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Abstract

This study is aimed at exploring theoretically the electromagnetic coupling mechanism of
two patch antennas attempted for applications in areas such as Yagi-Uda type patch arrays

or bandwidth enhancement of the patch antennas.
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Chapter 1

Introduction

The purpose of this thesis is to study the edge coupling mechanism by proximity of two
patch antennas. One of the applications is to explore the possibility of construction of patch
arrays through edge coupling in a similar manner of passive coupling for a Yagi-Uda ar-
ray. The other aims at bandwidth enhancement of patch antennas considering the coupled
patches resonance at adjacent frequencies. For a passive array application, for example, it is
desirable to make the non-radiating edge of an active patch to couple energy to the adjacent
passive one. To simplify the analysis, we make use of the cavity model with the gap between
the coupling edges modelled as a slot so that the equivalence principle can be applied to the

analysis of the composite structure.

Chapter two starts the analytic formulation of the problem with introduction of basic
theories and assumptions. It follows the derivation of analytic solution in Chapter three.
The numerical solutions by moment method are given in Chapter four. The discussion and

conclusion follow at the end.



Chapter 2

Formulation
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Fig. 1. Configuration of two edge-coupled patches

2.1 Equivalent Problem

Two patch antennas of width a, and edge lengths [, and [y, respectively, are shown in Fig.

1. The first patch is excited by an electric current J, while the other is coupled from
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the first through the edges of the two patches separated by a distance d, which is close
enough to provide the desired coupling. The problem can be analyzed by full-wave integral
equation approach, with the unknown current on the patches to be solved. In this study,
however, we adopt the simpler cavity-model approach with the assumption that the patches
are surrounded by magnetic walls at the nonadjacent edges between the patches and the
ground plane, which amounts to neglecting the fringing field under the edges. The gap
between coupling edges of the two patches is modelled as a slot in the composite structure.
The problem is thus reduces to one of cavity with slot coupling to the free space. This type
of problem has been studied extensively in the literature [1, 2]. By equivalence principle the
coupling effect of the slot is accounted for by an equivalent magnetic current M. With the
aid of this equivalent current the field problem can be casted into two separate parts; that

interior and exterior to the cavity.

Fig. 2. Geometry for the interior problem



Interior Problem The equivalence problem interior to the cavity is shown in Fig. 2 where

the equivalent magnetic current, in terms of the unknown aperture electric field,
M=Exn=2xE (2.1)

is present underneath the slot with the slot now closed by perfect electric conductor. The
fields inside the cavity can be solved by normal mode expansion to be described in the

following sections.

Exterior Problem For the fields outside the cavity the equivalent magnetic current is

given as
—-M=Exz (2.2)

which takes into account of the continuity of the tangential electric field on the slot. Away
from the surrounding edges the current can be considered sitting on top of an large ground
plane so that the method of images can be applied to simplify the problem. As a result there
is an equivalent current —2M radiating in free space as the exterior fields is concerned. The

resultant fields can be readily obtained by the well-known potential-integral solution.

In the above formulation both the fields inside and outside the cavity are derived in terms
of M, or the unknown tangential electric field on the slot. Equating the tangential magnetic

fields across the slot thus leads to coupled field equations for M

2.2 Fields Inside the Cavity

Fields in the waveguides or cavities can be expanded in terms of normal modes for given
boundary conditions. By modal analysis [3] each mode can be represented by an equiva-
lent transmission line with specific propagation constant and characteristic impedance, and
propagates in the waveguide independent of others. For a given source distribution there
corresponds equivalent driving voltage and current sources for each transmission line repre-

senting this particular mode. The field problem is thus reduced to a circuit problem from



which the solution can be readily obtained by circuit means. Finally the total field is syn-
thesized by contribution from all modal fields. For the rectangular cavity there exists no
TEM mode. Only TE(H) and TM (E) modes need to be considered.

The derivation parallels essentially the modal analysis for a metallic waveguide[3], al-
beit with a different boundary condition associated with the magnetic wall. The result is

summarized in the following.

2.2.1 Modal Representation of the Fields

E(r) = Ey(r) + E.(r) (2.3)
B(t) = Vi (H,x2) - . (2.4)
H(r) = Hy(r) + H.(r) (2.5)
H.(r) = jj)ﬂvt (2 X By — M. (2.6)
E(r) = Z Vi (2)e;(p) + Z V' (2)e; (p) (2.7)
H,(r) = Z I (z)h;(p) + Z I (2)h; (p) (2.8)

For E modes:
(Vi + ki) =0 (2.9)
R Y 2.10
€, = _kT'gl- s (2.10)
h, =7 x e, (2.11)
Z, = Se (2.12)

For H modes:
(Vi + ki) =0 (2.13)



h; = —— V) (2.14)
Kii
e, =h, xz (2.15)
7 =2 (2.16)
R

The boundary conditions for the transverse eigenvalue problems are assciated with the elec-
tric and magnetic walls enclosing the cavity and will be specified in the analysis to follow.

For both E and H modes the dispersion relation is

k= k2 — k2 (2.17)

where ky; is found from the transverse eigenvalue problem. In the derivation of the above
expressions the Maxwell’s equations have been decomposed into transverse and longitudinal

components such that

r=p+z (2.18)

0
_ 5 9 2.19
V=Vit+i (2.19)

All eigenmodes are normalized to observe the orthonormal conditions as in [3].

2.2.2 Transmission Line Representation of Modal Fields

The modal amplitudes V; and I; can be shown to satisfy the transmission line equations with
characteristic impedance Z; as given above. The equivalent transmission line representation
for each mode is shown in Fig. 3. The corresponding voltage source v; and current source i;

are related to J and M according to

vi(z) = /1\/[ “hFdS + Z;/J ce”,dS (2.20)

ii(2) = /J Lt dS + Y/M ‘W, dS (2.21)



E(z") z(z')

Fig. 3. Equivalent circuit for waveguide mode

For point sources v(z) =vd(z — 2’) and i(z) =i0(z — 2’) at z = 2’ the solution is given

for z > 2/
1| Z+2z2 Y +Y ] -
V(Z, Z/) = — | &) + iz ((_Z)) + [ 6—jn(z—z) + T)(Z/)e-i-]n(z_z )}
21z Y () |
1| Y +v ACIEA o -
](Z, Z/) = — |4 ((—Z) + + oY (E}) + { e—]n(z—z) . T)(Z/)e-i-]n(z_z )}
2 L Y (Z,) 7 (Z’)
for z < 2/
_ - )
~1 Z(N+ 2 Y(E)+Y o o
V(Z, Z/) - _ —Uﬁi + Zzﬁi [ e+jli(zfz) + T(Z/)efjﬁ(zfz )}
2 L Z (¥) Y (2) |
1] Y@E)+Y Z()+ 7] o -
I(Z, Z’) — _iﬁi + UYﬁi [ e+j/€(zfz) . T(Z/)efjﬁ(zfz )}
2 | Y @) 7 ) |
where

Z: characteristic impedance Y: characteristic admittance

v: driving voltage source 1:  driving current source
K: propagation constant I':  reflection coefficient
and

T =7+ 2 V() = e V() =

(2.22)

(2.23)

(2.24)

(2.25)



The modal index has been omitted for simplicity. For arbitrary source distribution the

fields are obtained by integration of the above results.

2.2.3 Analytic Solutions

In the following the fields due to J and M are considered separately.

Fields due to Electric Current J

Fig. 2 is the cross-sectional view of the patch. The eigenvalue problem is defined in z — x

cross-sectional plane with y taken as the longitudinal coordinate.

E-Mode Solution The wave function 1; satisfies the wave equation

2 /2 ! 82 82 /
(Vi+kg) v = @‘i‘@ Y, =0 (2.27)

with boundary conditions:

! A J— ! _1 a / I
1 ¢, =% [ktl (vtzpti)] = . laxwm(x)l V. (2) =0 at z=0,c¢

for vanishing tangential electric field on PEC
/ _1 8 ! i
2 Wi [y xel] = 5 | tlo) | o) =0 e =00

for vanishing tangential magnetic field on PMC

where 1, and 1), are functions due to separation of variables

;= i (2)1;,(2). (2.28)
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As a result

W (@) = Ay 0O (m”> sin <m> . m=0, 1,2, 3..., n=1, 2, 3... (2.29)
a C
where the normalization factor
2
—, m=0
Apn = sz (2.30)
\—, m#0
ac

The modal index 7 has been replaced by the double index mn for the two-dimensional

eigenvalue problem. The eigenvalue for the mnth mode is found to be

o = () 4 (%) 231

and hence the dispersion relation

Kipn = k2 — k;f?nn (232)

H-Mode Solution The wave function 7,0;-/ satisfies the wave equation

2 //2 " 82 82 1"
(Vitk) vy = %‘I’@ Y, =0 (2.33)

with boundary conditions:

1"

" N _ 7 _1 a "
I. hy,=12- lkivtl/)m] = /{,‘7;; [(%¢ZZ(Z)] Vi (r) =0 at x =0,a

for vanishing tangential magnetic field on PMC

1" 1 _1 a 11 1"
2. ¢ =%- [hi X y} = [_ax%(x)] Ui (2) =0 at z=0,c
tr

for vanishing tangential electric field on PEC

11



where by separation of variables

U = V(@) (2) (2.34)
As a result
W (@) = Ay sin (m”) cos <m) m=0, 1, 2, 3..., n=1, 2, 3... , (2.35)
a C

where the normalization factor

2
—, n=0
Apn = Cf (2.36)
\/—, n#0
ac

The eigenvalue for the mnth mode is

) () 231

and hence the dispersion relation

Modal Source Currents The probe is assumed to have the current distribution
J=2zTIsinlko(h — 2)]0(z — x5)0(y — ys) (2.39)

which contributes for each mnth mode the driving source current

i () = / J.e dS (2.40)
with the integration taken over the area of cross section 0 < x < a, 0 < 2z <c¢. Thus

s -1 nmw ML ko nmh

i, (y) = mAmn? cos — o (%)2 [cos -~ cos k‘oh] My — ys) (2.41)

" -1 mm MTL, ko nwh

; = ——Apn— — koh| 6(y — v, 2.42

) = e o T B e M ok sy ) 22

No driving voltage source exists in this case. The corresponding circuit configuration is

shown in Fig. 4 with open-circuit termination at both ends loading with perfect magnetic

12



ET=°° @)’

Fig. 4. Equivalent circuit for a electric current excitation

wall. The solution is

for y > ysq
_1 7mn s Zmn ?mn s Ymn_
Vi (Y, Ys) = —- [ Umn J)y )+ + trn Zmn J,y )+
Z mn (ys) Y mn (ys)
X |: e_j/fmTL(y - ys) + ?mn(ys)e—i_]/’imn(y - ys):|
_1 7mn s Ymn 7mn s Zmn_
Y mn (Ys) Z mn (Ys)
X e_j’fmn(y —Ys) _ T)mn(ys)e'i_j’fmn(y - yS)}
for y < vy,
— -
-1 Zmn s Zmn . ?mn s Ymn
X e_‘_j/ﬂmn(y - ys) + Tmn(ys)e_j/{mn(y - ys)
_1 ?mn s Ymn <Zmn s Zmn_
Imn(y; yS) - 7 [ ~lmn <—(>y ) * + Vmn Yo <—(>y ) i
X [ e""j“mn(y —Ys) _ Tmn(%)@_j’%mn(y — Ys)
where
’ /{l 1 7 w 1
Ly = 1 = Ly = =
S R

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)



]Tmn\ =1, \T)mn| = 1 due to open circuit at y=0, b

T a(ys) = €7 920mnUs, T () = = 20mn (b= 02,

1
Y i (Us) = §Y a0k ys) = o
?mn(ys) - ]Ymn taﬂ(:‘imn(b — ys)) = 71;
mn(Ys)
— - .

Z mn(Ys) = Z mn(Ys) + 7mn(ys)§ Y mn(Ys) = ?mn(ys) + ?mn(ys);

" 1

T -T oT = K .
mn’ mn ~ mn or mn’ ’Limn - szn or Kmnv

and Tmn = T;nn or T
Summing all the modal fields we have for the transverse fields
E =) Vi ()€ (7, 2) + > V. (e, (x,2)

Er = 3 L ()0 (2,2) + 3 L (), (2, 2)
The longitudinal fields are derived from the transverse fields to give

E,=— <§< + i) [(Hyx+ H,z) x y]

Fields due to Magnetic Current M

respectively.

(2.48)
(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

Fig. 2 is also the cross-sectional view of the patch that the eigenvalue problem is defined in

z — x plan with y taken as the longitudinal coordinate.

14



E-Mode Solution The wave function w; satisfies the wave equation

2 /2 ! 82 82 /
( Vit k) v = @‘f’@ Y; =0 (2.57)

with boundary conditions:

’ ~ A —1 / 1 6 !
1. h. =x- — | = — | =, . = ty= 7b
w [Z 8 ky; Vt%] ky; laywly(y)l Vi) =0 aty =0

for vanishing tangential magnetic field on PMC
-1

!/ A PN J— ! a / ’
2. hy=y- [Z X kfvt%] = [—axzbw(a?)] Y, (y) =0 at z =0,a
i ti

for vanishing tangential magnetic field on PMC

where by separation of variables

i = i (2)1,,(2) (2.58)
As a result
br () = A OS (m§x> cos (mgy) m=0,1,2,3....0=0, 1, 2, 3... | (2.59)

where the normalization factor
r
ab’
| 2

ab

4
ab’
The modal index has been replaced by the double index mn for the two-dimensional eigen-

m=0n=20

mn # 0

value problem. The eigenvalue for the mnth mode is

o = () + () 2o

and hence the dispersion relation

ko =\k2— k2, (2.62)

mn

15



H-Mode Solution The wave function w;/ satisfies the wave equation

2 //2 " 82 62 "
(Vitki) vy = @—i_ﬁ Y, =0 (2.63)

with boundary conditions:

_ x| =lvr = L9

1

77Z)zy(y) =0 at Y= 07b

for vanishing tangential magnetic field on PMC

N _1 2 1 a " " . .

for vanishing tangential magnetic field on PMC

where by separation of variables

Uy = ()Y (2) (2.64)

As a result the normalized wave function

1" 4
Yl (x) = 1/ — sin (mm) sin (W) . m=1, 2, 3..,n=1, 2, 3..., (2.65)
ac a C

The eigenvalue for the mnth mode is

ORI 250

and hence the dispersion relation

16



Modal Source Currents The equivalent magnetic current is assumed to be

M =xM(xs,ys)0(z — ¢)

The equivalent source voltage for the mnth mode is found from

Umn(2) = /M -hr dS

(2.68)

(2.69)

where M is the unknown to be solved. The integration is taken over the slot area covering

the region 0 < x < a, I; <y < Il +d. To solve M let it be expanded by a set of basis

functions

L

M = ﬁzclpl(‘ray)

=1

where

I, m<e<zi, yi<y<uyn

pi(w,y) =
0, otherwise

Hence

L Ti41 Yi+1
ch / (r,y)x - h ., dydz

~
—

Ti+1  [Yl+1
cl/ / (x,y)%x - h ~ dydx

l Y

||
B

N
Il
i

Substitute the modal fields we have

0,
(ll + d) mrll
— |cos — cos (X111 — 1),
/ L _clAmn b b
Umn = Z k;
=1 mn
nr(ly + d) nwly
— |cos —
L b b .
( b ) { . MTT mr
x | — | |sin ,
nmw a a

(2.70)
(2.71)
(2.72)
(2.73)
n=>0
n#0,m=0
(2.74)
n#0,m#0



and

0, n=>0
0, n#0, m=0
1" L —ClAmn ;é
Uy = 5 (2.75)
= tTYLTL
= l nm(ly + d) mrll]
— |cos — COS
b b
X <> {si ML _ gy T , n#0,m#0
nm a a

No modal source current exists in this case. for z < z, = ¢

Z|=O z|=c" Z_TC
I I T =]
+ -
(»)
ZT=O ZT:O

Z()  Z(c)

Fig. 5. Equivalent circuit for a magnetic current excitation

(_
an(Z, Zs) — ;1 —,, Zm<n_(>Zs) + Zmn . [ e‘i‘jlimn(z — ZS) + Tmn(zs>e—j/{mn(z — Zs>:|
2 | Z vun(2s)
1] 7 7 : .
Imn(’Z?Zs) = — UmnY @28) L : { €+]l€m"(z - Zs) — Tmn(zs)e_j,im”(z - ZS):|
2 | Z wn (%)
where
’ /{l 1 " CUM ]_
Lo = — = = L = —— = i 2.76
i G N (270)
]Tmn\ =1, \ﬁmn| = 1 due to open circuit at z=0, ¢ (2.77)

18



Tmn(zs) = ejQK’mnyS; ?mn<zs) = _1’

1
7mn(28) = ]Zmn ta’n(limnzs) == 7mn<28) = 07
Zmn(zs)
«—> F «—>

Z mn(zs) = Zmn(ZS) + 7mn<25); Y mn(zs) = ?mn(zs) + 7mn(25)3

T, = T ,, OF T ? ? K, =K Ok, . respectively.

mn mn?’ mn ? mn mn mn?

Modal representation of transverse fields due to magnetic current source M:

The longitudinal fields are derived from the transverse fields as

BN 8 8

1, 0 0 . . .
H.= (g 49 50) [ (Bt B,9)

All the fields by magnetic current source M, are found.

2.3 Exterior Fields

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

The configuration for the exterior field problem is shown in Fig. 6. For the purpose of

evaluation of the exterior fields to match the boundary condition on the slot it is convenient

to express the field quantities in cylindrical coordinates. The thin magnetic current has been

expanded previously in terms of a finite number of small dipoles. Each dipole contributes

the magnetic field components

1 , 2 2
H, = Ml—e¢ Ikor + = ) cos ¢
g A (77002 jwhop®

1. j 1 1
H(b = leeijkop (]WGO + 2 + = 3) Sin¢
4m p MopS Jwhop

19
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(@ . (b)

Fig. 6. (a) The field due to magnetic current on the xy-plane (b) Magnetic field in the plane
of the patch at z = ¢

which is centered at the location of the dipole (x5, ys, ¢). Note that the two components H,
and H, are the relevant tangential magnetic fields required for the matching of boundary

condition on the slot. Summing contributions from all dipoles we obtain

Pl+1 [PI+1 2 1 1
=A) ¢ / / e Ihop < + - ) dp cos ¢do (2.87
,z; l NP Jwhop? )
L Piy1 fPI41 1 ik . 1 .
}) = AZCI/ / TROP L jweg + — + - 5 | dpsingdo (2.88)
= P jwhop

where A is the area of each basis. The above integrals can be greatly simplified by direction

integration of

. 1 1 1 , 1 1 1 1
/e_ﬂ“’” ( + - 2) dp = — e~ Ikop < + - 2) dp, where — = ——
NP JWhop Mo p - Jkop wpo  kono
, 1 1 1 1
e hor | — 4 )d :/Cosk — jsin(k < )d
Jemo (5 ) do = [losthon) = gsinthon] (5 + 725 )
k in(k in(k
:/cos(pgp)dp+/cos( >dp—j/8m<p0p)dp—j/sn,l( Op)dp

Jkop?
20



cos(kop) _ [cos(kop) sin(kop) ] [ sin(kop)
e + dp| —j [ =2
/ PR / PR / P

kop

sin(kop) cos(kop) 1 cos(kop) = sin(kgp) e Ikor
+ — | ———dp| = + = 2.89
[ / P g g kop kop g kop ( )

In rectangular coordinates
H, = H,cos¢ — Hysin ¢ (2.90)
H, = H,sin¢ + Hycos ¢ (2.91)

which are to be used for matching the boundary condition with the interior magnetic field.

21



Chapter 3

Numerical Solution by Method of

Moments

We have thus far been able to evaluate the fields, both interior and exterior to the cavity,
in terms of the equivalent magnetic current M. Now on the slot at z = ¢ the boundary
condition requires that the tangential magnetic field is continuous across the slot. Put it in

simple form,
[Hi(I‘, J)]tan + [Hi(r> M)]tan = [Ho(ra M)]tan (31)
[HO(I', M)]tan - [Hi<r7 M)]tzm = [Hi(rv J)]tan (3~2)

where H;(r,J) and H,(r,J) denote respectively interior and exterior fields of the cavity.

Write in terms of the expansion coefficients
[Ho(r7 C)]t(zn - [Hi(ra C)]tan = [Hi(r7 J)]tan (33)

where ¢ denotes the coefficient vector (¢q, ca, ..., cp).

22



By point matching at (z;,;),7 = 1,2..., L in the above equation we have L linear inde-

pendent equations for L unknowns ¢y, co, ..., cy,

L
.Il,C] tan — tan Z j] tans 1= 1 2..L (34)

J:1 J:1 J=1

Mh
Mh

By matrix inversion we obtain the solution for (cq, ca, ..., cr).

23



Chapter 4

Numerical Results

s (1 —
b=I+I,+d —1/ —1,—

!
Dielectric Hﬂ y
a
v

(THSR -39

/ k b 4

Fig. 7. Example

[, = 31.6mm,ly = 24.6mm,d = 0.5mm,a = 31.6mm, c = 2.3mm,b = l1+Ily+d, €, = 2.35,
and the height of feeding probe in the board h=1.15mm.
In the spherical coordinate,
elevation angle 6, 0° < 6 < 180° azimuthal angle ¢, 0° < ¢ < 360°
Simulation software used is Ansoft HFSS.
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The field distribution on the slot has been computed for the configuration as shown in
Fig. 7. Three cases of frequencies 7, 11, and 15 GHz are considered. The results are shown
respectively in Figs. 8-10. Also shown in the figures for comparison are that obtained by
Ansoft HFSS simulator. As can be seen in the figures all cases show satisfactory agreement
in general except that region near the ends of the slot, in particular for the case at 11 GHz.
In our conjectures it is probably due to the simple assumption in the formulation that the
slot is confined to the region between two adjacent metal edges, and ignores the region from
the edge down to the ground plane near both end. However the field around such region is

more complicated than we first suggest and which deserves further investigation.
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Fig. 9. f=11GHz, the simulated fields by Ansoft HFSS and the computed fields in the slot.

=2 1 | =
it 1+

£ b !j;

10 ! _

50 : ;

11117 "

—

B e TYANANY fereeeeeseeeen e i
10, i i

1] 10 20 30 40 50 60

Fig. 10. f=15GHz, the simulated fields by Ansoft HFSS and the computed fields in the slot.
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Chapter 5

Discussion and Conclusion

The edge coupling due to proximity of two patch antennas has been investigated in this thesis.
The analysis is based on the cavity model of the patch with slot coupling so that the problem
can be formulated by equivalence principle. Coupled field equations have been established
and solved numerically by the method of moments. The results have been compared with
that obtained by the commercial simulation software. The field distribution on the slot
exhibits difference around the end of the slot which can be improved by extending the slot
down to the ground plane at both ends.

The present analysis can be extended to the case of multiple patches which form a patch

array of the Yagi-Uda type.
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