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摘    要 

 

    由於現在光學積體電路的尺寸不斷地在縮小，為了使能量能有效地傳輸，電

路內部用於緩衝的介質波導其設計就顯得更加地重要。我們整篇的文章將用可分

析幾乎任何形狀的階梯進似法以及波模匹配法來獲取我們所要的結果。在此，為

了簡化我們複雜的問題，我們將整個結構塞進一個全尺寸的上下平行金屬板內來

分析，並且把上下金屬板拉的夠開的狀況下去計算以逼近實際的物理狀況。在第

三章中，我們列舉了一些典型的結構，其所得到的數據以及圖表可以做為日後要

設計該緩衝介質波導時一個可依循的標準。依照我們想要的傳輸量，藉由所得的

圖表，所對應結構的尺寸大小我們可以有準則地去獲得了。 
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Abstract 

      

 

Due to the limitation on the size of an optical integrated circuit, the circuit topology 

should be simplified﹒However, to have an efficient transmission for the signal, a good design 

with transition structures becomes important gradually﹒In light of its unique and complex 

theoretical basis required, in this thesis, we present an systematical analysis for a class of 

transition structures by the rigorous mode matching method﹒ In order to simply our 

sophisticated problem, we insert the overall structure into an oversized metallic parallel-plate 

waveguide﹒Furthermore, we separate the distance of the parallel-plate waveguide far enough 

to approximate the practical case﹒Finally, in the chapter 3, we illustrate several typical 

transition structures, and the numerical data we obtained later can be developed as a guideline 

while designing them﹒From these figures, we can easily get the size of the structure with the 

desired transmission efficiency﹒ 
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Chapter 1 
 

Introduction 
 

    An optical integrated circuit (OIC) contains various types of components, such as 

diffraction gratings, dielectric waveguide, laser diode and etc﹒Such that there are many 

interfaces present in the circuit﹒In general, the interface between two components (or devices) 

exhibits the structure of discontinuity﹒As we have known, these discontinuities will cause 

enormous power leakage and reflection while wave propagating through them﹒Moreover, due 

to the compact size of the OIC, such a leakage will cause more serious crosstalk between 

neighboring components than before, and degrade system performance﹒Besides, the high 

insertion loss due to a strong reflection from discontinuities will further reduce the 

performance of the system﹒ 

  

In order to reduce the reflection caused by the junction discontinuities, the components 

are usually connected by smooth transition structures, such as a bended or a crack which may 

be considered as nonuniform waveguides﹒Therefore, It is important to know how to design an 

optimal transition structure to reduce the power reflection and enhance the transmission 

efficiency﹒We have extensively surveyed the guiding characteristics of uniform and 

nonuniform dielectric waveguides [1-6]﹒We found that although transition structures have 

been studied [7] , but the profiles are limited to some specific patterns﹒Therefore, in this 

thesis, we will analyze a variety of the transition structures to systematically understand the 
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physical picture of wave scattering from a discontinuity and to obtain the criterion for 

engineering design﹒ 

      

Some typical transition structures are shown in Fig1.1﹒The structure in Fig1.1 (a) shows 

a transition between two nonaligned identical waveguides, where the thickness of the 

waveguide is kept at a fixed value throughout the entire structure﹒The structure in Fig1.1 (b) 

shows a transition in a perturbed waveguide having a section with different thickness 

throughout the entire structure﹒The structure in Fig1.1 (c) shows a transition between two 

uniform waveguides with different thickness, and the structure in Fig1.1 (d) shows a 

transition of a bended waveguide with symmetric profile﹒ 
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It is not easy to obtain the chose-form solution for the scattering characteristics of the 

nonuniform open dielectric waveguides, even for simple geometrical structure﹒Therefore, we 

must take advantage of approximate procedure﹒In this thesis, the rigorous mode matching 

method was employed to deal with waveguide transition structure﹒Wherein, the scattering 

characteristic of waveguide modes by the structures having many discontinuities was carried 

out by computer numerical simulation﹒ 
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Chapter 2 
 

Method of Analysis 
 

   In order to simplify our analysis, we carry out two procedures here﹒First, we use the 

staircase approximation as shown in section 2.1﹒After putting the structure inside an 

over-sized parallel-plate waveguide, we have the complete set of modes in any region﹒Second, 

we analyze the problem by using the mode matching method, and thus the equivalent 

transmission-line network representation is obtained, which is the kernel of the entire 

analysis﹒Furthermore, the amplitudes of forward wave and backward wave in any region are 

determined by solving the voltage and current amplitudes in the transmission-line equations﹒

Once they are determined, the reflection and transmission efficiencies of each mode can be 

understood immediately, and thus the problem is totally resolved﹒  
 

2.1 Staircase approximation  

 
From Fig 2.1, we can observe that we use the staircase approximation to approximate a 

continuous profile﹒As shown in this figure, such an approximation yields the structure 

containing three uniform layers for each partition denoted by dash lines﹒Here, we use 

“region” to represent any partition in the structure, as is region A and region B shown in this 

figure﹒ 
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When we put the structure into an oversize parallel-plate waveguide, a complete set of 

modes for each region can be well established, and thus a basic equivalent network will be  

developed for a junction between any two adjacent regions [8-9]﹒Therefore, for the entire 

structure, we can cascade these basic unit cells to form an overall equivalent network as is 

described clearly later with mode matching method in section 2.2﹒Evidently, if we minimize 

the step size, the approximated structure will approach the practical one﹒Having such an 

approximation, we can not only simplify the mathematical analysis but also easily interpret 

the physical phenomenon of the results obtained in the next chapter﹒ 
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Fig 2.1  Staircase approximation of an arbitrary continuous profile 

 

2.2 Mode matching method 
 

    In this section, we will introduce the procedures of the mode matching method in dealing 

with the problem described in the previous section﹒First, we want to find the eigen modes for 

a prescribed layered structure﹒Second, once the eigen modes are determined, the relationship 

between the mode amplitudes for the two adjacent regions could be determined﹒Finally, we 

will assess the magnitudes of the voltage and the current for each mode in each region by 

using the transfer matrices﹒ 
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2.2.1 Transverse-resonance technique 

 

By imposing the condition of transverse resonance along the  direction while wave 

propagates in the  direction, we could set up an equation to solve the propagating 

wavenumber  and the corresponding mode function 

y

z

zk )(yφ ﹒Where  is defined as zk

effε
λ
π2 , and effε  is the effective dielectric constant﹒A transverse equivalent network for a 

parallel-plate waveguide containing three uniform layers is shown in the Fig 2.2﹒For TE 

mode, the wavenumber and the characteristic impedance along the  direction can be 

defined as below 

y

 effiyk εµε
λ
π

−=
2  )( 0µµ =  (2-1) 

 
y

y k
Z 0ωµ

=  (2-2) 

Where λ  is the wavelength , iε  is the relative dielectric constant for each uniform layer 

﹒Moreover, the condition of the resonance is defined as below )or  ( adi =

 0=+ dnup ZZ  (2-3) 

Where  and  are defined as the input impedance looking upward and downward 

from the reference plane﹒For a given set of the structure parameters and the operating 

wavelength, by evaluating equation (2-3), we can easily determine the effective dielectric 

constants in the structure﹒ 

upZ dnZ
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Fig 2.2  Equivalent transmission-line network for a parallel-plate waveguide containing three uniform layers       
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Once the roots were found, we could determine the corresponding eigen function, 

namely mode function )(yφ , distributed in the cross section﹒For TE mode, we can know that 

the mode function relates to  or  and could be written as below xE yH

    (2-4)    
⎩
⎨
⎧ +

=
))-(sin(
)sin(

)(
,,,

,,,,

yhkAZ
ykAZ

y
ndynndnndyn

pnpynpnpyn
n

θ
φ

layerlast  for the
layer generalfor 

Where  denotes the  mode, represents the  layer, and n thn p thp pnA , pn,θ  are the 

amplitude and phase of the  mode field distributed in the  layer, and are 

the characteristic impedance and the wavenumber along the  direction as described 

previously ,  is the distance between two PEC, and we assume that there are  layer in 

one region﹒ 

thn thp pynZ , pynk ,

y

h nd

The next step is to find the value of and pnA , pn,θ in each layer﹒Because of the 

vanishment for the tangential electric field at the surface of the PEC (  at 0=xE 0=y  and 

), the  for the first layer has the form as shown in (2-4) with vanishing hy = )(ynφ 1,nθ ﹒

Furthermore, we set the value of  in the first layer to be one﹒By the electromagnetic 

boundary condition, that is, the tangential field components must be continuous at the 

interface between two adjacent dielectric layers, the general solution for the argument 

1,nA

pn,θ  

and the amplitude  could be obtained, written below: pnA ,

 pynpnpyn
yn

yn
pn DkDk

Z
Z

1p,,p,
1p,

p,1
1, )tan(tan +

+

−
+ −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= θθ  (2-5) 

 
)cos(

)cos(

1,1,

,,
,1,

++
+ +

+
=

pnppyn

pnppyn
pnpn Dk

Dk
AA

θ
θ

   (2-6) 

and the last layer   
)cos(

)cos(

,

1,11,
1,,

ndndyn

ndnndndyn
ndnndn dk

Dk
AA −−−

−

+
=

θ
  (2-7) 
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Where  ranges from one to ﹒By progressively matching the field quantity at the 

interfaces, we could resolve the unknown  and 

p nd

sA' s'θ  in each region, and thus the mode 

function in the transverse plane for each mode can be totally determined﹒ 

Since the eigen function )(ynφ  satisfies the Sturm-Liouville differential equation and 

the prescribed boundary condition, they should satisfy the orthogonal relation given below: 

  mn
i

n
i

m yywy δφφ =)()()( )()*(  (2-8) 

Where  denotes the  region,  and  represent different mode indices,  is the 

weighting function corresponding to Sturm-Liouville differential equation﹒For TE mode, the 

weighting function is defined as below  

i thi m n )(yw

 1)( =yw    (2-9) 

After normalizing each )(ynφ , we can plot them as shown in the Fig 2.3﹒Here, we 

demonstrate a three uniform layers structure and plot the tansverse electric field distribution 

for the first six modes﹒As shown in this figure, the field, or power density, is guided in the 

dielectric layer when the corresponding root is greater than unity﹒Such a hind of mode can be 

regarded as surface wave in dielectric waveguide since the field component is decaying at the 

surrounding medium, such as air﹒On the contrary, those with effective dielectric constant 

smaller than unity mean that the wave is propagating in all regions, that is, they exhibit 

sinusoidal variation in each constituent region﹒ 
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effε :        2.9842                          0.8715                     0.0899    

Fig 2.3  Transverse fields in a three uniform layers structure for one TE mode  

                         

2.2.2 Electromagnetic boundary conditions 

 

After obtaining the eigen modes distributed in a multilayered structure, we shall 

formulate the boundary value problem along the direction of wave propagation in order to 

determine the relationship of mode amplitudes at the interface between two adjacent regions﹒

Referring to Fig 2.4 (a), the two regions on the both sides of the discontinuity are 

characterized by different distributions of the dielectric constant and a junction discontinuity is 

at ﹒According to the principle of separation variable, the tangential 0zz = E  and H  fields 
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 Fig 2.4  (a) A step discontinuity between two adjacent regions 

           (b) Equivalent network 
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could be expressed as the superposition of eigen modes in each region, which yields: 

  (2-10) )()( )()(

1

)( zVyE i
n

i
n

n

i
x φ∑

=

=

  (2-11) )()( )()(

1

)( zIyH i
n

i
n

n

i
y φ∑

=

=

Where the amplitudes function in  direction,  and , characterized as voltage and 

current waves, satisfy the transmission-line equation along  direction as depicted in Fig 2.4 

(b), written as: 

z sV ' sI '

z

 )(
)( )()()(

,

)(

zIZjk
dz

zdV i
n

i
n

i
nz

i
n −=                       (2-12) 

 )(
)( )()()(

,

)(

zVYjk
dz

zdI i
n

i
n

i
nz

i
n −=                       (2-13) 

Where  and  consist of both forward and backward propagating waves,  

is the propagating wavenumber defined in the section 2.2.1, 

)()( zV i
n )()( zI i

n
)(

,
i
nzk

)1( )(
)(

i
n

i
n Y

Z =  is the characteristic 

impedance (or admittance) along the  direction defined as below [10] (Appendix 1) z

 

 )(
,

0)(
i
nz

i
n k

Z
ωµ

=     for TE mode (2-14) 

 

By imposing the boundary condition at the interface, the tangential electric and magnetic field 

components must be continuous at 0zz = ﹒From (2-10) and (2-11), we have 

 

       (2-15)             )()()()( 0
)2()2(

1
0

)1()1(

1

21

forzVyzVy nn

n

n
nn

n

n

+

=

−

=
∑∑ = φφ xE

    (2-16)              )()()()( 0
)2()2(

1
0

)1()1(

1

21

forzIyzIy nn

n

n
nn

n

n

+

=

−

=
∑∑ = φφ yH

 

Where , and  approaches to but not equal to zero,  and  denote the 

number of the modes employed in region1 and region2, respectively﹒By multiplying 

zzz ∆±=±
00 z∆ 1n 2n
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equations (2-15) and (2-16) with  at the both sides and taking the overlap integral for 

the variable  from zero to , we have 

)()1( ymφ

y h

 

 )()()()()()( )2()1(
0

)2(

1

)1()1(
0

)1(

1

21

yyzVyyzV nmn

n

n
nmn

n

n

φφφφ +

=

−

=
∑∑ =   (2-17) 

 )()()()()()( )2()1(
0

)2(

1

)1()1(
0

)1(

1

21

yyzIyyzI nmn

n

n
nmn

n

n

φφφφ +

=

−

=
∑∑ =   (2-18) 

 

By invoking the orthogonal relation for the eigen mode, the above equations can be written 

as: 

  (2-19) mnn

n

n
m zVzV γ)()( 0

)2(

1
0

)1(
2

+

=

− ∑=

  (2-20) mnn

n

n
m zIzI γ)()( 0

)2(

1
0

)1(
2

+

=

− ∑=

 )()( )2()1( yy nmmn φφγ =  (2-21) 

Where  ranges from one to  ,  runs from one to ,  represents the coupling 

between  and  mode in respective region﹒The above linear system of homogeneous 

equations can be rewritten in the vector-matrix form, given below: 

m 1n n 2n mnγ

thm thn

     21 VV ℜ=                           (2-22) 

  21 II ℜ=                           (2-23) 

Where  is defined as coupling matrix with its element  ,  and  are the 

voltage and current vectors with their mode amplitude filling in the entries﹒By multiplying 

equations (2-15) and (2-16) with  at both sides and taking the overlap integral 

incorporated with the orthogonal relation, we obtain the similar matrix equations given below: 

ℜ mnγ sV ' sI '

)()2( ymφ

      12 VV Tℜ=                          (2-24) 
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 12 II Tℜ=                          (2-25) 

Where the superscript  denotes the transpose of the coupling matrix  ﹒ T ℜ

 

After obtaining the coupling matrix between any two adjacent regions, we could 

further check the accuracy of these matrices [3]﹒If the coupling matrix is not accurate, 

the condition of power conservation will not be present and some errors will occur﹒

Substituting (2-24) into (2-22) or (2-25) into (2-23), we have the unitary condition: 

 

                                  (2-26) IT =ℜℜ

 

Where I  is the identity matrix﹒In general, (2-26) may be considered as an criterion to see 

whether the coupling matrices are accurate or not in the numerical computation﹒ 

 

2.2.3 Input-output relation   

 

From the previous section, we have obtained the coupling matrix between two adjacent 

regions, each of which contains multiple uniform layers﹒In this section, we will introduce a 

procedure to deal with the wave propagation through multiple discontinuities by using the 

input-output relation at the discontinuity and wave transition in a uniform waveguide﹒Once 

the relationship described previously is obtained, we have a good position in figuring out the 

field components everywhere in the structure﹒ 

 

Fig 2.5 (a) shows a parallel-plate waveguide filled with nonhomogeneous dielectric 

medium﹒Since the dielectric medium is piecewise constant, we could partition them into three 

regions, which are denoted by 1−i  , i  and 1+i , respectively﹒Besides, there are two 
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interfaces characterizing the discontinuities of the structure, which are  and , 

respectively﹒Based on the mode matching method described in the previous section , the 

transmission-line network in the uniform waveguide and the transformer bank at the 

discontinuities could be drawn as depicted in Fig 2.5(b)﹒ 
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Fig 2.5  Equivalent network for a staircase structure 

 (a) Three regions 
 (b) Equivalent network  

 

Here, we assume that the structure infinitely extends at the right hand side of Fig 2.5 (a), 

or the input impedance of each mode in the region is known﹒Thus, the input 

impedance matrix contains each mode in that region is assumed to be ﹒Where 

 is a full matrix, which may include the mutual coupling effect due to waveguide 

modes in the present of discontinuities﹒ 

thi 1+

)( ++
iin zZ

)( ++
iin zZ

    After the input impedance matrix in the  region at  was given, we could thi 1+ += izz
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further transfer it from the right hand side of the interface,  to the left one﹒Since the 

voltage and current waves in the region i  and 

+= izz

1+i  satisfy the relationship given in 

equation (2-22)~(2-25), we could obtain the input impedance matrix looking seen into the 

 region at  , which is given below: thi 1+ −= izz

                     (2-27) T
inin ZZ ℜℜ= +−

In the previous section, we have transformed the input impedance matrix from the output 

region to the input region through a discontinuity by using the input-output relation of that 

discontinuity﹒Thus, in the next step, we should tackle the problem of wave transition in a 

uniform waveguide (in the  region )﹒There are two problems to be handled, which are the 

input impedance matrix looking seen into the interface at  and the transform matrix 

for the electric and magnetic fields from the output to the input interfaces of the finite section 

of waveguide (  region)﹒ 

thi

+
−= 1izz

thi

 

In a uniform waveguide, the voltage and current waves for each mode could be grouped 

into the vectors, which are given below: 

 { } Nnn zVzV
K1

)()( ==  (2-28) 

 { } Nnn zIzI
K1

)()( ==  (2-29) 

For a finite length of transmission line, the voltage and current waves contain those of 

forward and backward propagation ones, which could be written as: 

 beaezV zjzj κκ += −)(  (2-30) 

 [ ]beaeYzI zjzj κκ −= −)(  (2-31) 

Where the matrix zje κ−  is a diagonal matrix with its diagonal element representing the 

propagating constant along  direction for each mode, z a  and b  are the amplitude vectors 
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consisting of each forward and backward propagating modes﹒Besides,  is the admittance 

matrix, each element representing the characteristic admittance of mode in the transmission 

line﹒ 

Y

    Once the impedance matrix at the output of the transmission line is determined, we could 

further obtain the relationship between the forward and backward propagating amplitudes 

vectors a  and b  both at  and , which is given below: −= izz +
−= 1izz

  (2-32) )()( 1 IYZIYZ iiniinout −+=Γ −−−

 ii tj
out

tj ee κκ −− Γ=Γ  (2-33) 

Where  and outΓ Γ  represent the reflection matrices at  and ﹒Then, the 

input impedance matrix looking to the right at  is determined by the impedance 

transform technique as: 

−= izz +
−= 1izz

+
−= 1izz

  (2-34) iin ZIIZ 1))(( −+ Γ−Γ+=

    From the mention above, the input-output relation for waves at the discontinuities and in 

each uniform waveguide are determined, we could sufficiently employ the equations 

(2-27),(2-32)~(2-34) to calculate the input impedance matrix from the last region to the first 

region﹒Besides, the electric field components in each section could also be obtained by using 

the transfer matrices﹒In detail speaking, if the input impedance matrix at the input interface is 

given as  , thus we have the relationship between the forward and backward waves, 

which are written as : 

inZ

  ab inΓ=  (2-35) 

  (2-36) )()( 1
1

1 IYZIYZ ininin −+=Γ −

Where the  represents the reflection matrix at the input surface, inΓ a  and b  are those 

containing amplitudes of each waveguide mode﹒Once the incident waveguide mode, a  , are 
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determined, the reflected amplitudes for each mode shall be totally understood in equation 

(2-35)﹒Thus, the voltage at the input surface could be given below: 

 

 aIV in )()0( Γ+=  (2-37) 

 

Moreover, the voltage vector at the output surface could be obtained by the transfer matrix of 

each finite section and we assume that there are  basic units, which yields: N

 )0()()(
1

VtV
N

i
ii ⎥

⎦

⎤
⎢
⎣

⎡
Τ= ∏

=

l  (2-38) 

Where )(lV  is the voltage vector at the output surface ( l=z ) , iΤ  is the transfer matrix 

consists of a step discontinuity and a uniform waveguide of thickness ﹒Moreover, the 

input-output relation in a uniform waveguide is given below (Appendix 2): 

it

 

 )()()()( 1
1 +

−
−−− Γ+Γ+= i

tj
outi zVIeIzV iiκ       (2-39) 

 

    In a word, by using the input-output relations for the discontinuity and uniform 

transmission line, we could simply figure out the electric field everywhere﹒Thus, the 

scattering characteristics of waveguide mode by an arbitrary nonhomogeneous structure could 

be understood by the procedures given in the previous paragraph﹒ 

 

After determining the voltage and the current vectors in the input and output regions, we 

must check the principle of power conservation﹒This is the criterion to see whether the 

voltage and the current matrices are accurate or not﹒If the power is not conserved, the  

solution to this problem is not accurate﹒By using the Poynting theorem, the formulation of the 

power conservation is shown as below: 
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 (2-40) 

 

From the equation above, we can observe that the incident real power is equal to the sum of 

reflected and transmitted powers﹒ In a word, the two factors affecting the power conservation 

are: (1) the eigen function in the transverse direction should form a complete set, and (2) the 

dispersion roots should be figured out rigorously﹒Fig 2.6 depicts the power conservation 

check versus a range of the wavelength for a specific structure﹒As shown in the figure, the 

power conservation is very good for a wide frequency band﹒ 

 

After the power conservation is checked successfully, the next step is to check whether 

the tangential electric and the magnetic fields are continuous at the discontinuity﹒We have 

plotted the tangential electric and magnetic components in the respective region at the 

interface﹒Fig 2.7 (a) is the structural configuration and parameters of a junction discontinuity, 

wherein the two dielectric stabs have different thickness, however, they are infinitely 

extending﹒Fig 2.7 (b) and (c) depict the tangential electric and magnetic field components, 

respectively﹒The two figures exhibit the good agreement in the field continuity and prove the 

accuracy of the computational method in this thesis﹒ 
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Fig 2.6  Power conservation check of one specific structure for TE mode 

(a) A specific structure consists of two regions 

       (b) The power conservation check versus λ/1  
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Fig 2.7 Tangential E and H fields on the both sides of the interface for TE mode 

(a) A specific structure consists of two regions 

(b) The absolute value of the tangential electrical fields on the both sides at the junction di

(c) The absolute value of the tangential magnetic fields on the both sides at the junction di
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Chapter 3 
 

Numerical Results and Discussions 
 

    In this chapter, we will illustrate several typical transition structures which are often  

used in the optical circuits design﹒As is found in these figures, we plot the normalized power 

transmission versus a certain range of the transition length, and thus we can realize how long 

the transition length will be with the desired efficiency﹒Moreover, the power conservation is 

between 0.99990 and 1.00009 for most of the computing points﹒Finally, we will interpret the 

phenomenon existing in these figures with physical concepts, such that we can make sure the 

results we obtained are reasonable and acceptable﹒ 

     

    From Fig 3.2, we can easily observe that the results for these two cases will converge 

while , where  is the thickness of the most thickest region in the structure﹒

Therefore, in the following analysis, we separate the distance of the parallel-plate waveguide 

larger than  to approximate the practical situation﹒Furthermore, for a certain 

thickth 7> thickt

thickt8 T , we 

also test how many steps or basic units are needed to approximate the continuous profile of 

the transition structure﹒As is found in Fig 3.3, the number of the steps for a certain  is at 

least 

T

λ
T

×4  to receive the convergent result﹒ 

    

Consider the first case of transition for a step discontinuity between two uniform 
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waveguides with different thickness as shown in Fig 3.4﹒The first surface wave mode ( ) 

is fed from thick waveguide into thin one which is placed on the bottom of the structure﹒

Moreover, there is only one surface wave mode existing in the thin waveguide﹒Here, we 

illustrate six different value of  and 

1TE

1t h∆  represents the distance between  and ﹒We 

observe that as  is greater, a longer transition length (T ) is needed to transmit over 95% 

incident power successfully, such as 

1t 2t

h∆

λ75.0>T  for λ4.01 =t  and λ5.3>T  for 

λ8.01 =t ﹒The interpretation is that as h∆  is increasing, for a fixed number of steps ( ), 

the variation of the characteristic impedance (

cN

Z∆ ) along the  direction between adjacent 

regions is increasing as well, thus we will have a worse transmission at the discontinuity as 

shown in Fig 3.1﹒Where 

z

Z  and  denote the characteristic impedance and the 

wavenumber along the  direction , 

k

z
cN

T  represents the length of one region (step)﹒ 

 

cNk

cN
T

cNZ
K
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1Z∆ 2Z∆

cN
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cN
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Fig 3.1 The equivalent network of the transition structure 

  

Fig 3.5 shows the same condition with Fig 3.4 for greater h∆  for all cases﹒With the 

same interpretation above, as is expected, the transmission is worse than in Fig 3.4 and a 

longer  is needed to receive the same desired transmission efficiency﹒ T

  

    Fig 3.6 depicts the condition that the thin waveguide is placed in the central of the 
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structure﹒For all cases, we can observe that the transmission is better than previous figure﹒

The interpretation is that, as the thin waveguide is closer to the central of the structure, Z∆  

is smaller between adjacent regions, such that the transmission is better at the discontinuity﹒ 

 

Fig 3.7 depicts another case of transition for a step discontinuity between two uniform 

waveguides﹒Compared with Fig 3.4, we can observe that the transmission in Fig 3.7 is much 

better while  is fed from thin waveguide into thick one﹒The interpretation is that there 

are more than one surface wave mode existing in the thick waveguide, and thus the magnitude 

of coupling is much stronger at the discontinuity﹒Fig 3.8 depicts the same condition with Fig 

3.7 for a smaller ﹒As is expected, with larger 

1TE

1t h∆  for all cases, the transmission is worse 

than in Fig 3.7 and the interpretation has been mentioned in the third paragraph﹒   

 

    Fig 3.9 shows the transmission characteristics of bended waveguides with two different 

cases﹒The profile of the transition region is formulated by the following equation: 

 λa
T

xy ×= )
91024.0

tanh(   (4-1) 

 

Where  represents the transition length, T λa  represents the distance between the two 

waveguides axes﹒Obviously observed from (a) and (b), the transmission is worse while the 

distance between the two waveguides axes is longer﹒Another phenomenon is that the 

transmission of the thick case is better than the thin one﹒The interpretation is that the number 

of the surface wave modes in the thick case is more than the thin one, thus the coupling is 

stronger at the discontinuity and a better transmission will be obtained﹒ 

 

    Fig 3.10 shows the transmission characteristics of another bended type waveguide with 

two different thickness﹒The number of the surface wave modes are one and two for λ1.0=t  
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and λ35.0=t , respectively﹒The profile is symmetric and the left half of the transition region 

is formulated by the following equation: 

 

 λ×= )tanh(
T
xy    (4-2) 

 

Where  and T λ  represent the transition length and the operating wavelength﹒Observed 

from this figure, with the same interpretation mentioned in the previous paragraph, the 

transmission is better for the thick case than for the thin one﹒  

 

    Fig 3.11 shows the transmission characteristics of the perturbed waveguide with three 

different cases﹒From this figure, we can observe that as the lower bound of the transition 

region is more flat, the transmission is better﹒  

 

      Fig 3.12 shows the transmission characteristics of a crack waveguide with three 

different cases﹒From this figure, we can observe that , when 0=T , the transmission is worse 

while the length of  is longer, such as S 58.0=tP  for λ6.0=S  and  for 52.0=tP

λ2.1=S ﹒As is found, the transition length is at least λ3  for over 95% power can be 

transmitted successfully for these three cases﹒Fig 3.13 shows the same condition with Fig 

3.12 for a deeper crack waveguide﹒As is expected, the transmission is worse and the 

transition length is longer than Fig 3.12 for the same desired transmission efficiency﹒An 

interesting phenomenon can also be observed from Fig 3.12 and Fig 3.13 that, while the 

transition length is greater than about λ5.1 , the curves in both figures will get very closely to 

each other﹒The interpretation of such a phenomenon is listed as below﹒First, we can divide 

the crack waveguide in Fig 3.12 into two half parts, the left half side is the same with the Fig 

3.4, and the right half side is the same with the Fig 3.7﹒From Fig 3.7, we can easily observe 
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that, for λ8.02 =t , over 99% power can be transmitted while the transition length is greater 

than λ5.1 ﹒Therefore, while λ5.1>T , the curves in Fig 3.12 for all cases are dominated by 

Fig 3.4, such that these different cases can be seen as the similar ones﹒ 
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Fig 3.2   Test the separation distance of the parallel-plate waveguide to pursue the convergent result  
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Fig 3.3   Test  to pursue the convergent result  cN
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Fig 3.4   Transmission through two uniform waveguides with different thickness: Thick to Thin 

           The thin waveguide is placed on the bottom of the structure﹒ λ2.02 =t  

 TE mode, , 41=inP =ε  
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Fig 3.5   Transmission through two uniform waveguides with different thickness: Thick to Thin 

           The thin waveguide is placed on the bottom of the structure﹒ λ1.02 =t  

 TE mode, , 41=inP =ε  
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Fig 3.6   Transmission through two uniform waveguides with different thickness: Thick to Thin 

           The thin waveguide is placed in the central of the structure﹒ λ1.02 =t  

 TE mode, , 41=inP =ε  
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Fig 3.7   Transmission through two uniform waveguides with different thickness: Thin to Thick 

           The thin waveguide is placed on the bottom of the structure﹒  λ2.01 =t
 TE mode, , 41=inP =ε  
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Fig 3.8   Transmission through two uniform waveguides with different thickness: Thin to Thick 

           The thin waveguide is placed on the bottom of the structure﹒ λ1.01 =t  

 TE mode, , 41=inP =ε  
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 Fig 3.9  Transmission efficiencies of bended waveguides (type A) 

  with two different thickness 

 TE mode, , 41=inP =ε , λa
T

xy ×= )
91024.0

tanh(  

 (a)  1=a

 (b) 2=a  
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 Fig 3.10   Transmission efficiency of a bended waveguide (type B)  
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Fig 3.11   Comparison between three perturbed waveguides of different types 
 TE mode, , 41=inP =ε  
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Fig 3.12  Transmission through a crack with three different types  

 TE mode, , 41=inP =ε  
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Fig 3.13   Transmission through a crack with three different types  

 A deeper case than Fig 3.12 
 TE mode, , 41=inP =ε  
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Chapter 4 
 

Conclusion 
 

  To sum up, we have formulated a systematic way to analyze any type of the transition 

structure by using the staircase approximation and the mode matching method﹒In the process 

of the analysis, by separating the distance of the parallel-plate waveguide far enough and 

adopting sufficient number of steps, we can receive the corresponding results which are 

expected approaching the practical situation﹒ 

From the previous chapter, we have surveyed a large class of transition structures while 

the first surface wave mode is incident form the left﹒With the extensive numerical results, we 

can easily observe that we need a longer transition length to receive the desired transmission 

efficiency while the variation of the structure is getting greater﹒Moreover, as the number of 

the surface wave modes in the dielectric waveguide is greater, the coupling is stronger at the 

discontinuity﹒Above all, from these figures, we have developed a useful criterion to design 

the transition structures with the desired transmission efficiency﹒   
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Appendix 
 

Appendix 1: The characteristic impedance along the Z direction  

 for TE mode 

From reference [10], we can receive the relationship between the transverse E and H fields as 

shown in below: 

 )),(()
)(

1(),( 02
0

zyxh
yk

yxeZ i

t

tiii ×⋅
∇

+=
ε

ωµκ  (1) 

 )),(()
)(

1)((),( 02
0

0 yxez
yk

yyxhY i

t

tiii ×⋅
∇

+=
ε

εωεκ    (2) 

Where  represents the  mode, i thi ),( yxei  and ),( yxhi  represent the transverse 

distribution of the transverse electric and magnetic components﹒For TE mode, the transverse 

field components are listed as below: 
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Substituting (3)~(5) into (2), we can receive: 
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From the equation above, we have two relations: 

1. 00 )()( xyxyZ iiii ωµφφκ =  
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From relation 1, we can determine the characteristic impedance for TE mode along the  

direction as below: 
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Appendix 2: The input-output relation in the uniform waveguide 
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From this figure, we assume that we have received the voltage vector, )( 1
+
−izV , at the 

 interface, and then we must implement several steps to find the voltage vector at the 

next interface in the same region﹒ 

thi 1−

First of all, the expressions of the forward amplitude vector, a  , at  is given by: +
−= 1izz

         )()( 1
1 +

−
−Γ+= izVIa  (1) 

Where  is the reflection coefficient matrix at , Γ +
−= 1izz I  is the unitary matrix﹒As we 

know,  can be expressed as follows: Γ

 ii tj
out

tj ee κκ −− Γ=Γ   (2) 

Where  is the reflection coefficient matrix at ﹒Moreover, the voltage vector at  outΓ −= izz

−= izz , )( −
izV , can be expressed as follows: 

                        aeaezV ii tjtj
i Γ+= −− κκ)(   (3) 
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Substitute (2) into (3), we have: 

 aeIzV itj
outi

κ−− Γ+= )()(  (4) 

Finally, we substitute (1) into (4), then we have: 

 )()()()( 1
1 +

−
−−− Γ+Γ+= i

tj
outi zVIeIzV iκ  (5) 

From equation (5), we have successfully received )( −
izV  by transferring )( 1

+
−izV  and the 

input-output relation in a uniform waveguide is defined as: 

 1)()( −− Γ+Γ+ IeI itj
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κ   (6) 
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