy
(i+1)
i S
(a) £ (y) £ (y)
— by L t, < VA
i O g

Vi (2 v2zh) () V09 (z)
e I— e B o, E— e (Y o o I

e — e E—
(b) 112(z) 0@y 10@) 1079z
Vi(z,) vO@EL) V() Vi (z))
e e = o — s —
e S = o — e —
2@ L 19 0) 19(z) 199(z))

- + -
Ziy Zig Z;

From this figure, we assume that we have received the voltage vector, V(z;,), at the

i—1" interface, and then we must implement several steps to find the voltage vector at the

next interface in the same region

First of all, the expressions of the forward amplitude vector, a ,atz =z, isgiven by:
a=(1+1)"V(z,) 1)

Where T is the reflection coefficient matrix atz =z;,, | is the unitary matrix As we
know, I'" can be expressed as follows:

= e—jﬁir‘ e—jﬁti (2)

out

Where T, is the reflection coefficient matrix at z =z, Moreover, the voltage vector at

z=1, V(z;7), can be expressed as follows:
V(z;)=e""a+eTa 3
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Substitute (2) into (3), we have:
V(z)=(1 +T,)e " a (4)
Finally, we substitute (1) into (4), then we have:

Vi(z7)= (1 + T, )e ™ (1+ 1) 7V (7)) ()

From equation (5), we have successfully received V (z;) by transferring V(z;,) and the

input-output relation in a uniform waveguide is defined as:

(I +T,,)e " (1+1)™ (6)
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