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Abstract

This study is aimed at exploring theoretically the electromagnetic coupling mechanism of

two patch antennas attempted for applications in areas such as Yagi-Uda type patch arrays

or bandwidth enhancement of the patch antennas.
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Chapter 1

Introduction

The purpose of this thesis is to study the edge coupling mechanism by proximity of two

patch antennas. One of the applications is to explore the possibility of construction of patch

arrays through edge coupling in a similar manner of passive coupling for a Yagi-Uda ar-

ray. The other aims at bandwidth enhancement of patch antennas considering the coupled

patches resonance at adjacent frequencies. For a passive array application, for example, it is

desirable to make the non-radiating edge of an active patch to couple energy to the adjacent

passive one. To simplify the analysis, we make use of the cavity model with the gap between

the coupling edges modelled as a slot so that the equivalence principle can be applied to the

analysis of the composite structure.

Chapter two starts the analytic formulation of the problem with introduction of basic

theories and assumptions. It follows the derivation of analytic solution in Chapter three.

The numerical solutions by moment method are given in Chapter four. The discussion and

conclusion follow at the end.
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Chapter 2

Formulation

Fig. 1. Configuration of two edge-coupled patches

2.1 Equivalent Problem

Two patch antennas of width a, and edge lengths l1 and l2, respectively, are shown in Fig.

1. The first patch is excited by an electric current J, while the other is coupled from
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the first through the edges of the two patches separated by a distance d, which is close

enough to provide the desired coupling. The problem can be analyzed by full-wave integral

equation approach, with the unknown current on the patches to be solved. In this study,

however, we adopt the simpler cavity-model approach with the assumption that the patches

are surrounded by magnetic walls at the nonadjacent edges between the patches and the

ground plane, which amounts to neglecting the fringing field under the edges. The gap

between coupling edges of the two patches is modelled as a slot in the composite structure.

The problem is thus reduces to one of cavity with slot coupling to the free space. This type

of problem has been studied extensively in the literature [1, 2]. By equivalence principle the

coupling effect of the slot is accounted for by an equivalent magnetic current M. With the

aid of this equivalent current the field problem can be casted into two separate parts; that

interior and exterior to the cavity.

Fig. 2. Geometry for the interior problem
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Interior Problem The equivalence problem interior to the cavity is shown in Fig. 2 where

the equivalent magnetic current, in terms of the unknown aperture electric field,

M = E× n̂ = ẑ× E (2.1)

is present underneath the slot with the slot now closed by perfect electric conductor. The

fields inside the cavity can be solved by normal mode expansion to be described in the

following sections.

Exterior Problem For the fields outside the cavity the equivalent magnetic current is

given as

−M = E× ẑ (2.2)

which takes into account of the continuity of the tangential electric field on the slot. Away

from the surrounding edges the current can be considered sitting on top of an large ground

plane so that the method of images can be applied to simplify the problem. As a result there

is an equivalent current −2M radiating in free space as the exterior fields is concerned. The

resultant fields can be readily obtained by the well-known potential-integral solution.

In the above formulation both the fields inside and outside the cavity are derived in terms

of M, or the unknown tangential electric field on the slot. Equating the tangential magnetic

fields across the slot thus leads to coupled field equations for M

2.2 Fields Inside the Cavity

Fields in the waveguides or cavities can be expanded in terms of normal modes for given

boundary conditions. By modal analysis [3] each mode can be represented by an equiva-

lent transmission line with specific propagation constant and characteristic impedance, and

propagates in the waveguide independent of others. For a given source distribution there

corresponds equivalent driving voltage and current sources for each transmission line repre-

senting this particular mode. The field problem is thus reduced to a circuit problem from
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which the solution can be readily obtained by circuit means. Finally the total field is syn-

thesized by contribution from all modal fields. For the rectangular cavity there exists no

TEM mode. Only TE(H) and TM(E) modes need to be considered.

The derivation parallels essentially the modal analysis for a metallic waveguide[3], al-

beit with a different boundary condition associated with the magnetic wall. The result is

summarized in the following.

2.2.1 Modal Representation of the Fields

E(r) = Et(r) + Ez(r) (2.3)

Ez(r) =
1

jωε
∇t · (Ht × ẑ)− Jz (2.4)

H(r) = Ht(r) + Hz(r) (2.5)

Hz(r) =
1

jωµ
∇t · (ẑ× Et)−Mz (2.6)

Et(r) =
∑

i

V
′
i (z)e

′
i(ρ) +

∑

i

V
′′
i (z)e

′′
i (ρ) (2.7)

Ht(r) =
∑

i

I
′
i(z)h

′
i(ρ) +

∑

i

I
′′
i (z)h

′′
i (ρ) (2.8)

For E modes:

(∇2
t + k

′2
ti )ψ

′
i = 0 (2.9)

e
′
i = − 1

k
′
ti

∇tψ
′
i (2.10)

h
′
i = ẑ× e

′
i (2.11)

Z
′
i =

κ
′

ωε
(2.12)

For H modes:

(∇2
t + k

′′2
ti )ψ

′′
i = 0 (2.13)
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h
′′
i = − 1

k
′′
ti

∇tψ
′′
i (2.14)

e
′′
i = h

′′
i × ẑ (2.15)

Z
′′
i =

ωµ

κ′′
(2.16)

The boundary conditions for the transverse eigenvalue problems are assciated with the elec-

tric and magnetic walls enclosing the cavity and will be specified in the analysis to follow.

For both E and H modes the dispersion relation is

κ =
√

k2 − k2
ti (2.17)

where kti is found from the transverse eigenvalue problem. In the derivation of the above

expressions the Maxwell’s equations have been decomposed into transverse and longitudinal

components such that

r = ρ + z (2.18)

∇ = ∇t + ẑ
∂

∂z
(2.19)

All eigenmodes are normalized to observe the orthonormal conditions as in [3].

2.2.2 Transmission Line Representation of Modal Fields

The modal amplitudes Vi and Ii can be shown to satisfy the transmission line equations with

characteristic impedance Zi as given above. The equivalent transmission line representation

for each mode is shown in Fig. 3. The corresponding voltage source vi and current source ii

are related to J and M according to

vi(z) =
∫

M · h?
i dS + Z?

i

∫
J · e?

zi dS (2.20)

ii(z) =
∫

J · e?
i dS + Y ?

i

∫
M · h?

zi dS (2.21)
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Fig. 3. Equivalent circuit for waveguide mode

For point sources v(z) = v δ(z − z′) and i(z) = i δ(z − z′) at z = z′ the solution is given

for z > z′

V (z, z′) =
−1

2


 v

−→
Z (z′) + Z
←→
Z (z′)

+ iZ

−→
Y (z′) + Y
←→
Y (z′)




[
e−jκ(z−z′) +

−→
Γ (z′)e+jκ(z−z′)

]
(2.22)

I(z, z′) =
−1

2


 i

−→
Y (z′) + Y
←→
Y (z′)

+ vY

−→
Z (z′) + Z
←→
Z (z′)




[
e−jκ(z−z′) −−→Γ (z′)e+jκ(z−z′)

]
(2.23)

for z < z′

V (z, z′) =
−1

2


 −v

←−
Z (z′) + Z
←→
Z (z′)

+ iZ

←−
Y (z′) + Y
←→
Y (z′)




[
e+jκ(z−z′) +

←−
Γ (z′)e−jκ(z−z′)

]
(2.24)

I(z, z′) =
−1

2


 −i

←−
Y (z′) + Y
←→
Y (z′)

+ vY

←−
Z (z′) + Z
←→
Z (z′)




[
e+jκ(z−z′) −←−Γ (z′)e−jκ(z−z′)

]
(2.25)

where

Z: characteristic impedance Y: characteristic admittance

v: driving voltage source i: driving current source

κ: propagation constant Γ: reflection coefficient

and

←→
Z (z′) =

←−
Z (z′) +

−→
Z (z′);

←→
Y (z′) =

1
←→
Z (z′)

;
←−
Y (z′) =

1
←−
Z (z′)

;
−→
Y (z′) =

1
−→
Z (z′)

; (2.26)
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The modal index has been omitted for simplicity. For arbitrary source distribution the

fields are obtained by integration of the above results.

2.2.3 Analytic Solutions

In the following the fields due to J and M are considered separately.

Fields due to Electric Current J

Fig. 2 is the cross-sectional view of the patch. The eigenvalue problem is defined in z − x

cross-sectional plane with y taken as the longitudinal coordinate.

E-Mode Solution The wave function ψ
′
i satisfies the wave equation

( ∇2
t + k

′2
ti ) ψ

′
i =

(
∂2

∂x2
+

∂2

∂z2

)
ψ
′
i = 0 (2.27)

with boundary conditions:

1. e
′
ix = x̂ ·

[
−1
k
′
ti

(∇tψ
′
ti
)

]
=
−1

k
′
ti

[
∂

∂x
ψ
′
ix(x)

]
ψ
′
iz(z) = 0 at z = 0, c

for vanishing tangential electric field on PEC

2. h
′
iz = ẑ ·

[
ŷ × e

′
i

]
=
−1

k
′
ti

[
− ∂

∂x
ψ
′
ix(x)

]
ψ
′
iz(z) = 0 at x = 0, a

for vanishing tangential magnetic field on PMC

where ψix and ψix are functions due to separation of variables

ψ
′
i = ψ

′
ix(x)ψ

′
iz(z). (2.28)
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As a result

ψ
′
mn(x) = Amn cos

(
mπx

a

)
sin

(
nπx

c

)
, m=0, 1, 2, 3..., n=1, 2, 3... (2.29)

where the normalization factor

Amn =





√
2

ac
, m = 0

√
4

ac
, m 6= 0

(2.30)

The modal index i has been replaced by the double index mn for the two-dimensional

eigenvalue problem. The eigenvalue for the mnth mode is found to be

k
′
tmn =

√(
mπ

a

)2

+
(

nπ

c

)2

(2.31)

and hence the dispersion relation

κ
′
mn =

√
k2 − k

′2
tmn (2.32)

H-Mode Solution The wave function ψ
′′
i satisfies the wave equation

( ∇2
t + k

′′2
ti ) ψ

′′
i =

(
∂2

∂x2
+

∂2

∂z2

)
ψ
′′
i = 0 (2.33)

with boundary conditions:

1. h
′′
iz = ẑ ·

[
−1
k
′′
ti

∇tψ
′′
ti

]
=
−1

k
′′
ti

[
∂

∂z
ψ
′′
iz(z)

]
ψ
′′
ix(x) = 0 at x = 0, a

for vanishing tangential magnetic field on PMC

2. e
′′
ix = x̂ ·

[
h
′′
i × ŷ

]
=
−1

k
′′
ti

[
− ∂

∂x
ψ
′′
ix(x)

]
ψ
′′
iz(z) = 0 at z = 0, c

for vanishing tangential electric field on PEC

11



where by separation of variables

ψ
′′
i = ψ

′′
ix(x)ψ

′′
iz(z) (2.34)

As a result

ψ
′′
mn(x) = Amn sin

(
mπx

a

)
cos

(
nπx

c

)
, m=0, 1, 2, 3..., n=1, 2, 3... , (2.35)

where the normalization factor

Amn =





√
2

ac
, n = 0

√
4

ac
, n 6= 0

(2.36)

The eigenvalue for the mnth mode is

k
′′
tmn

=

√(
mπ

a

)2

+
(

nπ

c

)2

(2.37)

and hence the dispersion relation

κ
′′
mn =

√
k2 − k

′′2
tmn (2.38)

Modal Source Currents The probe is assumed to have the current distribution

J = ẑ I sin [k0(h− z)]δ(x− xs)δ(y − ys) (2.39)

which contributes for each mnth mode the driving source current

imn(y) =
∫

J · e∗mndS (2.40)

with the integration taken over the area of cross section 0 ≤ x ≤ a, 0 ≤ z ≤ c. Thus

i
′
mn(y) =

−1

k
′
tmn

Amn
nπ

c
cos

mπxs

a

k0

k2
0 − (nπ

c
)2

[
cos

nπh

c
− cos k0h

]
δ(y − ys) (2.41)

i
′′
mn(y) =

−1

k
′′
tmn

Amn
mπ

a
cos

mπxs

a

k0

k2
0 − (nπ

c
)2

[
cos

nπh

c
− cos k0h

]
δ(y − ys) (2.42)

No driving voltage source exists in this case. The corresponding circuit configuration is

shown in Fig. 4 with open-circuit termination at both ends loading with perfect magnetic
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Fig. 4. Equivalent circuit for a electric current excitation

wall. The solution is

for y > ys

Vmn(y, ys) =
−1

2


 vmn

−→
Z mn(ys) + Zmn

←→
Z mn (ys)

+ imnZmn

−→
Y mn(ys) + Ymn

←→
Y mn (ys)




×
[

e−jκmn(y − ys) +
−→
Γ mn(ys)e

+jκmn(y − ys)
]

(2.43)

Imn(y, ys) =
−1

2


 imn

−→
Y mn(ys) + Ymn

←→
Y mn (ys)

+ vmnYmn

−→
Z mn(ys) + Zmn

←→
Z mn (ys)




×
[

e−jκmn(y − ys) −−→Γ mn(ys)e
+jκmn(y − ys)

]
(2.44)

for y < ys

Vmn(y, ys) =
−1

2


 −vmn

←−
Z mn(ys) + Zmn

←→
Z mn (ys)

+ imnZmn

←−
Y mn(ys) + Ymn

←→
Y mn (ys)




×
[

e+jκmn(y − ys) +
←−
Γ mn(ys)e

−jκmn(y − ys)
]

(2.45)

Imn(y, ys) =
−1

2


 −imn

←−
Y mn(ys) + Ymn

←→
Y mn (ys)

+ vmnYmn

←−
Z mn(ys) + Zmn

←→
Z mn (ys)




×
[

e+jκmn(y − ys) −←−Γ mn(ys)e
−jκmn(y − ys)

]
(2.46)

where

Z
′
mn =

κ
′
mn

ωε
=

1

Y ′
mn

, Z
′′
mn =

ωµ

κ′′mn

=
1

Y ′′
mn

; (2.47)
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|←−Γ mn| = 1, |−→Γ mn| = 1 due to open circuit at y=0, b (2.48)

←−
Γ mn(ys) = e−j2κmnys ;

−→
Γ mn(ys) = e−j2κmn(b− ys); (2.49)

←−
Y mn(ys) = jYmn tan(κmnys) =

1
←−
Z mn(ys)

; (2.50)

−→
Y mn(ys) = jYmn tan(κmn(b− ys)) =

1
−→
Z mn(ys)

; (2.51)

←→
Z mn(ys) =

←−
Z mn(ys) +

−→
Z mn(ys);

←→
Y mn(ys) =

←−
Y mn(ys) +

−→
Y mn(ys); (2.52)

and
←−
Γ mn =

←−
Γ
′

mn or
←−
Γ
′′

mn,
−→
Γ mn =

−→
Γ
′

mn or
−→
Γ
′′

mn, κmn = κ
′
mn or κ

′′
mn, respectively.

Summing all the modal fields we have for the transverse fields

Et =
∑
m,n

V
′
mn(y)e

′
mn(x, z) +

∑
m,n

V
′′
mn(y)e

′′
mn(x, z) (2.53)

Et =
∑
m,n

I
′
mn(y)h

′
mn(x, z) +

∑
m,n

I
′′
mn(y)h

′′
mn(x, z) (2.54)

The longitudinal fields are derived from the transverse fields to give

Ey =
1

jωε

(
x̂

∂

∂x
+ ẑ

∂

∂z

)
· [(Hxx̂ + Hzẑ)× ŷ] (2.55)

Hy =
1

jωµ

(
x̂

∂

∂x
+ ẑ

∂

∂z

)
· [ŷ × (Exx̂ + Ezẑ)] (2.56)

Fields due to Magnetic Current M

Fig. 2 is also the cross-sectional view of the patch that the eigenvalue problem is defined in

z − x plan with y taken as the longitudinal coordinate.
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E-Mode Solution The wave function ψ
′
i satisfies the wave equation

( ∇2
t + k

′2
ti ) ψ

′
i =

(
∂2

∂x2
+

∂2

∂z2

)
ψ
′
i = 0 (2.57)

with boundary conditions:

1. h
′
ix = x̂ ·

[
ẑ× −1

k
′
ti

∇tψ
′
i

]
=

1

k
′
ti

[
∂

∂y
ψ
′
iy(y)

]
ψ
′
ix(x) = 0 at y = 0, b

for vanishing tangential magnetic field on PMC

2. h
′
iy = ŷ ·

[
ẑ× −1

k
′
ti

∇tψ
′
i

]
=
−1

k
′
ti

[
− ∂

∂x
ψ
′
ix(x)

]
ψ
′
iy(y) = 0 at x = 0, a

for vanishing tangential magnetic field on PMC

where by separation of variables

ψ
′
i = ψ

′
ix(x)ψ

′
iz(z) (2.58)

As a result

ψ
′
ix(x) = Amn cos

(
mπx

a

)
cos

(
nπy

b

)
, m=0, 1, 2, 3..., n=0, 1, 2, 3... , (2.59)

where the normalization factor

Amn =





√
1

ab
, m = 0, n = 0

√
2

ab
, m = 0, n 6= 0

√
4

ab
, mn 6= 0

(2.60)

The modal index has been replaced by the double index mn for the two-dimensional eigen-

value problem. The eigenvalue for the mnth mode is

k
′
tmn =

√(
mπ

a

)2

+
(

nπ

b

)2

(2.61)

and hence the dispersion relation

κ
′
mn =

√
k2 − k

′2
tmn (2.62)
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H-Mode Solution The wave function ψ
′′
i satisfies the wave equation

( ∇2
t + k

′′2
ti ) ψ

′′
i =

(
∂2

∂x2
+

∂2

∂z2

)
ψ
′′
i = 0 (2.63)

with boundary conditions:

1. h
′′
ix = x̂ ·

[
−1
k
′′
ti

∇tψ
′′
i

]
=

1

k
′′
ti

[
∂

∂x
ψ
′′
ix(z)

]
ψ
′′
iy(y) = 0 at y = 0, b

for vanishing tangential magnetic field on PMC

2. h
′′
iy = ŷ ·

[
−1
k
′′
ti

∇tψ
′′
i

]
=

1

k
′′
ti

[
∂

∂y
ψ
′′
iy(z)

]
ψ
′′
ix(x) = 0 at x = 0, a

for vanishing tangential magnetic field on PMC

where by separation of variables

ψ
′′
i = ψ

′′
ix(x)ψ

′′
iz(z) (2.64)

As a result the normalized wave function

ψ
′′
mn(x) =

√
4

ac
sin

(
mπx

a

)
sin

(
nπz

c

)
, m=1, 2, 3..., n=1, 2, 3... , (2.65)

The eigenvalue for the mnth mode is

k
′′
tmn

=

√(
mπ

a

)2

+
(

nπ

c

)2

(2.66)

and hence the dispersion relation

κ
′′
mn =

√
k2 − k

′′2
tmn (2.67)
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Modal Source Currents The equivalent magnetic current is assumed to be

M = x̂M(xs, ys)δ(z − c) (2.68)

The equivalent source voltage for the mnth mode is found from

vmn(z) =
∫

M · h∗mn dS (2.69)

where M is the unknown to be solved. The integration is taken over the slot area covering

the region 0 ≤ x ≤ a, l1 ≤ y ≤ l1 + d. To solve M let it be expanded by a set of basis

functions

M = x̂
L∑

l=1

cl pl(x, y) (2.70)

where

pl(x, y) =





1, xl ≤ x ≤ xl+1, yl ≤ y ≤ yl+1

0, otherwise
(2.71)

Hence

v
′
mn =

L∑

l=1

cl

∫ xl+1

xl

∫ yl+1

yl

pl(x, y) x̂ · h′∗mn dydx (2.72)

v
′′
mn =

L∑

l=1

cl

∫ xl+1

xl

∫ yl+1

yl

pl(x, y) x̂ · h′′∗mn dydx (2.73)

Substitute the modal fields we have

v
′
mn =

L∑

l=1

−clAmn

k
′
tmn





0, n = 0

−
[
cos

nπ(l1 + d)

b
− cos

nπl1
b

]
(xl+1 − xl), n 6= 0, m = 0

−
[
cos

nπ(l1 + d)

b
− cos

nπl1
b

]

×
(

b

nπ

) [
sin

mπxl+1

a
− sin

mπxl

a

]
, n 6= 0, m 6= 0

(2.74)
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and

v
′′
mn =

L∑

l=1

−clAmn

k
′
tmn





0, n = 0

0, n 6= 0, m = 0

−
[
cos

nπ(l1 + d)

b
− cos

nπl1
b

]

×
(

b

nπ

) [
sin

mπxl+1

a
− sin

mπxl

a

]
, n 6= 0, m 6= 0

(2.75)

No modal source current exists in this case. for z < zs = c

Fig. 5. Equivalent circuit for a magnetic current excitation

Vmn(z, zs) =
−1

2


−vmn

←−
Z mn(zs) + Zmn

←→
Z mn(zs)


 ·

[
e+jκmn(z − zs) +

←−
Γ mn(zs)e

−jκmn(z − zs)
]

Imn(z, zs) =
−1

2


vmnYmn

←−
Z mn(zs) + Zmn

←→
Z mn (zs)


 ·

[
e+jκmn(z − zs) −←−Γ mn(zs)e

−jκmn(z − zs)
]

where

Z
′
mn =

κ
′
mn

ωε
=

1

Y ′
mn

, Z
′′
mn =

ωµ

κ′′mn

=
1

Y ′′
mn

; (2.76)

|←−Γ mn| = 1, |−→Γ mn| = 1 due to open circuit at z=0, c (2.77)

18



←−
Γ mn(zs) = ej2κmnys ;

−→
Γ mn(zs) = −1; (2.78)

←−
Z mn(zs) = jZmn tan(κmnzs) =

1
←−
Z mn(zs)

;
−→
Z mn(zs) = 0; (2.79)

←→
Z mn(zs) =

←−
Z mn(zs) +

−→
Z mn(zs);

←→
Y mn(zs) =

←−
Y mn(zs) +

−→
Y mn(zs); (2.80)

←−
Γ mn =

←−
Γ
′

mn or
←−
Γ
′′

mn,
−→
Γ mn =

−→
Γ
′

mn or
−→
Γ
′′

mn, κmn = κ
′
mn or κ

′′
mn, respectively.

Modal representation of transverse fields due to magnetic current source M:

Et =
∑
m,n

V
′
mn(z)e

′
mn(x, y) +

∑
m,n

V
′′
mn(z)e

′′
mn(x, y) (2.81)

Ht =
∑
m,n

I
′
mn(z)h

′
mn(x, y) +

∑
m,n

I
′′
mn(z)h

′′
mn(x, y) (2.82)

The longitudinal fields are derived from the transverse fields as

Ez =
1

jωε
(x̂

∂

∂x
+ ŷ

∂

∂y
) · [(Hxx̂ + Hy)ŷ)× ẑ] (2.83)

Hz =
1

jωµ
(x̂

∂

∂x
+ ŷ

∂

∂y
) · [ẑ× (Exx̂ + Eyŷ)] (2.84)

All the fields by magnetic current source M2 are found.

2.3 Exterior Fields

The configuration for the exterior field problem is shown in Fig. 6. For the purpose of

evaluation of the exterior fields to match the boundary condition on the slot it is convenient

to express the field quantities in cylindrical coordinates. The thin magnetic current has been

expanded previously in terms of a finite number of small dipoles. Each dipole contributes

the magnetic field components

Hρ = Ml
1

4π
e−jk0ρ

(
2

η0ρ2
+

2

jωµ0ρ3

)
cos φ (2.85)

Hφ = Ml
1

4π
e−jk0ρ

(
jωε0

ρ
+

1

η0ρ2
+

1

jωµ0ρ3

)
sin φ (2.86)
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Fig. 6. (a) The field due to magnetic current on the xy-plane (b) Magnetic field in the plane

of the patch at z = c

which is centered at the location of the dipole (xs, ys, c). Note that the two components Hρ

and Hρ are the relevant tangential magnetic fields required for the matching of boundary

condition on the slot. Summing contributions from all dipoles we obtain

Hρ(ρ, φ) = A
L∑

l=1

cl

∫ φl+1

φl

∫ ρl+1

ρl

2

4π
e−jk0ρ

(
1

η0ρ
+

1

jωµ0ρ2

)
dρ cos φdφ (2.87)

Hφ(ρ, φ) = A
L∑

l=1

cl

∫ φl+1

φl

∫ ρl+1

ρl

1

4π
e−jk0ρ

(
jωε0 +

1

η0ρ
+

1

jωµ0ρ2

)
dρ sin φdφ (2.88)

where A is the area of each basis. The above integrals can be greatly simplified by direction

integration of

∫
e−jk0ρ

(
1

η0ρ
+

1

jωµ0ρ2

)
dρ =

1

η0

∫
e−jk0ρ

(
1

ρ
+

1

jk0ρ2

)
dρ, where

1

ωµ0

=
1

k0η0

∫
e−jk0ρ

(
1

ρ
+

1

jk0ρ2

)
dρ =

∫
[cos(k0ρ)− j sin(k0ρ)]

(
1

ρ
+

1

jk0ρ2

)
dρ

=
∫ cos(k0ρ)

ρ
dρ +

∫ cos(k0ρ)

jk0ρ2
dρ− j

∫ sin(k0ρ)

ρ
dρ− j

∫ sin(k0ρ)

jk0ρ2
dρ
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=
∫ cos(k0ρ)

ρ
dρ + j

[
cos(k0ρ)

k0ρ
+

∫ sin(k0ρ)

ρ
dρ

]
− j

∫ sin(k0ρ)

ρ
dρ

+

[
sin(k0ρ)

k0ρ
−

∫ cos(k0ρ)

ρ
dρ

]
= j

cos(k0ρ)

k0ρ
+

sin(k0ρ)

k0ρ
= j

e−jk0ρ

k0ρ
(2.89)

In rectangular coordinates

Hx = Hρ cos φ−Hφ sin φ (2.90)

Hy = Hρ sin φ + Hφ cos φ (2.91)

which are to be used for matching the boundary condition with the interior magnetic field.
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Chapter 3

Numerical Solution by Method of

Moments

We have thus far been able to evaluate the fields, both interior and exterior to the cavity,

in terms of the equivalent magnetic current M. Now on the slot at z = c the boundary

condition requires that the tangential magnetic field is continuous across the slot. Put it in

simple form,

[Hi(r,J)]tan + [Hi(r,M)]tan = [Ho(r,M)]tan (3.1)

or

[Ho(r,M)]tan − [Hi(r,M)]tan = [Hi(r,J)]tan (3.2)

where Hi(r,J) and Ho(r,J) denote respectively interior and exterior fields of the cavity.

Write in terms of the expansion coefficients

[Ho(r, c)]tan − [Hi(r, c)]tan = [Hi(r,J)]tan (3.3)

where c denotes the coefficient vector (c1, c2, ..., cL).
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By point matching at (xi, yi), i = 1, 2..., L in the above equation we have L linear inde-

pendent equations for L unknowns c1, c2, ..., cL

L∑

j=1

[Ho(xi, cj)]tan −
L∑

j=1

[Hi(xi)]tan =
L∑

j=1

[Hi(r, jj)]tan, i = 1, 2...L (3.4)

By matrix inversion we obtain the solution for (c1, c2, ..., cL).
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Chapter 4

Numerical Results

Fig. 7. Example

l1 = 31.6mm, l2 = 24.6mm, d = 0.5mm, a = 31.6mm, c = 2.3mm, b = l1+l2+d, εr = 2.35,

and the height of feeding probe in the board h=1.15mm.

In the spherical coordinate,

elevation angle θ, 0◦ ≤ θ ≤ 180◦ azimuthal angle φ, 0◦ ≤ φ ≤ 360◦

Simulation software used is Ansoft HFSS.
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The field distribution on the slot has been computed for the configuration as shown in

Fig. 7. Three cases of frequencies 7, 11, and 15 GHz are considered. The results are shown

respectively in Figs. 8-10. Also shown in the figures for comparison are that obtained by

Ansoft HFSS simulator. As can be seen in the figures all cases show satisfactory agreement

in general except that region near the ends of the slot, in particular for the case at 11 GHz.

In our conjectures it is probably due to the simple assumption in the formulation that the

slot is confined to the region between two adjacent metal edges, and ignores the region from

the edge down to the ground plane near both end. However the field around such region is

more complicated than we first suggest and which deserves further investigation.

25



Fig. 8. f= 7GHz, the simulated fields by Ansoft HFSS and the computed fields in the slot.

Fig. 9. f=11GHz, the simulated fields by Ansoft HFSS and the computed fields in the slot.

Fig. 10. f=15GHz, the simulated fields by Ansoft HFSS and the computed fields in the slot.
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Chapter 5

Discussion and Conclusion

The edge coupling due to proximity of two patch antennas has been investigated in this thesis.

The analysis is based on the cavity model of the patch with slot coupling so that the problem

can be formulated by equivalence principle. Coupled field equations have been established

and solved numerically by the method of moments. The results have been compared with

that obtained by the commercial simulation software. The field distribution on the slot

exhibits difference around the end of the slot which can be improved by extending the slot

down to the ground plane at both ends.

The present analysis can be extended to the case of multiple patches which form a patch

array of the Yagi-Uda type.
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